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Abstract—We assess the impact of known and unknown
position errors on two variations of the Minimum Variance
Distortionless Response (MVDR) algorithm specifically for mea-
surements using multipass, swarms or constellations that involve
non-rigid and varying sensor offsets. We consider this in the
context of the radar systems and autonomous aircraft used
by Center for the Remote Sensing of Ice Sheets (CReSIS) for
conducting measurements of snow and ice in polar regions.
We find that unknown position errors affect all algorithms
in a uniform way and that the performance impact is not
related to known position errors. We also find that MVDR is
largely unaffected by known position errors except when the
number of elements is small. However, self-nulling can result
in substantially worse performance than even the simple non-
adaptive periodogram method.

Index Terms—array signal processing, array calibration,
MVDR, radar clutter

I. INTRODUCTION

Modern remote sensing applications use beamforming al-
gorithms to increase the Signal to Noise Ratio (SNR) of the
received signal in the presence of clutter and other interfering
signals. At the Center for the Remote Sensing of Ice Sheets
(CReSIS), we have developed several airborne radar systems
with multichannel arrays to sound ice sheets in polar regions
[1]. During data processing, beamforming algorithms are ef-
fective tools to reduce surface clutter produced from rough ice
surfaces at off-nadir angles [2]–[5]. Surface clutter is undesired
backscatter signals from the rough ice surface at off-nadir
angles which can mask the return signal from the bedrock
at nadir.

The ice sounding community is assessing the efficacy of
multipass beamforming measurements with a single platform
or a single pass beamforming measurement on multiple plat-
forms, such as an Unmanned Aerial System (UAS) swarm
or a constellation of nanosatellites [6]–[8]. Multipass mea-
surements for beamforming are useful when the antennas or
required baselines are so large that it is impractical to install
the elements on a single platform. Swarms and constellations
of UAS are gaining popularity because of their increasing
capability and lower costs as compared to larger vehicles
capable of carrying multiple antenna elements.

Fig. 1: a. Offset standard deviations and b. array and offset
geometry.

In realistic constellation scenarios (multipass, swarm or
satellite), we may have relatively large offsets from our desired
position that we can measure with GPS. We define these
offsets as the measured offset. The error in the measured
offsets (due to GPS errors) are the unknown offset. Figure 1
illustrates these offsets for a simple three-element array and
the typical offset relationship between vertical and horizontal
components with the ellipse showing this in two dimensions.
As an example, most manufacturers quote post processed
GPS errors, which constitute the unknown offset, as having
vertical errors (5-10 cm) twice that of horizontal errors (2-
5 cm). Similarly, using the fixed-wing 85 lb. UAS that was
developed and operated by researchers at KU [6], we found
that the measured and therefore known offsets for this UAS
flight controller were approximately twice as large in the
vertical dimension (z = 2.01 m) as in the horizontal dimension
(y = 1.21 m).

We seek to understand how precisely the flight control and
subsequent relative trajectory estimations need to be to achieve
a certain level of system performance. We consider each offset
type independently and the interplay between the two. By
forming a simulated phased array from independent flying
elements, we can examine the performance of this array using
the algorithms that CReSIS currently applies to ice sounding
radar.

The effects of position errors on array processing have
been studied extensively in the literature (e.g. [9], [10]).



Several works study wing flexure position errors to understand
the effects on sidelobe performance [11], [12] and direction
finding accuracy [13], but do not consider the particular varia-
tions of Minimum Variance Distortionless Response (MVDR)
employed for ice sounding radar. [14] discusses position errors
for a UAS swarm, but only provides a single example pattern.
Generally, previously published work considers known errors
or unknown errors, but not both simultaneously. One exception
is [15], which provides a large set of simulations; however,
in this work the individual radiation patterns are presented
for each run, which are hard to interpret compared to the
expectation of the SNR that we use in our results. Also, only
10% of a wavelength (λ) in error is considered rather than a
range of errors.

This paper is organized as follows. In Section II, we describe
the signal model, model parameters, and performance metrics
to understand how array position errors affect performance.
We also provide descriptions of each of the beamforming
algorithms that are compared. In Section III, we illustrate the
effect of position errors on the algorithms using computer
simulations over typical ranges of system parameters. Our
concluding remarks are given in Section IV.

