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ARTICLE INFO ABSTRACT

Keywords: Improving model performance in ungauged basins has been a chronic challenge in watershed model application
Stream flow to understand and assess water quality impacts of agricultural conservation practices, land use change, and
Se.diment climate adaptation measures in large river basins. Here, we evaluate a modified version of SWAT2012 (referred
Nltrate' to as SWAT-EC hereafter), which integrates an energy balanced soil temperature module (STM) and the
ss;:;rzﬁzggen CENTRUY-based soil organic matter algorithm, for simulating water quality parameters in the Upper Mississippi

River Basin (UMRB), and compare it against the original SWAT2012. Model evaluation was performed for si-
mulating streamflow, sediment, and nitrate-N (NO3-N) and total nitrogen (TN) loadings at three stations near the
outlets of UMRB. The model comparison was conducted without parameter calibration in order to assess their
performance under ungauged conditions. The results indicate that SWAT-EC outperformed SWAT2012 for
stream flow and NO3-N and TN loading simulation on both monthly and annual scales. For sediment, SWAT-EC
performed better than SWAT2012 on a monthly time step basis, but no noticeable improvement was found at the
annual scale. In addition, the performance of the uncalibrated SWAT-EC was comparable to other calibrated
SWAT models reported in previous publications with respect to sediment and NO3-N loadings. These findings
highlight the importance of advancing process representation in physically-based models to improve model
credibility, particularly in ungauged basins.

1. Introduction

The design and evaluation of land and water management practices
depend on the total hydrologic and biogeochemical performance within
a watershed (Parmele, 1972). Watershed-scale models are widely used
approaches to predict water quantity and quality accounting for com-
plex physical, chemical, and biological processes of a watershed (Clark
et al., 2015). The application of large-scale watershed models requires
many spatially variable input data (including weather, topographic and
soil characteristics, and land use and management data) which are
difficult to obtain (Srinivasan et al., 2010). Even with enough datasets,
it will take great effort to incorporate the information into model
configuration (Gassman et al., 2006). More importantly, since many
physical and biogeochemical processes are conceptually simplified in
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watershed models, many parameters governing model behavior are not
physically-based and need to be calibrated before assessing alternative
scenarios and supporting decision-making (Beven and Binley, 1992).
Successful model calibration requires long and high-quality ob-
servations of water quantity and quality variables which are always
limited on both spatial and temporal scales, especially in ungauged
watersheds (Sivapalan, 2003). Using limited observations for model
calibration may cause biased estimation of calibrated parameters (Boyle
et al., 2000; Doherty and Johnston, 2003). In addition, as physically-
based watershed models often contain dozens or even hundreds of
parameters to be calibrated, the information contained in observations
of streamflow and water quality measurements at the outlet of a wa-
tershed is usually not adequate for reliably determining true values of
those parameters (Beven and Smith, 2014). Since the initiative of the
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IAHS Decade on Predictions in Ungauged Basins (PUB) (Sivapalan,
2003), different approaches have been developed and used to enhance
watershed model reliability. For example, improvements in model
performance has been achieved by transferring parameter information
from adjacent gauged watersheds to the ungauged watershed (Burn and
Boorman, 1993; Qi et al., 2018a) or improving input data quality using
remote sensing and geographic information system (GIS) techniques
(Fortin et al., 2001; Sun et al., 2010). Recent studies show that a valid
approach to improve model reliability is to enhance model structure
and account for well-understood hydrological and biogeochemical
processes instead of using simplified processes (Butts et al., 2004;
Fenicia et al., 2008; Perrin et al., 2001; Pomeroy et al., 2007).

The Soil and Water Assessment Tool (SWAT) model was originally
developed to operate in large-scale ungauged watersheds with minimal
calibration efforts (Arnold et al., 1998). It attempts to incorporate
spatially and physically distributed watershed inputs to simulate sur-
face and subsurface flow, sediment generation and deposit, and nutrient
movement and fate through the watershed system (Gassman et al.,
2007). As a continuous and semi-distributed watershed-scale model,
SWAT has been successfully used to simulate water quantity and quality
in a wide range of gauged or ungauged watersheds across the world
(Abbaspour et al., 2017; Gitau and Chaubey, 2010; Lee et al., 2017; Lee
et al., 2016; Li et al., 2014; Ndomba et al., 2005; Qi et al., 2017a; Qi
et al., 2017b; Srinivasan et al., 2010; Zhang et al., 2008; Zhao et al.,
2020). Despite its wide use, SWAT encountered difficulties in regions
with climate, soil, and topography characteristics that go beyond the
conditions the algorithms in the model have been calibrated for (Chu
and Shirmohammadi, 2004; Hiilsmann et al., 2015; Mittelstet et al.,
2017; Qi et al., 2019a; Qi et al., 2019¢c; Wagner et al., 2011). One
reason explaining the difficulty is that many hydrological and biogeo-
chemical processes in SWAT are described using empirical equations
which limited its application on specific conditions. During the past
decades, various studies have developed new algorithms with respect to
hydrology and sediment and nutrient cycles within SWAT to solve their
own concerned environmental issues (Eckhardt et al., 2002; Kim and
Lee, 2010; Qi et al., 2016b; Qi et al., 2019b; Qi et al., 2018b; Sakaguchi
et al., 2014; Tuppad et al., 2011; Zhang et al., 2017; Zhang et al., 2008).
Among those SWAT-modification studies, many were focusing on de-
veloping more physically-based modules to replace the original em-
pirically-based algorithms. Most studies were conducted on a site or
small-watershed scale to quantify the value of the improvements in
physical process representation in SWAT. Note that those studies often
calibrated model parameters during the comparison of different ver-
sions of SWAT. However, Zhang et al. (2013) showed that even when
the structure of SWAT was not well configured, parameter calibration
against streamflow observed at the watershed outlet could attain
parameter values that meet satisfactory model performance criteria as
suggested by Moriasi et al. (2007). Arnold et al. (2015) also pointed out
the importance of accurate representation of model processes and its
impact on calibration and following scenario analysis. These findings
highlight the importance of improving process representation, in ad-
dition to parameter calibration, to ensure reliability of watershed model
simulation.

