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Analysis of Security of Split Manufacturing
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Abstract—This work is the first to analyze the security of split
manufacturing using machine learning, based on data collected
from layouts provided by industry, with 8 routing metal layers
and significant variation in wire size and routing congestion
across the layers. Many types of layout features are considered
in our machine learning model, including those obtained from
placement, routing, and cell sizes.

Since the runtime cost of our basic machine learning proce-
dure becomes prohibitively large for lower layers, we propose
novel techniques to make it scalable with little sacrifice in the
effectiveness of the attack. Moreover, we further improve the
performance in the top routing layer by making use of higher-
quality training samples and by exploiting the routing convention.
We also proposed a validation-based proximity attack procedure,
which generally outperforms our recent prior work.

In the experiments, we analyze the ranking of the features
used in our machine learning model and show how features vary
in importance when moving to the lower layers. We provide
comprehensive evaluation and comparison of our model with
different configurations, and demonstrate dramatically better
performance of attacks compared to the prior work.

I. INTRODUCTION

Chip fabrication has now spread across the globe, with
over 90% of the world’s foundry capacity controlled by non-
US companies. In some cases, use of off-shore fabrication
facilities may be inevitable due to the need for high volume
production and access to advanced facilities. Moreover, in the
era of Internet of Things (IoT), there are billions of connected
devices which may be fabricated off-shore and vulnerable to
hacking. In the light of such IoT attacks, it is crucial to ensure
these everyday devices are securely fabricated.

Split manufacturing is an IC fabrication model which en-
ables secure use of a high-end but untrusted foundry. In this
model, only partial information about the chip is sent to the
untrusted foundry and the chip is only partially fabricated [2],
[3], [9], [13]. For a layout given as a network of connected
transistors, the partial information corresponds to the complex
steps of fabricating the transistor layer and a subset of metal
layers that are immediately above it (i.e., Front End of Line,
FEOL). Fabrication of the rest of the connections, captured by
the higher metal layers (i.e., Back End of Line, BEOL), won’t
require a complex fabrication process and can be done by a
smaller, trusted company.

The majority of recent studies have suggested that split
manufacturing is inherently unsecure while not making reason-
able assumptions about complexities and sizes of designs and

This research was supported by Award Number 1812600 from National
Science Foundation and by Semiconductor Research Corporation.

The authors are with the Department of Electrical and Computer Engineer-
ing, University of Wisconsin–Madison, Madison, WI 53706 USA (e-mail:
wei.zeng@wisc.edu; bzhang93@wisc.edu; adavoodi@wisc.edu).

physical synthesis in modern fabrication processes. Therefore
the focus of many recent works has been on obfuscation, for
example scrambling the locations of broken nets at the split
layer to make proximity and other attacks more challenging
[3], [7], [9], [13], [16]. Recent work [5], which considered
these modern layout factors, showed a popular proximity
attack [9] is not effective. However, the technique in [5] had
limitations such as being constrained to place and route layout
features, and the use of simple linear regression for modeling
while simultaneously considering all designs (without separa-
tion of testing and training cases).

In this work, we use the identical setup as [5] but include
more layout features. We also use machine learning for model-
ing while ensuring separation of training and testing data sets.
Similar to [5], the emphasis is to find a small list of candidates
for each broken net with a high accuracy to include the actual
match. Our contributions are listed below.

• We incorporate various layout features including place-
ment, routing, cell sizes, and cell pin types for machine
learning. We propose novel techniques for effective real-
ization of training and testing in machine learning.

• Since the runtime of our basic machine learning proce-
dure becomes prohibitively large for lower layers, we
propose novel ways to make it scalable, achieving sig-
nificant runtime improvement without much sacrifice in
the effectiveness of the attack.

• We improve the performance of attack for the top routing
layer by using high-quality training samples and exploit-
ing the routing conventions.

• We conduct a comprehensive study on proximity attack.
Based on the study, we propose a validation-based pro-
cedure to improve the success rate of proximity attack.

• We study the ranking of features with each feature
associated with a weight signifying its importance. Using
the ranked features, we study relative importance of the
features across the layers. We show routing features are
the most important ones, and as we move to lower layers,
more features become important.

• Based on the feature ranking, we show how design ob-
fuscation can make the attack more difficult by applying
artificial random noises to two of the most important
features.

All experiments are conducted based on data collected from
design layouts released by industry [12], featuring 9 routing
metal layers with significant variation in wire size (4×) and
significant variation in routing congestion across the layers.

In our experiments we show that, for example, for split
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layer 8, the size of list of candidates for the broken nets
is on-average 2–3% of that in [5] while maintaining the
same likelihood of including the actual match in the list;
with the same size of list of candidates, the likelihood of
including the actual match in the list is 99.99% compared to
42.72%. The improvements to the scalability of our machine
learning procedure reduced the average attack runtime on
layer 4 from 5.31 hours to around 1 hour. Overall, this is
the first work to apply machine learning to study security of
split manufacturing and show significant improvement in the
effectiveness of the attack.

II. ATTACK MODEL AND PRIOR WORK

A. Attack Model and Preliminaries

In our model of split manufacturing, an untrusted foundry
has received a layout file which contains information about
the transistor layer and some metal layers that are immediately
above it (FEOL). The goal of the untrusted party is to guess
the missing connections in the higher layers (BEOL) using
the FEOL information. The layout file, which is typically
described in the GDSII format, allows quick generation of
a gate-level description of the partially-connected network. It
includes information on where each cell is placed, as well as
the characteristics of each cell which includes factors such as
cell type, electrical properties, drive strength, and pin shape.
The route fragments of the partial network are also completely
specified on each layer corresponding to the FEOL. In this
attack model, the goal of the untrusted party is to guess the
match for each incomplete connection.

A split layer is a via layer at which the split is made. For
example, split layer 6 means the split at via layer 6, separating
metal layers 6 and 7. In this case, the untrusted foundry (i.e.
attacker) gets the layout of placed cells and macros, all wires
up to metal layer 6, and all vias up to via layer 6. Layout on
and above metal layer 7 is not available to this foundry.

We designate the point where a net is broken on the split
layer as a virtual pin, which we refer to as v-pin throughout
the paper. In the context of VLSI, a v-pin is essentially a via
at the split layer. This is in contrast to the input/output pins
of the standard cells which are typically located on layer M1.
Each v-pin may connect through a route fragment to one or
more pins at the placement layer.

B. Prior Work

Many recent works on split manufacturing ignore important
factors which directly impact the difficulty of the attack.
For example the work [11] uses very small designs, with at
most 6 500 gates. Ten metal layers are assumed for 45 nm
technology. It is not clear why so many metal layers were
used for such small designs. While the authors use Cadence
tools for synthesis, it is unclear how the parameters of the
tool were controlled to generate a fair layout; for example,
they mention “use of all metal layers” for all benchmarks for
fair comparison from a split manufacturing perspective. If this
is influenced by the user, then it does not fairly capture the
behavior of typical routing algorithms. In general a minimum
number of metal layers are picked by the designer, and more
congestion is seen in the lower layers so picking many layers
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Fig. 1. Flow chart of our modeling process.

and evenly distributing the routes across them is not fair and
may significantly simplify the split manufacturing attack. Wire
sizes and their variations across the layers are not mentioned in
[11], which is a very important factor in how congestion gets
spread across the layers. (Higher congestion in the split layer
makes it more likely for the two segments of a broken net to
be further apart from each other on that layer and makes the
attack more challenging.) In [9], it is assumed that only I/O
pins are cut by the split layer, which is clearly not a realistic
assumption. Similar issues exist in many other prior works.

Moreover, with smaller designs, the number of cut nets at
the split layer will be significantly small. This allows use of
computationally intensive algorithms which can be infeasible
in practice. For example, an interesting network flow model
in [13] and pattern-matching-based layout recognition attacks
in [17] are applied to designs with at most 18 000 gates. The
actual number of edges in the graph for an 18K design is much
larger (potentially exponential order) because of considering
many matching candidates simultaneously. These models are
infeasible to apply in our setup with designs of at least a few
hundred thousand gates. It requires significant effort to develop
scalable variations of these algorithms.