II. METHODOLOGY

The signal model for an array with P sensors or antenna
elements, Q narrow-band sources or targets, and M snapshots
is shown in Equation 1. X is the P by M measured signal
matrix where each column is one snapshot; A is the P by
Q steering vector matrix where each column represents the
steering vector for a corresponding source; S is the Q by
M source signal matrix where each row represent the M
snapshots for a particular source; and N is the P by M noise
matrix. The narrow-band assumption allows the source signal
variations across the sensors to be modeled in Equation 1 by
a single complex number in A.

X = AS + N. (1)

The modeled sources and noise are independent and identically
distributed zero mean complex Gaussian random vectors. The
sources and noise are all independent of one another as well.
The M snapshots are independent and stationary. The sensors
are assumed to be isotropic and unity gain, so the model is
only dependent on the relative positions of the sensors. In our
ice sounding application, these assumptions are violated to
varying degrees, but this simple model is used as a first order
approximation.

The output of the array is given by ~wHX where H is the
Hermitian operator. The filter weights ~w form a P element
column vector. The determination of the filter weights is
described in the following subsections. For the data adaptive
filters, the weights are formed using a Data Covariance Matrix
(DCM) estimated from the signal measurement snapshots, X.
For non-adaptive filters, the filter weights do not depend on
the snapshots.

The sensor positions are modeled with an ideal P -element
Uniform Linear Array (ULA) with half wavelength sampling

located at z = 0 as shown in Figure 1b. Then we add the
measured offsets to obtain the measured positions. Finally,
we add the unknown offsets associated with the measurement
error to obtain the actual positions. The actual positions will
be used to form the steering vector A in the signal model
of Equation 1 to create simulated snapshots. The measured
positions (as opposed to the actual positions) will be used
by beamforming algorithms to generate the filter weights, ~w.
The measured and unknown offsets are modeled by zero mean
elliptical Gaussian random variables. The y and z position
errors are assumed to be independent. The measured offsets
(∆y meas, ∆z meas) and unknown offsets (∆y unk, ∆z unk)
are independent of each other.

All element offsets are expressed in units of percent wave-
length (%λ) so that the results are frequency independent.
It is important to note that along-track offsets (x-axis) are
not investigated within this paper, because errors in this axis
are mitigated during the Synthetic Aperture Radar processing
stage, which is not discussed in this work.

The steering vector for source q ∈ {1, . . . , Q} which forms
the qth column of A, denoted as Aq , is generated from the
actual sensor positions, (yp, zp) for p ∈ {1, . . . , P}, and the
direction of arrival, θq and can be expressed as

Aq = ejk(−yp sin θq−zp cos θq), (2)

where k = 2π/λ is the wavenumber. The beam pattern for
weight vector ~w evaluated as a function of the direction of
arrival θ is

AF (θ) =
P∑
p=1

w∗
p e

jk(−yp sin θ−zp cos θ), (3)

where ∗ represents conjugation.
In order to evaluate the performance of each algorithm’s

tolerance to known and unknown position errors, we choose
parameter ranges that match our ice sounding application. In
all experiments, we generate results for 20, 100, and 1000
snapshots. The typical number of snapshots in ice sounding
generally ranges from 10 to 100, in order to ensure stationarity
of the snapshots. Most CReSIS antenna arrays use between
three and eight elements so we have chosen to simulate
with P = 3 and P = 8 elements to match the currently
deployed arrays and what we also consider to be a reasonable
number of passes to collect for the multipass problem under
consideration.

Simulations in this study have one clutter source, Q = 2,
unless specifically noted otherwise in which case there are two
clutter sources, Q = 3. The desired source is always source
q = 1 and is at broadside or θ = 0◦. The interferers are fixed at
θ = 45◦ from broadside with one clutter source and θ = ±45◦

from broadside for two clutter sources. Typical surface clutter
in ice penetrating radar arrives from one or both sides of the
aircraft and ranges from 30◦to 80◦. For all simulations, the
variance is unity for both desired and clutter sources, and the
noise variance is 0.1.

