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SUMMARY

Inverse problems play a central role in data analysis across the fields of science. Many tech-
niques and algorithms provide parameter estimation including the best-fitting model and the
parameters statistics. Here, we concern ourselves with the robustness of parameter estima-
tion under constraints, with the focus on assimilation of noisy data with potential outliers,
a situation all too familiar in Earth science, particularly in analysis of remote-sensing data.
We assume a linear, or linearized, forward model relating the model parameters to multiple
data sets with a priori unknown uncertainties that are left to be characterized. This is relevant
for global navigation satellite system and synthetic aperture radar data that involve intricate
processing for which uncertainty estimation is not available. The model is constrained by ad-
ditional equalities and inequalities resulting from the physics of the problem, but the weights
of equalities are unknown. We formulate the problem from a Bayesian perspective with non-
informative priors. The posterior distribution of the model parameters, weights and outliers
conditioned on the observations are then inferred via Gibbs sampling. We demonstrate the
practical utility of the method based on a set of challenging inverse problems with both syn-
thetic and real space-geodetic data associated with earthquakes and nuclear explosions. We
provide the associated computer codes and expect the approach to be of practical interest for
a wide range of applications.
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outliers, which make the inversion underdetermined and unstable

I INTRODUCTION without additional regularization ('Yabuki & Matsu’Ura 1992; Fuka-

Data assimilation and model optimization are central to many fields
of scientific inquiry (Sarvas 1987; Wunsch 1996; Bertero & Boc-
cacci 1998; Bai ef al. 2012; Halmos 2012; Santilli 2013; Ito & Jin
2015). In particular, inverse theory has proved an invaluable frame-
work to unravel Earth’s physical properties (Tarantola & Valette
1982; Parker 1994; Tarantola 2005; Aster et al. 2012). For example,
the modelling of Earth’s internal deformation from remote sensing
has been cast as an inverse problem (Harris & Segall 1987; Segall
& Matthews 1988, 1997; Fialko et al. 2001; Johanson et al. 2006;
Rolandone et al. 2008; Barbot et al. 2008, 2013; Atzori et al. 2009;
Lorito et al. 2011; Moore et al. 2017; Marchandon et al. 2018;
Wang et al. 2018; Silverii et al. 2019; Tang et al. 2019). Despite
the superficial simplicity of the linear, or linearized, forward model,
inversion of geophysical data is often complicated by the sparsity
of observations, the weak sensitivity of data to model parameters,
the contamination of white and coloured noise and the presence of

hata & Wright 2008; Nocquet 2018). Markov chain Monte Carlo
(MCMC) methods and Bayes theory have allowed us to avoid phys-
ically unjustified regularization (Simons ef al. 2011; Minson et al.
2013, 2014; Bletery et al. 2016; Daout et al. 2016b,a; Gombert
et al. 2018; Amey et al. 2018; Bagnardi & Hooper 2018). Other
approaches have used sparsity (Evans & Meade 2012) or model
discretization (Barnhart & Lohman 2010; Wang et al. 2016a) as a
form of regularization.

Although MCMC sampling provides the means to investigate
various point estimates (e.g. mean, median, mode and variance)
and incorporate non-Gaussian statistics, optimization of model pa-
rameters is still widely used, perhaps owing to the computational
convenience. Recent developments include the estimation of hyper-
parameters (Yabuki & Matsu’Ura 1992; Fukahata & Wright 2008),
assimilation of heterogeneous data sets (Funning ef al. 2014; Bletery
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et al. 2014, 2016; Jiang & Simons 2016; Gombert et al. 2018), er-
rors in model predictions (Amiri-Simkooei & Jazaeri 2013; Duputel
etal. 2014,2015; Bletery et al. 2016; Gombert et al. 2017), errors in
regularization (Wang et al. 2016a), optimization under positivity or
bounds constraints (Nocquet 2018) and detection of outliers (Baarda
1968; Proszynski 1997; Snow & Schaffrin 2003; Rangelova et al.
2009; Lehmann 2013; Amiri-Simkooei & Jazaeri 2013; Lehmann
& Losler 2016; Wadehn ef al. 2016; Lehmann & Vof3-B6hme 2017;
Milliner et al. 2018). The motivation behind this work is to com-
bine some of the above considerations in a single, self-consistent
framework.

