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Abstract: Weather data are the key forces that drive hydrological processes so that their accuracy
in watershed modeling is fundamentally important. For large-scale watershed modeling, weather
data are either generated by using interpolation methods or derived from assimilated datasets. In the
present study, we compared model performances of the Soil and Water Assessment Tool (SWAT),
as driven by interpolation weather data, and NASA North American Land Data Assimilation System
Phase Two (NLDAS2) weather dataset in the Upper Mississippi River Basin (UMRB). The SWAT model
fed with different weather datasets were used to simulate monthly stream flow at 11 United States
Geological Survey (USGS) monitoring stations in the UMRB. Model performances were evaluated
based on three metrics: coefficient of determination (R2), Nash–Sutcliffe coefficient (NS), and percent
bias (Pbias). The results show that, after calibration, the SWAT model compared well at all monitoring
stations for monthly stream flow using different weather datasets indicating that the SWAT model
can adequately produce long-term water yield in UMRB. The results also show that using NLDAS2
weather dataset can improve SWAT prediction of monthly stream flow with less prediction uncertainty
in the UMRB. We concluded that NLDAS2 dataset could be used by the SWAT model for large-scale
watersheds like UMRB as a surrogate of the interpolation weather data. Further analyses results
show that NLDAS2 daily solar radiation data was about 2.5 MJ m−2 higher than the interpolation
data. As such, the SWAT model driven by NLDAS2 dataset tended to underestimate stream flow in
the UMRB due to the overestimation in evapotranspiration in uncalibrated conditions. Thus, the
implication of overestimated solar radiation by NLDAS2 dataset should be considered before using
NLDAS2 dataset to drive the hydrological model.
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1. Introduction

Water resources are planned and regulated on a river basin scale so that the future design and
evaluation of management practices depend on the total hydrologic and biogeochemical performance
of the basin instead of singular hydrologic units [1–3]. Watershed models are approaches to predict
water quantity and quality of a basin accounting for complete physical, chemical, and biological
processes [4]. Large-scale watersheds, such as the Upper Mississippi River Basin (UMRB), are complex
systems that need physically-based and distributed watershed models to simulate their hydrological
and biogeochemical functions [5]. Many watershed models are designed particularly at a large spatial
scale with respect to their model structures including temporal and spatial discretization schemes,
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physical functions, and major hydrological and biogeochemical processes [6,7]. The Soil and Water
Assessment Tool (SWAT) is one of these watershed models designed for simulating long-term water
quantity and quality as impacted by land use and climate changes and best management practices
at large-scale watersheds [6]. It is a semiphysical and semidistributed model accounting for major
hydrological and biogeochemical processes significant at large spatial scale (small to large watersheds)
and medium to large temporal scale (daily to monthly) [8–10]. It divides a watershed into sub-basins
connected by a stream network and further delineates each sub-basin into hydrologic response units
(HRUs), which consist of unique combinations of land cover, slope, and soil type [8]. The model
calculates the water balance (including surface and subsurface runoff, percolation and base flow, and
evapotranspiration and transmission losses), crop growth, nutrient cycling, and pesticide movement at
the HRU scale [11,12]. Water flow, sediment, and nutrient loadings from each HRU in a sub-basin are
summed and the resulting loadings are then routed through channels, ponds, and reservoirs to the
watershed outlet [8,13]. It is so designed that no or minimal calibration efforts may be taken to provide
reasonable simulation results at large-scale watersheds given accurate inputs including weather data,
topographic and soil characteristics, and land use and management information [8,14,15].

A previous study proposed a framework for developing spatial input data as detailed as possible
for SWAT in the UMRB [16]. The input data include soil, land use, topography, management practices
(including tile, tillage, fertilization, crop rotation, etc.), and weather information. The SWAT model
was not calibrated, and it was tested directly with stream flow records from USGS monitoring gauges.
The study found that the uncalibrated SWAT could satisfactorily predict the UMRB hydrologic budget.
The results emphasized the importance of using accurate spatial input data for SWAT application in
large-scale watersheds model. Weather data are the key forces that drive hydrological processes on land
phase of global cycles so that their accuracy in watershed modeling is fundamentally important [17,18].
The previous study used a dataset of daily precipitation and max/min air temperature developed
by Di Luzio et al. [19] via combining daily observations from the National Climatic Data Center
(NCDC) digital archives with maps from the Parameter-Elevation Regressions on Independent Slopes
Model (PRISM). Then a GIS-based weather interpolation program [20] was used to aggregate the daily
precipitation and max/min air temperature to sub-basins. This type of weather data interpolation
methods is widely used for watersheds with sparse monitoring networks and large hydroclimatic
gradients [20–23]. For large-scale watersheds, it is almost inevitably to use estimated weather data in
sub-basins without monitoring data. Studies have shown that spatial precipitation estimated using
different interpolation methods can be substantially different from each other [20]. In order to provide
accurate spatial precipitation, it is suggested to implement multiple spatial interpolation methods
and select the one with better evaluation coefficients [20]. In addition, it is time consuming and
computational inefficient to process large amount of weather data for large-scale watersheds.