The simulated random position offsets,
(∆y meas, ∆z meas) and (∆y unk, ∆z unk), have a vertical



standard deviation (σz) twice that of the horizontal standard
deviation (σy) as shown in Figure 1. This relationship between
vertical and horizontal errors is consistent with the GPS
position errors quoted by most GPS receiver manufacturers;
GPS is the primary means of measuring the position for our
application. As noted in the introduction, CReSIS’s measured
flight controller trajectory accuracy has a similar relationship
between horizontal and vertical errors. In the results of this
paper, offsets always represent 2σ so that about 95% of the
offsets will have a magnitude, (e.g. (∆2

y unk + ∆2
z unk)0.5),

less than the corresponding %λ.
The performance parameter used for comparison throughout

this paper is SNR, and it is calculated after each run of a given
processing case. The SNR is found by taking the sum of the
signal power from all M snapshots and dividing this by the
sum of the noise power from all M snapshots. The equation
used to calculate SNR for a single run with M snapshots is
shown in Equation 4. In the equation, A1 is the P length
steering vector of the desired source at nadir, ~s1,m is the mth

snapshot of the desired source, A2:Q represents the P by Q−
1 steering vector matrix corresponding to the Q − 1 clutter
sources, the mth snapshot of the clutter sources is the Q − 1
length vector ~s2:Q,m, and the mth snapshot of the noise for
each channel is ~nm.

SNR =

∑M
m=1 |~wHA1s1,m|2∑M

m=1 |~wH(A2:Q~s2:Q,m + ~nm)|2
. (4)

The given SNR equation calculates the SNR for a single
run. The SNR from each run is then averaged in the log
domain, which is the result that is presented. Each data point
presented is generated from the average of 1000 runs to
obtain an accurate expected value. This number of runs is
selected because the computing time is reasonable and the
resulting data appears to be consistent and smooth enough for
interpretation.

The beamforming algorithms investigated include the peri-
odogram with a Dolph-Chebyshev window, and two versions
of the MVDR algorithm. The periodogram technique will
provide a performance baseline to compare the two MVDR
algorithms against. These two algorithms are the primary clut-
ter reduction methods that CReSIS uses [2]. The beamforming
algorithms are briefly described in the next three subsections.

A. Case 1: Periodogram with Chebyshev Window

The data-independent periodogram weights are the
component-wise multiplication of the 30 dB sidelobe Dolph-
Chebyshev window with phase corrections based on the
measured offsets. The periodogram with a window is often
called the modified periodogram. No correction is applied to
the amplitude weights, even if the measured offsets are large
enough to cause the ordering of the antenna elements along
the y-axis to change. Note that the periodogram refers to
the average power of the filter output which is what forms
the radar image. However, we present the filter SNR before
power detection and averaging of snapshots.

A representative array factor plot is shown in Figure 2a.
Each of the representative array factor plots in this section
include the array factor using the measured offsets with no
unknown offsets for reference as well as the actual array
factor that uses the known measured offsets and unknown
GPS errors. In Figure 2a, the unknown offsets distort the
phases so that the phase compensation is not correct and the
sidelobes increase (dashed red line). Figure 2b shows a similar
setup with the unknown offsets set to zero so that there is
only known measurement offsets. In this case, the sidelobe
levels increase because the Dolph-Chebyshev are designed for
a ULA.

(a)

(b)
Fig. 2: Two example periodogram array factors: a) with no
measured offset and b) with no unknown offset. In each plot,
the array factor using measured (blue) and actual (red) offsets
is shown. The inset shows measured (red circle) and actual
(blue square) positions for the P = 8 sensor array used in this
simulation run.



B. Case 2: MVDR Using Data Covariance

Case 2 is the standard MVDR algorithm. The DCM is
used for the signal covariance matrix Rxx. In this case
the algorithm is often called Minimum Power Distortionless
Response (MPDR). The weights are

~w =
R−1
xxA1

AH
1 R−1

xxA1

. (5)

Fig. 3: An example MVDR array factor for estimated and
actual offsets. The inset shows estimated and actual positions
for the P = 8 element array used in this simulation run.

