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ABSTRACT 
Entering commands on touchscreens can be noisy, but exist-
ing interfaces commonly adopt deterministic principles for 
deciding targets and often result in errors. Building on prior 
research of using Bayes’ theorem to handle uncertainty in 
input, this paper formalized Bayes’ theorem as a generic guid-
ing principle for deciding targets in command input (referred 
to as “BayesianCommand”), developed three models for es-
timating prior and likelihood probabilities, and carried out 
experiments to demonstrate the effectiveness of this formal-
ization. More specifically, we applied BayesianCommand 
to improve the input accuracy of (1) point-and-click and (2) 
word-gesture command input. Our evaluation showed that ap-
plying BayesianCommand reduced errors compared to using 
deterministic principles (by over 26.9% for point-and-click 
and by 39.9% for word-gesture command input) or applying 
the principle partially (by over 28.0% and 24.5%). 

Author Keywords 
Bayes’ theorem; command input; point-and-click; 
word-gesture shortcuts; touchscreen. 

CCS Concepts 
•Human-centered computing → Human computer inter-
action (HCI); Interaction techniques; User studies; 

INTRODUCTION 
Command input is essential to human-computer interaction. 
There is no exception in the era of mobile and wearable 
computing where people regularly issue commands on touch-
screens with finger touch or gesture [1, 17, 38, 42]. These 
input modalities are natural to use, but they inevitably intro-
duce uncertainty. For example, touch input is notoriously 
∗Jennifer Yi Luo and Ryan Qin were high school interns supervised 
by Suwen Zhu and Xiaojun Bi. 
Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for components of this work owned by others than the 
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific permission 
and/or a fee. Request permissions from permissions@acm.org. 

CHI ’20, April 25–30, 2020, Honolulu, HI, USA 

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM. 
ISBN 978-1-4503-6708-0/20/04. . . 15.00 

known to be noisy and imprecise due to occlusion and the 
uncertainty of converting a “fat” contact region into a single 
touchpoint [26, 32, 33, 63, 64, 65]; a recognizer in a gestural 
command input system may yield erroneous output if the input 
gestures deviate from the predefined templates [43, 71]. 

Despite the wide existence of uncertainty, the existing com-
mand input methods are ill-positioned for handling it because 
they often adopt a deterministic principle to decide which 
command will be issued. For example, to trigger a command 
with finger touch, the user needs to land the touchpoint pre-
cisely within the target boundaries; to input a command with 
a gesture, the decoded command name should match the exact 
command label. 

Inspired by prior work of adopting Bayes’ theorem to decide 
touch selection target [10], this work incorporates prior prob-
ability into the target deciding process, and generalizes the 
Bayes’ theorem as a principle (referred to as BayesianCom-
mand) for both point-and-click and gestural command input. 
Our experiments (explained later) showed incorporating the 
prior increased command input accuracy by more than 20% 
(relatively) over using likelihood only [10]. Our work focuses 
on command input, which also contributes to a large body of 
research of using a probabilistic framework to handle uncer-
tainty in interaction (e.g., text entry [27], navigation [45], file 
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Figure 1. Overview of BayesianCommand. Given an input signal s and 
a set of n commands C = {c1, . . . , cn}, the goal of a command input task 
is to find c∗ that maximizes P(c|s). BayesianCommand views the input 
signal s as a random variable carrying likelihood information, and uses 
Bayes’ theorem to combine it with the prior probability P(ci) to infer 
P(c|s). The target command information is then used to update the prior 
probability model. 
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retrieval [46], estimating capacitive sensing uncertainty [59], 
inferring interaction intention for probabilistic widgets [14]). 

BayesianCommand sets out from a probabilistic perspective 
to interpret the ambiguity in command input: the input sig-
nals are viewed as a random variable that carries likelihood 
information of the target command. The posterior belief is 
formed accordingly via Bayes’ theorem. The candidate with 
the highest posterior probability should be decided as the tar-
get. This information is in turn used to update the prior proba-
bility model for future command input. Figure 1 provides an 
overview of BayesianCommand. Because BayesianCommand 
is algorithmic and requires no visual change of the layout, it 
is advantageous to frequency-based layout rearrangement and 
less likely to slow users down [20]. 

Overall, we made the following three contributions: (1) We 
formally described how to use Bayes’ theorem for command 
input, and established that it should be the principle for de-
ciding the target command; (2) We proposed three models 
for applying BayesianCommand: a prior probability model, 
a dual-Gaussian likelihood model for point-and-click input, 
and a two-step likelihood model for recall-based gestural com-
mand input; (3) We conducted experiments to demonstrate the 
effectiveness of BayesianCommand over using the existing 
deterministic principles or applying them partially. 

RELATED WORK 
This work is related to handling uncertainty in user input, 
touch pointing and gestural command input technologies. 

Handling Uncertainty in User Input 
Probabilistic frameworks have been proposed to deal with the 
uncertainty in input processes, such as considering the input as 
a continuous control process in which the system continuously 
infers a distribution over potential user goals [13, 67, 70], or 
carrying the uncertainty of input forward all the way through 
the interaction [61, 62]. Other examples include Dasher [66], 
which used probabilistic models to adapt screen layouts, and 
Semantic pointing [12], which adapted the control-to-display 
ratio according to cursor distance to nearby targets. Bayes’ 
theorem has also been adopted to reduce uncertainty in in-
teraction, such as the statistical decoding algorithm of soft 
keyboards [27], and the Bayesian Information Gain (BIG) 
framework [45, 46]. 

Distinct from the previous work, we focus on command in-
put, adding to the vast body of research of using probabilis-
tic frameworks to handle input uncertainty. BayesianCom-
mand uses Bayes’ theorem to incorporate the previous com-
mand input history to improve input accuracy. Although 
previous research has explored adapting the menu visuals 
(e.g., Morphing menu [16]) to accommodate the command 
frequency, BayesianCommand is algorithmic and requires 
no visual change, making the UI visual consistent to users 
throughout the interaction. 