Another option that can be used to provide estimated weather data is usage of assimilated datasets
at global gridded points [18,24–28]. There are several assimilated datasets (reanalysis), such as those
provided by National Centers for Environmental Predication (NCEP)/National Center for Atmospheric
Research (NCAR) and the European Centre for Medium-Range Weather Forecast (ECMWF). These
datasets have relatively coarse grid size ranging from 0.125◦ to 2.5◦ (15 to 290 km) and different periods
of available data. A potential weather data source feasible for UMRB modeling is available through the
NASA North American Land Data Assimilation System Phase Two (NLDAS2) [29,30]. NLDAS2 climate
forcing data have assimilated multiple sources of climate observations and are widely recognized as a
high resolution, spatially continuous, and comprehensive dataset that is valuable for watershed scale
hydrology modeling [30]. We used the NLDAS2 dataset based on several considerations: the NLDAS2
dataset can provide all weather parameters required by SWAT including temperature, precipitation,
solar radiation, relative humidity, and wind speed data; it has a smaller grid size (15 km) than other
assimilated datasets (≥15 km); and it includes a historical coverage parallel to that of USGS monitoring
records used in the UMRB.
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The objective of this study is to assess the performance of SWAT on stream flow simulation
forced by NLDAS2 weather data as comparing to the model performance forced by NCDC-based
interpolation weather data in the UMRB. In the present study, we intended to evaluate the applicability
of NLDAS2 data used by SWAT in large-scale watersheds like the UMRB.

2. Materials and Methods

2.1. Study Area

The UMRB has a drainage area of 431,000 km2 flowing through a 2100 km waterway from Lake
Itasca in northern Minnesota to its confluence with the Ohio River at the southern tip of Illinois
(Figure 1) [16]. It includes large parts of the states of Illinois, Iowa, Minnesota, Missouri, and Wisconsin
and smaller portions of Indiana, Michigan, and South Dakota (Figure 1) [5] constituting a minor
portion (15 percent) of the Mississippi River Basin system. Land cover in the basin is diverse, and
includes agricultural lands, forest, wetlands, lakes, prairies, and urban areas. In most parts of the
UMRB, agriculture is the dominant land use and nearly 69% of total land is used for agriculture and
pasture with corn, soybeans, and alfalfa as the major crops in the basin (Figure 2) [31]. Due to its large
and complex landscape with intensive agricultural activities, landscape management, and widespread
use of chemical fertilizers [32], UMRB is recognized as a major contributor (more than 50 percent) of
nitrogen transported to the Gulf of Mexico [31]. The climate of the UMRB is subhumid continental
with average monthly maximum temperature ranging from −9.8 ◦C in January in central Minnesota
to 31.7 ◦C in July in central Missouri, and the average annual precipitation ranges from 575 mm in
the western part of Minnesota to 981 mm in the central part of Illinois [31]. About 75% of the annual
precipitation falls during corn growing season from April to October [31]. Soil type in the basin ranges
from heavy, poorly drained clay soil to light, well-drained sands [33].
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Figure 2. Digital elevation model (DEM) (a) and general land use (b) maps of the Upper Mississippi
River Basin.

2.2. SWAT Model Setup

The SWAT model requires a variety of detailed information describing the land use, soil, and
topography data of the UMRB. The UMRB was divided into 131 sub-basins according to the eight-digit
United States Geological Survey (USGS) hydrologic unit codes (HUCs; Figure 1) [16]. The National
Hydrography Dataset (NHD) stream dataset and a 90-m digital elevation model (DEM) were used
to provide watershed configuration and topographic parameter estimation (Figure 2). A land
use map was created by combing two sources of information, the Cropland Data Layer (CDL)
(www.nass.usda.gov/research/Cropland/SARS1a.htm) and 2001 National Land Cover Data (NLCD2001)
(Figure 2) [34]. The CDL focuses on agricultural land use with broadly defined nonagricultural land
use types. Therefore, NLCD2001 was used for nonagricultural land cover information. The detailed
procedure of combining both NLCD2001 and CDL can be found in Srinivasan, Zhang and Arnold [16].

www.nass.usda.gov/research/Cropland/SARS1a.htm
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The State Soil Geographic (STATSGO) database 1:250,000 scale soil map was used for UMRB [35].
Management practices such tile drainage, tillage, crop rotation, and fertilizer and manure application
were included in the project according to Srinivasan, Zhang, and Arnold [16]. The previously
established UMRB SWAT project was run with the latest versions of SWAT2012 in the present study.