The SWAT model was originally designed to simulate large-scale
ungauged watersheds (Arnold et al., 1998). Up to date, only a few
studies have evaluated SWAT performance under ungauged conditions
(e.g. Srinivasan et al. (2010)). In this study, we aimed to evaluate the
value of advancing soil energy and biogeochemical processes in SWAT
for simulating water quality in a large river basin, i.e., the Upper Mis-
sissippi River Basin (UMRB), under ungauged conditions. Here, we
evaluated an enhanced version of SWAT2012 (referred to as SWAT-EC
hereafter) which has integrated an energy balanced soil temperature
module (STM) and the CENTRUY-based soil organic matter algorithm
and compared it against the original SWAT2012. To understand which
algorithms contribute to the improvements in SWAT-EC, we also in-
vestigated performance of SWAT2012 with CENTRUY (referred to as
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SWAT-C) and SWAT2012 with the energy balanced soil temperature
module (referred to as SWAT-E). The four versions of SWAT models
were not calibrated and were evaluated against monthly and annual
streamflow, sediment, nitrate (NO3-N), and total-nitrogen (TN) load-
ings at three gauging stations near the outlet of UMRB. Multiple widely
used statistics were used to evaluate the performance difference be-
tween different versions of SWAT models. To put the model perfor-
mance in context, we also compared the uncalibrated SWAT models
developed in this study with previous studies that reported performance
of SWAT with calibration. We anticipate the results will help under-
stand the value of advancing processes representation in SWAT for
water quality modeling in large-scale ungauged basins.

2. Data and model description
2.1. Modifications made to SWAT2012

2.1.1. Physically-based soil temperature module

In SWAT2012, soil temperature T;,; is calculated at the center of a
soil layer (2) on the hydrologic response unit (HRU) scale with the
following equation (Neitsch, 2011),

Tooit () = yT;oil @)+ - y)[d(’anir = Tor) + Tl (@9

where vy is the lag coefficient controlling the influence of the previous
day’s temperature on the current day’s temperature, Ty,; is the soil
temperature from the previous day at depth z, d is the depth factor that
quantifies the influence of depth on soil temperature, Ty,; is the average
annual air temperature, and Ty, is the soil surface temperature on the
day. The depth factor is a function of depth at the center of the soil layer
(z), maximum damping depth, bulk density, and soil water. The soil
surface temperature is a function of the previous day’s temperature, the
amount of ground cover, and the bare soil temperature. The effects of
snow and plant-canopy cover on soil temperature are incorporated
empirically as a weighting factor. The bare soil temperature is a func-
tion of daily average, minimum, and maximum temperature as well as
solar radiation reaching the ground and albedo.

A physically-based and energy balanced STM has been developed
and implemented based on heat transfer theory (Qi et al., 2016b),

aT _ i(ﬁ.aT)i
a  ax\c ax)cC )

where T is the temperature (°C), t represents the time step (in days), k is
the thermal conductivity (J cm~ ' d~!°C™1), Cis the volumetric heat
capacity (J cm ™3 °C™Y), x is the vertical distance from the air-soil or
air-snow interface (cm), and s is the latent heat source/sink term
Jem~3d™ 1. The Eq. 2 is converted to a fully-implicit discretized form
and was solved with the tridiagonal-matrix algorithm, described in
Patankar (1980). The simulation domain was defined as extending from
the air-soil or air-snow interface (upper boundary) to the damping
depth (lower boundary), where the impact of air temperature di-
minishes. The temperature was calculated at the center of each soil
layer for individual HRU. When snow accumulated on the ground, the
snow cover was treated as a single layer. Heat capacity and thermal
conductivity were assumed to be uniform within individual layers.
STM can address the intermediary role of snow cover in the daily
evolution of the soil temperature profile which is important for the
application of SWAT in cold-climate regions of the world. Instead of
considering soil temperature as a function of air temperature by the
empirical soil temperature module within SWAT, STM simulates tem-
perature change in snow and soils as a result of heat conduction and
latent heat exchange. The new module can estimate snow or soil surface
temperature based on energy balance, update thermal properties of
snow and soils according to changes in snow density and soil moisture,
and simulate freeze-thaw cycles in the soil profile. STM has tested with
field observed temperatures from a small experimental watershed in
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Atlantic Canada (Qi et al., 2016b) demonstrating a great improvement
in prediction of soil temperatures.

2.1.2. CENTURY-based soil organic matter algorithms

In SWAT2012 and previous versions, a PAPRAN model (Seligman
and Keulen, 1980) has been used to simulate organic nitrogen cycling.
The PAPRAN model considers organic N in plant residue, and active
and stable humus pools. The decomposition of each pool is influenced
by water, temperature, C:N ratio and intrinsic properties of substrate
(Neitsch et al., 2011). One of the drawbacks of the PAPRAN model that
it does not explicitly simulate carbon cycling in soil, which is closely
coupled with nitrogen cycling. On the other hand, the CENTURY model
(Parton et al., 1994) considers both C and N cycling and represents soil
organic matter (SOM) and residue in five pools. Plant litter is split into a
metabolic carbon pool (e.g. proteins and sugars) and a recalcitrant
structural carbon pool (e.g. lignin and cell walls). CENTURY also has an
amicrobial biomass pool. Soil humus includes two pools: slow humus
pool receives C and N from the decomposition of structural litter, me-
tabolic litter, and microbial biomass and often has a turnover time of
20-50 years, while passive humus pool includes physically- and che-
mically-stabilized SOM absorbed to clays and may take hundreds to
thousands of years to decompose. The decomposition of each pool is
determined by multiple factors, such as water, temperature, tillage, C:N
ratio, oxygen availability, soil texture, and substrate specific properties.