Recently, the work [5] uses large layouts with a setup
released by industry to study split manufacturing. While these
designs consider factors such as wire size variation, and proper
use of the place and route tool (as supervised/released by
industry), their study was limited in many aspects. First, it
only considered a small number of place and route features.
Moreover, its modeling process was based on simple linear
regression and across all designs (without separation of testing
and training), leaving significant room for improvement as we
show in this work.

Since existing techniques are generally independent of our
machine learning framework in this paper, attackers could
combine them, where possible, for even better performance
of attack, which is out of scope of this paper.

III. MACHINE LEARNING FRAMEWORK

In this paper, we propose a machine learning framework
to carry out the attack of split manufacturing. To simplify
discussion, in this paper we assume this framework is the
only tool available to the attacker, whereas in reality, this
would be only a part of effort in reverse engineering, and the
attackers may combine this framework with other knowledge
and techniques for potentially better results.

Fig. 1 shows a high-level overview of our modeling process.
First, a challenge instance is created from a placed and routed
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Fig. 2. Layout feature extraction for each v-pin.

layout by cutting it at the split layer and only looking at the
FEOL view. Next, a set of layout features are collected for each
v-pin, which include features from placement, routing, cell
areas, and cell pin types. Using these features, next, machine
learning samples are generated which are fed into the training
process. Each sample includes information for a pair of v-pins
which may or may not be matching each other. (This step
will be explained in detail later.) Sample generation is done
on a subset of the designs which are designated for training.
Machine learning then builds a classifier using the training
samples. Cross validation is used for evaluation which ensures
validation of the model is done on the rest of the data which
was not used for training.

We first explain how the layout features are collected for
individual v-pins, then explain how samples are generated
for training, and discuss the details of the modeling pro-
cess. Finally, we discuss adjustments to the machine learning
framework to make it scalable when applying to lower split
layers, as well as techniques to improve the results and their
interpretability. We also conduct a comprehensive study of
performing proximity attack based on the results of machine
learning.

A. Feature Extraction for Individual V-Pins

For each v-pin v (in the designs used for training), we
extract the following layout features as shown in Fig. 2. Let
(vx, vy) denote the v-pin’s coordinates on the split layer. We
compute wirelength W for the route fragment that connects
v to one or more pins of standard cells on the underneath
placement layer. We also calculate the location where the v-pin
connects on the placement layer, which we denote by (px, py).
If the connection is to multiple pins on the placement layer,
the location is computed by averaging the coordinates of pins
of the standard cells that connect to v.

Among the standard cells that connect to v, we sum the
areas of those which connect to v through an input pin. We
denote this by InArea. Similarly, we compute an OutArea
designating the sum of areas of the standard cells which
connect to v through an output pin. Fig. 2 shows an example of
how the above quantities are calculated. We note these features
together capture characteristics from placement, routing, cell
areas, and pin types.

The intuition of defining InArea and OutArea is to
enable accounting for driver strength during machine learning.
Driver strength is highly correlated with the cell area. Each
cell has a maximum output load that it can drive. The area
measurements will be used during machine learning when a
pair of v-pins are considered as potential match. Similarly,

the reason wirelength W is recorded is to enable identifying
cases when a pair of considered v-pins result in an unrealistic
combined wirelength that may impact timing, which will be
explained in detail in Section III-B.

For each v-pin, we also extract the congestion measure-
ments for placement and routing, denoted by PC and RC,
respectively. These measurements were introduced in [5] mea-
suring the congestion around the neighborhood of a v-pin.
The placement congestion PC is defined as the pin density
around the pin that connects to the target v-pin. The routing
congestion RC is defined as the v-pin density around the target
v-pin. These congestion measurements will also be used to
extract features in machine learning, as will be described in
Section III-B.

B. Sample Generation

After the layout features for individual v-pins are extracted,
we prepare the samples to feed into the subsequent training
step. Specifically, for each v-pin, we first create a pair by
recording the index of its (correctly) matching v-pin. This
serves as a “positive sample.” We then create equal number
of samples of non-matching v-pin pairs which we denote as
“negative samples.” This is done by randomly picking v-pins
which are not a match, from the training data set. (We explain
later how we divide our benchmarks into testing and training
data sets). Note that there are much more non-matching v-pin
pairs (negative samples) than matching pairs (positive samples)
in a typical design. When dealing with such unbalanced data
sets, using equal numbers of positive and negative samples
in training as described is shown to be essential for effective
modeling [4]1.

Next, for each pair (matching or non-matching), we record
various corresponding layout features. This uses the individual
v-pin features which were explained before. Specifically, for
a v-pin pair (v1, v2) we record the following to generate a
sample.
• DiffPinX = |px1 − px2|: This feature records the dif-

ference in the x-coordinates of the pins on the placement
layer which connect to the two v-pins.

• DiffPinY = |py1 − py2|: Same as the previous feature
except calculated using the y-coordinates.

• ManhattanPin = |px1 − px2|+ |py1 − py2|: Same as
the previous feature except it is calculated based on the
pin locations on the placement layer.
— It is believed that the placer and router tend to mini-
mize the wirelength for less routing congestion and easier
timing closure. ManhattanPin is the minimal possible
wirelength (i.e. the lower bound) connecting the two pins,
with DiffPinX and DiffPinY being the components
in x and y directions, respectively. Intuitively, if these
features of a certain Vpin pair are too large, this pair is
less likely to be a match. This feature is included to allow
for consideration of a placement level proximity, which
previous work has associated with finding a correct match
[5]. Including the Manhattan distance as separate features

1Those v-pin pairs which connect output pins of different cells are illegal
and we exclude from both positive and negative samples.



4

(besides the difference in individual x- and y-coordinates)
gives the machine learning algorithm more flexibility to
consider the proximity between the v-pins as a factor in
matching the correct v-pin.

• DiffVpinX = |vx1 − vx2|: This feature records the
difference in the x-coordinates of the two v-pins.

• DiffVpinY = |vy1−vy2|: Same as the previous feature
except calculated using the y-coordinates.

• ManhattanVpin = |vx1−vx2|+ |vy1−vy2|: This fea-
ture records the Manhattan distance between two v-pins.
— These features share a similar rationale to the previous
three features, except that we consider the coordinates of
v-pins instead of pins. It is observed that a candidate v-pin
in close proximity is more likely to be a match [5]. Since
the attacker already knows the layout below the split
layer, ManhattanVpin (plus the known wirelength
below the split layer) gives a better lower bound of
wirelength connecting the Vpin pairs. Besides, when the
split layer separates only the top metal layer (split layer
= 8 in this paper), we are more likely to have a zero
difference in either x and y direction, as the top metal
layer (the only unknown layer to the attacker) is usually
either vertically or horizontally routed. This fact further
eases the classification in that particular split layer.

• TotalWirelength = W1 + W2: This is the known
wirelength connecting the v-pin pair below the split layer.
— Since the wirelength of each net impacts timing, it
is important to ensure the combined wirelength of the
considered v-pin pair is not prohibitively large (which
will be decided by the machine learning algorithm based
on typical characteristics seen in the training data). In
other words, matching pairs usually have smaller values
in this feature than non-matching ones.

• TotalArea = InArea1 + InArea2 + OutArea1 +
OutArea2: This records the sum of cell areas connecting
to the two v-pins.

• DiffArea = (OutArea1 +OutArea2)− (InArea1 +
InArea2): This feature calculates the area difference of
the driver cells from its loads. Note, one of OutArea1
or OutArea2 must be zero. Otherwise the pair is illegal
and is disregarded.
— TotalArea and DiffArea together help determine
if a driver cell has sufficient strength for the load intro-
duced by the v-pin pair. See Section III-A. Fig. 3(a) and
(b) illustrate some of the above features.

• PlacementCongestion = PC1 + PC2: Congestion
measurement around the pin at placement layer, which
measures the density of pins around the pin that is
connected to the target v-pin.

• RoutingCongestion = RC1 + RC2: Congestion
measurement around the v-pin at the split layer, which
measures the density of v-pins around the target v-pin
within certain neighborhood.
— These two congestion measurements are based on the
intuition that, if the congestion around the two v-pins is
too high, they are not likely to be a match, and in highly
congested regions, matching v-pins are more likely to be
farther away from each other.

(a) Manhattan distance between v-pins and between pins of stan-
dard cells.

(b) Standard cell area based features.

Fig. 3. Illustration of some features for pairs of v-pins.