The measured offsets are used for the desired signal’s
steering vector A1 to calculate the weights, but the weights
are applied to the actual array factor (which includes unknown
errors) from which the SNR is calculated. An array factor plot
shown in Figure 3 was generated to represent an output of this
process. In both patterns, there is a null at the interferer and
the desired signal is aligned with a lobe. However, even with
100 snapshots for the DCM estimate, there are several very
high correlation lobes with the worst at -90◦.

The MVDR algorithm’s performance is dependent on the
number of snapshots that are used to estimate the DCM. In
some cases, prior knowledge of the DCM is available and
may allow it to be estimated more accurately. In consideration
of this, we also run a special case of the MVDR algorithm
where the data covariance matrix is analytically derived using
the measured offsets and assuming perfect knowledge of the
sources and noise statistics (including the sources’ directions
of arrival). This case represents an upper bound on perfor-
mance and is analogous to infinite snapshots.

C. Case 3: Generalized Sidelobe Canceller

The Generalized Sidelobe Canceller (GSC) is a variation
of MVDR that can include additional linear constraints [16].
In this case, we add additional constraints to place nulls at
the known directions of arrival for the clutter. Note that even
though we assume knowledge of the clutter angles, unknown
offsets will still create errors in the clutter suppression.

The first step is to define the linear constraint equation:

CH ~w = ~g, (6)

where ~g =
[

1 0
]T

or ~g =
[

1 0 0
]T

for the
distortionless followed by the null constraints and C =[
A1 A2:Q

]
is comprised of the desired signal steering vector,

A1, and the clutter steering vectors, A2:Q.
The weight vector is then

~w =
[
I−Ca(CH

a Ca)−1CH
a

]
C(CHC)−1g, (7)

where I is the identity matrix and Ca is the orthogonal
complement of C, such that CH

a C = 0 and Ca spans the
null space of C.

A representative array factor plot for this case is presented
in Figure 4. The array factor for the measured offsets has
a perfect null at the interferer, but still suffers from the
high correlation lobes at other angles (as in Case 2) due
to insufficient snapshots. In this particular run, even the
main lobe no longer aligns with the desired signal direction.
The number of snapshots needs to be 1000 before SNR
degradation is reduced to only 1 to 2 dB for this particular
setup. When the unknown offsets are included in the signal
model, the null is smoothed and the performances drop further.
Although the particular instantiations in this section show Case
2 outperforming Case 3 in terms of SNR, we will show in the
following section that Case 3 does generally outperform Case
2 for these parameters.

Case 3 requires perfect knowledge of the incident clutter
angles. It is meant to represent the best case situation where
surface scattering can be predicted by an accurate digital
elevation model, which is not always the case because the
clutter can come from englacial targets and/or the digital
elevation model may not be sufficiently accurate. In these
situations, we would estimate the clutter angle from the data
using direction of arrival estimation. We assume that the
performance of the GSC algorithm would drop in this case so
the results presented represent an upper bound on performance.

III. RESULTS AND DISCUSSION

To better understand the performance limits, we first com-
pute the minimum and maximum SNR that we expect to
achieve. Given the noise variance of 0.1 and the clutter
and desired unity variance, the SNR for a single sensor is
SNR = 1/(0.1 + 1) = −0.4 dB. If the weights of the filter
are fully randomized and independent to the sources and noise,
then we expect the array gain to be 0 dB and the array output
to have the same SNR as for a single channel: ∼ −0.4 dB. The
maximum SNR with perfect noise suppression is P × 1/0.1.
For P = 8, this is 19 dB, and for P = 3, this is 14.8 dB. Quasi-
perfect noise suppression is possible when the clutter and
desired sources have low enough correlation. This is usually
the case for ice sounding radar because of the wide angular
separation between the clutter and the desired nadir return.

The baseline periodogram results are shown in Figure 5.
Here we see some expected trends. For P = 8, the peak SNR
of 18 dB is obtained for the zero measured offset and zero



Fig. 4: Example GSC array factor for measured and actual
offsets. The inset shows measured and actual positions for the
P = 8 sensor array used in this simulation run.