The major difference between PAPRAN and CENTURY lies in how
detailed they represent SOM-residue, how the decomposition rates are
calculated, and the coupling between C and N cycling. In general,
CENTURY incorporates more detailed biochemical properties and en-
vironmental factors in describing the processes relevant to SOM-residue
dynamics. Zhang et al. (2013), Yang et al. (2017), and Yang and Zhang
(2016) successfully tested the CENTURY algorithm for simulating C and
N progress using 16 AmeriFlux agricultural sites (http://public.ornl.
gov/ameriflux/) in the US Midwest and three Long-term ecological
research (LTER) sites at the Kellogg Biological Station (KBS; https://
Iter.kbs.msu.edu/) in southern Michigan. However, the CENTURY al-
gorithm in SWAT has not been tested for benefiting nutrients cycling
modeling in large ungauged basins.

2.2. Study area

The UMRB drains an area of 431,000 km? from northern Minnesota
to its confluence with the Ohio River at the southern tip of Illinois
(Fig. 1) (Srinivasan et al., 2010). The states of Illinois, lowa, Minnesota,
Missouri, and Wisconsin constitute most of the drainage area of UMRB
(Fig. 1) (Arnold et al., 2000), while Indiana, Michigan, and South Da-
kota together constitute a minor portion (15 percent) of the watershed.
Land cover in the basin is diverse, and includes agricultural lands,
forest, wetlands, lakes, prairies, and urban areas. Overall, agriculture is
the dominant land use and nearly 69% of total land is used for agri-
culture and pasture with corn, soybeans, and alfalfa as the major crops
in the basin (Wu and Tanaka, 2005). Due to its vast and complex
landscapes coupled with intensive agricultural activities, landscape
management, and widespread use of chemical fertilizers, UMRB is re-
cognized as a major contributor (more than 50 percent) of the nitrogen
transported to the Gulf of Mexico (Wu and Tanaka, 2005). The average
annual precipitation ranges from 575 mm in the western part of Min-
nesota to 981 mm in the central part of Illinois, and the average
monthly maximum temperature ranging from —9.8 °C in January in
central Minnesota to 31.7 °C in July in central Missouri (Wu and
Tanaka, 2005). Soil type in the basin ranges from heavy, poorly drained
clay soil to light, well-drained sands.

2.3. SWAT model setup

The SWAT model requires a variety of detailed information de-
scribing the land use, soil, and topography data of the UMRB. The
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present study adopted the input data from Srinivasan et al. (2010) and
compared the performance of different SWAT models. The UMRB was
divided into 131 subbasins according to the eight-digit United States
Geological Survey (USGS) hydrologic unit codes (HUCs; Fig. 1). Na-
tional hydrography Dataset (NHD) stream dataset and a 90 m digital
elevation model (DEM) was used to provide watershed configuration
and topographic parameter estimation. A land use map was created by
combining two sources of information, i.e., the Cropland Data Layer
(CDL) and 2001 National Land Cover Data to better define cultivated
and non-agricultural land use. The State Soil Geographic (STATSGO)
database 1:250,000 scale soil map was used for UMRB. Using a
threshold operation of 5% for land use, 10% for soil, and 5% for slope,
14,568 HRUs were generated and the number of HRUs per subbasin
ranged from 58 to 216. Management practices such as tile drainage,
tillage, crop rotation, and fertilizer application were included in the
project according to various sources. To save space, here we only pro-
vide brief description of the input data, and detailed model setup in-
formation can be found in Srinivasan et al. (2010). The fertilization
rates followed the state values reported by Unite States Department of
Agriculture Economic Research Service'. For tile drainage, we used
STATSGO soil databased to identify those locations that are poorly
drained, with a slope less than 1%, and under agricultural land use.
Tillage intensity information at the county scale is obtained from the
Conservation Technology Information Center (CTIC?). We represented
conservation, reduced tillage and full tillage according to slope deep-
ness. Sorted agricultural HRUs in ascending order according to slope
and try to assign full tillage to low slope HRUs and reduced tillage and
conservation tillage for HRUs with deep slopes.

2.4. Weather data

The SWAT model requires daily values of precipitation, max/min air
temperature, solar radiation, relative humidity, and wind speed as
forcing data. Here, we used daily precipitation, max/min air tempera-
ture, solar radiation, relative humidity, and wind speed derived from
Phase 2 of the North American Land Data Assimilation System
(NLDAS2®). Climate forcing data has assimilated multiple sources of
climate observations and is widely recognized as a high resolution (~1/
8°), spatially continuous, and comprehensive dataset that is valuable for
water cycling studies (Xia et al., 2012). The data ranges from 01 to 01-
1979 to present. The spatial domain, spatial resolution, computational
grid, terrain height, and land mask of NLDAS2 are identical to that in
NLDAS1, which is described in Mitchell et al. (2004). We aggregated
the gridded daily values of NLDAS2 data to the eight-digit subbasins
using standard ArcGIS aggregation procedures. As a result, 131 weather
datasets, one for each subbasin, were created to input into the SWAT
model.