We will plot the data distributions of these extracted features
in Section IV-A, so that interested readers can gain a better
understanding about them. We believe these features are not
specific to any circuit, because the intuitions behind them all
come from general ideas in physical design.

Overall, each sample in the training and testing data sets
represents a v-pin pair and includes the above 11 layout
features, with a binary target value indicating if the pair is
a match or not (i.e., if it is a positive or negative sample).
Next, training is performed based on the generated samples.

C. Details About Training and Testing Stages

In our experiments, we use “leave-one-out” cross valida-
tion, which is a standard procedure to ensure separation of
testing and training data sets. Specifically, assuming we have
N designs, to test each design, we use the N − 1 remaining
designs for training the model. This means 1) for a specific
design/split layer, samples used in the training and testing
processes do not overlap, and 2) different models are built
to test different designs/split layers. Note that we use this
cross validation process simply because we only have limited
number of designs available. In practice, it is not required
that the attacker use N − 1 designs for training. For example,
the training samples can be extracted from a fixed number
of designs, which may come from reverse engineering, or
historical data of complete/trial tape-outs of other designs with
the same process technology.

For training, in our previous work [18], we used
RandomForest in Weka [1] as the default classifier for
its best performance among all classifiers we experimented.
Random Forest is generally a robust and versatile model
that has few hyperparameters, which works well on many
classification and regression tasks in different fields, e.g. [6],
[15]. Random Forest falls into the category of Bootstrap
aggregating (Bagging) method, which combines the output of
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a group of base classifiers to generate more robust predictions
than individual classifiers. In the case of Random Forest, the
base classifiers are decision trees. For a decision tree with J
decision nodes, its final prediction result can be derived as a
Boolean combination of J comparisons in the form of xi ≤ tj ,
where xi is the value of the i-th feature and tj ∈ R is the
threshold in the j-th decision node. Since such comparisons
and Boolean operations are nonlinear, it is powerful to deal
with data that are not linearly separable, and is insensitive
to outliers in the data, which exist in most machine learning
problems, including the problem in this paper (See Figure 8).

In Weka, the base classifier for RandomForest is
RandomTree, i.e., the randomized decision tree without
pruning. Despite its good performance of classification, the
runtime for training and testing is much longer than other
classifiers.

In this paper, we keep using the Bagging method
(with details in Section III-F). However, instead of using
RandomTree as the base classifier, we use REPTree (Re-
duced Error Pruning tree), which prunes the tree where
branching does not improve the performance on a validation
data set. With this change, the runtime can be reduced in
two aspects. First, REPTree has a smaller size than its
corresponding RandomTree in general. Second, REPTree
has better generalization performance in general owing to the
pruning, which means the number of trees for the Bagging
method can be reduced while maintaining similar performance
as RandomForest. Both aspects translate to less training and
inference time. Specifically, in Weka [1], the default number
of RandomTrees in RandomForest is 100, while the
default REPTrees in Bagging method is 10. Our experiments
shows that Bagging with 10 REPTrees can achieve similar
performance of classification to that of RandomForest with
significant less runtime. Such comparison will be shown in
Section IV-C.

Once the training is done, in order to do the testing, first
the set of all possible unique v-pin pairs are considered for
evaluation. Specifically, for each v-pin, all other v-pins in that
split layer are considered for evaluation; if n v-pins exist on
the split layer, up to

(
n
2

)
pairs are evaluated2. The testing

stage then solves the inference problem by generating a yes/no
answer for each pair to predict if the two v-pins are a match.

Once the testing stage is finished, the matches (i.e., yes
answers) for each v-pin are bundled together into one set
and recorded as its identified “List of Candidates” which we
denote by LoC. We measure the quality of our modeling
with two metrics. First, we measure the size of the LoC.
Clearly, smaller-sized list is better. Second, we care about the
classification accuracy, meaning that the LoC should include
the actual match for the v-pin with a high likelihood.

D. Improvements for Scalability

We faced three issues when applying our machine learning
framework (denoted by ML) to the lower split layers. So we
propose improvements to extend our framework to the lower
layers. We denote this improved variation by Imp.

2Note, pairs connecting two output pins are disregarded.

First, we observed significant increase in the runtime of
ML when applying it to lower split layers. This increase was
both in the training and testing times (e.g., from seconds to
hours when moving from layer 8 to layer 4). This was because
there were a significantly larger number of samples generated
for training, and more pairs to evaluate during testing. For
training, the positive samples increased because there were a
much larger number of v-pins located on the lower layers. (The
number of negative samples also increased because it should
be equal to that of positive samples.) The testing also took
significantly longer runtime because the number of possible
v-pin pairs to evaluate was quadratically higher. As the split
layer goes lower, the runtime can be prohibitively long. This
issue requires implementing improvements for scalability.

Second, when moving to lower layers, the classification ac-
curacy of ML dropped (for example, from on-average 100.00%
to 79.14% when moving from layer 8 to 6). We observed this
was due to having “useless” negative samples during training.
Recall the negative samples were selected by randomly picking
two v-pins which were not a match. However, often times we
observed the v-pins in negative samples were so far apart from
each other on the split layer that their extracted layout features
did not provide useful information for learning. In other words,
just looking at the ManhattanVpin was sufficient to predict
the pair was not a match. Also the remaining layout features
may have acted as unwanted noise and degraded the learning.

Finally, we observed that moving to the lower layers
resulted in the size of the generated LoC to grow at a much
higher rate. Recall the size of LoC designates the number of
candidates identified by ML as match for each v-pin. For a
more effective attack we aim to minimize the size of LoC.

To address the above three issues, our main observation is
to eliminate the useless negative samples during training. (See
the second issue for explanation of useless samples.) Also, we
aim to eliminate useless v-pin pairs from testing—they can
sometimes degrade the proximity attack by generating false
positives and increase the size of LoC. Specifically, instead
of randomly picking negative samples during training and
considering all v-pin pairs on the split layer during testing,
we aim to consider a “useful” subset for each v-pin which are
at a closer proximity to it. We explain how such a proximity
is modeled shortly. The idea is that once a “neighborhood” is
found, the samples for training (both positive and negative)
and testing are only taken from the neighborhood which is
then used to generate the LoC.

In general, we aim for the neighborhood size to be sig-
nificantly smaller than the overall area of the split layer to
reduce the number of tested v-pin pairs as much as possible,
thus improve runtime, and focus on useful samples so that
the accuracy is not impacted much. We note prior work [5]
also focused on identifying a small neighborhood around each
v-pin using linear regression, and declaring all v-pins in the
neighborhood in the LoC. Compared to that, our neighborhood
size will be much larger and while Imp considers all the v-pins
in the neighborhood, it ultimately selects a subset of the v-pins
to be included in the LoC.

Now we explain how the neighborhood is identified.
As mentioned before, we use leave-one-out cross valida-
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Fig. 4. Cumulative distribution function of the (normalized)
ManhattanVpin feature is shown for the truly-matching v-pins in
the training data set for each design.

tion for testing and training. To determine the neighbor-
hood for one design, we first study the distribution of the
ManhattanVpin feature in the remaining N − 1 designs
for the actual v-pin pairs (that are true match). Specifically,
for each v-pin in the training data set, we already know its
match and can measure the Manhattan distance between the
two. This is done for all v-pins in the N − 1 designs. Next,
the neighborhood size is determined such that around 90% of
all these v-pin pairs are included in it. The Imp variation uses
this neighborhood for training by only generating samples for
the v-pins included in it.

Fig. 4 shows the Cumulative Distribution Function (CDF)
for different designs for layer 6 as the split layer. The curve
for each design represents the aggregate data of the remaining
N − 1 designs. We emphasize that this process ensures the
testing and training data are separated. Moreover, this step is
done significantly faster than the testing and training because
the number of actual v-pin pairs (that are a true match) are
significantly smaller than all considered candidates. Finally,
we note the 90% cutting point can be changed in order to trade
off the runtime of Imp with its classification accuracy. Defining
the neighborhood based on a smaller percentage, say 80%, can
accelerate training and testing, however it excludes (from the
training process) the knowledge of those 20% of connected
v-pins which are further apart. So the classification accuracy
may slightly degrade during the testing stage. On the other
hand, with this modification, the aforementioned scalability
issues can be relieved, so that this framework is feasible for
use in large, real-world designs.

