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Nontrivial braid-group representations appear as non-Abelian quantum statistics of emergent
Majorana zero modes in one- and two-dimensional topological superconductors. Here, we generate such
representations with topologically protected domain-wall modes in a classical analog of the Kitaev
superconducting chain, with a particle-holelike symmetry and a Z2 topological invariant. The midgap
modes are found to exhibit distinct fusion channels and rich non-Abelian braiding properties, which are
investigated using a T-junction setup. We employ the adiabatic theorem to explicitly calculate the braiding
matrices for one and two pairs of these midgap topological defects.
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An important characteristic of a topological insulator
is the emergence of boundary electron states, whenever a
sample is halved. Similar topological effects can be
engineered in classical metamaterials, where spectral gaps
at finite frequencies support wave-guiding modes along
domains or boundaries. This topological behavior has been
demonstrated with photonic [1–3], phononic [4–6], and
mechanical [7–11] platforms. The electronic topological
phases in condensed matter systems are classified by
generic symmetries [12–15] and this classification also
includes topological superconductors supporting Majorana
quasiparticles as boundary modes [16,17]. These boundary
modes are far more exotic as they display non-Abelian
braiding and statistics [16,18,19]. While several classes of
topological insulating systems have been implemented in
metamaterials, the analog of topological superconducting
systems has not been yet realized. As such, an important
question remained open, namely, whether topologically
degenerate resonant levels can be engineered in metama-
terials and if these degenerate modes can be manipulated by
adiabatic deformations which ultimately result in nontrivial
representations of the braid group.
In this Letter, we answer this question in the affirmative

by designing a one-dimensional (1D) metamaterial that
exhibits nontrivial representations of the braid group.
Regardless of the quantum or classical setting, the critical
ingredients for these representations are the adiabatic
theorem, a nontrivial configuration space, and a degenerate
manifold of periodic solutions. We create them using the
algorithmic map [20], which translates any strong topo-
logical condensed matter system along with its correspond-
ing symmetries, to an absolutely equivalent topological
metamaterial, built exclusively with passive components
(such as magnetically coupled spinners [21]). The result is a
classical analog of the particle-hole (PH) symmetric Kitaev
chain [16], where topological midgap resonant modes can

be stabilized by domain walls (DW) interpolating between
trivial and topological regions. Since these modes are
pinned at a fixed frequency and can be controlled by
adiabatic displacements of DWs, one has the unique
opportunity to explore the braiding of these point topo-
logical defects.
Our proposal is aided by two purely classical features

with no quantum analogs, namely, the possibility to create
two distinct DW configurations and the ability to control
the “superconducting order parameter.” As a result, in our
model, the number of different domain wall configurations
resulting in N midgap modes equals 2N=2 (see [22] for the
counting argument). Additionally, we discovered two
distinct fusion channels, with the same fusion rules as
Ising anyons. Aimed with these similarities, we describe
how a braiding cycle can be implemented with a T-junction
geometry, similar to Ref. [18]. We show that, even though
the equations of motion are quadratic in time, the braiding
matrices can be computed using the adiabatic theorem [25].
This allows us to demonstrate, via explicit numerical
calculations, that distinct exchange matrices result for
different fusion channels. Using analytic arguments, based
on the PH symmetry of the system and localization of the
midgap modes, we demonstrate that the braids are inde-
pendent of the details of the implementation, hence
topological, as long as the DWs are kept sufficiently far
apart. Furthermore, we construct unitary representations of
the braid group [22], consistent with our numerical results.
Before we proceed, let us emphasize that in 1D topo-

logical superconductors (D-class systems), Majorana zero-
mode braiding requires adiabatic deformations that break
all accidental symmetries, particularly, the time-reversal
symmetry [22]. As such, this task cannot be accomplished
within the BDI class, for which mechanical analogs already
exist [11]. Furthermore, in 1D systems, the Z2 (as opposed
to Z) stability is essential for implementing exchange for a
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sequence of four Majorana zero modes [22], hence this task
cannot be accomplished in the AIII class either. Note that
exchanging just two Majorana zero modes presents no
challenge and it has been implemented with 1D classical
chiral symmetric wires (class AIII) [26]. As such, the Z2