Understanding and Improving Finger Touch 
There has been extensive research on understanding and im-
proving touch pointing accuracy. On a capacitive touchscreen, 
a touchpoint is converted from the finger’s contact region with 

noise and uncertainty in the converting process. Factors such 
as hand posture [14, 26], finger angle [32, 33], and body move-
ment [25, 55] may affect the size and shape of the contact 
region, unintentionally altering the touch position. The lack 
of feedback on where the finger lands due to occlusion (the 
“fat finger” problem) further exacerbates the issue [32, 33, 63, 
64, 65]. Previous research has explored various approaches 
to improve touch accuracy. Examples include compensating 
for the offset caused by different finger input angles [32, 33] 
or location on screens [31], displaying the touch location in a 
non-occluded area [64], and using the back of the device for 
selection [68, 69]. Others also explored using various finger 
gestures to assist target selection, including crossing [2, 15, 51, 
52, 58], sliding [14, 54, 72, 73], rubbing [57, 60], circling [34], 
and multi-touch gestures [8]. 

Our first application of using BayesianCommand to improve 
point-and-click command input is in particular related to 
Bayesian Touch Criterion (BTC) [10]. The main difference 
is that BayesianCommand involves both prior and likelihood 
probability calculation, while BTC ignored the prior probabil-
ity and only used the likelihood. We compared BayesianCom-
mand with BTC in our user study. We showed that incorpo-
rating prior is an essential step toward truly adopting Bayes’ 
theorem, and it substantially improves the touch accuracy over 
BTC. Apart from point-and-click input, our second application 
of gestural command input is different from BTC [10]. 

Word-Gesture Command Input 
Gestural input has been widely explored as a command input 
method on touchscreen devices, thanks to the human’s ability 
in memorizing pictorial information [56]. It has been adopted 
in marking menu [39, 40, 41] and its variants [5, 6, 22, 23, 75, 
76], gesture-based interfaces [7, 24, 42, 47, 48, 49, 50], and 
multi-touch gesture frameworks [35, 36]. 

To assist users in memorizing the mappings between com-
mands and gestures, previous researchers have explored using 
word-gestures [37, 74] for command input – entering a com-
mand by gliding finger over letters in the command name on 
a virtual keyboard. Word-gesture was initially invented for 
text entry on touchscreen devices [37, 74], which was later 
extended as a method for command input. For example, Com-
mand Strokes [38] and CommandBoard [1] support triggering 
a command by drawing its word-gesture on a soft keyboard, 
and HotStrokes [17] supports word-gesture command input 
on a laptop trackpad. 

The existing gestural command input systems (e.g., [1, 17, 
38] often adopt a deterministic principle to decide the target 
command: the decoder matches the input gesture with the 
predefined gesture template of each command candidate; the 
candidate with highest matching score is the target command. 
It has little room for handling uncertainty and would result in 
errors if the input gesture deviates greatly from the template 
or some commands share the similar predefined templates. 
In this paper we proposed BayesianCommand to replace the 
typical deterministic principle to handle such uncertainty. 
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BayesianCommand: A BAYESIAN PERSPECTIVE ON 

COMMAND INPUT 
From a Bayesian perspective, a command input task can be 
described as follows: assuming C = {c1, c2, . . . , cn} is a set of 
n available commands, given the input signal s, the goal of a 

∗command input task is to find c in C that maximizes P(c|s). 
According to Bayes’ theorem, it can be calculated as: 

[P(s|c)P(c)]∗ c = arg maxP(c|s) = arg max . (1) 
c∈C c∈C P(s) 

Assuming P(s) is a constant across c (because s is a fixed value 
for a given input), we can further simplify Equation (1) to: 

∗ c = arg max[P(s|c)P(c)], (2) 
c∈C 

where P(c) is the prior probability of c being the intended 
command without the observation of s, and P(s|c) describes 
how probable s is if the intended target is c (the likelihood). 
We refer to this principle as BayesianCommand in this paper. 

Obtaining the prior and likelihood is the key to apply Bayesian-
Command. We developed one prior probability model, and 
two likelihood models: a dual-Gaussian likelihood model for 
point-and-click and a two-step likelihood model for command 
shortcut. The dual-Gaussian likelihood model was inspired by 
the dual Gaussian distribution hypothesis [9, 10]. Note that 
these models represent only one approach of estimation. We 
use them to establish that BayesianCommand is the principled 
framework for command input. 

PRIOR PROBABILITY MODEL 
We first developed a model to predict P(c) – the prior proba-
bility of the candidate c being the intended target – from the 
command input history. 

In the prior probability model, we assume that the distribution 
of the intended command among candidates is not entirely 
random, and the command input history is observable. We 
formed this assumption based on the findings that the patterns 
of menu selection [16, 44], command triggering [3, 19], and 
smartphone app launching [53] are not random and often fol-
low certain distributions (e.g., Zipfian distributions). These 
are all scenarios involving frequent command input. 

Before deriving the model, we define two criteria that the 
model should satisfy: 

(1) Without observing any selection history, each candidate is 
equally probable as the target. 

(2) With a large number of observations, P(c) approximates 
the frequency that the candidate c was selected as the 
target in the past. 

We propose the frequency model as follows. Assuming we 
observe that the candidate ci has been selected ti times in the 
past as the target, P(ci) is calculated as: 

k + ti
∀i, P(ci) = P , (3)nk · n + i=1 ti 

where n is the number of available commands (e.g., the number 
of items in a menu), and k is the update rate, a positive constant 

which determines how fast P(ci) will be learned from the 
selection history. 

The proposed model (Equation (3)) satisfies aforementioned 
criteria (1) and (2). If no selection history is observed, i.e., 
ti = 0, i ∈ [1, n], Equation (3) shows P(ci) = 1 . It indicates that n 
each candidate is equally probable as the target. On the other 
hand, if we have a large number of observations on selection 
history (i.e., ti � k · n and ti � k, i ∈ [1, n])), Equation (3) P tishows P(ci) ≈ , which is the frequency of ci being the n 

i=1 ti 
target in the past. 

The update rate k in the model controls the balance between 
two extreme views on calculating P(ci): 

(A) P(ci) is identical to the frequency of ci being the target in 
the past. 

(B) all the candidates are equally probable as the target. 

P tiIf k = 0, P(ci) = n , which is the view (A). If k → +∞, 
i=1 ti 

P(ci) ≈ 1 , which is the view (B). A positive k controls the n 
weights between these two views. Later we explain how we 
used a simulation-based approach to determine an optimal k 
in our applications. 

LIKELIHOOD MODELS 
We have developed two likelihood models: a dual-Gaussian 
likelihood model for point-and-click command input, and a 
two-step likelihood model for recall-based gestural command 
input. Because each of the likelihood models is tightly con-
nected to the specific command input method, we describe 
how to obtain them when describing applications. 

After obtaining prior probability and likelihood, we can ap-
ply BayesianCommand to decide the target command. Algo-
rithm 1 shows how the BayesianCommand principle works. 