E. Improvements for Result Quality with Two-level Pruning

From our experiments, we have found that the quality of
negative samples plays an important role in training good
machine learning models and achieving better final results.
Thus, to further improve our results, we would want to pick
negative samples with higher quality than those chose by
the previous neighborhood sampling method. Moreover, we
also noticed that the accuracies in previous experiments are
almost perfect or relative high, which suggests the ground
truth matching v-pin is included in the LoC with very high
probability. At the same time, the other v-pins in the LoC are

ML model

Positive training samples Negative training samples

LoC

Target benchmark

(a) No pruning.

Level-1 Model

Level-2 Model Final LoC

Level-1 LoC of

training benchmarks

Level-1 model

Positive training samples Negative training samples

Level-1 LoC of

target benchmark

Target benchmarkTraining benchmarks

High-quality

negative samples

Level-2 model

(b) Two-level pruning.

Fig. 5. Illustration of two-level pruning, compared with no pruning applied.

the set of v-pins that cannot be correctly distinguished by our
previous Imp model. Therefore, they can be treated as “high-
quality” negative samples. Thus, our idea of improving the
results is to train a Level-2 machine learning model on top
of the results generated by the Level-1 model, and perform
Level-2 classifications only for those v-pins in the Level-1
LoC, with the intention that the Level-2 model focuses more
on distinguishing v-pins that cannot be distinguished by the
Level-1 model. Fig. 5(b) illustrates how the proposed two-level
pruning works.

In order to correctly perform the two-level pruning proce-
dure with leave-one-out cross-validation, some extra caution
needs to be taken. Specifically, the LoCs generated from the
previous experiments cannot be directly used in building the
Level-2 model, otherwise the cross-validation procedure will
be violated. The correct procedure is described as follows.
Suppose there are N benchmarks, one benchmark (referred to
as target benchmark) will be held out for final testing, and
the remaining N − 1 benchmarks will be used for building
the two-level pruning machine learning model. We build the
Level-1 model using these N − 1 benchmarks just like what
we did before. Then we test the N − 1 training benchmarks
with this model to generate a Level-1 LoC for each v-pin in the
training benchmarks. Then for each v-pin in the N−1 training
benchmarks, we randomly pick a non-matching v-pin from its
Level-1 LoC to form a high-quality negative sample. We then
use these high-quality negative samples along with all positive
samples to train the Level-2 model. Finally, we test this two-
level machine learning model with the target benchmark in
two steps: 1) use the Level-1 model to generate the Level-1
LoC of the target benchmark; 2) apply the Level-2 model on
this Level-1 LoC to get the final LoC. The results of two-level
pruning will be shown in Section IV-D.
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F. Controlling LoC Sizes

So far, all v-pin pairs under test will be assigned a binary
yes/no answer indicating whether they are connected or not,
resulting a LoC for each v-pin and a single value of accuracy.
The problem of this approach appears when comparing models
with different configurations (e.g., number of features, whether
to apply bounding box, whether to apply two-level pruning)
or with models in prior work. For example, one model may
generate a larger (smaller) average size of LoC with a higher
(lower) accuracy than the other. In this case we cannot
tell directly which model is better. Also, we cannot answer
questions like “what is the accuracy if we consider a LoC that
contains 1% of the v-pins” or “what is the average size of
LoC if we want an accuracy of 90%.” Therefore, we need a
method to control the LoC size.

Recall that Bagging, which we use in this paper, is a
meta-classifier that combines the results of a group of base
classifiers. There are several ways of such combination. Ex-
amples are 1) hard voting (a.k.a. majority voting), where
each base classifier outputs a binary result and the combiner
takes the majority of them, and 2) soft voting, where each
individual classifier outputs a probability that the sample is
positive, and the combiner takes the average of them. In the
Weka implementation of Bagging, the soft voting method is
adopted. Specifically, with REPTree as the base classifier, for
a specific v-pin pair (v, v′) in the inference stage, the output
probability pi(v, v

′) of tree i is defined as

pi(v, v
′) = Pi(v, v

′)/(Pi(v, v
′) +Ni(v, v

′)), (1)

where Pi(v, v
′) and Ni(v, v

′) are the numbers of positive and
negative samples in the training set that fall into the same leaf
node as the pair (v, v′) does. With n trees in total, the final
output for pair (v, v′) is a binary value r(v, v′) given by

r(v, v′) =

{
1, if p(v, v′) ≥ t ≡ 0.5,

0, otherwise,
(2)

where

p(v, v′) =

n∑
i=1

pi(v, v
′)/n. (3)

Note that in (2), a default threshold of 0.5 is applied in
binary classification. To control the LoC size, in this paper, we
generalize this bagging classifier by varying the threshold t in
(2), so that we can obtain a series of measurements of average
LoC size and accuracy corresponding to different thresholds.
Specifically, instead of outputting binary answers (yes/no), we
record p(v, v′) for each tested v-pin pair (v, v′). Then the
user can specify the desired threshold or LoC size to derive
the LoCs without re-running the entire classification process.
With this modification, we can obtain a more comprehensive
behavior of the model showing the trade-off between LoC size
and accuracy. We can also conduct meaningful comparison
between different model configurations, as will be shown in
Section IV.

G. Limiting DiffVpinX or DiffVpinY in Highest Via Layer

In real CMOS VLSI layouts, most metal wires in the same
level are routed in the same direction (i.e., either horizontally

or vertically). This property facilitates the attack when the split
layer is the highest via layer, since matching v-pin pairs in the
top metal layer (i.e. the only layer above the split layer) must
have an x- (or y-) distance of zero if that layer is vertically (or
horizontally) routed. Therefore, for the attack in the highest via
layer, we impose the limit on DiffVpinX or DiffVpinY
to zero (depending on whether the top metal layer is vertically
or horizontally routed) when generating the training set, and
ignore (i.e., classify as disconnected) “ineligible” pairs when
testing. Note that this modification does not work for lower
split layers, because matching pairs in lower via layers can
be connected by both horizontal and vertical wire segments
in higher metal layers. Thus, they may have both non-zero
DiffVpinX and non-zero DiffVpinY. The results of such
modification will be shown in Section IV-E.

H. Proximity Attack

Proximity attack (PA) is a task defined as follows. Given a
v-pin v (referred to as “target v-pin”) in the benchmark, PA
matches v with the v-pin in the LoC of v with the smallest
Manhattan distance d, formally,

vPA(v) = argmin
v′∈LoC(v)

d(v, v′) (4)

where d(v, v′) is the Manhattan distance of v-pin pair (v, v′).
In case more than one candidate v-pin in LoC have the same
d(v, v′), we pick the one with the highest p(v, v′), and if they
tie again, we randomly pick one of them. The PA is successful
if and only if v and vPA(v) are actually connected.

Note that the result of PA may vary with the size of LoC,
which in turn is a function of the threshold t. In other words,
with the ability to control the LoC size, we gain an opportunity
to improve the results of PA. However, if we apply a single
threshold t to different target v-pins, as we did in Section III-F,
the resulting LoC may be empty for some target v-pins and
very long for others. But in PA, for each target v-pin, we must
pick exactly one candidate v-pin connected to it. Therefore,
for the task of PA, it is more natural to control the size of LoC
individually by applying different thresholds t(v) for different
target v-pins v. To avoid confusion, we will use PA-LoC to
denote the LoC used specially for the purposed of PA.

To achieve good PA performance, the PA-LoC cannot be
either too long or too short—if the PA-LoC is too short, it
may not include the matching v-pin; if the PA-LoC is too
long, a non-matching v-pin may be selected in PA because
the PA-LoC contains a v-pin that has even smaller Manhattan
distance than the matching v-pin: either way makes the PA
fail. For each target v-pin, if we classify all the tested v-pins
by p(v, v′) and d(v, v′) as shown in Fig. 6, in which Si’s
represent the sets of v-pins within certain p and d ranges, the
following observations can be made.

1) The matching v-pin is in S0, not in any of S1, . . . , S8.
2) If |S4|+ |S6|+ |S7| > 0, the PA will fail for the target

v-pin regardless of the size of PA-LoC, because there
are v-pin pairs with higher p and shorter d than those
formed by the matching v-pin.