(a) SNR for P = 8 sensors.

(b) SNR for P = 3 sensors.
Fig. 5: Periodogram results for a) P = 8 and b) P = 3 sensors.

Fig. 6: Chebyshev and boxcar comparison with P = 8 sensors.

(a) SNR for P=8 sensors and M=20 snapshots.

(b) SNR for P=8 sensors and M=100 snapshots.

(c) SNR for P=8 sensors and M=1000 snapshots.
Fig. 7: MVDR SNR for varying numbers of snapshots. Note
the lack of dependence on the measurement offset.

unknown offset case. This is slightly less than 19 dB because
the windowing introduces a slight mismatch with the desired
signal and the noise is not as effectively averaged down as with
a boxcar window. However, the Chebyshev window improves
the clutter suppression over the boxcar window. The simulation
is repeated with a boxcar window and the difference in SNR
is plotted, as shown in Figure 6. The difference in Figure 6
is about 0.5 dB in favor of the Chebyshev window for low
levels of offset. However, boxcar is favored by 0.5 dB for
any offsets above 15%λ. For the P = 3 case, the clutter falls
within the mainlobe (not shown) and the peak SNR is less
than 12 dB. For larger clutter angles that fall outside the main
lobe, the performance approaches the maximum as with P =
8. Finally, with highly randomized measurement offsets, the
difference in windowing is negligible with the boxcar slightly
outperforming the Chebyshev due to the improved variance
reduction of uniform weights. For P = 8 the SNR plateaus
at 9 dB and 5 dB for P = 3, which matches the expected
averaging power of the array of 10log10P . In all cases, the
SNR drops off uniformly and rapidly with unknown offset
errors.



(a) P = 8

(b) P = 3

Fig. 8: MVDR with analytically generated DCM for a) P = 8
sensors and b) P = 3 sensors.

Figure 7 shows the MVDR results for three different
snapshots scenarios and P = 8 sensors. We find that the
performance of the algorithm does not depend on the measured
offset. This is convenient as the measured offsets tend to
be substantially larger than the unknown offsets; they are
also likely to be a significant fraction of the wavelength for
typical ice sounding frequencies [17]. The same pattern was
found when the simulations were repeated with two clutter
sources. As with the periodogram, SNR drops uniformly with
increasing unknown offsets and this was also observed with
two clutter sources.

While lack of dependence on measured offsets is useful, the
MVDR algorithm performs significantly worse than the non-
adaptive periodogram for M = 20 snapshots. This is due to the
well-known self-nulling effect (e.g. [10]). MVDR has similar
performance around M = 100 snapshots, but is only better for
larger random measured offsets. Therefore, traditional MVDR
has low performance over the range of snapshots that are
likely to be available for ice sounding. Even with M = 1000
snapshots, the periodogram outperforms MVDR by 1 dB for
zero offsets. However, MVDR performance is significantly
better for non-zero measured offsets. This suggests that an
improved DCM, MVDR could offer substantial gains over the
periodogram method.

Self-nulling becomes worse as the desired signal power
increases. For our low snapshot case of M = 20, we find
that the output SNR does not change substantially for desired
source powers ranging from 0.1 to 100: all provide an SNR
between 4-5 dB for zero unknown offsets with performance
independent of the measured offset. As snapshots increase, the
resultant SNR becomes increasingly dependent on the relative

(a) M=20

(b) M=100

(c) M=1000
Fig. 9: SNR Difference in MVDR SNR performance between
P = 8 sensors and P = 3 sensors.

signal power as one expects. We show the limiting case of
this in Figure 8. Here, the DCM is generated analytically with
perfect knowledge of the noise, source statistics, and their
directions of arrival. The offsets are still treated as before.
In this figure, the peak SNR is 19 dB for P = 8 and 14.8 dB
for P = 3 – in other words, the expected ideal performance.