Algorithm 1 BayesianCommand 
1: Input: s – the input signal s, 
2: C – a set of command candidates {c1, · · · , cn}

3: Output: the target command c∗ 
4: for i = 1, 2, · · · , n do 
5: obtain prior probability P(ci) from Equation (3) 
6: calculate P(s|ci) from the likelihood model 
7: select c∗ = arg maxP(s|ci)P(ci) as the target command 
8: update prior probability P(ci) for each ci based on Equa-

tion (3), given that c∗ is the selected command. 

APPLICATION 1: APPLYING BayesianCommand TO 

POINT-AND-CLICK COMMAND SELECTION 
We first applied BayesianCommand to improve the command 
input accuracy on a touch-based point-and-click interface: 
triggering a command by touch pointing the corresponding 
icon, button, or menu item. We expect that BayesianCommand 
will improve the command input accuracy over the typical 
boundary criterion, which decides the target by examining 
whether the touchpoint falls within the target boundary. 
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To apply BayesianCommand to point-and-click command se-
lection, we used the prior probability model (Equation (3)) 
to estimate P(c). Next, we explain how to obtain P(s|c) for 
point-and-click interfaces. 

Dual-Gaussian Likelihood Model for Point-and-Click 
We adopted a dual-Gaussian likelihood model to calculate 
P(s|c), assuming that the touchpoints approximately follow 
a Gaussian distribution [4, 31, 32]. Assuming for a 2-
dimensional target we observe a touchpoint s as (sx, sy), P(s|c) 
can be calculated as: ⎡ ⎤ 

1 z
P(s|c) = exp ⎢⎣− ⎥⎦ , (4)

2πσxσy 2(1 − ρ2)i 

where 

(sx − µx)2 2ρ(sx − µx)(sy − µy) (sy − µy)2 

z ≡ − + . (5)
σ2 σxσy σ2 

x y 

(µx, µy) is the target center, σx and σy are the standard devia-
tions of users’ touchpoints, and ρ is the correlation coefficient 
between x and y. We followed the next two steps to estimate 
the parameters of Equations (4) and (5). 

First, we assumed that the center of touchpoint distribution 
(µx, µy) co-locates with the center of the target. Previous re-
search showed that (µx, µy) has only a small offset from the 
target center, and the magnitude and direction of the offset are 
affected by various factors including the target position on the 
screen, users’ postures, and finger angle, etc. [4, 31, 32, 67, 
77]. Without further knowledge on these factors, we assume 
(µx, µy) is located at the target center. Similarly, previous re-
search also showed the correlation coefficient (ρ) between x 
and y largely depends on a variety of factors such as on-screen 
location, hand posture, and finger angle. Similar to the ap-
proach adopted in Bi and Zhai [11], we assume ρ ≈ 0 without 
further knowledge of these factors. 

Second, we adopted the dual Gaussian distribution hypoth-
esis [9, 10] to estimate σx and σy. For a point-and-click 
interface, the dual distribution hypothesis [9, 10] states that 
the variance of touchpoints (σ) has a linear relationship to d2: 

σ2 = σ2 + σ2 = α × d2 + σ2 (6)r α α, 

where α and σa are empirically determined parameters, and d 
is the target size. 

Parameterizing the dual-Gaussian Likelihood Model 
Following the procedure reported in the previous research [10], 
we conducted a target acquisition study to obtain α and σa 
values for Equation (6). 

We recruited 36 participants (12 female) aged between 19 
and 37 (average 25.4±4.2). Each participant was instructed 
to naturally select a circular target, which randomly appeared 
on a Nexus 5X touchscreen device. The study included four 
levels of target size (diameter): 8, 12, 16, 20 mm, each with 
20 trials. To avoid over-fitting, we randomly divided the data 
into two sets: 29 (∼ 80%) participants as the training set and 
the rest as the test set. Both data sets included a mix of two 
postures (index finger, thumb). 
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We established the touch model of the training set following 
the procedure described in [10]. More specifically, we first 
calculated the mean and standard deviation of the touchpoints 
relative to the target center. As conventional in Android and 
iOS, we assume the positive x-direction is right, and the pos-
itive y-direction is down. Table 1 shows the touch model 
parameters (in mm) of the training set data. 

d µx µy σx σy 

8 0.472 0.327 1.372 1.598 
12 0.648 0.348 1.756 2.010 
16 0.628 0.411 1.843 2.350 
20 0.973 0.348 2.138 2.451 

Table 1. Touchpoint distribution for different target sizes. All units are 
in mm. The target center is (0,0). d is the diameter of the target. µx, µy 
are the mean of the touchpoints. σx and σx are the standard deviations 
of the touchpoints. 

We then ran linear regression for the variance of x and y direc-
tions against d2. The estimations are shown in Figure 2. The 
α and σa values serve as the parameters for Equation (6). To 
verify the trained parameters, we tested them on the σ values 
on the test dataset, the mean (SD) RMSE were 0.10 (0.11) 
mm on σx and 0.12 (0.04) mm on σy across different d. This 
confirmed the validity of the model. 

64 144 256 400
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y direction

Figure 2. Regression between the variance in x directions (σ2) / y direc-x 
tion (σ2) and the target width (d2).y 

In this section, we provide the dual-Gaussian likelihood model 
for point-and-click command input by building a touch model 
that predicts the probability of observing a touchpoint s given 
c as the intended command. This touch model not only serves 
as the likelihood function for BayesianCommand but can also 
be used to generate touchpoints in the following simulation 
study in which we determined how fast the prior probability 
model should be updated from the command input history. 

Determining the Update Rate of Prior Probability Model 
After obtaining the prior probability and likelihood models, 
we investigated how fast the prior probability P(ti) will be 
updated from the selection history. In other words, we decided 
the optimal k value in Equation (3) via a simulation study. 

The simulation worked as follows. We first designed a 6 by 
4 touchscreen grid layout for command selection (Figure 3). 
Each cell in the grid corresponded to a command candidate. 
We then implemented BayesianCommand as the principle for 
deciding the target on this grid interface, using the previously 
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described prior probability model and likelihood model. We 
implemented a set of BayesianCommand-based criteria with 
different k values in the prior probability models. We used the 
touch models of test set users to generate the touchpoints, fed 
the touchpoints into this grid layout and evaluated the accuracy 
of different BayesianCommand models to determine which k 
value led to optimal performance. 