2.3. NLDAS2 Dataset

NLDAS2 is a data assimilation system facilitated by uncoupled land surface models [30]. NLDAS2
utilized a dataset generated from gauge-based observational precipitation data, remotely sensed solar
radiation, and surface meteorology reanalysis as a driver for four land surface models with a 0.125◦

latitude-longitude resolution (15 km). The simulation domain covers the conterminous United States
(CONUS), the southern part of Canada, and the northern portion of Mexico (125◦ to 67◦ W, 25◦ to
53◦ N). Noah [36], Mosaic [37], Sacramento Soil Moisture Accounting [38], and Variable Infiltration
Capacity [39] models were used to provide simulated weather parameters for various applications.
NLDAS2 provides data ranging from 01-01-1979 to present. We aggregated the gridded daily values
of NLDAS2 to the eight-digit sub-basins using the same procedure as in Srinivasan, Zhang and
Arnold [16]. As a result, 131 weather stations, one for each sub-basin, were created to input weather
data into the SWAT model.

2.4. Three Simulation Scenarios

The SWAT model requires daily precipitation, max/min air temperature, solar radiation, relative
humidity, and wind speed to simulate hydrological fluxes [8,40]. If the user only provides precipitation
and air temperature data, daily solar radiation, relative humidity, and wind speed will be generated by
the built-in WXGEN weather generator [41]. The weather generator is also used to fill-in missing data.

We used the UMRB SWAT model to simulate stream flow by considering three weather data
input scenarios. The three corresponding simulations were denoted by NCDC-SWAT, NLDAS2-SWAT,
and Partial-NLDAS2-SWAT (PNLDAS2-SWAT). NCDC-SWAT used daily precipitation and max/min
air temperature from the NCDC-based interpolation weather data used for the previous study [16];
NLDAS2-SWAT used daily precipitation, max/min air temperature, solar radiation, relative humidity,
and wind speed from NLDAS2 data; PNLDAS2-SWAT used daily precipitation and max/min air
temperature from NLDAS2 data, and solar radiation, relative humidity, and wind speed generated
by the WXGEN weather generator model. PNLDAS2-SWAT was designed here to assess the impacts
of precipitation and max/min temperature input data on hydrology simulation via investigating the
difference between NLDAS2 data and NCDC-based interpolation data.

2.5. Model Calibration, Sensitivity, and Uncertainty Analysis

In the present study, the simultaneous multisite calibration procedure as described in Leta et al. [42]
were used because this method can simultaneously handle the entire basin spatial variability and
improve model performance. We used Sequential Uncertainty Fitting algorithm version 2 (SUFI-2)
procedure in SWAT-CUP to conduct parameter sensitivity, calibration, and uncertainty analysis [43].
The global sensitivity analysis method in SWAT-CUP was used for sensitivity analysis. Parameter
sensitivities were determined using the following multiple regression equation.

g = α+
m∑

i=1

βi·bi (1)

where g is the objective function value, α and βi are regression coefficients, bi is the calibration parameter
of the ith parameter value, and m is the number of parameters considered. The Nash–Sutcliffe coefficient
(NS) was used as the objective function value and Student’s t-tests were used to identify the statistical
significance of each parameter. NS was employed as the objective function because it is the most
commonly used goodness-of-fit coefficient in hydrology modeling studies, and based on NS many
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model performance evaluation criteria has been established by Moriasi et al. [44]. This global sensitivity
analysis approach estimates the change in the objective function (NS in the present study) resulting
from changes in each parameter while all other parameters are changing. It has the advantage of
being quite fast compared to similar procedures and it thus provides a relative sensitivity. The p-value
was used to identify the relative sensitivity of parameters and a p-value < 0.05 indicated a sensitive
parameter in the present study.