With the advance of space-borne geodesy (Tronin 2010; Di
Traglia et al. 2014; Blewitt 2015; Crosetto et al. 2016), multiple
independent data sets may constrain a single phenomenon. These
observations may be gathered with different instruments varying
in sensitivity and resolution. In many practical cases of interest,
the relative uncertainties among observations obtained through a
consistent set of procedures and physical assumptions are well de-
scribed. Their absolute uncertainties may be poorly documented,
however, due to complex data processing steps and epistemic un-
certainties. Meanwhile, the assimilation of large data sets may be
complicated by the presence of outliers (Davies & Blewitt 2000;
Nocquet & Calais 2004), which can arise because of gross process-
ing errors, but more often because of the contribution of natural
processes that are not included in the physical model, or poorly
approximated.

To improve the robustness of inverse models, it is sometimes
useful to incorporate additional constraints from the physics of the
problem (Stark & Parker 1995; Schafer et al. 2003; Nocquet 2018).
Indeed, Earth’s response is bounded, and so are its spatial variations.
For example, fault slip accommodates plate tectonics. Therefore,
slip must be broadly aligned with the long-term motion of a fault.
The small variations of stress drops over a wide range of earth-
quake magnitudes imply reasonable bounds on stress change and
by extension, slip gradients. These constraints may be implemented
by penalization of slip in directions orthogonal to plate motion, by
imposing hard bounds, or both. But as the amount of oblique slip
and stress drop are unknown a priori, the inversion method must
estimate the optimal weight of these constraints.

With these considerations in mind, we describe a novel approach
to linear inverse problems that aims to provide a robust estimate of
model parameters under linear equality and inequality constraints
based on a robust characterization of data uncertainty for multiple
data sets, inference of the posterior distribution of the hyperparame-
ters (i.e. free of tuning after model design) and outliers detection. In
the next sections, we describe an algorithm based on the Bayesian
perspective and Gibbs sampling that provides this information. The
approach is based on MCMC methods, which is potentially com-
putationally intensive. However, the assumption of a linear forward
model allows a particularly efficient implementation of the ran-
dom walk that does not require Metropolis sampling. Therefore, the
proposed approach incorporates the flexibility of MCMC methods
while converging faster to the true posterior than with Metropolis
sampling.

In Section 2, we present a Bayesian model that defines the rela-
tionships between the relevant random variables. In Section 3, we
discuss a post-processing algorithm that provides the modes of the
posterior probability density of the model parameters. In Section 4,
we document the performance and limitations of the proposed ap-
proach with synthetic tests that reproduce typical inversion settings
based on space geodetic data. In Section 5, we provide examples of
inversion of global positioning system (GPS) and synthetic aperture

radar (SAR) data for fault slip and distributed internal strain that
illustrate the benefits and shortcomings of the method.

2 BAYESIAN FORMULATION OF THE
FORWARD MODEL

We start by considering D sets of observations d;, i = 1, ..., D,
that were obtained conditionally independently of each other. For
example, d| may represent the displacements within a given GPS
network and d, the line-of-sight displacements from SAR interfer-
ometry (InSAR). Suppose that for each of these sets of observations,
the forward model can be expressed in the linear form

d; =Gim+¢€ +39;, (H

where d; is a Ny, x 1 vector of observations, m is a M x 1 vector
of model parameters, both related through the forward-model ma-
trix G; of dimension Ny, x M, €; denotes measurement noise, and
8; denotes the outliers. The level of measurement noise for these
data sets may be different and is assumed to follow a Gaussian
distribution

€; NN(()? ()"d,'wi)il) ) (2)

where A4 W; is the inverse covariance matrix (i.e., the precision
matrix) representing the overall noise level of the measurements,
W, is a given weight matrix describing the relative uncertainties
within the data set d; at V; different locations. In the simplest case,
we have W; = L. First, we consider the case whereby no a priori
information on the noise level A, of a data set is available, except
that it is positive. Under this scenario, we consider a non-informative
Jeffrey’s prior for A4 (Jeffreys 1939)