PH-symmetric D-class setting is not a convenient choice
but rather a necessity, and this is the challenge for
metamaterial implementation which is addressed here. In
two dimensions or in synthetic dimensions, non-Abelian
geometric phases can be generated with other topological
classes [27,28].
The classical analog of a fully general PH-symmetric

Kitaev chain is shown in Fig. 1. If we encode the degrees of
freedom in the vector Q ¼ fqαng, the collective motion is
determined by the quadratic Lagrangian:

L ¼ 1

2
ð _Q† _Qþ Q†DQÞ; Q†DQ ¼

X
n;α;m;β

dαβnmqαnq
β
m; ð1Þ

written in appropriate units, and the equation of motion
becomes Q̈ ¼ −DQ. With the labelings and couplings
from Fig. 1, which were supplied by the map [20],

D ¼ H þ ω2
0I; H ¼ −τ2 ⊗ K; ð2Þ

where ω0 is the pulsation of the uncoupled resonators, τ2’s
is the off-diagonal Pauli matrix which couples the collec-
tive indices (1,2) with (3,4) (see Fig. 1 for details), and K is
the Kitaev Hamiltonian [16]:

K¼ {
2
ðΔxσ1þΔyσ3Þ⊗ ðS−S†Þ− σ̂2⊗

�
μ−

t
2
ðSþS†Þ

�
;

ð3Þ

with complex order parameterΔ¼Δxþ {Δy, on-site chemi-
cal potential μ and hopping parameter t (fixed at 1). The
shift operator of the lattice acts as Sfqαng ¼ fqαnþ1g and σi’s
are the Pauli matrices which separately act on indices (1,2)
and (3,4). The PH symmetry of (3) is implemented by the
complex conjugation C, which remains a symmetry even if
the parameters Δ, μ are given site dependencies, e.g., to
create domain walls.
All entries inD are real valued, as it should be for passive

metamaterials, but this comes at the expense of doubling
the Kitaev model. Nevertheless, note the intrinsic symmetry
½H; Sy� ¼ 0, with Sy ¼ −iσ̂2 ⊗ I (S2y ¼ −I), which fully
decouples the two copies. Indeed, if

Π�¼1

2
ðI∓ {SyÞ¼π�⊗ I; π�¼1

2

�
1 ∓ {

�{ 1

�
ð4Þ

are the projections onto the symmetry sectors of Sy, then

H ¼ Hþ ⊕ H−; H� ¼ Π�HΠ� ¼ π� ⊗ K: ð5Þ

Furthermore, each reduced Hamiltonian H� obeys PH
symmetry ΘPHH�Θ−1

PH ¼ −H�, with ΘPH ¼ ðτ1 ⊗ IÞC.
TheΠ� sectors remain invariant under the dynamics, hence
the mechanical system can be driven exclusively in one
sector or the other [29]. As such, from now on, we
concentrate exclusively onDþ ¼ Hþ þ ω2

0Πþ, which apart
from a shift, is unitarily equivalent with K from (3). Note
that the time-reversal operation maps one sector into the
other, hence Dþ is not constrained by this symmetry and
this is why we can implement the T-junction cycle.
The mapping procedure of Ref. [20] provides a fairly

complex hopping pattern, which would be hard to guess at
the onset. The effective PH symmetry acts on the internal
degrees of freedom of the lattice and, to gain more intuition,
we start by separating the top and bottom layers by setting
Δy ¼ 0. The resulting top and bottom chains, with alter-
nating t1 and t2 hopping patterns [see Figs. 1(c) and 1(d)],
are a classical analog of coupled Su-Schrieffer-Heeger
models, with pairs of green/orange resonators supplying
effective spin degrees of freedom. The coupling μ provides
an effective spin-orbit coupling, hence, in the limit of zero
interlayer coupling, our model is the classical analog of a
spin-orbit coupledwire. The interlayer couplingΔy connects
the same type of sites in opposite layers, and represents the
classical analog of the s-wave superconducting order param-
eter [30]. Hence, Fig. 1 represents the classical analog of two
Kitaev chains [31], as argued above. The intrinsic symmetry
of the lattice ½H; Sy� ¼ 0, acts on the top and bottom layers
and represents a π=2 rotation in the internal effective spinor
space. It fully decouples the two Kitaev chains.
The dispersion equation for a translational invariant