The 95% prediction uncertainty (95PPU) in SUFI-2 represents the combined uncertainties in model
structure, parameters, and input data. The p-factor indicates the percentage of observed data falling
within 95PPU band and the r-factor is the average thickness of the 95PPU bands by the standard
deviation of the observed data. The r-factor can vary between 0 and infinity, while the p-factor can vary
from 0 to 100% [45]. The goodness of fit and the degree to which the model accounts for uncertainties
are assessed by the above two measures. Prediction uncertainty is high when the value of p-factor is
low and r-factor is high, and vice versa.

2.6. Model Evaluation

In the present study, we compared model performance on monthly stream flow in the three
abovementioned scenarios. Figure 3 shows the USGS monitoring station locations that provided
observed data used in comparisons. Table 1 shows the drainage area estimated by USGS and SWAT.
Because the USGS gauge location may not always correspond to the outlet of the sub-basins, there will
be some difference between the two areas. We choose a USGS monitoring station with the drainage
area within ±5% of the controlling areas of a sub-basin outlet (Table 1). Table 1 also provides the time
period of available data for comparison of steam flow during calibration and validation for different
monitoring stations. Note that the calibration/validation periods were different between monitoring
stations. SWAT-CUP can be used to simultaneously calibrate multiple stations with different data
range. Model performance was assessed according to three coefficients of accuracy, percent bias (Pbias;
%), coefficient of determination (R2), and NS, given as

Pbias = 100·

(
Oavg − Pavg

)
Oavg

(2)

NS = 1−

∑n
i=1 (Oi − Pi)

2∑n
i=1 (Oi −Oavg)

2 (3)

R2 =


∑n

i=1

(
Oi −Oavg

)
·

(
Pi − Pavg

)
[∑n

i=1

(
Oi −Oavg

)2
·
∑n

i=1

(
Pi − Pavg

)2
]0.5


2

(4)

where Oi and Pi are the observed and predicted values, respectively, and Oavg and Pavg are the
average of the observed and predicted values, respectively. Those coefficients are the most used
statistics in evaluation of SWAT model performance on water quantity and quality simulation in the
literature [16,46–49]. The R2 ranges from 0 to 1 and explains the proportion of variance in observed
data, with higher values indicating less error variance; the NS is a normalized statistic and estimates
the relative magnitude of the residual variance as compared to the observed (Nash and Sutcliffe
1970), and demonstrates how well the plot of observed versus simulated data fits the 1:1 line; and
Pbias has the ability to indicate poor model performance and measures the average tendency of the
simulated data to be larger or smaller than observed data. Low values of Pbias indicate accurate model
simulation, positive values indicate model underestimation bias, and negative values indicate model
overestimation bias [50].
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Figure 3. Location of USGS monitoring stations and sub-basins simulated by the Soil and Water
Assessment Tool (SWAT). USGS stations 5267000, 5474500, 5513500, and 5587450 are located on the
mean stream (see Table 1 for their corresponding sub-basin outlets).

Table 1. The drainage area of each monitoring station, the corresponding SWAT simulated drainage
area, and the time period of observation data used in this study.

Sub-Basin
No. USGS ID HUC8 SWAT Area

(km3)
USGS Area

(km3)
SWAT Area/
USGS Area Calibration Validation

4 5267000 7010104 30,180 29,696 1.02 1980–1987 1988–1993
27 5330000 7020012 43,720 43,126 1.01 1980–1987 1988–1996
32 5340500 7030005 20,030 19,768 1.01 1980–1987 1988–1996
40 5385000 7040008 4301 4250 1.01 1991–1993 1994–1996
45 5369500 7050005 24,720 24,338 1.02 1991–1993 1994–1996
63 5474500 7080104 309,400 304,640 1.02 1980–1983 1984–1987
66 5474000 7080107 11,250 11,016 1.02 1980–1987 1988–1995
75 5465500 7080209 32,800 31,997 1.03 1980–1987 1988–1995
95 5513500 7110004 368,000 363,643 1.01 1991–1993 1994–1996

100 5587450 7110009 447,500 438,528 1.02 1980–1983 1984–1988
118 5586100 7140203 74,600 73,656 1.01 1991–1993 1994–1996

Note: Bold numbers indicate those monitoring stations are located on the main stream.
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3. Results and Discussion