3) If the PA-LoC contains any v-pin in S1, the PA will fail
for the target v-pin. Because a v-pin in S1, which is not
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Fig. 6. Sets of v-pins around target v-pin v, classified by probability of
connection and Manhattan distance. p0 = p(v, v0) and d0 = d(v, v0) are
respectively the probability of connection (as evaluated by the classifier) and
Manhattan distance of v and v0, where v0 is the matching v-pin of v.

a match, will be selected in PA due to its shorter d to
the target v-pin.

4) If the PA-LoC does not contain all v-pins in S8, the PA
will fail for the target v-pin. Because the PA-LoC cannot
contain the matching v-pin, which has a smaller p than
any v-pin in S8.

Based on the above observations, we may perform a success
PA only if |S4|+|S6|+|S7| = 0. To maximize the success rate
in such condition, the PA-LoC size of each individual target
v-pin should be determined such that the PA-LoC contains
all v-pins in S8, but no v-pin in S1. However, such optimal
selection of PA-LoC size is not achievable for the target
benchmark. Because a grid like Fig. 6 cannot be defined for
them due to the lack of d0 and p0, which are the distance and
probability of the pair composed by the target v-pin and its
matching v-pin. Therefore, to determine a good PA-LoC size
for the target benchmark, we go through a validation process
as follows.

For each of the N − 1 benchmarks used to train the ML
model, we randomly selected 80% of v-pins. Then we mix
the selected v-pins in these N −1 benchmarks to generate the
training set as we did previously. All the other v-pins in these
N−1 benchmarks are used for validation. We perform PA with
different PA-LoC fractions, defined as the PA-LoC size divided
by the total number of v-pins in the benchmark, to account
for different numbers of v-pins in different benchmarks used
in validation. The PA-LoC fraction that results in the best PA
success rate in the validation process (averaged over N − 1
benchmarks) will be used in the actual PA run.

I. Design Obfuscation

Design obfuscation is an effective method to make the attack
more difficult, as discussed in papers including [5], [8], [14],
[16]. One effective approach is to increase the congestion so
that the router is forced to use alternative, less straightforward
routes.

To demonstrate how such obfuscation can impact the per-
formance of attack in our framework, we manually add small
random noises to the y-coordinate of all v-pins to mimic the
effect of obfuscated routing, and apply the same approach to
the new training and testing data sets. Detailed experiments
and results can be found in Section IV-G.

IV. EXPERIMENTAL RESULTS

We experimented with the same setup as [5]3. The designs
were from the ISPD-2011 benchmark suite [12] with 9 metal
layers and 8 via layers. We implemented the machine learning
framework described in Fig. 1 which first generated a chal-
lenge case for a given split layer, extracted layout features,
prepared the samples, applied training and then testing us-
ing the leave-one-out cross validation (See the beginning of
Section III-C) to ensure separation between the testing and
training data sets.

We used Weka [1] for training and specifically used Bag-
ging method with base classifier REPTree and the default
configuration. For each benchmark, we report the size of list
of candidates (LoC) and accuracy with different thresholds
applied. (See the end of Section III-B on how LoC is deter-
mined.) We also evaluated the success rate of proximity attack,
as described in Section III-H. All experiments ran on an Intel
Xeon X5670 CPU with Ubuntu 18.04 LTS and 24 GB memory.

In this paper, we present four configurations of our machine
learning model as follows.
• ML-9: This is the configuration without improving the

scalability (Section III-B), using the first 9 features intro-
duced in Section III-B. This is the same configuration as
“ML” in [18].

• Imp-9: This is the same as ML-9 except that we apply
the technique in Section III-B to improve the scalability.

• Imp-7: This is the same with Imp-9 except that
we excluded the two least important features
(TotalWireLength and TotalCellArea) as
shown in Section IV-A. This is the same configuration
as “ML-Imp” in [18].

• Imp-11: This is the same with Imp-9 except that we use
all 11 features introduced in Section III-A.

A. Analyses of Feature Ranking and Data Distribution

Based on the training samples, we measure three statistical
metrics, the correlation coefficient, the information gain, and
the Fisher’s discriminant ratio, to analyze the importance and
class separability of 11 layout features defined in Section III-B.
Correlation coefficient is a number that quantifies correlation
between two variables. Information gain is the measure of
reduction in the entropy of a variable achieved by learning the
state of another one. Fisher’s discriminant ratio measures how
well the data of different classes can be separated. Specifically,
we report 1) the information gain of a feature with respect to
the output label, 2) the absolute value of correlation coefficient
between a feature and the output label, and 3) the Fisher’s
discriminant ratio of each feature. For the first two metrics, a
larger value means the feature is more important, and for the
third metric, a larger value means matching and non-matching
v-pin pairs are more separable in terms of this feature. For
each feature, the three metrics are calculated based on the
v-pin pairs which are used as samples for training “Imp”
models. The correlation coefficient and information gain are
measured using Weka [1], and the Fisher’s discriminant ratio
is calculated according to [10].

3Available at http://homepages.cae.wisc.edu/˜adavoodi.

http://homepages.cae.wisc.edu/~adavoodi
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Fig. 7. Comparison of relative ranking of the 11 layout features using
information gain, correlation coefficient, and Fisher’s discriminant ratio.

The first two rows in Fig. 7 show the two importance metrics
of features in each design for layers 4, 6 and 8. We make the
following observations:
(1) The most important features are those related to the loca-
tions of the v-pins and then the Manhattan distance between
the v-pins. Next, the location and the Manhattan distance
between the pins (at the placement layers) become important.
It shows that routing is more important than placement in
analyzing the security of split manufacturing. Difference in
the load/driver cell areas (diffCellArea) is the next im-
portant feature in terms of information gain. However, in one
benchmark superblue10 for layers 4 and 6, this feature is
the third rank and more important than the pin-based features.
(2) In general, for almost all the features, their correlation
coefficient and information gain are decreased when going
from layer 8 to lower layers. This behavior indicates that
these features are not equally powerful when classifying the
samples from lower layers compared to layer 8. Thus, the
classifier trained for lower layers performed somewhat worse
than layer 8, as will be observed from Table IV.
(3) Correlation coefficient and information gain of features
change relative to each other with change in layer; some
features that are highly dominant in layer 8 becoming less
dominant when moving to lower layers. Thus, other features
become relatively more important. Specifically, the informa-
tion gain of feature DiffVpinY in layer 8 in much higher
than other features. Because there is no vertical (i.e. y-
direction) routing layer above layer 8, all matching v-pin
pairs have zero DiffVpinY—this property contains much

information for classification, hence the high information gain.
However, this property does not hold for lower layers. Since
layers 4 and 6 are not the highest via layers, matching v-pins
may be connected in y-direction in higher layers (e.g. layer 8)
so they may have a non-zero DiffVpinY. That is why the
information gains of DiffVpinY in layers 4 and 6 are not
as high as that in layer 8.

The third row in Fig. 7 shows the Fisher’s discriminant
ratios of each feature in each design for layers 4, 6 and
8. It shows that location-related features about both v-pins
and pins (DiffVpinX, DiffVpinY, ManhattanVpin,
DiffPinX, DiffPinY, ManhattanPin) are much more
powerful than other features to distinguish matching and
non-matching v-pin pairs, especially for higher split layers.
Among these features, ManhattanVpin is generally the
most distinguishable feature, followed by DiffVpinY and
ManhattanPin. This ranking is generally consistent with
the ranking of feature importance discussed above.

Figure 8 shows the data distributions of each feature,
separated by target classes. Due to the page limit, we only
show the distributions for layer 6 as examples, where training
data in all five benchmarks are mixed. Several observations
can be made from this figure.
(1) Matching and non-matching v-pin pairs have overlapped
distributions in all features. This means we cannot easily dis-
tinguish matching and non-matching v-pin pairs by examining
any single feature.
(2) Some features (e.g. ManhattanVpin) show very differ-
ent distributions for matching and non-matching v-pin pairs,
which means these features are more powerful in distinguish-
ing them. Some features (e.g. PlacementCongestion)
show similar distributions for matching and non-matching v-
pin pairs, which implies these features do not contribute much
in our machine learning model.
(3) Due to the presence of special cells and macros in
the benchmark, there are outliers in most features, es-
pecially in TotalWireLength, TotalCellArea and
DiffCellArea. Since our REPTree-based machine learn-
ing model is insensible to outliers by nature, its performance
is not negatively affected when these features are included, as
we can see in Section IV-E.