We ran the simulation using the data collected in the previous 
study. We used the training set to train a touch model which 
served as the likelihood model in BayesianCommand (Fig-
ure 2). We developed independent touch models for each user 
in the test set to generate the touchpoints for testing. 

On this grid layout, we assumed the target frequency follows 
the Zipfian distribution [79]: 

1/ls 
f (l; s, N) = , (7)PN 

n=1(1/ns) 

where N is the number of elements, l ∈ {1, 2, . . . , N} is the rank 
of the element, and s is the value of the exponent character-
izing the distribution. We randomly picked 12 square targets 
from a grid layout (Figure 3) and simulated two different dis-
tributions with exponent s = 1 and s = 2, based on 600 total 
selections. The generated frequencies were (216, 106, 98, 79, 
52, 25, 7, 6, 4, 4, 2, 1) for s = 1 and (430, 142, 14, 3, 2, 2, 2, 1, 
1, 1, 1, 1) for s = 2. We assumed these 12 frequencies showed 
how frequently a target would be the intended command, and 
assigned these 12 frequencies to the selected 12 targets. 

Figure 3. The grid layout used in the simulation. The yellow block shows 
the simulated target. The finger illustrates the simulated touchpoint. 

Seven target sizes (4, 5, 6, 7, 8, 9, and 10mm) were tested. 
We ran the simulation for every user in the test set separately. 
The target order was randomized. In each simulation trial, we 
picked one candidate as the target, and generated a touchpoint 
for selecting this target following the test user’s individual 
touch model. Given the touchpoint location, we then deter-
mined the selected target using BayesianCommand with dif-
ferent k values in the prior probability models. We repeated 
the procedure five times. 

In total, the simulation included: 2 Zipfian distributions × 7 
target sizes × 7 test users × 600 trials × 5 repetitions = 294000 
simulation trials. 

To determine which k should be used in the prior probability 
model, we compared the following k values when applying 
BayesianCommand: 

(1) optimal k. We searched for the optimal k in the prior 
probability model by initializing k to 0.1, and increasing 
it to 20 with a step length of 0.1. The k that led to the 
highest accuracy was optimal. 
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(2) k = 1. We used k = 1 across users and conditions. We 
discovered that k = 1 performed well in pilot simulation 
runs and would like to see if it could be generalized. 

Results 
We calculated the target acquisition accuracy of each repetition 
as the total number of correct selections divided by the total 
number of selections averaged across the users in the test set. 
Figure 4 shows the average accuracy over the five repetitions. 
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s=2, optimal k
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s=1, optimal k
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Figure 4. Average target acquisition accuracy by target size for different 
target frequency (Zipfian distribution with s = 1 or s = 2) and k. 

The optimal value of k varied across different runs, but gen-
erally fell within the range of [0.5, 3]. As shown in Figure 4, 
when k = 1, the average accuracy was close to the optimal 
accuracy. Therefore, we chose k = 1 in the prior probability 
model (Equation (3)) and used this value for implementation. 
Note that the choice of k is specific to our particular appli-
cation. Different values should be selected depending on the 
actual scenario. 

After determining the update rate (i.e., the k parameter), we 
conducted a study to evaluate BayesianCommand for point-
and-click command input, using the proposed prior probability 
model and the dual-Gaussian likelihood model. 

Experiment I: Evaluating BayesianCommand for Point-
and-Click Command Input 
The purpose of the study was to evaluate BayesianCommand 
for point-and-click command input. We expected Bayesian-
Command to outperform the typical boundary criterion be-
cause BayesianCommand was a more principled approach to 
handle the ambiguity in touch pointing input. We were also in-
terested in comparing BayesianCommand with the BTC [10]. 
As explained in the related work section, BTC ignores the 
prior probability and only uses the likelihood probability to 
decide the target. 

Participants and Apparatus 
18 adults (4 females) aged between 21 and 35 (average 
27.3 ± 3.3) participated in the study. 16 participants were 
right-handed. The self-reported average usage time of mobile 
phones was 24.5 hours per week. We used a Ticwatch S Smart-
watch with a 45mm diameter screen in the study (Figure 5a). 

Experiment Setup 
The study was a within-subject design. There were 2 indepen-
dent variables: target size and target deciding principle. We 
evaluated two target sizes: 3mm and 4mm square targets on 
a 4 by 6 grid layout. The target deciding principles included 
three levels: 
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• BayesianCommand. It used BayesianCommand (Algo-
rithm 1) to decide the target. We used Equation (3) as 
the prior probability model and Equation (6) (Figure 2 for 
parameters) to obtain the likelihood value. We chose k = 1 
in the prior probability model according to the previously 
described simulation study. 

• BTC [10]. BTC uses only the likelihood function to decide 
the target command. As with BayesianCommand, BTC 
also used the dual Gaussian distribution hypothesis [9, 10] 
to obtain the likelihood value. To be consistent with the 
BayesianCommand experimental condition, we used the 
same parameters used in BayesianCommand (Figure 2) for 
BTC. 

• Boundary Criterion. This is the commonly adopted criterion 
that decides the target command by examining whether the 
touchpoint falls within the target boundaries. It served as a 
baseline in our experiment. 

In the BayesianCommand and BTC conditions, we used the 
same touch model obtained from the previous study in the 
likelihood model. Except for the form factor, the two devices 
used capacitive touch screens and were both running Android 
OS, i.e., the underlying mechanism to convert the finger touch 
to a touchpoint was the same. We assumed the previously 
developed touch model was valid on our testing device. 

We designed a point-and-click command input task. The item 
corresponding to the target command was highlighted in yel-
low. Participants were instructed to select the target item as fast 
and accurately as possible. When a selection was made, the 
selected item would be highlighted with a blue background. A 
trial was completed if the selection was correct or three failed 
attempts were made. 

(b)(a) 
Figure 5. The setup of Experiment I. (a) shows a participant selecting a 
4mm target, and (b) shows the application with 3mm square targets. The 
ones highlighted by yellow were the targets tested in the experiment. 

We randomly selected 12 items as targets. We used the same 
set of targets across participants and conditions. The target 
positions were fixed, as shown in Figure 5b. Target item 
frequencies were generated according to Zipfian distribution 
with exponent s = 1 based on 30 selections. The generated 
frequencies, i.e., the number of occurrences, were (7, 5, 4, 
4, 2, 2, 1, 1, 1, 1, 1, 1). The frequency assignments were 
randomized across participants and conditions. Participants 
were not informed of the frequency distribution of the items 
or the position of the most frequent items. 
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We balanced the frequency assignments on the target items 
across all participants and conditions. Each target item was 
assigned to each frequency an equal number of times to ensure 
that the same total number of selections was collected for 
each target. The order of the targets within each block was 
randomized. A similar strategy was used in [3, 28]. 