P ()‘-d,) & )LL ’ (3)
d;

which is scale invariant (Figueiredo & Nowak 2001; Berger 2013)
and free of hyperparameters. Since the prior is non-informative, the
resulting posterior distribution will reflect the information about the
variance brought by the data (e.g. Carlin & Louis 2008; Liang et al.
2011). In a second case, the inverse covariance matrix A, W; may be
known, for example, by estimating the amplitude and spatial struc-
ture of atmospheric noise in InSAR data (Agram & Simons 2015;
Jolivet et al. 2015; Elliott et al. 2016) or the temporal correlation of
GPS time-series (Langbein 2008). In this case, we fix A4, = 1 and
set W; to the provided value. When considering multiple data sets,
some may have a properly estimated noise structure, others not, and
both cases may be considered simultaneously.

In addition to measurement noise, we consider possible outliers,
whose values are larger than the noise level. To remain meaningful,
the outliers must be relatively rare, that is §; should be a sparse vector
with most entries zero. If the components of §; are independent
identically distributed random variables, each entry §;; of the outlier
vector may follow a zero-mean normal distribution with precision
vij, following:

1
P@ijlyi;) o JVijexp ( - 5)/1",-31','2> . 4)

The outlier precision y; is also a random variable (Fig. 1), and
as we have no a priori knowledge on its value, we assume a non-
informative prior

) o — )
-

1

0202 UYoIB\ €0 UO NPa-asn@1oqieds Aq 8Ly /9G/yE€/L/LZzorIsqe-ajoieB/woo dno-oiwepese//:sdyy Wwoly papeojumoq



336 H. Yu etal.

Constraints Model
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Constraint qualifier Data

Figure 1. Directed graph (i.e. Bayesian network) corresponding to the pro-
posed Bayesian model. The nodes denote the random variables and the edges
characterize the conditional dependence among them. A random variable
only has conditional dependence with its parents, children and the coparents
of its children. The Markov chain Monte Carlo (MCMC) method described
in Section 3 provides distributions of all these random variables.

Considering both y;; and §;; as random variables is appropriate
to promote sparsity in §;; because of the following considerations.
Imagine that the outlier precision follows a conjugate Gamma dis-
tribution

p(vi;) = Gamma(y; ;; ao, bo) (6)
=, exp—ba) )
F(a()) ij 0rij)»

where I'(ag) denotes a complete gamma function. A marginal dis-
tribution for each outlier could then be obtained by integrating out
Vij> as follows

pGi)) = fy pGilvi )p(vi ) dyi; ®
1
) ap+ 5
T(ap + =) 1
_ 3 , )
Ta)v2mh | 8,7
1+
2b,

which corresponds to a Student’s z-distribution. On the one hand,
the Student’s #-distribution will shrink most of §;; to zero as it
has a very high peak at zero. On the other hand, the long tail of the
distribution allows some elements §;; to be distant from zero. Hence,
the resulting vector §; will be sparse. Actually, in the particular case
ay = by = 0, the distribution of the precision y;; becomes eq. (5).
The corresponding marginal distribution for each outlier §;; after
integrating out y,;; becomes

P x ——, (10)
18 1

that is, the limiting case of the Student’s #-distribution (9) for ay =

by = 0. This distribution also promotes sparsity, and is commonly

used in the framework of sparse Bayesian learning (Figueiredo &

Nowak 2001; Tipping 2001; Babacan et al. 2012; Yu & Dauwels

2015; Wang et al. 2016b).

We now turn our attention to different constraints on the model
parameters. We consider both equality and inequality constraints.
For convenience, we consider a set of L statistically independent
equality constraints, taking the form

Kim—k =0, (11

where i = 1, ..., L. From a Bayesian perspective, we can regard k;
as the pseudo observations from the forward model

k=Km+§&;, (12)
where the noise follows a normal distribution
£ ~N(0,(D7") (13)

and Xy, is a parameter that controls the strength of the constraint.
Hence, the distribution of k; given m and A;, can be written as

pkilmi, ay) = N (ki;Kim, (1))
N,

i

2 exp [ - %xk,.(Kim — k) (Kym — k,-)] , (14)

i

XAy

where N, denotes the length of vector k;. To infer the distribution
of A, from the data, we also impose a non-informative Jeffrey’s
prior

1
p()\'ki) = I ’ (15)

similar to (3). The inequality constraints can be expressed as
Am>a, (16)

where A is a N, x M matrix. Depending on the definition of A,
the inequality can represent positivity constraints, bounds, or other
domain boundaries on the model parameters.