B. Comparison of Effectiveness of the Attack with Prior Work

We show in Table I the comparison between the results from
the prior work [5] and our four settings (ML-9, Imp-9, Imp-7,
Imp-11) for layers 4, 6, 8 as the split layers. For comparison
with [5] we used the numbers reported in their paper and used
an identical experimental setup. We report the following two
metrics.

1) |LoC| designates the average size of the identified
List of Candidates by each approach on each testing
benchmark;

2) Accuracy measures the classification accuracy which is
the percentage of the times that the actual match of a
v-pin is included in its LoC;

Note that in [5] only one |LoC| and one accuracy is reported
for each design. For fair comparisons, we control the size of
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Fig. 8. Distributions of layout features in the training set for split layer 6.

TABLE I
COMPARISON OF OUR MACHINE LEARNING BASED APPROACHES WITH PRIOR WORK FOR DIFFERENT SPLIT LAYERS

Split Design Prior Work [5] |LoC| with the same Accuracy as [5] Accuracy with the same |LoC| as [5]
layer Name #v-pin |LoC| Accuracy ML-9 Imp-9 Imp-7 Imp-11 ML-9 Imp-9 Imp-7 Imp-11

L
ay

er
8

superblue1 7824 115.1 15.53% 1.8 1.5 2.2 2.6 100.00% 99.95% 99.95% 99.95%
superblue5 11018 149.4 35.63% 5.0 3.9 3.7 3.7 100.00% 100.00% 100.00% 100.00%

superblue10 12888 185.4 42.45% 1.6 0.9 1.5 2.7 100.00% 100.00% 100.00% 100.00%
superblue12 17312 870.4 73.13% 17.6 20.3 30.0 15.0 100.00% 100.00% 100.00% 100.00%
superblue18 7518 280.7 66.88% 9.5 9.9 8.1 7.0 100.00% 100.00% 100.00% 100.00%

Avg 11312 320.2 42.72% 7.1 7.3 9.1 6.2 100.00% 99.99% 99.99% 99.99%

L
ay

er
6

superblue1 42998 487.8 33.40% 11.3 9.6 10.7 9.4 73.34% 74.13% 74.14% 74.81%
superblue5 56173 506.8 39.40% 22.4 17.6 19.7 16.1 77.14% 77.60% 77.15% 79.31%

superblue10 87212 687.9 64.03% 213.3 198.0 198.1 186.9 80.15% 81.37% 81.52% 81.95%
superblue12 75994 2527.9 73.50% 82.3 85.8 63.9 72.9 90.60% 90.23% 89.57% 93.26%
superblue18 33596 773.6 58.43% 31.5 29.4 27.3 25.6 82.96% 83.01% 83.90% 85.85%

Avg 59194 996.8 53.75% 72.1 68.1 63.9 62.2 80.84% 81.27% 81.26% 83.03%

L
ay

er
4

superblue1 149517 885.6 58.19% 71.0 62.5 56.5 52.2 76.03% 76.40% 75.54% 76.77%
superblue5 178136 745.8 53.70% 145.3 139.8 147.3 123.4 71.84% 72.15% 71.25% 73.11%

superblue10 215292 939.4 54.68% 225.6 207.2 252.7 278.9 71.25% 73.48% 71.60% 72.52%
superblue12 170572 2078.8 75.67% 443.9 459.4 584.8 296.7 87.56% 87.50% 85.03% 89.80%
superblue18 85146 1076.9 70.13% 453.6 414.7 440.3 353.5 78.87% 80.16% 79.20% 82.39%

Avg 159732 1145.3 62.47% 267.9 256.7 296.3 220.9 77.11% 77.94% 76.52% 78.92%

LoC in our work such that either |LoC| or accuracy is aligned
with that in [5], and then we compare the other metric of the
two. As can be seen in Table I, for the same accuracy, the
size of LoC in our work is much smaller of that in [5]; for the
same LoC size, the accuracy in our work is always better than
in [5]. Specifically, for layer 8, all four configurations provide
similar results which are much better than [5]. For the same
accuracy, the LoC size is less than 3% of the size in [5]. For
the same LoC size, all configurations have similar accuracy
close to 100%, compared to on-average 42.72% in [5]. Similar
conclusions can be drawn for layers 6 and 4. Moreover, please
note that testing and training data are not separated in [5].

C. Results of Different Base Classifiers in Bagging

In this subsection, we show the efficacy of changing the
base classifier of Bagging from RandomTree to REPTree.
To this end, we use Imp-7 to compare the runtime and
performance of attack in this paper with those in [18], where
the corresponding model is referred to as “ML-Imp.” We used
the default settings in Weka [1] for both base classifiers.
Again, since in [18] there is only one LoC size and accuracy
reported for each benchmark, we compare by aligning one
metric and compare the other, as we did for comparison with
[5]. The results are shown in Table II. As shown in this table,
the performance of attack is similar for both base classifiers.
However, REPTree, as adopted in this paper, takes less than
10% of runtime compared to the counterpart in [18].
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TABLE II
COMPARISON BETWEEN RANDOMTREE ( [18]) AND REPTREE (THIS

PAPER) AS BASE CLASSIFIER WITH IMP-7

Split Design [18] This paper
layer |LoC| Acc. |LoC| Acc.

L
ay

er
8

superblue1 15.3 99.82% 15.2 99.85%
superblue5 27.9 99.42% 27.2 99.60%

superblue10 20.8 100.00% 19.4 100.00%
superblue12 44.4 100.00% 48.0 99.75%
superblue18 23.1 99.97% 23.3 99.87%

Avg 26.3 99.84% 26.6 99.81%
Runtime 7.25 min 0.48 min

L
ay

er
6

superblue1 553.4 74.65% 555.1 74.64%
superblue5 560.4 78.89% 645.6 77.79%

superblue10 740.8 82.56% 759.4 82.30%
superblue12 2648.7 90.18% 2955.2 89.72%
superblue18 793.1 83.40% 716.8 84.08%

Avg 1059.3 81.94% 1126.4 81.71%
Runtime 10.73 hrs 0.42 hrs

TABLE III
COMPARISON BETWEEN TWO-LEVEL PRUNING AND NO PRUNING WITH

IMP-11

Split Design Two-level pruning No pruning
layer |LoC| Acc. |LoC| Acc.

L
ay

er
8

superblue1 3.15 40.95% 5.31 22.68%
superblue5 4.33 57.51% 6.92 39.82%

superblue10 4.54 79.87% 7.91 66.54%
superblue12 8.73 38.49% 5.40 60.01%
superblue18 5.46 67.86% 7.20 53.40%

Avg 5.24 56.94% 6.55 48.49%
Runtime 111.7 sec 27.8 sec

D. Results of Two-level Pruning

In this subsection, we show the efficacy of two-level prun-
ing. To this end, we use Imp-11 to compare the performance
of attack. Again, we compare by aligning one of |LoC| and
accuracy and compare the other, as we did for comparison
with [5]. The results are shown in Table III.

The column “Two-level pruning” in Table III shows the
results of the two-level pruning procedure. Compared to the
results where no pruning is applied, in layer 8, the performance
is improved by virtue of two-level pruning in all benchmarks
except for superblue12. We notice that superblue12
has a different characteristics of v-pin distribution from that
of the other four benchmarks, which may be the reason why
two-level pruning works as desired for all but this benchmark.

When the split layer moves to layer 6, however, two-
level pruning does not bring improvement for any benchmark
compared to the results without pruning. As in layer 6, the
accuracies of Level-1 model are not as high as those in layer 8,
which worsens the Level-2 model, because Level-2 model
depends on Level-1 LoC of training benchmarks, as described
in Section III-E.

E. Comparison of Model Configurations in This Work

In this work, we use four different configurations (ML-9,
Imp-9, Imp-7, Imp-11) for split layers 4, 6, and 8, as well as
four more configurations with suffix “Y” for layer 8 only.
The configurations with “Imp” in the names improves the
scalability as described in Section III-D. The numbers in
the names of configuration indicate the numbers of features
used in training and testing, as described at the beginning
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Fig. 9. The trade-off between LoC fraction and accuracy (averaged over five
benchmarks) with the split layer being (a) layer 8, (b) layer 6, and (c) layer 4.
Results in prior work [5] are plotted for comparison.

of Section IV. The four configurations suffixed “Y” impose
limit on DiffVpinY in the training set, on top of the
corresponding models without the suffix “Y”, as described in
Section III-G.