2.5. Streamflow and water quality data

Streamflow data were obtained from US Geological Survey (USGS)
for the period of 1981-1997. Monthly sediment, nitrate, and organic
nitrogen flux data were obtained from the USGS Upper Midwest
Environmental Science Center (UMESC) for the period of 1981-1997.
Fig. 1 shows the USGS gauging station locations that provided observed
data used in comparisons. Table 1 shows the drainage area indicated by
USGS and SWAT and the time period during which observed data were
available. Because the USGS gauge location may not always correspond
to the outlet of the HUCs, there will be some difference between the two
areas. In addition, Table 1 provides the time period of data available for
comparison.

L https://www.ers.usda.gov/data-products/fertilizer-use-and-price.aspx.
2 www.ctic.purdue.edu/.
3 das.gsfc.nasa.gov/nldas/.
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Fig. 1. Location of the Upper Mississippi River Basin (UMRB) and three USGS gauge stations on the main stream (see Table 1 for their corresponding subbasins).

Table 1

The drainage area of each gauging station, the corresponding SWAT simulated drainage area and the time period of observation data used in this study.
Subbasin No. USGS ID HUCS8 SWAT Area (km?) USGS Area (km?) SWAT Area/USGS Area Time Period
63 05474500 07080104 309400 304640 1.02 1980-1987
95 05513675 07110004 368000 363643 1.01 1991-1997
100 05587450 07110009 447500 438528 1.02 1980-1988

Note: HUCS8: Hydrologic Unit Catalog at the eight-digit level.
2.6. Model evaluation

In this study, we evaluated four versions of SWAT, i.e., SWAT-EC,
SWAT-C, SWAT-E, and SWAT2012 (Fig. 2). SWAT-EC has integrated the
energy balanced soil temperature module (STM) and the CENTRUY-
based soil organic matter algorithm; SWAT-C only integrated the
CENTRUY-based soil organic matter algorithm; SWAT-E only integrated
the energy balanced soil temperature module (Fig. 2).

Physically based STM

SWAT2012

CENTRURY soil biogeochemistry

Physically based STM and

CENTRURY soil biogeochemistry

The four versions of SWAT models were not calibrated and were
evaluated against monthly and annual streamflow, sediment, nitrate
(NOs-N), and total-nitrogen (TN) loadings at three gauging stations
near the outlet of UMRB. Model performance was assessed using three
coefficients of accuracy, i.e., percent bias (Py;as; %), coefficient of de-
termination (R?), and Nash-Sutcliffe coefficient (NS) (Nash and
Sutcliffe, 1970). The equations used to calculate the above three sta-
tistics are given as:

SWAT-E

SWAT-EC

SWAT-C

Fig. 2. Model structure difference between SWAT2012, SWAT-E, SWAT-C, and SWAT-EC. STM: energy balanced soil temperature module; CENTRUY: CENTRUY-

based soil organic matter algorithm.
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where O; and P; are the observed and predicted values at a time step i,
Ogy and P, are the average of the observed and predicted values.
Table 1 shows the basic characteristics of the USGS stations used for
model performance evaluation.

3. Results and discussion

3.1. Performance of four versions of SWAT model with respect to different
water quantity and quality variables

Model performance evaluation results on stream flow and sediment,
NOs-N, and TN loadings at three USGS gauging stations at monthly and
annual scales are shown in Tables 2 and 3, respectively. The evaluation
periods for USGS gauging stations corresponding to the outlets of sub-
basin # 63 and 100 is from 1980 to 1987 and from 1980 to 1988,
respectively, while for the station at the outlet of subbasin # 95 is from
1991 to 1997. In the table, shaded numbers indicate the three versions
of enhanced SWAT model (i.e., SWAT-C, SWAT-E, and SWAT-EC) per-
formed less than SWAT2012. Average annual basin values for major
hydrology and nitrogen cycle components from 1980 to 1997 simulated
by four versions of SWAT model are shown in Table 4.

3.1.1. Streamflow

For monthly streamflow simulation, all three enhanced SWAT (i.e.
SWAT-C, SWAT-E and SWAT-EC) outperformed SWAT2012 (Table 2).
SWAT-C performed modestly better than SWAT2012 in terms of all
three statistics and at all three stations. That is, SWAT-C both explained
more monthly variation and reduced overall bias. Compared with
SWAT2012, SWAT-E achieved much better simulation of monthly
streamflow, but slightly increased Py;,s by 1% for all three stations.
Comparison between SWAT-C and SWAT-E indicates that SWAT-C
performed better in terms of reducing overall bias, while SWAT-E was
better regarding capturing variability of monthly streamflow. SWAT-EC
seems to benefit from the advantage of both SWAT-C and SWAT-C, and
pronouncedly outperformed SWAT2012 in terms of explaining varia-
tions in monthly streamflow and reducing overall bias. On the annual
scale, model performance for the four versions of SWAT model in
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general followed the pattern observed, except that SWAT-E slightly
performed less than SWAT2012 in terms of NS at the outlets of subbasin
# 95 and 100 (Table 3).

By analyzing the average annual values of key hydrologic budget
components (Table 4), we found that SWAT-C simulated lower average
annual ET and higher average annual surface runoff, lateral flow, and
baseflow than SWAT2012. Even though water flow through different
pathways were increased by SWAT-C, average annual NOs-N loadings
transported with those water flows became less than those of
SWAT2012 (Table 4), mainly because the CENTURY method generated
less nitrate in soils compared with PAPRAN.