Before the formal study, participants were introduced to the 
task and performed a warm-up session of 5 trials. Each condi-
tion contained two blocks, each with 30 trials. Every partici-
pant performed the task three times in a row, using a different 
target deciding principle each time. The order of the three prin-
ciples was fully counterbalanced across the 18 participants. 

In total, the study included: 18 participants × 3 principles × 2 
target sizes × 60 trials = 6480 trials. 

Results 
Error rates. This metric measures the ratio of the number 
of incorrect selections over the total number of trials. The 
average error rates by target deciding principle are shown 
in Figure 6. 
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Figure 6. Average error rate (95% confidence interval) of the three tar-
get deciding principles on 3mm and 4mm targets. 

BayesianCommand reduced the error rates: on 4mm targets, 
it reduced the error rate by 37.2% and 39.3% compared to 
the boundary criterion and BTC; on 3mm targets, the error 
rate reduction was 26.9% and 28.0% respectively. ANOVA 
showed there was a significant main effect of the target de-
ciding principle on the error rates (F2,34 = 7.98, p < .005). 
Pairwise comparisons with Bonferroni adjustment showed 
that the difference was significant between BayesianCom-
mand vs. BTC (p = .004) and between BayesianCommand 
vs. boundary criterion (p = .017). The 4mm targets were 
less error-prone and easier to select than the 3mm targets. 
ANOVA showed the differences were significant for target 
size (F1,17 = 39.93, p < .005). We did not observe a signifi-
cant interaction effect of target deciding principle × target size 
(F2,34 = 0.33, p = .72). 

Target acquisition time. We compared the average target ac-
quisition time, which was the elapsed time from a target being 
highlighted on the screen to the time the participant made the 
first selection. We only considered the first attempt in every 
trial, regardless of whether it was correct or not. 
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Target size Boundary criterion BTC [10] BayesianCommand 
4mm 0.74 ± 0.25 0.78 ± 0.26 0.71 ± 0.15 
3mm 0.86 ± 0.26 0.88 ± 0.24 0.94 ± 0.44 

Table 2. Average target acquisition time in seconds. 

The target size had a main effect on the target acquisition time 
(F1,17 = 6.98, p = .017). We did not observe a main effect 
of the target deciding principle (F2,34 = 0.30, p = .75) or any 
interaction effect (F2,34 = 1.45, p = .25). As shown in Table 2, 
using different target deciding principles had little effect on 
the target acquisition time. 

Subjective feedback. We used a subset of NASA-TLX [30] 
questions to measure the perceived workload of the task, in-
cluding mental demand, physical demand, and effort. The 
rating was from 0 to 10. The lower the rating the better. 

For 4mm targets, the median ratings were 4 (mental demand), 
3 (physical demand), and 3 (effort) for BayesianCommand; 
3, 4, 4 for the boundary criterion, and 3.5, 4, 4 for BTC. For 
3mm targets, the median ratings were 4, 5, 5 for Bayesian-
Command; 5, 5, 5 for the boundary criterion, and 5, 5, 6 for 
BTC. BayesianCommand was perceived slightly less mentally 
demanding than the other two principles on 3mm targets. 

Discussion 
The empirical study showed that BayesianCommand outper-
formed the boundary criterion and BTC. Using BayesianCom-
mand substantially reduced the touch pointing error rate for 
both large and small menu targets. The reduction was espe-
cially remarkable for small targets: around 26% over both 
boundary criterion and BTC. It also showed that learning 
the prior probability distribution and combining it with the 
likelihood function outperforms using the likelihood function 
alone. Since BayesianCommand is algorithmic, these improve-
ments were achieved without altering any UI layout, which 
was advantageous to frequency-based menu adaptation (e.g., 
morphing menu [16]), and thus less likely to slow users down 
or reduce user satisfaction [20]. 

BTC had almost identical error rates to the boundary crite-
rion. According to the definition of BTC (Equation (1) in 
[10]), when the target sizes are equal, BTC is equivalent to 
comparing the distance from the touchpoint to the target center 
(touchpoint-to-center distance). Since the targets were of the 
same size and were arranged in a grid with no gaps between 
them in our experiment, BTC was equivalent to boundary cri-
terion: the item whose boundary contains the touchpoint is 
also the target that has the shortest distance to the touchpoint. 
Although we only allowed 3 failed attempts per trial, our inves-
tigation showed it had minor effects on the overall error rates. 
16 participants could correctly finish all trials within 3 attempts 
in all conditions. The rest two failed 0.56% (= 4/720) of the 
trials 3 times, which were for 3mm targets in the Bayesian-
Command condition. These 2 participants were able to select 
the targets correctly when the same trials repeated, indicating 
that these items remained accessible for them. 

How can designers or developers leverage the benefits of 
BayesianCommand? Many applications and software have col-
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lected usage patterns of menus, buttons, and commands, e.g., 
the command usage frequency of Microsoft Word 2003 [29]. 
These accumulated frequencies and patterns could serve as the 
prior probability for adopting BayesianCommand; the system 
can then adapt the prior probability as a user is interacting with 
the system. If no prior command history is available, the sys-
tem can assume every command is equally probable and learn 
the distribution probability as more actions are observed. We 
would also like to point out that BayesianCommand works un-
der the assumption that the command input distribution model 
can be established. It might not show significant benefits for 
some applications if their command frequency model is not 
that obvious (e.g., Maps). 

APPLICATION 2: APPLYING BayesianCommand TO 

WORD-GESTURE SHORTCUTS 
In this application, we investigated how to apply Bayesian-
Command for word-gesture shortcuts – entering a command 
by drawing the word-gesture [37, 74] of the command name 
(e.g., Figure 7). We first propose a two-step likelihood model 
for gestural input and combine it with the previously proposed 
prior probability model. A user study showed using Bayesian-
Command outperformed the existing deterministic principle, 
which selects command simply based on the highest matching 
score from a gesture decoder. 

Note that the two-step likelihood model is not a gesture de-
coder; it is a model that uses a gesture decoder and combines 
the decoding outcomes with available command candidates to 
estimate P(s|c), where s is an input gesture and c is a command. 
It is independent of a gesture decoder. In this application, we 
used the i’sFree gesture decoder [78] as an example, but it can 
be replaced with other decoders such as S HARK2 [37]. 