configuration is ω2
�ðkÞ¼ω2

0�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ− tcoskÞ2þjΔj2sin2k

p
,

hence the spectrum of Dþ is symmetric relative to ω2
0 and

(a)

(c) (d)

(b)

FIG. 1. (a) One-dimensional lattice with four identical reso-
nators per unit cell. The resonators inside the nth cell are labeled
by ðn; αÞ, with α ¼ 1; 4. The connections between the resonators
represent the real valued couplings dα;βnm in Eq. (1), with t1 ¼
tþ Δx and t2 ¼ t − Δx. The positive (negative) signs of the
couplings are color coded in blue (red). (b) Detailed hopping
pattern in the unit cell, viewed from a different angle. (c),(d) Top
and bottom layers, respectively, which are coupled Su-Schrieffer-
Heeger ladders (see text for more details).
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displays a gap as long as μ ≠ jtj. The system is in a
topological (trivial) phase when μ < jtj (μ > jtj). The
spectra of Dþ for two distinct DW configurations, created
via spatial variation of μ, are reported in Fig. 2. As
expected, there are midgap resonant modes trapped at
the interfaces between the topological and trivial phases,
which are always present regardless of the particular
monotonic profile of the DWs [32]. Further spatial mod-
ulations of the parameter μ will result in more domain walls
while maintaining the PH symmetry at all times, hence one
can nucleate an arbitrarily large number of spatially
localized modes, whose pulsations are all pinned at ω0.
Furthermore, by slowly changing the profile of μ, we can
coherently displace the topological modes in space while
keeping the pulsation pinned at ω0. This supplies precise
rules for how to modify the physical couplings and to
ultimately implement this program in a laboratory [33],
which is already unprecedented in a mechanical setting.
Fusion rules.—For our classical system, there are two

distinct ways of creating the DWs, by interpolating μ
between 0 and �2t as already exemplified in Fig. 2. We
think of these two possibilities as the manifestation of a
nontrivial internal structure of same excitation σ because
both cases yield an identical energy spectrum. Furthermore,
these two DW configurations can be both deformed into the
topological-vacuum interface zero mode without breaking
the PH symmetry or closing the bulk gap, e.g., by pushing
the DWs to ends of the Kitaev chain.
In Fig. 3(a), we report the spectral flow as two σ

excitations are adiabatically brought on top of each other
via the þþ channel. As one can see, the energies of the
modes peel off from the midgap value and, when fused, the
modes are completely lost to the bulk. Quite opposite, if
the σ excitations are fused in the (þ−) channel as in
Fig. 3(b), the modes persist and remain pinned in the
middle of the gap. We have verified that this phenomena is
not related to particular profiles of the domain walls and
found that the rule is robust as long as the DWs are
sufficiently smooth. We think of the result of þ− fusion as

a new type of excitation ψ . The remaining fusion rules are
computed in Figs. 3(c) and 3(d) and they match perfectly
the ones for SUð2Þ2 [34]: σ × σ ¼ 0þ ψ , σ × ψ ¼ σ, and
ψ × ψ ¼ 0. These fusion rules are enabled by the ability to
control the DW configurations of our classical system.
To explain the significance of 0, σ and ψ sectors and their