SWAT-E pronouncedly improved streamflow simulation compared
with SWAT2012 because, with STM, SWAT-E tended to generate more
infiltration and less surface runoff during winter and the snowmelt
season on the watershed-scale (Qi et al., 2016a). This is also can be seen
from Table 4 where average annual surface runoff (85 mm) generated
with SWAT-E was less than that (113 mm) of SWAT2012, and average
annual lateral flow and baseflow (39 and 109 mm, respectively) gen-
erated with SWAT-E were greater than those (30 and 92 mm, respec-
tively) of SWAT2012. The new STM more realistically accounted for
snowpack insulation effects on soil temperature allowing surface soil
layers to remain unfrozen when snow accumulating on the ground. As a
result, SWAT-E improved its simulation on hydrological effects of un-
frozen soil during winter and the snowmelt seasons.

3.1.2. Sediment

Like streamflow simulation, all three enhanced versions of SWAT
model attained higher R? and NS values than the corresponding values
of SWAT2012 at all three stations. Notably, SWAT-EC achieved the
highest R? and NS values among all four models at all three stations,
except for R? at the outlet of subbasin # 63 (which is slightly less than
the R? of SWAT-E; Table 2). SWAT-E outperformed SWAT-C with re-
spect to R? and NS values. Compared with SWAT2012, SWAT-C reduced
Ppais values (generated more sediment loadings) while SWAT-E in-
creased Py;,s values (generated less sediment loadings) which is the
major factor explaining the reduced Py;,s values of SWAT-EC that fall
somewhere between those by SWAT-C and SWAT-E (Table 2). The
reason for reduced Py;,s by SWAT-C is that SWAT-C generated more
stream flow as explained in the previous section and Table 4, while
SWAT-E generated less stream flow and caused increases in Py;,s. On the
annual scale, model performance for the four versions of SWAT model
generally follows the pattern observed on the monthly scale, except that
SWAT-EC performed less than SWAT2012 at two stations in terms of R>
and/or NS (Table 3).

Although we did not directly modify algorithms of erosion from
uplands and sediment deposition and resuspension processes in

Table 2
Model performance on monthly water quantity and quality by four versions of SWAT model at three monitoring sites in the UMRB.
SWAT2012 SWAT-C SWAT-E SWAT-EC
Variable Subbasin R® NS  Puias(%) R NS  Puiag(%) R* NS Ppg(%) R* NS Ppigs (%)
Stream Flow 63 0.65 0.31 19 0.68 0.39 14 0.83 0.58 20 0.82 0.62 14
95 0.71 0.55 16 0.73  0.60 10 0.84 0.71 17 0.84 0.73 11
100 0.68 0.41 24 0.71 0.50 19 0.84 0.62 25 0.85 0.69 19
Sediment 63 0.28 0.23 34 0.30 0.25 29 0.51 0.30 39 0.47 0.30 36
95 0.51 0.50 -14 0.54 0.51 -23 0.73  0.71 -6 0.73 0.72 -17
100 0.57 0.48 32 0.59 0.53 27 0.77 0.57 37 0.77 0.62 32
NO;-N 63 0.53 0.37 38 0.47 0.27 41 0.68 0.61 15 0.57 0.47 30
95 0.51 -2.51 -18 0.55 -0.14 19 0.68 -4.48 -56 0.61 0.02 6
100 0.71 0.57 0 0.61 0.57 16 0.73 -0.18 -35 0.65 0.61 2
Total-N 63 0.56 0.20 -2 0.53 0.36 7 0.70 0.11 -10 0.62 0.54 11
95 0.59 -1.60 -40 0.56 -0.04 -4 0.66 -2.79 -56 0.63 0.18 -1
100 0.66 0.08 -18 0.60 0.42 0 0.73 -0.30 -30 0.68 0.59 3

Note: shaded numbers indicate enhanced SWAT has lower R? or NS values than SWAT2012 or has higher absolute values of Py, than SWAT2102.
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Table 3
Model performance on annual water quantity and quality by four versions of SWAT model at three monitoring sites in the UMRB.
SWAT2012 SWAT-C SWAT-E SWAT-EC
Variable Subbasin R> NS Puis(%) R* NS Ppu(%) R NS  Puias(%) R* NS Ppis(%)
Stream Flow 63 0.98 0.20 20 0.98 0.48 14 0.98 0.20 20 0.99 0.51 14
95 0.98 0.65 18 0.98 0.82 12 098 0.63 18 0.98 0.81 12
100 0.95 0.18 26 0.96 0.44 21 0.96 0.15 27 0.97 0.43 21
Sediment 63 0.90 0.43 34 0.90 0.51 29 092 033 39 0.80 0.30 36
95 0.99 0.94 -9 0.99 0.92 -18 0.99 0.95 -3 0.99 0.93 -14
100 0.83 0.44 32 0.83  0.55 27 0.85 0.32 37 0.85 0.47 32
NO;-N 63 0.58 -0.09 38 0.43 -0.38 41 0.67 0.54 15 0.47 0.04 30
95 0.68 -5.27 -22 0.82 -0.88 17 0.69 -13.01 -55 0.88 -0.02 4
100 0.82  0.68 0 0.82 0.65 16 0.81 -0.51 -35 0.84 0.83 2
Total-N 63 0.70  0.50 -1 0.59 0.49 7 0.73 0.23 -10 0.58 0.46 11
95 0.70 -1.04 -36 0.77 0.66 -1 0.71 -2.36 -50 0.83 0.78 1
100 0.83 0.35 -18 0.83 0.81 0 0.82 -0.42 -30 0.84 0.82 3

Note: shaded numbers indicate enhanced SWAT has lower R? or NS values than SWAT2012 or has higher absolute values of Py;,s than SWAT2102.

Table 4
Average annual basin values for major hydrology and nitrogen cycle compo-
nents from 1980 to 1997 simulated by four versions of SWAT model.