3.1. Parameter Sensivity Analysis

Table 2 lists calibrated hydrology parameters and their best simulation values in different simulation
scenarios. The p-values for parameter sensitivity and sensitivity ranking are also included in Table 2.
The sensitive parameters for monthly stream flow were SMTMP, ESCO, ALPHA_BF, GW_DELAY,
and CH_K2 in scenarios of NCDC-SWAT and PNLDAS2-SWAT, while for the NLDAS2-SWAT
scenario, SMTMP, CN2, SURLAG, ESCO, ALPHA_BF, and CH_K2 were the sensitive parameters.
Several parameters were sensitive in all three scenarios (Table 2). SMTMP was sensitive in the three
scenarios indicating that the presence of snow in the study area was affecting hydrological processes.
The calibrated SMTMP value ranged from 3.23 to 3.53 greater than zero suggesting relatively large and
delayed snowmelt peaks at the monthly scale during the snowmelt season in the UMRB. GW_DELAY
controls the timing and magnitude of ground water discharge to streams and its value ranged from 96
to 186 days in different scenarios (Table 2), which is reasonable considering such a large-scale watershed
as UMRB. ESCO affects evaporation from soils and its value was relatively low (i.e., 0.421) in scenarios
of NCDC-SWAT and PNLDAS2-SWAT, while it was high (i.e., 0.937) for the NLDAS2-SWAT scenario.
Lower values of ESCO indicates the model extract more of the evaporative demand from deeper soil
layers. The reason for this discrepancy will be explained in Section 3.4. CH_K2 control stream flow
contribution to groundwater system and it was sensitive in all scenarios showing that the bidirectional
interaction between stream flow and groundwater system cannot be ignored in the UMRB. Parameters
CN2 and SURLAG, which control surface runoff yield, were sensitive in scenario of NLDAS2-SWAT
only (Table 2). This result indicates that using NLDAS2 weather dataset could “activate” more model
parameters (making them sensitive to stream flow in the present study) which may be one of the
reasons for better model performance and less prediction uncertainty in the NLDAS2-SWAT scenario
than in other scenarios (as shown in following sections).

3.2. Model Performance Evaluation

Model performance evaluation results are shown in Tables 3 and 4 with the monthly stream
flow statistics during calibration and validation, respectively, in three scenarios at 11 USGS gauges.
Figure 4 shows observed vs. simulated monthly flow rate at the four gauging stations on the main of
UMRB during calibration and validation. Table 1 shows available data and time periods determined
for comparison during calibration and validation. During calibration, the R2 value ranged from 0.61
to 0.82, from 0.66 to 0.86, and from 0.64 to 0.82; the NS value ranged from 0.59 to 0.79, from 0.65 to
0.84, and from 0.61 to 0.79; and the Pbias (%) value ranged from −20.6 to 10.4, from −21.1 to 8.8, and
from −9.8 to 12.9 for scenarios of NCDC-SWAT, NLDAS2-SWAT, and PNLDAS2-SWAT, respectively
(Table 3). During validation, the R2 value ranged from 0.46 to 0.92, from 0.58 to 0.95, and from 0.38 to
0.88; the NS value ranged from 0.44 to 0.85, from 0.35 to 0.91, and from 0.25 to 0.87; and the Pbias (%)
value ranged from −8.9 to 22.5, from −9.1 to 15.1, and from −17.0 to 22.2 for scenarios of NCDC-SWAT,
NLDAS2-SWAT, and PNLDAS2-SWAT, respectively (Table 4).
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Table 2. Calibrated hydrology parameters and their best simulation values and sensitivity ranking in three simulation scenarios.

Ranking NCDC-SWAT NLDAS2-SWAT PNLDAS2-SWAT

Parameter p-Value Used Parameter p-Value Used Parameter p-Value Used

1 V__ALPHA_BF 0.000 0.2829 V__ALPHA_BF 0.000 0.2223 V__ALPHA_BF 0.000 0.2829
2 V__ESCO 0.000 0.421 V__ESCO 0.000 0.937 V__ESCO 0.000 0.421
3 V__GW_DELAY 0.000 186.2 R__CN2 0.000 −0.0345 V__GW_DELAY 0.000 186.2
4 V__CH_K2 0.000 84.1 V__SMTMP 0.000 3.23 V__CH_K2 0.000 84.1
5 V__SMTMP 0.000 3.53 V__CH_K2 0.000 34.5 V__SMTMP 0.013 3.53
6 V__SURLAG 0.102 0.505 V__SURLAG 0.033 1.995 V__SURLAG 0.080 0.505
7 R__CN2 0.552 −0.0465 V__GW_DELAY 0.184 96.2 V__SFTMP 0.212 2.23
8 V__SFTMP 0.584 2.23 V__SFTMP 0.321 −3.21 R__SOL_K 0.803 −0.1345
9 R__SOL_K 0.922 −0.1345 R__SOL_K 0.946 0.0475 R__CN2 0.896 −0.0465

Notes: R and V stand for relative change (%) and replace value, respectively. Bold p-value indicates the sensitive parameter (p-value < 0.05). ALPHA_BF: baseflow alpha factor (day);
GW_DELAY: groundwater delay days (day); CN2: initial SCS CN II value; SURLAG: surface runoff lag time (day); ESCO: soil evaporation compensation factor; SOL_K: soil hydraulic
conductivity (mm hr−1); CH_K2: effective hydraulic conductivity of stream (mm hr−1); SFTMP: snowfall temperature (◦C); SMTMP: snow melt base temperature (◦C).
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Table 3. Model performance on monthly stream flow at 11 monitoring stations in three scenarios
during calibration.