fusion, we refer to Fig. 4, which shows two topological
chains with sharp edges supporting topological midgap
modes. These modes can be braided only if the interface
supporting them is smooth, otherwise the interface cannot
be displaced in an adiabatic fashion (the Hamiltonian will
display jumps no matter how slow the displacement). The
smoothing process can land the system in different DW
configurations, as shown in Figs. 4(b) and 4(c). These
configurations always fall either in 0 or ψ sectors (and σ if
the number of DWs is odd). To determine the sector, one
can simply collapse all DWs on top of each other to find
one of the three possible outcomes, 0, σ, or ψ. Furthermore,
the braidings can be implemented entirely in a single sector
and we will give enough evidence that the braids depend in
a nontrivial way on the DW configurations. Lastly, when
more strands like the ones in Fig. 4(a) are added to the
system, several distinct representations of the braid group
can result, depending how the new strands are fused. The
fusion rules supply a bookkeeping of these representations,
in a manner which is yet to be determined.
Braiding the DW modes.—In our classical mechanics

setup, the equation of motion is quadratic in time,
−∂2

tQ ¼ DðtÞQ. Nevertheless, the adiabatic theorem [23]
still applies [22], more precisely, if the system is excited in
any linear combination Qω0

of midgap states, then at the
end of the adiabatic cycle γðτÞ the system will oscillate as

FIG. 2. (a) The (þþ) domain wall configuration, generated by a
spatial variation of μ (red-dashed line), interpolating between
trivial (μ ¼ 2) and topological (μ ¼ 0) phases. The phase
interfaces trap two midgap modes, whose amplitudes are shown
in blue and green. The inset displays the spectrum of Hþ
calculated with this domain wall configuration. (b) Same as
(a) but for the (þ−) domain wall configuration.

(a) (b) (c) (d)

FIG. 3. The fusion results for different DW configurations, with
insets indicating the configuration before and after the fusion:
(a) σ × σ ¼ 0, (b) σ × σ ¼ ψ , (c) σ × ψ ¼ σ, and (d) ψ × ψ ¼ 0.

(a) (b) (c)

FIG. 4. (a) Two topological chains with sharp edges supporting
midgap modes. (b),(c) Smoothing of the interfaces results in
different spatial profiles of μ, labeled as ðþ þ þÞ=ðþ þ −Þ, and
the system lands in the 0=ψ sectors, respectively.
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QðtÞ ¼ Re½e{ω0tWγQω0
�; ð6Þ

where Wγ depends entirely on path γ inside the parameter
space and can be conveniently computed as [25]

Wγ ¼ lim
n→∞

PγðτnÞPγðτn−1Þ…Pγðτ0Þ; ð7Þ

where fγðτiÞg is a discretization of γ and PγðτÞ is the
projection onto the midgap spectrum at the moment τ.
The braidings will be performed through different fusion

channels, using all the available DW configurations and, as
we shall see, this will result in different outcomes. We first
must make sure that our adiabatic braiding cycles are closed,
i.e., HþðtinitÞ ¼ HþðtfinalÞ and that the bases we use are the
same. For this, we always start/end our adiabatic cycles from
a configurationwhere the zeromodes are located at the clean
ends of a chain and thenwe nucleate the desired smoothDW
configurations. As for the adiabatic cycle, we employ the
standard T-junction process illustrated in Fig. 5(a) [18] but
with one important difference. Note that Hþ is not sym-
metric under the inversion operation K, KHþðΔÞK−1 ¼
Hþð−ΔÞ. Hence, the chains comewith a definite orientation,
shown by the blue arrow in Fig. 5(a). If one insists on closing
the braid cycle, then inherently two of the chains need to be
fused in the wrong order, as it happens at step (2) in Fig. 5(a).
Therefore, we are forced to connect two chains with opposite
order parameters and, in order to keep the bulk gap open,
that connection requires a rotation in the complex plane
of the order parameter Δ. The precise expressions of the
T-junction Hamiltonian is supplied in [22]. Figure 5(b)
reports the evolution of the spectrum of this adiabatic
Hamiltonian during the whole T-junction cycle, demonstrat-
ing that themidgap states are spectrally separated at all times.
We now demonstrate the topological character of the