Variable SWAT2012 SWAT-C SWAT-E SWAT-EC
Precipitation (mm) 871 871 871 871
Evapotranspiration (mm) 641 624 646 629
Surface Runoff (mm) 113 116 85 88
Lateral Flow (mm) 30 33 39 41
Baseflow (mm) 92 102 109 121
Surface Runoff-N (kg ha™!) 1.37 1.01 0.92 0.78
Lateral Flow-N (kg ha™!) 4.87 3.43 6.23 4.16
Baseflow-N (kg ha™") 3.78 2.20 5.00 2.65

streams, due to the fact that surface runoff and stream flow are closely
correlated with sediment generation and transport especially at the
monthly scale, improved simulation of surface runoff and stream flow
led to improved simulation of monthly variability of sediment loading
as indicated by the comparison results.

3.1.3. Nitrate

Different from model performance comparison results for stream
flow and sediment loading, no clear pattern was identified for NO3-N
loading. That is, model performance evaluation results are in general
mixed. SWAT-C had greater R? at the outlet of subbasin # 95 and
greater NS at the outlets of subbasin # 63 and 100 than SWAT2012
(Table 2). Although SWAT-E attained greater R? for all three stations
than SWAT2012, it only had one station with a greater NS than
SWAT2012 (Table 2). The absolute values of Py;,s of SWAT-C and
SWAT-E were all larger than those of SWAT2012 except that SWAT-E
had lower bias at the outlet of subbasin # 63 (Table 2). With ex-
amination of the Py;,s values of different versions of SWAT model, we
found that, as compared with SWAT2012, SWAT-C distinctly increased
Ppias (less nitrate loadings) while SWAT-E reduced Py;,s (more nitrate
loadings). As SWAT-EC merged both SWAT-C and SWAT-E, its Py,
values fall somewhere between those of SWAT-C and SWAT-E, and as a
result, the absolute Py;,s values of SWAT-EC were in general less than
those of SWAT2012 (the difference is negligible at the outlet of sub-
basin # 100, i.e., 0% of SWAT2012 vs. 2% of SWAT-EC; Table 2). In
addition, SWAT-EC outperformed SWAT2012 in terms of most of R?
and NS values at the three stations, except for R? value at the outlet of
subbasin # 100 (Table 2).

The increased Py;,s values for SWAT-C is partially explained by
lower average annual NO3-N loadings transported with different water
flows compared with those of SWAT2012 (Table 4). Since SWAT-E si-
mulated more infiltration than SWAT2012 in areas with seasonal snow

cover during winter and the snowmelt season, more nitrate was leached
and exported to streams as compared with SWAT2012. This is con-
sistent with increased average annual NOs-N loadings transported with
lateral flow and baseflow and decreased average annual NO3-N load-
ings transported with surface runoff compared with those of SWAT2012
(Table 4). Overall, these changes in SWAT-E caused the reduction in
Ppias Values at the watershed-scale as compared with SWAT2012 (Qi
et al., 2016a). In general, SWAT-EC balances the strength and weakness
of SWAT-C and SWAT-E and achieved an overall better model perfor-
mance on NO3-N loading than SWAT2012 on the monthly scale
(Table 2). On the annual scale, model performance results are like the
monthly scale findings (Table 3).

3.1.4. Total nitrogen

The four models exhibited similar performance for simulating NO3-
N and TN, mainly because NOs-N accounts for a major portion of TN.
Like the model comparison for nitrate simulation, no single model
outperformed the others at all stations and for all evaluation statistics.
For instance, SWAT-C had lower values of R? but higher NS values than
SWAT2012 at all three stations (Table 2). SWAT-E attained higher va-
lues of R*> but lower NS values than SWAT2012 at three stations
(Table 2). In general, SWAT2012 and SWAT-E tended to overestimate
TN, while SWAT-C exhibited underestimation (Table 2). SWAT-EC
better captured seasonal variability of TN and achieved lower bias than
SWAT2012 at all three stations, except for higher bias at the outlet of
subbasin # 63 (Table 2). The annual results (Table 3) also confirmed
the advantage of integrating advanced biogeochemical and energy ba-
lanced algorithms for achieving improved simulation of nitrogen
loading in large-scale ungauged basins.

3.2. Monthly examination of the results by SWAT2012 and SWAT-EC

The observed and simulated monthly stream flow and sediment,
NO3-N and TN loadings by SWAT2012 and SWAT-EC at the three sta-
tions, respectively shown in Figs. 3, 4 and 5. The SWAT-EC model was
found to have slightly damped snowmelt flow peaks compared with
SWAT2012 leading to improved model performance as indicated in
Tables 2 and 3. As stated in Section 3.1.1, SWAT-EC tends to generate
more infiltration and less surface runoff during winter and snowmelt
seasons, because the STM accounts for snow insulation effects on soil
temperature leading to surface soil layers remaining unfrozen when
SNOwW cover presents.

Both versions of SWAT model tended to underestimate sediment
loading peaks during the spring snowmelt season, especially at the
outlets of subbasin # 63 and 100 (Fig. 3b and 5b), which explained the
relatively large Pp;,s shown in Tables 2 and 3. Compared with
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on the monthly scale for both SWAT2012 and SWAT-EC.

SWAT2012, SWAT-EC obtained less sediment loading peaks because it
generated less surface runoff (Fig. 3b, 4b, and 5b). Furthermore,
SWAT2012 tended to generate sediment loading peaks ahead of ob-
served peaks (about one month earlier), while SWAT-EC simulated se-
diment loading peaks matched well the timing of observation. Note
that, the sediment loading peaks generated by SWAT-EC were less than
those generated by the SWAT2012 (Fig. 3b, 4b, and 5b) mainly due to
lower surface runoff.