Yelp

Figure 7. Launch Yelp with word-gesture shortcuts: drawing the word-
gesture (in green) of the word Yelp on an imaginary Qwerty keyboard. 
We use the i’sFree gesture decoder [78] in this example, so the keyboard 
is invisible to the users (illustrated as semi-transparent). 

Two-Step Likelihood Model for Word-Gesture Shortcuts 
To develop the model, we first view the decoding process, i.e., 
the procedure of mapping an input gesture s to a command c 
as a two-step process: 

• Step-1: s is first decoded into a word w by a gesture decoder 
(e.g., S HARK2 [37, 74] or i’sFree decoder [78]). 

• Step-2: w is mapped to a specific command c. Note that 
a user may trigger a command with different words. For 
example, to launch a clock application, users could input 
clock, time, timer, or watch. 
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If we view s, w, and c as random variables, the following 
graphical model describes their dependencies (Figure 8): 

S W C
Input gesture Decoded word Command

clock

Decoding example:

Conditional dependencies:

Figure 8. A graphical model showing the conditional dependencies be-
tween the input gesture s, decoded word w, and command c. The exam-
ple shows the process of triggering the command “clock” with a word-
gesture. The word-gesture is entered on a keyboard, and the yellow dot 
illustrates the start of the gesture. 

We developed the two-step likelihood model based on this 
graphical model. According to the law of total probability, we 
can get P(s|c) as: XN NX 

P(s|c) = P(s, wi|c) = P(s|wi, c)P(wi|c), (8) 
i=1 i=1 

where s is the input gesture, wi is a decoded word candidate 
from a gesture typing decoder, N is the total number of de-
coded word candidates, and c is a command candidate. 

The graphical model (Figure 8) suggests that c and s are con-
ditional independent given w. Therefore, Equation (8) can be 
further expressed as: 

N NX X 
P(s|c) = P(s|wi, c)P(wi|c) = P(s|wi)P(wi|c). (9) 

i=1 i=1 

Equation (9) is our two-step likelihood model. As shown, the 
key of using this model is to obtain P(s|wi) and P(wi|c). These 
two terms can be calculated as follows. 

The term P(s|wi) represents the probability of observing the 
input gesture s if wi is the target word. From a gesture typing 
decoder’s perspective, it is the spatial score of wi given s is the 
input gesture [37, 74]. In this research, we adopted the eyes-
free gesture decoder [78] to obtain it. We swapped the original 
language model used in the eyes-free gesture decoder [78] 
with the command set C = {c1, c2, . . . , cn}, because our goal 
was to predict an available command in a command set, rather 
than as a general text entry method. 

The term P(wi|c) represents the probability of inputting the 
word wi if the c is the intended command. Since a command 
might be triggered by different words (e.g., launching a clock 
with clock, timer, or watch), we calculate P(wi|c) as follows. 
For a given command c, we first form a set of words cor-
responding to it: M = {m0, m1, m2, ..., mK } from a thesaurus 
(e.g., thesaurus.com), where mi is a valid word for triggering c. 
If a decoded word candidate wi does not belong to this set, we 

1assume P(wi|c) = 0. Otherwise, P(wi|c) = K , assuming that 
each word in this thesaurus has equal probability for triggering 
command c. 
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Equation (9) is the two-step likelihood model for decoding 
word-gesture command input. After obtaining P(wi|c) and 
P(s|wi), we can then use it to calculate P(s|c). Together 
with the prior probably model (Equation (3)), we can apply 
BayesianCommand (Algorithm 1) to decide the target com-
mand for word-gesture shortcuts. Note that this is only one 
design option for the likelihood model. Our purpose is not to 
prove it is superior over other options. Instead, we used it as an 
example to demonstrate how to use BayesianCommand as the 
principled way to decide target command in gestural command 
input. There could be other alternatives. For example, we may 
use the decoding likelihood P(s|wi) from a gesture decoder to 
directly approximate P(s|c), assuming there is a one-to-one 
mapping between w and c. We adopted the two-step model 
because it reflects the gesture command decoding procedure, 
and offers more flexibility. For example, it can model situa-
tions where different words wi can trigger the same command 
c, and the same word w can trigger multiple commands (e.g., 
depending on the application context) by including the same 
w in multiple M sets. 

Experiment II: Evaluating BayesianCommand for word-
gesture shortcuts 
We conducted a user study to evaluate using BayesianCom-
mand for word-gesture shortcuts. We compared Bayesian-
Command with the typical deterministic strategy for deciding 
target command. 

Participants and Apparatus 
18 adults (4 females) aged between 23 to 31 (average 26.9±2.5) 
participated in the study. The self-reported average usage time 
of mobile phones was 30.1 hours per week. 17 participants 
were right-handed. The median of self-reported familiarity 
with Qwerty layout (1: not familiar at all, 5: very familiar) 
was 4.5. The median familiarity with gesture typing was 3. A 
Google Pixel running Android 9.0 was used for the study, as 
shown in Figure 9b. 

Experiment Setup 
The study was a within-subject design. The independent vari-
able was the command deciding principles with three levels: 

• BayesianCommand: we applied BayesianCommand (Al-
gorithm 1) as the principle to decide the target command, 
using Equation (3) to calculate prior probability and the 
two-step likelihood model in Equation (9) to calculate like-
lihood. Similar to Experiment I, we chose k = 1 in the prior 
probability model. 

• Likelihood-only: the command candidate with the highest 
likelihood value (the two-step likelihood model in Equa-
tion (9)) is the intended target. It uses likelihood value only. 
We included this condition to understand how much per-
formance gain in BayesianCommand was provided by the 
prior probability, and how much gain was provided by the 
likelihood function. This approach can also be viewed as 
using BayesianCommand but assuming all the command 
candidate has equal prior probability: under this assumption 
P(c|s) will be determined by the likelihood P(s|c) only. 
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• Deterministic approach. This is the typical target deciding 
principle for gestural command input. The gesture decoder 
used a set of available command names as the dictionary and 
matched the input gesture with the words in this dictionary. 
The word with the highest matching score was the intended 
command. 

We used the same gesture decoder [78] across all three condi-
tions. We swapped the language model in the original decoder 
with the command set used the study (including all the trigger 
words for each command in Appendix A). The composition 
of the command set is explained in detail later. 