Figure 9 shows the trade-off between LoC fraction (de-
fined as the LoC size divided by the number of v-pins in
the corresponding benchmark) and accuracy in different ML
model configurations. The horizontal axis shows the LoC
fraction, which balances different numbers of v-pins in each
benchmark. The vertical axis shows the average accuracy over
five benchmarks. Higher curves indicate better performance of
attack. For comparison, we also plot the results from [5] in
this figure, so that the significant improvement of this work is
clearly shown.

To quantitatively compare the results of different configura-
tions, we can fix one coordinate in the figure and compare the
other. For example, by drawing horizontal lines in Fig. 9, we
can get the LoC fraction of each configurations under given
accuracy values. Similarly, vertical lines give us the accuracy
of each configuration under given LoC fractions. These values
are shown in Table IV. We also include in Table IV the runtime
of each configuration, averaged over five benchmarks.

From Table IV, we can make observations about the per-
formance of attack and the runtime in the following aspects.

1) Different split layers: We first compare the same config-
uration applied in different split layers. In layer 8, we can get
an accuracy of 95% with only 0.2% of v-pins in the benchmark
as candidate on average, with 1% of v-pins as candidate, we
can achieve near 100% accuracy. The performance becomes
worse as the split layer goes down to layers 6 and 4. Specifi-
cally, with 1% of v-pins as candidate, the accuracy drop from
near 100% to around 80% when the split layer goes from
layer 8 down to layers 6 and 4. And if we want an accuracy
of 95% in layers 6 or 4, we need to include around 10% of all
v-pins in the candidate list. Comparing the results for layers 6
and 4, we can see that although the LoC fraction are similar
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TABLE IV
COMPARISON OF DIFFERENT MACHINE LEARNING MODEL CONFIGURATIONS IN THIS WORK

Split Configuration LoC fraction with an average accuracy of ... Average accuracy with a LoC fraction of ... Runtimelayer 95% 90% 80% 50% 0.01% 0.1% 1% 10%

L
ay

er
8

ML-9 0.20% 0.18% 0.13% 0.05% 14.11% 73.03% 100.00% 100.00% 33.6 sec
Imp-9 0.20% 0.18% 0.13% 0.05% 20.10% 72.46% 99.99% 99.99% 30.6 sec
Imp-7 0.20% 0.18% 0.14% 0.05% 14.92% 70.68% 99.99% 99.99% 28.8 sec
Imp-11 0.18% 0.16% 0.11% 0.05% 12.28% 77.93% 99.99% 99.99% 27.8 sec
ML-9Y 0.19% 0.17% 0.12% 0.04% 21.68% 76.85% 99.99% 100.00% 13.9 sec
Imp-9Y 0.18% 0.16% 0.11% 0.04% 21.21% 76.03% 99.99% 99.99% 13.9 sec
Imp-7Y 0.19% 0.16% 0.12% 0.05% 20.60% 75.08% 99.99% 99.99% 13.1 sec
Imp-11Y 0.16% 0.14% 0.10% 0.04% 22.19% 80.09% 99.99% 99.99% 16.6 sec

L
ay

er
6 ML-9 9.07% 4.35% 1.12% 0.06% 13.01% 59.51% 79.14% 95.57% 45.1 min

Imp-9 9.72% 4.46% 1.03% 0.05% 19.52% 59.72% 79.80% 95.13% 22.9 min
Imp-7 11.25% 5.46% 1.04% 0.06% 18.93% 61.06% 79.76% 94.28% 24.9 min
Imp-11 8.00% 3.40% 0.83% 0.05% 21.83% 63.02% 81.34% 95.96% 19.0 min

L
ay

er
4 ML-9 5.75% 2.86% 0.93% 0.04% 27.16% 60.03% 80.98% 97.40% 5.31 hrs

Imp-9 — 3.82% 0.88% 0.04% 31.76% 60.16% 81.09% 91.32% 0.96 hrs
Imp-7 — 4.64% 1.05% 0.04% 30.53% 59.56% 79.60% 91.32% 1.06 hrs
Imp-11 — 3.27% 0.79% 0.04% 32.15% 60.32% 82.08% 91.34% 0.92 hrs

for a given accuracy, as the absolute number of v-pins are
several times larger in layer 4 than in layer 6, it is generally
harder for the attacker to reverse engineer given partial layout
at split layer 4 than layer 6.

The runtime of attack becomes longer from seconds to
hours as the split layer goes from layer 8 down to layer 4,
especially for the configuration without improved scalability
(i.e. ML-9), due to the increasing number of v-pins in lower
layers. From the designers’ perspective, it means lower split
layers generally provide more security, which agrees with
the intuition that a lower split layer implies less information
available to the attacker. However, this observation is simply
based on the machine learning approach and the extracted
features described in this paper. In reality, which split layer is
secure enough remains an open question, which depends on
other knowledge and techniques available to the attacker to
further refine the results.

2) With or without improved scalability: Comparing Imp-9
with ML-9 in Table IV, we see similar performance of attack in
terms of LoC fraction and accuracy with runtime speedups of
1.1×–5.5× depending on the split layer. Note that the speedup
is more significant as the split layer goes down, which shows
the improved configuration (Imp-9) does have better scalability
than the baseline (ML-9). From Fig. 9(b) and (c), we can also
see a flat, saturated portion on the right side of Imp-9, Imp-7
and Imp-11 curves. This is due to the fact that v-pin pairs that
are too far apart were completely ignored in the testing stage.
Thus, some truly connected v-pin pairs that are far apart can
never be included in the LoC, regardless of the LoC size. This
conforms with the description in Section III-D. Please note in
layer 4, the accuracies saturate at around 91% in improved
configurations for this reason. Therefore they cannot reach
an average accuracy of 95% with any LoC fraction (shown
as dashes in Table IV). As mentioned in Section III-D, this
saturated accuracy will be higher if a larger neighborhood is
applied, at the cost of longer runtime for testing more v-pin
pairs, and vice versa.

3) Different numbers of features: In Fig. 9, especially
Fig. 9(b), by comparing the configurations with different
numbers of features (Imp-9, Imp-7 and Imp-11, where 9, 7,
and 11 features are involved in the training and testing set,

respectively), we can see that, in general, Imp-9 is slightly
better than Imp-7, but is slightly worse than Imp-11 in terms
of performance of attack. This observation aligns with the fact
that the 7 features used in Imp-7 include most important infor-
mation needed for classification, as indicated in Section IV-A.
If we add some features of less importance (as in Imp-9 and
Imp-11), the performance can be slightly improved, but not too
much. The runtime does not vary significantly with the number
of features, either. Note that the two features added from Imp-7
to Imp-9 are TotalWireLength and TotalCellArea,
which have some extreme values in the dataset according to
the distribution in Fig. 8. Since the REPTree-based classifier
is not sensitive to outliers by nature, including these features
does not negatively affect the performance.

4) With or without limiting DiffVpinY for the highest
via layer: For layer 8 (the highest via layer), comparing the
configurations with limiting DiffVpinY (the four configu-
rations with suffix “Y”) with the ones without such limit,
we can observe an improvement on performance in every
configuration, which is shown in both Table IV and Fig. 9(a).
For example, with 0.1% of v-pins included in LoC (i.e. ≈ 10
candidates), we achieve 76.03% accuracy on average with
Imp-9Y, compared to 72.46% with Imp-9. The runtime is
also reduced approximately by half with such limit, since
most v-pin pairs are ignored without actual testing due to
their non-zero DiffVpinY. From the designers’ perspective,
it confirms that splitting at the highest via layer is insecure
and should be avoided in practice.

F. Results of Proximity Attack

Table V shows the success rate of PA and the runtime
overhead for the validation process in PA (see Section III-H).

It is shown that the proposed PA method achieves up to
11× higher success rate than that in [5] for the only reported
benchmark superblue1. Besides, several other observations
can be made from Table V.