The directed graphical model corresponding to the proposed
Bayesian model is shown in Fig. 1. The overall Bayesian model
can be factorized as

p(d, k,m, 8, g, A, ¥)
o p(dim, 8, Ly)p(81y)p(Aa) p(y) p(klm, Xi) p(Ay) , (17)

where we have assumed p(m) o< 1 over the domain defined by
Am > a. In other words, the prior p(m) follows a uniform distri-
bution defined on the domain of m, so it is non-informative. Alter-
natively, we can regard one of the equality constraints p(k;|m, Ay,)
as the prior of m, that is, p(m|X;,) o p(k;|m, Xy,), since k; is given
and fixed, and the remaining ones p(k;|m, ;) as the pseudo ob-
servations (e.g. Rue & Held 2005; Yu et al. 2014; Yu & Dauwels
2016). Accordingly, we can factorize the Bayesian model as

pld . k,m, 8, g, i, y)
= p(d|m, 8, ,)p8|y)p(Aa)p(¥)

xp(m|re) [ [ p(kjlm. 1e) p(hi) - (18)
J#i
Since Nk, is typically smaller than M, the resulting prior p(m|iy,)
may be rank-deficient. In practice, this does not cause any prob-
lems (e.g. Rue & Held 2005; Yu et al. 2014; Yu & Dauwels 2016).
By application of Bayes’ theorem, the posterior distributions of un-
known parameters resulting from the formulas of eqs (17) and (18)
are strictly equivalent.
Our objective is to infer the posterior distribution

p(m,ld,lk,(s, ylds k) (19)

and further truncate it according to the inequality constraint Am >
a. As there is no closed-form expression of the posterior distribution
with or without truncation, we draw samples from the distribution
using the Gibbs sampling method, which is described in the next
section.
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Algorithm 1 Gibbs Sampling

Input: Initial value x© = {x\” x{, . x7}, the conditional

probability of x;, the number of iterations /.
Output: A collection of x providing the marginal distribution of
Xi.
forkc =1,2,....,1 do
for j =1,2,.... M do
- Sample x;-'(
end for
end for

) (k) (x) (k—1)
~ p(x;lx; e X X e

(k=1)
; Xy )

3 BAYESIAN INFERENCE OF THE
INVERSE PROBLEM WITH GIBBS
SAMPLING

In this section, we describe an MCMC method to draw samples
from the multivariate probability distribution of eq. (17) with the
graphical model of Fig. 1. For numerical efficiency, we apply the
Gibbs sampling method (Raftery & Lewis 1991; Casella & George
1992), which is typically more efficient than Metropolis—Hasting
sampling, as its mixing rate is higher and fewer samples are required
to cover the same parameter space. Gibbs sampling draws samples
from a conditional probability distribution. The linearity of the
forward model allows us to derive this truncated distribution in
closed form, resulting in a minimal computational burden.

In the following subsection, we describe our overall method to
draw samples from the truncated posterior distribution (19). Next,
we describe how to identify point estimates and how to describe
the marginal and the conditional distributions of m from the Gibbs
samples.

3.1 Sampling the parameter space

Let us start with a general description of Gibbs sampling. Consider
a multivariate distribution

X)) (20)

and suppose that we have found a proper initial value of x© =
{x{o), xéo) s ey x](g) }. Gibbs sampling proceeds by recursively draw-
ing a new sample for each variable x; in every iteration from the
conditional distribution of this variable x; conditioned on the re-
maining variables x_;, where the subscript —; denotes all indices
in {1, ..., M} except j. Specifically in iteration «, the conditional
distribution can be expressed as:

p(x) = plxi, xa, ...

plxjlx_;) = p(xj|xi"), . x;i)l,x;':ll), e x Yy (21)
This procedure is then repeated until there are enough samples to
cover the entire parameter space, as summarized in Algorithm 1
in pseudo-code. The distribution of the Gibbs samples converges
to the true joint posterior when it becomes stationary. In practice,
since consecutive Gibbs samples are correlated, a thinning process
is required to obtain independent samples by retaining every nth
sample instead of all samples (Casella & George 1992). Moreover,
samples from the beginning of the Markov chain (the burn-in pe-
riod) are biased towards the initial value and are usually discarded
(Raftery & Lewis 1991).