Another property of self-nulling is that the number of
snapshots required to reduce its impact grows nonlinearly with
increases in the number of sensors. This leads to an interesting
phenomenon where smaller sensor arrays may outperform
larger sensor arrays if we use the entire arrays coherently.
Figure 9 compares the performance of the P = 3 MVDR result
to the P = 8 result. For the number of snapshots typically
available to ice sounding, the three sensor array outperforms
the eight sensor array.

Another interesting trend in Figure 9 is that the performance
of the P = 3 sensor MVDR is slightly dependent on measured
offset. We attribute this to the increased probability that
the clutter and source will be highly correlated when the
positions are randomized;the array is small and unfortunate
combinations of highly correlated phase shifts will be more



(a) M = 20, P = 8 (b) M = 20, P = 3

(c) M = 100, P = 8 (d) M = 100, P = 3

(e) M = 1000, P = 8 (f) M = 1000, P = 3

Fig. 10: SNR Difference between the GSC and MVDR algorithms for P = 8 and P = 3 sensors.

likely.

The results of the GSC compared with the corresponding
MVDR results are shown in Figure 10. Here the SNR per-
formance of MVDR is subtracted from the GSC SNR. Even
with perfect knowledge of the direction of arrival, the benefits
of the generalized sidelobe canceller are very small (around 1
dB) for P = 8 and are only apparent for low unknown offsets.
This was the case for two clutter sources as well.

The situation is better and worse for the smaller P = 3
sensor array. For low snapshots, the null placement gains
2-3 dB of SNR. As snapshots increase, this performance
boost drops and eventually becomes negative for M = 1000
snapshots and large measured offsets. The performance of the
GSC also drops with increased measured offsets for P = 3
sensors. We attribute this to the same reason as before: the
increased probability of correlation. For the case of two clutter
sources, the GSC performance drops significantly for large
measured offsets; we assume the cause of this is due to the over
constrained problem and the probability of high correlation
with the desired source.

IV. CONCLUSION

We have evaluated how known and unknown position errors
affect beamforming with the periodogram and two variations
of the MVDR algorithm. These results can be used to evaluate
system requirements and specifications for future multipass or
swarm/constellation data collection scenarios. In both MVDR
(somtimes called MPDR) variations, the DCM used to deter-
mine the beamforming weights includes both the desired and
interfering signals [10]. The signal model includes a desired
ice bottom source from nadir that is broadside to the array and
one or two surface clutter sources.

The primary conclusion is that known measured offsets can
be tolerated very well by MVDR as long as the number
of sensors is sufficiently higher than the number of clutter
sources; however, MVDR requires a large number of snapshots
relative to the number of sensors. This result makes sense
because the MVDR array gain is known to be a function
only of the correlation between the desired signal and the
interference [10]. For a small number of sensors with offsets
between 0%λ to 50%λ, SNR performance can improve by up
to 3 dB due the increased probability of higher correlation.
Above 50%λ, the phases are already fully randomized so that



increased flight path errors do not affect the SNR. For a large
number of sensors, the average correlation does not change
with respect to %λ, and there is negligible dependence on
flight path error. However, a large number of sensors requires
more snapshots to obtain good performance to avoid self-
nulling; the P = 3 sensor array’s MVDR SNR is higher than
the P = 8 sensor array for typical numbers of snapshots used
in ice sounding despite having much fewer sensors.

Since snapshots are limited in radar applications and seem
to be the primary barrier for MVDR to operate in the presence
of flight path variations, we recommend future efforts focus on
evaluating how position offsets affect robust adaptive beam-
forming methods (for example [18]) that handle poor DCM
estimates or improve DCM estimation. Some methods (such
as forward-backward averaging and spatial smoothing with
subarrays) are generally not applicable to these randomized
array geometries. Since the surface clutter geometry may be
well known, applications of fixed or estimated nulls should
also be considered [3].

The second conclusion is that unknown offsets are not
mitigated by any of the algorithms investigated, and there is
very little discrepancy between the scenarios tested so that
each is equally poor. This result illustrates the importance
of accurate relative position knowledge for array processing.
If a known single target dominates the response, this could
be used to calculate the relative positions and provide a
correction for the nadir steering vector. A smooth ice surface
return estimated from an accurate digital elevation model is a
potential candidate.
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