Both versions of SWAT model tended to underestimate NOs-N
loading peaks during snowmelt season at the outlets of subbasin # 63
from 1980 to 1987 and overestimate them at the outlet of subbasin #
95 from 1991 to 1997 (Fig. 3c and 4c). Such a shift in model perfor-
mance over time may be caused by the lack of detailed fertilization data
over years and at fine scales that are required for accurate nutrient loss
simulation. Compared with SWAT2012, SWAT-EC generated much
more NO3-N loadings at the outlet of subbasin # 63 and less NO3-N
loadings at the outlet of subbasin # 95 during snowmelt season, which
is a major reason explaining the improvement in model performance for
NO3-N loading. Both models performed well at the outlet of subbasin
#100 with SWAT-EC performed slightly better (Fig. 5¢ and Table 2). In
addition, SWAT2012 tended to overestimate TN loading peaks during
snowmelt period at all three stations, while TN loading peaks simulated
by SWAT-EC were more consistent with observations (Fig. 3c, 4c, and
5c¢), which explained the improvement in model performance of TN
loading as shown in Tables 2 and 3.

The overall improvement of SWAT-EC over SWAT2012 for simu-
lating NO3-N and TN is the result of combining the strengths from
SWAT-C and SWAT-E. As shown in Table 2, SWAT-E contributed more
to the improvements in SWAT-EC with respect to explaining variability
of hydrology and sediment yield, while contribution from SWAT-C
modestly improved bias in streamflow and sediment yield simulation.
As to nitrate and TN, neither SWAT-C nor SWAT-E clearly outperformed
SWAT2012. For example, SWAT-E performed less than SWAT2012 in

terms of both NS and Py, in simulating TN for all stations, while
SWAT-C had larger bias at all stations from simulation of nitrate. These
results demonstrate the complexity and combined efforts of energy and
biogeochemical processes on hydrology and water quality, and high-
light the importance of advancing the coupled water-energy-bio-
geochemistry processes within SWAT toward better watershed mod-
eling and assessment.

Based on NS and Py, values generated by SWAT-EC, model per-
formance was satisfactory for stream flow (NS > 0.5 and
Phais < 25%) at all three gauging stations on the monthly scale. SWAT-
EC performances on sediment loading were also satisfactory (NS > 0.5
and Pp;ys < 55%) at these stations. Statistic values were all falling into
satisfactory category for NO3-N and Total-N simulation on the monthly
scale (Moriasi et al., 2007) except for NS for subbasin # 95 (0.02 for
NO3-N and 0.18 for TN). These results demonstrate the potential of
advancing process representation in SWAT to achieve satisfactory si-
mulation of water quality in large-scale ungauged basins.

3.3. Assessment of a simple Multi-Model approach

Multi-model approaches often help reduce uncertainty in hydro-
logical predictions and improve model predictability, because a com-
bination of predictions from many single models could synergize the
strength of these single models (Li and Sankarasubramanian, 2012).
Multi-model predictions are usually obtained by taking a weighted
average of the predictions from the single models (the weights sum up
to one). The weights can be derived from several multi-model combi-
nation methods, including weighted average of single model predic-
tions or using statistical techniques (e.g., multiple linear regression and
Bayesian model averaging) (Duan et al., 2007; Krishnamurti et al.,
1999; Marshall et al., 2006; Oudin et al., 2006; Shamseldin et al.,
1997). In this study, we used the simple equal-weighted method to
assess model performance on monthly water quality and quantity
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Table 5

Model performance on monthly water quantity and quality by combining si-
mulations from four versions of SWAT model at three monitoring sites in the
UMRB.

Variable Subbasin R? NS Phias (%)
Stream Flow 63 0.78 0.56 17
95 0.80 0.68 14
100 0.79 0.59 22
Sediment 63 0.41 0.28 35
95 0.64 0.63 -15
100 0.70 0.57 32
NO3-N 63 0.72 0.50 32
95 0.61 —-0.98 —-11
100 0.73 0.63 -3
Total-N 63 0.63 0.43 2
95 0.62 —0.66 —24
100 0.69 0.37 -10

prediction. Specifically, an ensemble simulation was generated by
taking the average of the four simulations by the four versions of SWAT,
i.e., SWAT2012, SWAT-E, SWAT-C, and SWAT-EC for streamflow, se-
diment, NO3-N, and Total N. Correspondingly, three statistics (i.e., R%,
NS, and Py;,s) were calculated for the new ensemble simulation
(Table 5). In comparison with the statistical values shown Table 3, the
ensemble simulation generally performed better than then poorest
single model but less than the best single model. This result indicates
that a simple average of the four SWAT models may not yield better
performance. However, more advanced methods (e.g., multiple linear
regression or Bayesian model averaging) deserve research to combine
different model structures to achieve more accurate hydrologic and
water quality modeling in the future.

3.4. Comparison with previous studies

Multiple studies have been conducted to simulate water quantity
and quality in the UMRB using calibrated versions of SWAT (Arnold
et al., 2000; Jha et al., 2006; Jha et al., 2004; Jha et al., 2015; Wu et al.,
2012). As for water quality variables, only sediment and NO3-N loading
simulation results were reported in two studies (Jha et al., 2006; Jha
et al., 2015). We summarized the model performance evaluated based
on R? and NS from those studies to put the performance of the four
versions of SWAT examined in context. The statistics values reported in
previous studies are shown in Table 6. As those previous studies only
reported results at the gauging station at the outlet of UMRB (i.e., USGS
gauge # 05587450), the comparison between our results and previous
studies was only conducted at this site.