Sub-Basin
NCDC-SWAT NLDAS2-SWAT PNLDAS2-SWAT

R2 NS Pbias R2 NS Pbias R2 NS Pbias

4 0.73 0.71 −6.7 0.76 0.65 −5.9 0.76 0.75 4.9
27 0.76 0.73 −6.2 0.78 0.68 −12.2 0.74 0.71 4.7
32 0.76 0.73 0.4 0.75 0.72 8.8 0.78 0.72 12.3
40 0.81 0.70 −20.6 0.82 0.70 −21.1 0.76 0.73 −9.8
45 0.61 0.59 −6.2 0.66 0.65 −2.5 0.64 0.61 −4.1
63 0.77 0.76 −3.6 0.80 0.80 −0.7 0.79 0.78 4.0
66 0.75 0.74 −3.0 0.75 0.74 −3.8 0.72 0.72 1.4
75 0.74 0.72 6.2 0.80 0.79 3.7 0.78 0.73 12.9
95 0.79 0.78 6.5 0.84 0.84 −0.9 0.81 0.79 9.6
100 0.80 0.79 2.7 0.83 0.83 2.5 0.79 0.76 9.2
118 0.82 0.77 10.4 0.86 0.81 5.1 0.82 0.75 10.6

Note: Shaded statistics for NLDAS2-SWAT and PNLDAS2-SWAT indicate their values are greater than or equal to
the corresponding values of NCDC-SWAT.

Table 4. Model performance on monthly stream flow at 11 monitoring stations in three scenarios
during validation.

Sub-Basin
NCDC-SWAT NLDAS2-SWAT PNLDAS2-SWAT

R2 NS Pbias R2 NS Pbias R2 NS Pbias

4 0.57 0.54 4.4 0.63 0.48 −9.1 0.62 0.54 11.4
27 0.85 0.78 22.5 0.81 0.80 −0.3 0.81 0.76 22.2
32 0.67 0.64 8.9 0.66 0.65 1.1 0.71 0.68 11.5
40 0.46 0.44 −2.0 0.58 0.35 15.1 0.38 0.25 10.1
45 0.83 0.81 −1.3 0.79 0.65 −9.1 0.76 0.50 −17.0
63 0.78 0.75 −8.9 0.79 0.79 −2.2 0.82 0.81 0.6
66 0.86 0.83 5.3 0.87 0.86 −7.8 0.82 0.82 −2.8
75 0.85 0.80 13.1 0.88 0.86 5.0 0.85 0.81 12.3
95 0.80 0.71 2.4 0.77 0.74 −6.7 0.79 0.76 −4.7
100 0.86 0.85 −5.5 0.87 0.87 1.9 0.88 0.87 3.9
118 0.92 0.83 13.0 0.95 0.91 5.3 0.88 0.78 15.3

Note: Shaded statistics for NLDAS2-SWAT and PNLDAS2-SWAT indicate their values are greater than or equal to
the corresponding values of NCDC-SWAT.

The SWAT model performed “satisfactorily” for all monitoring stations in three scenarios based
on model performance evaluation criteria during calibration and validation (Tables 3 and 4). Simulated
monthly flow rate matched well observation in three simulation scenarios at the four selected monitoring
stations (Figure 4). Furthermore, the SWAT model was able to depict seasonal variations of stream
flow at different stations in three scenarios. The results indicate that the SWAT model can adequately
produce long-term water yield in the UMRB with different weather forcing dataset. In Tables 3 and 4,
shaded statistics for NLDAS2-SWAT and PNLDAS2-SWAT indicate that their values are greater than or
equal to the corresponding values of NCDC-SWAT. In the NLDAS2-SWAT scenario, the SWAT model
improved R2 and NS for stream flow at most stations during both calibration and validation (Tables 3
and 4), while no distinct improvement were observed in the PLDAS2-SWAT scenario. The improvement
can be detected from Figure 4 where the SWAT model in the NLDAS2-SWAT scenario depicted high
flows more closely. It is worth noting that improvement in R2, NS, and Pbias tended to occur in southern
parts of the UMRB implying that the simplified snow accumulation and melt algorithm within the
SWAT model may offset the advantage of using NLDAS2 weather dataset. In general, these results
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show that using NLDAS2 weather data can improve SWAT prediction of stream flow at large scale
watersheds like UMRB.
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3.3. Model Uncertainty Analysis