Before the study, participants were shown the 20 commands 
and their corresponding graphical representations. Participants 
needed to memorize ≥ 80% of the commands before they 
could proceed to the formal study: they had to recall at least 
one of the trigger words of the commands. This procedure 
ensured that the results wouldn’t be affected by participants’ 
familiarity with the commands, or any external cause other 
than the three principles. 

For each trial, an icon was first displayed on the screen as the 
target command. The participants then gestured the word in 
the white space below it to trigger the command. The input 
command name was shown to the participants after the fin-
ger lifted off from the screen, regardless of whether it’s the 
intended command or not, as shown in Figure 9a. A trial was 
completed if the input command was correct or three failed 
attempts were made. For each condition, participants first 
performed a warm-up session of two trials, followed by 60 
trials divided into two blocks. Participants were allowed to 
take a short break after the completion of each block. Each 
participant performed the task three times, with different target 
deciding principles each time. The orders of three target decid-
ing principles were fully counterbalanced across participants. 

(a) (b) 
Figure 9. (a): the application for Experiment II. The user draws a word-
gesture command, then the target command will be shown on the screen. 
(b): experiment setup. 

calculator delete 
camera download 

keyboard rotate 
mail search 

clock edit network share 
copy file 
cut help 

print weather 
recent zoom 

Table 3. List of the 20 commands. The underlined commands were 
tested in the experiment. 
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A subset of 12 commands was picked as the targets. The same 
set of commands were used across participants. We used the 
same item frequencies as in Experiment I, i.e., the number 
of occurrences for the commands was (7, 5, 4, 4, 2, 2, 1, 1, 
1, 1, 1, 1). Participants were not informed of the frequency 
distribution of the items. The rest of the experiment design 
is similar to Experiment I. For each command, a set of 10 
additional words for triggering this command was created 
from [18]. The list of commands is shown in Table 3. The 
command set included 20 commands. Each command has 11 
corresponding trigger words (10 synonyms and the command 
name). The command set includes 220 words in total, which 
was incorporated into the decoder used in the study. 

In total, the study included: 18 participants × 3 principles × 
60 trials = 3240 trials. 

Results 
Error rates. This metric measures the ratio of the number of 
incorrect gesture inputs over the total number of trials. The 
average error rates are shown in Figure 10. 
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Figure 10. Average error rate (95% confidence interval) of the three 
principles for word-gesture shortcuts. 

BayesianCommand lowered the error rate by 39.9% and 
24.5% compared to the deterministic and the likelihood-
only approaches. ANOVA showed a significant main ef-
fect of the command deciding principle on the error rates 
(F2,34 = 5.56, p < .01). Pairwise comparisons with Bonferroni 
adjustment showed that the difference was significant between 
BayesianCommand vs. deterministic strategy (p = .01), but 
not for BayesianCommand vs. likelihood-only (p = .13) or 
likelihood-only vs. deterministic strategy (p = .54). 

Command triggering time. We compared the average com-
mand triggering time, which was the elapsed time from a 
target command icon being shown on the screen to the comple-
tion of a gesture command. The average command triggering 
time was 2.91 ± 1.32 seconds for the deterministic strategy, 
2.83 ± 0.98 seconds for the likelihood-only approach, and 
2.98 ± 1.35 seconds for BayesianCommand. We did not ob-
serve a main effect of the principle (F2,34 = 0.19, p = .83). 
This result also indicates that using different principles had 
little effect on the overall command triggering time. 

Use of trigger words. We examined the trigger words of 
each command in the deterministic condition. We counted 
the number of unique trigger words (i.e., the decoded word 
from the gesture recognizer) of each command when it was 
successfully triggered. We excluded the BayesianCommand 
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and the likelihood-only conditions as they used probabilistic 
approaches, and the decoded word did not always correspond 
to the command label. The average number of trigger words 
was 2.92 (S D=1.38) across the 12 tested commands. This 
result supported the validity of the graphical model (Figure 8) 
and our hypothesis that multiple trigger words could be used 
for a command. 

Subjective feedback. A subset of NASA-TLX [30] questions 
was used to measure the perceived workload of the task. The 
range of the ratings was 1 to 10 (the smaller the rating, the 
better). The median ratings were 4 (mental demand), 2.5 
(physical demand), and 3 (effort) for BayesianCommand; 5, 
4, 5 for the deterministic method, and 4.5, 4, 5 for likelihood-
only. BayesianCommand was perceived less demanding than 
the other two principles in all questions. 

Discussion 
The results showed that BayesianCommand effectively im-
proved the input accuracy for word-gesture shortcuts. It re-
duced the command triggering error rate by 39.9% compared 
to the deterministic method. Notably, it performed better than 
the deterministic strategy when the gesture decoder failed to 
distinguish commands in similar shapes. For example, the av-
erage input error rate for the command “cut” was 34.2% for the 
deterministic method, because its gesture trace was very sim-
ilar to “copy” on a Qwerty keyboard. 65% of input for “cut” 
was misrecognized to “copy” for the deterministic method. 
BayesianCommand reduced the error rate to 16.2%, showing 
that combining prior and likelihood resolved some ambiguity 
introduced in the gesture decoding. BayesianCommand also 
outperformed the likelihood-only approach by 24.5%. The 
results also substantiated our claim that fully applying the 
Bayes’ theorem could be adopted in various applications to 
deal with the input uncertainty. 

Likewise, limiting the number of failed attempts to 3 had mi-
nor effects on the results. Nine participants correctly finished 
all trials in under three tries in all conditions. For the rest 9 par-
ticipants, the average percentage of trials that failed three times 
was 1.30 ± 1.67% for the deterministic approach, 1.02 ± 1.53% 
for likelihood-only, and 1.30 ± 2.78% for BayesianCommand. 
Compared to the other two conditions, BayesianCommand did 
not introduce more trials that failed three times or contained 
inaccessible commands. The percentage increased over Ex-
periment I as gesture input is a more complex procedure with 
higher cognitive and motor execution demands. 

While the application focused on word-gesture shortcuts, 
BayesianCommand could be extended to other gestural com-
mand input methods, e.g., Command Strokes [38], Command-
Board [1], or HotStrokes [17]. The prior probability and the 
likelihood models are independent of the gesture decoder, thus 
being applicable to other gestural command input methods 
with minor modification. Investigation on the generalization 
and other recall-based methods are interesting future work. 