First, model configurations with improved scalability
(Imp-9, Imp-7 and Imp-11, as described in Section III-D)
or limits on DiffVpinY for the highest via layer (ML-9Y,
Imp-9Y, Imp-7Y and Imp-11Y, as described in Section III-G)
generally have better PA success rate than ML-9, since these
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TABLE V
PROXIMITY ATTACK SUCCESS RATE AND RUNTIME OF CROSS VALIDATION

FOR DIFFERENT MODEL CONFIGURATIONS

Design %PA: Prior Work %PA from Cross Validation
[5] [18] ML-9 Imp-9 Imp-7 Imp-11

Split layer 8:
sb1 1.95% 11.26% 15.21% 14.84% 13.03% 11.05%
sb5 — 21.20% 20.04% 21.22% 21.35% 21.69%

sb10 — 60.72% 42.97% 59.54% 57.78% 42.30%
sb12 — 11.72% 10.96% 15.03% 13.84% 11.53%
sb18 — 18.26% 13.41% 17.56% 18.43% 17.85%

Avg — 24.63% 20.52% 25.64% 24.89% 20.88%
Time — — 91.4 sec 101.8 sec 59.0 sec 60.0 sec

Split layer 6:
sb1 0.76% 2.11% 4.17% 5.47% 5.13% 5.56%
sb5 — 2.28% 4.06% 5.07% 5.57% 6.19%

sb10 — 5.82% 6.72% 7.62% 7.35% 5.47%
sb12 — 3.40% 3.79% 4.63% 6.23% 5.75%
sb18 — 3.08% 5.03% 6.71% 6.12% 6.46%

Avg — 3.34% 4.75% 5.90% 6.08% 5.89%
Time — — 34.2 min 25.5 min 23.3 min 20.0 min

Split layer 4:
sb1 0.64% 2.58% 5.19% 6.51% 6.88% 7.11%
sb5 — 1.61% 3.00% 4.36% 4.44% 4.63%

sb10 — 2.50% 3.83% 4.38% 3.66% 2.85%
sb12 — 3.48% 3.84% 5.03% 4.76% 4.86%
sb18 — 2.47% 3.56% 5.29% 5.00% 5.22%

Avg — 2.53% 3.88% 5.11% 4.95% 4.93%
Time — — 3.27 hrs 1.27 hrs 1.27 hrs 1.27hrs

Design [5] [18] ML-9Y Imp-9Y Imp-7Y Imp-11Y

Split layer 8:
sb1 1.95% 11.26% 19.06% 18.56% 17.66% 17.99%
sb5 — 21.20% 26.60% 26.44% 25.35% 26.00%

sb10 — 60.72% 57.88% 58.72% 52.32% 46.38%
sb12 — 11.72% 13.42% 14.02% 14.28% 14.64%
sb18 — 18.26% 23.33% 21.36% 21.08% 22.26%

Avg — 24.63% 28.06% 27.82% 26.14% 25.45%
Time — — 36.2 sec 29.6 sec 26.8 sec 30.0 sec

improved configurations filter out most “low-quality” candi-
dates even before PA.

Second, we exploit the opportunity of improving the PA re-
sults by using a proper size of PA-LoC. When determining the
PA-LoC, the validation technique described in Section III-H
generally results in a higher success rate than applying a fixed
threshold t = 0.5 in (2) as in [18], especially for layers 6 and
4.

Third, the effect of validation is suboptimal for benchmark
superblue10, especially for layer 8, due to the difference in
characteristics of this benchmark than those of the other four
(from the fact that the PA success rate for superblue10
is much larger than the other four). Moreover, these charac-
teristics cannot be well captured in the validation process for
superblue10, where the available information is only from
the other four benchmarks. This issue becomes worse when
the training set is not pruned for scalability (as in ML-9), or
more features are involved (as in Imp-11).

Finally, the extra runtime for the validation-based PA is
similar across configurations with different numbers of fea-
tures. Such extra runtime is about 1–3× compared to the
runtime of the machine learning procedure shown in Table IV.

Although the success rate of PA in Table V is not high
enough, especially for layers 6 and 4, it is not sufficient
to conclude if these layers should be selected as the split
layer or not from the designers’ perspective. We should note
that the rates in Table V are the fractions that the attackers
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Fig. 10. The LoC fraction and accuracy (averaged over five benchmarks)
with the split layer at (a) layer 6, and (b) layer 4, with and without added
noises.

TABLE VI
PROXIMITY ATTACK SUCCESS RATE WITH AND WITHOUT DATA NOISES

Split Design No noise SD = 1% SD = 2%layer

L
ay

er
6

sb1 5.56% 1.39% 1.46%
sb5 6.19% 1.05% 0.95%

sb10 5.47% 1.20% 0.80%
sb12 5.75% 0.89% 1.07%
sb18 6.46% 1.52% 1.40%

Avg 5.89% 1.21% 1.14%

L
ay

er
4

sb1 7.11% 3.94% 3.51%
sb5 4.63% 2.62% 2.72%

sb10 2.85% 1.14% 0.98%
sb12 4.86% 1.34% 1.89%
sb18 5.22% 2.14% 2.21%

Avg 4.93% 2.24% 2.26%

successfully identify a single matching v-pin, only with the
described machine learning approach and layout features. Even
though machine learning does not always identify the matches
directly, it still helps the attackers eliminate most v-pins that
are unlikely to be matches, as discussed in the previous
subsection. In reality, as mentioned earlier, the attackers may
opt to obtain a larger LoC (which means higher accuracy),
and apply other domain knowledge about the design and/or
other observations to further refine the LoC and understand
the design. As an intuitive example, if regular and repeated
patterns are observed in the layout, they may be assumed
to have similar logic function in the design (e.g. data bus
connections). With extra knowledge like this, it may be easier
for the attackers to reverse engineer successfully.
G. Results of Design Obfuscation

To imitate the effect of design obfuscation as discussed in
Section III-I, we add Gaussian white noises to the y-coordinate
of all v-pins in layers 6 and 4 in each benchmark, respectively.
We do not experiment on layer 8 because otherwise it requires
both horizontal and vertical routing in the top metal layer
(M9), which is usually impractical. The standard deviation of
the noises equals 1%–2% of the layout size in y-direction.
Such noises affect the two of the most important features:
DiffVpinY and ManhattanVpin, according to the feature
ranking in Section IV-A. Then we apply the same procedure
of training and testing with configuration Imp-11 to observe
how different the results would be with the noises.

The LoC ratio-vs-accuracy curves with and without noises
are shown in Fig. 10. We can see that the added noises, though
fairly small, significantly affect the performance of attack.
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The vertical gap between the blue and red lines indicates the
difference in accuracy with the same LoC ratio. Such accuracy
difference can be up to 0.3 (e.g. a difference of 0.6 and 0.3
at the LoC ratio of 10−3 for layer 6). The horizontal gap
indicates the difference in LoC ratios needed to guarantee the
same accuracy. Such difference can be up to 5× as measured
in the figure for layer 6 at the accuracy around 60%. The
added noises have smaller effects in layer 4 than in layer 6,
because the variation of y-coordination in layer 4 is already
larger than layer 6 before adding the noises, which makes the
added noise relatively smaller and less effective.

The success rate of proximity attack with and without noises
are shown in Table VI. As can be seen, the average success
rate of proximity attack drops significantly (up to 81%) in
layer 6 and mildly (up to 55%) in layer 4.

As suggested in both Fig. 10 and Table VI, a noise with stan-
dard deviation around 1% of the layout size is good enough
for the purpose of obfuscation. Increasing the magnitude of
noises further does not make much difference.

V. CONCLUSIONS

We developed novel and scalable machine learning tech-
niques to analyze the security of split manufacturing on large
designs. We showed significantly better results compared to
prior work using the same setup. We also analyzed ranking
of various layout features taken from placement, routing, and
cell libraries used in the netlists, and showed the routing
features are in general the most helpful to the learning process.
This emphasizes the importance of using a correct setup (in
terms of number of metal layers, and proper control of the
routing algorithm) in generating the challenge test cases to
study split manufacturing. Our studies also showed various
challenges we addressed to handle the scalability issue when
the split layer is lower. It further emphasizes the importance of
considering computational feasibility as a constraint dictated
by the experimental environment when designing an attack
algorithm.
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