Table 5 lists the p-factor and r-factor for simulated 95% confidence intervals for monthly stream
flow at 11 monitoring stations in the three simulation scenarios. The p-factor values showed that
the 95% bands capture 94–100%, 91–100%, and 97–100% of the observed monthly stream flow for
scenarios NCDC-SWAT, NLDAS2-SWAT, and PNLDAS2-SWAT, respectively, at 11 monitoring stations.
The r-factor values were ranged from 1.23 to 2.73, from 1.06 to 2.36, and from 1.29 to 2.69 for scenarios
NCDC-SWAT, NLDAS2-SWAT, and PNLDAS2-SWAT, respectively, at 11 monitoring stations (Table 5).
p-factor > 0.7 and r-factor < ~1 (e.g., 1.5) indicates that a model had acceptable prediction uncertainty [51].
Apparently the three scenarios had satisfactory p-factor results while r-factor results were not satisfying
for all 11 monitoring stations. There is a trade-off between p-factor and r-factor that a larger p-factor
can be achieved at the expense of a larger r-factor. In order to detect the difference of model uncertainty
in the three scenarios, we plotted scatter plot of p-factor vs. r-factor for the three scenarios as shown in
Figure 5. The plot more clearly shows that the values of r-factor in the NLDAS2-SWAT scenario were
less than those of other two scenarios while the values of p-factor were close to each other in different
scenarios. This result suggests that, in general, NLDAS2 data improved SWAT simulation of monthly
stream flow with less prediction uncertainty in the large-scale watershed like UMRB.

Table 5. p-factor and r-factor for different sub-basins in three simulation scenarios.

Sub-Basin
NCDC-SWAT NLDAS2-SWAT PNLDAS2-SWAT

p-Factor r-Factor p-Factor r-Factor p-Factor r-Factor

4 0.99 2.57 0.91 1.86 1.00 2.52
27 0.97 1.56 0.93 1.31 1.00 1.58
32 0.94 1.86 0.92 1.57 0.98 1.82
40 0.96 2.23 0.99 1.97 0.99 2.25
45 0.95 2.40 1.00 2.36 0.98 2.59
63 1.00 2.73 0.97 2.23 1.00 2.69
66 0.95 1.23 0.90 1.06 0.97 1.29
75 0.97 1.37 0.92 1.18 0.99 1.41
95 1.00 1.98 0.96 1.87 1.00 2.11
100 1.00 2.32 0.92 1.92 1.00 2.28
118 1.00 1.81 0.91 1.65 0.99 1.85Water 2019, 11, x FOR PEER REVIEW 15 of 21 
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3.4. Weather Data Impacts on Stream Flow Simulation

In the present study, we first examined the model performance using uncalibrated UMRB SWAT in
the three simulation scenarios. The purpose of this comparison was to investigate model responses to
different weather inputs without the influence of parameter calibration. We found that the uncalibrated
SWAT model tended to overestimate stream flow in the NCDC-SWAT scenario (similar results were
reported in Gao et al. [52]), while in the NLDAS2-SWAT scenario, the uncalibrated SWAT model had
the tendency to underestimate stream flow on monthly scale. To understand the reason for those
biases, we summarized annual average precipitation, daily air temperature, and daily solar radiation
used in three scenarios compared with annual average water yield, evapotranspiration, and soil
water generated over the UMRB for the simulation period as shown in Figure 6. In addition, we also
summarized average annual water balance components (in mm) simulated in three scenarios at the
UMRB as shown in Table 6. Apparently, there was not much differences in annual precipitation (only
8 mm on average) between NCDC and NLDAS2 data (Table 6 and Figure 6a). However, NLDAS2 data
had slightly higher daily air temperatures than NCDC data with an average difference of 0.68 ◦C for
the simulation period (Figure 6c). Notice that the NLDAS2 data has much higher daily solar radiation
than NCDC data with a difference of 2.5 MJ m−2 d−1. The reason for the underestimation of stream
flow (or water yield) in the UMRB was mainly due to the overestimation in evapotranspiration caused
by overestimation of solar radiation by using NLDAS2 data. We exclude the temperature impacts
because the SWAT model used the same air temperature input in both scenarios of NLDAS2-SWAT and
PNLDAS2-SWAT, but the differences in water balance components of the UMRB (including surface
runoff, lateral flow, baseflow, percolation, tile flow, soil water, and ET) between PNLDAS2-SWAT and
NCDC-SWAT were smaller than the differences between NLDAS2-SWAT and NCDC-SWAT. Thus,
combining precipitation and temperature data from NLDAS2 with solar radiation generated by SWAT
built-in weather generator can be a feasible option for large-scale watershed modeling in studies using
the uncalibrated SWAT model.