braids and consider the case of two DWs. If the DWs are
well separated, then the space of midgap modes accepts a

very special basis fΨ1;Ψ2g, with Ψi’s real valued and
localized on one of the DWs. Independent of the location of
the DWs in the T-junction geometry, such basis can be
canonically generated. After an adiabatic exchange 1 ↔ 2,
the one-dimensional spaces corresponding to Ψ1;2 are
swapped and, since the basis remains real at all times,
the exchange matrix U12 written in this basis takes an off
diagonal form with real entries λ12 and λ21 and unitarity
requires λ212 ¼ λ221 ¼ 1. This results in the possibilities
U12 ¼ �σ1 or �{σ2 hence, the monodromies are locked
into one of these choices and continuous deformations
cannot unlock them, hence the topological character.
The evaluation of the braid matrix was performed using

the T-junction geometry and Eq. (7) for the two braids
shown in Fig. 6 via different DW configurations. The two
midgap mode braid matrix via the (þþ) channel can be
expressed as αðΔtÞ½{σ2�, where αðΔτÞ plotted in Fig. 6 as a
function of discretization stepΔτ → 0. The fit to the scaling
function, plotted in blue in Fig. 6, gives αð0Þ ¼ 0.99978,
virtually converging to 1. Via the (−−) channel, we find
that α converges to −1. For the other more complicated
braids in Fig. 6, we found the braid matrix to be given by
βðΔtÞ½{σ2 ⊗ σ2� in the ðþ þ þÞ channel and −βðΔτÞ½σ1 ⊗
σ1� in the ðþ −þÞ channel, where βðΔτÞ is plotted in red in
Fig. 6, with βðΔτ → 0Þ ¼ 0.98054.
In a laboratory, for a pair of DWs, the two midgap

modes can be loaded with arbitrary amplitudes and
phases, leading to a collective oscillating state ΨðtÞ ¼
Re½Pj¼1;2 AjΨje{ðω0tþϕjÞ�. If one initiates two identical
systems in the same load configuration, then one system
can be braided while the other can be left untouched. After
the exchange, the resonators will oscillate as

Ψ0ðtÞ ¼
�
ReðA2Ψ2e{ϕ2 − A1Ψ1e{ϕ1Þe{ω0t ðþ þ chÞ
ReðA1Ψ1e{ϕ1 − A2Ψ2e{ϕ2Þe{ω0t ð− − chÞ ð8Þ

which can be directly compared with ΨðtÞ using the second
system. In particular, the emergence of the geometrical and
topological phase of π can be probed.

(a) (b)

FIG. 5. (a). The T-junction braiding process, consisting of rigid
slides of the DWs along the wires and adiabatic couplings/
decouplings of the wires (shown as green/orange segments). The
closed (open) circles and triangles denote the initial (final)
positions of the DWs after each step in the braiding process,
while the arrows indicate the direction of the coupling. The
coupling at step (2) requires a special twist of the Δ parameter,
denoted by the orange connection. (b) Evolution of the spectrum
during the full T-junction process, demonstrating that the midgap
states remain spectrally separated at all times.

FIG. 6. Numerical evaluation of the braid cycles indicated in
the diagram, as computed with (7). The graph reports αðβÞ (see
text for definitions), which are plotted as a function of the
adiabatic type step.

PHYSICAL REVIEW LETTERS 124, 146801 (2020)

146801-4



In conclusion, we have supplied a classical analog of a
fully general topological chain from class D, where all
accidental symmetries are broken and the complex
superconducting parameter Δ as well as the chemical
potential μ can be manipulated by changing the coupling
strengths between the resonators. This enabled us to
create DWs supporting topological midgap states and to
implement several braidings using T junctions. We
discovered that the braid matrices depend on the DWs
configurations, which fall into three sectors displaying
fusion rules similar to those for SUð2Þ2. The braiding
structure turned out to be far more interesting than
anyone anticipated and this could be a proof that
topological metamaterials could find applications in
information processing.
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