For sediment loading simulation, compared with Jha et al.’s (2006)
results in their calibration period (R> = 0.66 and NS = 0.66),
SWAT2012 had lower R? and NS values (R?> = 0.57 and NS = 0.48),
while SWAT-EC achieved higher R?(0.77) and comparable NS (0.62) on
the monthly scale. On the annual scale, both SWAT2012 and SWAT-EC
attained greater R* (0.83 and 0.85, respectively) and less NS (0.44 and
0.47, respectively) values than those (R? = 0.77 and NS = 0.69) of Jha
et al., 2006 for their calibration period. Considering the different per-
iods of dataset used in model evaluation (1980-1988 for present study
vs. 1981-1992 for Jha et al., 2006), it is difficult to draw a definite
conclusion. However, it is fair to conclude that our sediment simulation
evaluation is comparable to those reported previous.

Since no previous study reported SWAT performance on monthly
NO3-N loading, we only compared our annual results to those reported
by Jha et al. (2015). Both SWAT2012 and SWAT-EC models attained
higher R? (0.82 and 0.84, respectively) and NS (0.68 and 0.83, re-
spectively) values than those (R% = 0.62 and NS = 0.46) of Jha et al.,
2015 reported for the period of 1981-2003. Again, due to the difference
in the periods of data used in this study (1981-1988) and by Jha et al.
(2015) (1981-2003), we could not conclude that the two uncalibrated
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Table 6
Model performance on monthly and annual water quantity and quality in
previous studies at USGS gauge # 05587450 in the UMRB.

Variable =~ R? NS Period Sources
Monthly  Stream 0.63 1960-1980 Arnold et al.,
(calibration) 2000
0.65 1981-1985 (validation)
0.75 0.67 1989-1997 Jha et al., 2004
(calibration)
0.7 0.59 1980-1988 (validation)
0.71 0.65 1981-1992 Jha et al., 2006
(calibration)
>0.8 >0.8 1993-2003 (validation)
0.79 0.77 1991-2000
(calibration)
0.80 0.79 2001-2008 (validation =~ Wu et al., 2012
1)
0.75 0.74 1961-1990 (validation
2)
Sediment 0.66 0.66 1981-1992 Jha et al., 2006
(calibration)
0.55 0.54 1993-2003 (validation)
0.57 0.48 1980-1988 SWAT2012
(uncalibrated)
0.77 0.62 1980-1988 SWAT-EC
(uncalibrated)
NO3-N N/A N/A N/A N/A
TN N/A N/A N/A N/A
Annual Stream 0.91 0.91 1989-1997 Jha et al., 2004
(calibration)
0.89 0.86 1980-1988 (validation)
>0.8 >0.8 1981-1992 Jha et al., 2006
(calibration)
>0.8 >0.8 1993-2003 (validation)
0.94 0.93 1981-2003 Jha et al., 2015
0.97 0.94 1991-2000
(calibration)
0.95 0.94 2001-2008 (validation ~ Wu et al., 2012
1)
0.85 0.85 1961-1990 (validation
2)
Sediment 0.77 0.69 1981-1992 Jha et al., 2006
(calibration)
0.90 0.85 1993-2003 (validation)
0.83 0.44 1980-1988 SWAT2012
(uncalibrated)
0.85 0.47 1980-1988 SWAT-EC
(uncalibrated)
NO3-N 0.62 0.46 1981-2003 Jha et al.,, 2015
0.82 0.68 1980-1988 SWAT2012
(uncalibrated)
0.84 0.83 1980-1988 SWAT-EC
(uncalibrated)
TN N/A N/A N/A N/A

versions of SWAT performed better. But the comparison between the
statistics shows the promise of using the latest released SWAT model
and the enhanced SWAT with respect to energy and biogeochemistry to
achieve satisfactory simulation of nitrate loading in ungauged basin.

4. Conclusions

In the present study, we evaluated SWAT2012 and three enhanced
versions (i.e., SWAT-C, SWAT-E, and SWAT-EC, which integrates a
CENTRUY-based soil organic matter module, an energy balanced soil
temperature module (STM), and both CENTURY and STM, respectively)
for simulating water quality variables in the Upper Mississippi River
Basin (UMRB) under ungauged conditions. We found that both SWAT-C
and SWAT-E improved hydrology and sediment simulations as com-
pared with SWAT2012, where SWAT-C helped reduce overall bias and
SWAT-E better captured seasonality, particularly during winter and
snowmelt seasons. SWAT-EC combined the strengths of both SWAT-C
and SWAT-E, leading to much improved explanation of monthly
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variation and comparable biases, as compared with SWAT2012.

As to nitrate (NO3-N) and total-nitrogen (TN), neither SWAT-C nor
SWAT-E clearly outperformed SWAT2012, which demonstrate the
complexity and combined efforts of energy and biogeochemical pro-
cesses on hydrology and water quality. In general, SWAT-C perfor-
mance is similar to that of SWAT2012, while SWAT-E improved simu-
lation of spring fluxes of NO3-N and TN. Again, SWAT-EC benefited
from both SWAT-C and SWAT-E and, for most cases, achieved better
results than SWAT2012 in terms of explaining observed data variability
and reducing simulation biases.

Based on the model evaluation criteria summarized in Moriasi et al.
(2007), the performance of the uncalibrated SWAT-EC model was ca-
tegorized as “satisfactory”, and was comparable to calibrated SWAT
models reported in previous studies. Overall, our results demonstrate
the value of advancing process representation in physically-based wa-
tershed models to improve model credibility, particularly in ungauged
basins. We anticipate that the new model development efforts will
benefit future watershed modeling and assessment efforts in large,
ungauged basins.
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