LIMITATIONS AND FUTURE WORK 
A side effect of incorporating prior probability is that it could 
make the less frequent items difficult to select. Although our 
experiments did not show severe consequences, the infrequent 

items would become more and more challenging to select 
as their prior probabilities are decreasing [44]. We could 
mitigate the problem by adding a lower bound for command 
frequency to ensure that no command will become hard to 
access or inaccessible. In real-world applications, we could 
leverage user actions to address them. For example, if the 
previous selection is an error (back/cancel button is pressed 
immediately), the probability of this command will decrease 
for the subsequent command input, preventing users from re-
peatedly selecting the same incorrect command and increasing 
the chance of selecting the intended one. 

Our investigation on point-and-click input was under the as-
sumption that the target size decided the likelihood model 
P(s|c). Such a hypothesis did not reflect the possibility that 
users may adapt their interaction behavior as frequent items 
were becoming easier to select. It is worth investigating 
whether adapting P(s|c) according to user interaction expe-
rience would lead to more accurate likelihood models. 

Additionally, BayesianCommand is essentially adjusting the 
command activation space according to command frequencies. 
In the current investigation, we did not communicate such 
adjustment to users via visuals to avoid disruption caused by 
interface visual changes. It is worth investigating whether 
communicating this adjustment would affect users’ interaction 
behavior and how we develop more accurate likelihood models 
to capture it. 

Our two examples (i.e., point-and-click and gestural command 
input) were two experiments demonstrating the effectiveness 
of BayesianCommand. Many design choices for the models 
(e.g., the value of k, the command set, and the trigger words) 
were specific to these experiment settings. As shown in [21], 
we could make more mature decisions for real-world applica-
tions with more contextual information such as the interaction 
scenarios, command set sizes, and users’ preferences. For ex-
ample, if we can access detailed command input history (e.g., 
command usage patterns for Microsoft Word [29]), we may 
build a more advanced prior model (e.g., n-gram command 
sequence) and follow the similar principle proposed in this 
paper to improve the command selection accuracy. 

CONCLUSIONS 
In this paper, we have formalized Bayes’ theorem as a guiding 
framework for deciding the target in command input. To 
support this principle, we have developed three models: (1) a 
prior probability model, (2) a dual-Gaussian likelihood model 
for point-and-click, and (3) a two-step likelihood model for 
word-gesture shortcuts. Our experiments showed that applying 
BayesianCommand with the proposed models substantially 
improved the command input accuracy. Compared to the 
deterministic principles or applying the principle partially, 
BayesianCommand reduced the command input error rate 
by 26.9% and 28.0% for point-and-click, and by 39.9% and 
24.5% for word-gesture command input. 
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APPENDIX 

TRIGGER WORDS OF THE COMMANDS 
Table 4 shows the 11 trigger words of the 20 commands in Ex-
periment II. The words in bold were the trigger words used by 
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the participants to trigger the corresponding commands in the 
deterministic condition. Note that these words represent the 
decoding output from the gesture recognizer, not necessarily 
what the participants intended to input. 

Command Trigger words 

calculator, calculators, calculate, calculation, compute, computer, 
computation, microcomputer, count, appraise, spreadsheet 

camera, cameras, camcorder, video, photograph, photographer, 
cameraman, videocamera, tripod, lens, projector 

clock, clocks, timer, time, dial, watch, stopwatch, alarm, tick, 
seconds, wristwatch 

copy, copying, copyist, replicate, replica, imitate, reproduce, 
emulate, duplicate, plagiarize, clone 

cut, cutting, slice, trim, reduce, prune, shorten, truncate, 
curtail, scissors, clippers 

delete, deleting, deleted, deletes, deletion, remove, uninstall, 
eliminate, omit, overwrite, discard 

download, downloads, downloadable, upload, redownload, load, 
downloader, browse, access, file-sharing, homepage 

edit, editing, editor, edits, edited, annotate, annotated, essay, 
alter, revise, rewrite 

file, files, filing, filename, filed, refile, folder, document, 
documents, archive, directory 

help, helping, helps, helped, assist, assistance, aid, support, 
avail, advice, service 

keyboard, keyboards, touchpad, trackpad, keypad, qwerty, stylus, 
numberpad, typewriter, typing, laptop 

mail, mails, mailbox, mailing, e-mail, email, spam, letter, 
postal, post, mailed 
network, networks, networked, net, internet, web, cable, channel, 
connectivity, networking, interconnect 

print, printing, printer, printed, reprint, handwritten, photocopy, 
publish, publication, booklet, distribute 

recent, subsequent, recently, latest, previous, past, earlier, prior, 
preceding, later, coming 

rotate, rotation, rotational, tilted, pivot, tilt, rotating, rotated, 
revolving, swivel, spin 

search, searches, searching, retrieve, discover, check, find, look, 
quest, searcher, scour 

share, shared, sharing, exchange, swap, commonality, pool, 
combine, express, collect, common 

weather, inclement, meteorological, windy, forecast, forecaster, 
winter, foggy, thunderstorm, meteorologist, blizzard 

zoom, zoom-in, close-up, enlarge, magnify, magnifier, scroll, 
augment, enhance, expand, amplify 

Table 4. The trigger words for the 20 commands used in Experiment II. 

Paper 642 Page 15

http://dx.doi.org/10.1145/1357054.1357104
http://dx.doi.org/10.1145/2330667.2330689
http://dx.doi.org/10.1145/1029632.1029639
http://dx.doi.org/10.1145/3173574.3173823
http://dx.doi.org/10.1145/3173574.3174013
http://dx.doi.org/10.1145/3290605.3300678

	Introduction
	Related Work
	Handling Uncertainty in User Input
	Understanding and Improving Finger Touch
	Word-Gesture Command Input

	BayesianCommand: A Bayesian Perspective on Command Input
	Prior Probability Model
	Likelihood Models
	Application 1: Applying BayesianCommand to Point-and-Click Command Selection
	Dual-Gaussian Likelihood Model for Point-and-Click
	Parameterizing the dual-Gaussian Likelihood Model

	Determining the Update Rate of Prior Probability Model
	Results

	Experiment I: Evaluating BayesianCommand for Point-and-Click Command Input
	Participants and Apparatus
	Experiment Setup
	Results
	Discussion


	Application 2: Applying BayesianCommand to Word-Gesture Shortcuts
	Two-Step Likelihood Model for Word-Gesture Shortcuts
	Experiment II: Evaluating BayesianCommand for word-gesture shortcuts
	Participants and Apparatus
	Experiment Setup
	Results
	Discussion


	Limitations and Future Work
	Conclusions
	References 
	Trigger words of the commands