Table 6 also lists water balance components simulated by calibrated SWAT models in three
scenarios. Compared with the results generated by the uncalibrated SWAT models, there were less
difference between different scenarios for each water balance component (Table 6). The results indicate
that model calibration would to some extent diminish the influence of different weather data inputs
and converge the magnitude of simulated water balance components to a narrower range. This is
because the SWAT model was calibrated against the same observed stream flow data at multiple
monitoring stations in the UMRB for the three simulation scenarios. The differences between three
simulation scenarios for different water balance components, though relatively small, was the result of
different weather data inputs.
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Table 6. Average annual water balance components (in mm) over the UMRB simulated using the uncalibrated and calibrated SWAT model in three scenarios.

Model Scenario Participation Surface Runoff Lateral Flow Baseflow Percolation Tile Flow Soil Water ET PET Water Yield

Uncali. NCDC-SWAT 863 126 13 145 146 34 228 545 792 303
NLDAS2-SWAT 871 113 10 91 91 20 206 641 996 223
PNLDAS2-SWAT 871 133 12 134 135 31 221 560 838 297

Cali. NCDC-SWAT 863 95 11 127 120 29 210 608 780 247
NLDAS2-SWAT 871 98 12 127 124 30 219 612 996 254
PNLDAS2-SWAT 871 94 11 118 111 26 202 630 830 235
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4. Conclusions

The present study compared interpolation weather data and NASA North American Land Data
Assimilation System Phase Two (NLDAS2) weather data used in SWAT application at a large-scale
watershed—the Upper Mississippi River Basin (UMRB). Interpolation weather data were derived
based on National Climatic Data Center (NCDC) archives. Three scenarios with different weather
data input were considered, including NCDC-SWAT, NLDAS2-SWAT, and Partial-NLDAS2-SWAT
(PNLDAS2-SWAT). NCDC-SWAT used daily precipitation and max/min air temperature from
the NCDC-based interpolation weather data; NLDAS2-SWAT used daily precipitation, max/min
air temperature, solar radiation, relative humidity, and wind speed from NLDAS2 data; and
PNLDAS2-SWAT used daily precipitation and max/min air temperature from NLDAS2 data, and
solar radiation, relative humidity, and wind speed generated by the WXGEN weather generator
within SWAT. In the three scenarios, the SWAT model was used to simulate monthly stream flow at
11 USGS monitoring stations in the UMRB. Model performances were evaluated according to three
statistics: coefficient of determination (R2), Nash–Sutcliffe coefficient (NS), and percent bias (Pbias),
on the monthly temporal scale. We further conducted parameter sensitivity and model uncertainty
analyses using the Sequential Uncertainty Fitting algorithm version 2 (SUFI-2) procedure in SWAT-CUP.
The results show that the SWAT model compared well at all monitoring stations for stream flow in three
scenarios indicating that the SWAT model can adequately produce long-term water yield in UMRB.
The results also show that using NLDAS2 weather data can improved SWAT prediction of stream flow
with less prediction uncertainty in the UMRB. We concluded that NLDAS2 data can be used by the
SWAT model for large-scale watersheds like UMRB as a surrogate of interpolation weather data.
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We also conducted a study using uncalibrated SWAT model to simulate monthly stream flow in the
UMRB with the three scenarios. The comparison results indicated that NLDAS2 data have higher daily
solar radiation than interpolation weather data (the difference is ~2.5 MJ m−2 d−1) and, as a result, the
SWAT model underestimated stream flow in the UMRB due to the overestimation of evapotranspiration
in the scenario of NLDAS2-SWAT. The implication of the overestimated solar radiation by NLDAS2
should be fully considered when using the uncalibrated SWAT model. We pointed that combining
precipitation and temperature from NLDAS2 data with solar radiation generated by SWAT built-in
weather generator can be a feasible option for large-scale watershed modeling.
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