We now apply the Gibbs sampling approach to draw samples
from the posterior (19) with or without the inequality constraints
Am > a. To apply the concepts of eqs (20) and (21), we consider
the ensemble of random variables x = {m, A4, As, 8, y}. Accord-
ingly, we sequentially draw samples of m, A,, Ay, 8, and y from

the corresponding conditional distributions, which are described in
closed-form in the following paragraphs.

First, we consider the model parameters m. If there is no in-
equality constraint, the conditional distribution of m is a Gaussian
distribution, such that

p(mAg, A, 8, y.d. k)= p(m|hg, Ay, 8. d. k)

1 D L
o exp [ - EmT<ZAd,GiTW,-Gi + Z)»k,KiTK[)m
i=1

i—1
D L

+mr<z)»d,GiTWf(dt —3i)+2)~k,-KiTki>i| , (22)
i=1 i=1

where we have used that m is conditionally independent of y given
d (Fig. 1). The above Gaussian distribution can be parametrized in
the information form (Yu et al. 2014)

p(mirg, A, 8, d k) = N(m; 3 h, J7) (23)

where the precision matrix J and the potential vector & can be
written as

J=3"4GIW,G + Y7 KK (24)
and
h=Y" 2GI'Wid, —8)+ 3 MKk . (25)

The corresponding mean and covariance of the above Gaussian
distribution can be computed as g = J~'h and ¥ = J ! as in (23).
The resulting density function can be expressed as:

p(m|rg, Ay, 8, d, k)
X exp i — %(m —;L)TZ’1<m — [L):|
o oxp| = 3 (m—378) 3(m— 30

1 1
o« exp| — EmTJm +m"h — EhTJ"lh]

1
x exp| — EmTJm + mTh:| , (26)

where the constant term in the exponential has been absorbed by use
of the proportionality sign. In this case, we can sample the entire
vector m as one block directly from the above Gaussian distribution
by using the following transform:

m=L"T(e+L"h), (27)

where e ~ N(0,1) is a random variable that follows a standard
multivariate normal distribution, L is the Cholesky decomposition
of the precision matrix J, that is, J = LL”, and L~7 denotes the
transpose of the inverse of L.

If some inequality constraints Am > a are present, we instead
sample m from a multivariate truncated Gaussian distribution. To
do so, we consider the random variable

e=L"m—L"h. (28)

that corresponds to the inverse transform used in eq. (27). With
this definition, the elements of e are decoupled, that is, e follows
the truncated normal distribution A/(0, 1) following the transformed
inequality constraints

Ae>a, 29

where
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Algorithm 2 Draw one Gibbs sample of m from the Truncated
Gaussian Distribution
Input: The multivariate Gaussian distribution A'(J~'4, J~1), the
inequality constraints Am > a, and m*~" satisfying the con-
straints.
Output: m" satisfying the constraints.
Decouple the correlation between {m, - - - , m p} by projecting it
as e = L"m — L™"h, where L is the Cholesky decomposition of
Jand so e ~ N (0, 1)
Transform A and a accordingly as A =AL” and @ = a —
AL 'h
for j=1,..., M do
- Obtain the upper bound u ; and lower bound /; from the
set of constraints
S={e;: A;,jmj >a— A;ﬁ_je_j},
where A. ; denotes the j-th column in A and A, _;
denotes the remaining columns.
- Compute the value of cumulative distribution function
(CDF) of both the upper and lower bound:
uS = o(u;0, 1),
lfz = P(/;;0, 1),
where ®(x; 0, 1) denotes the CDF of a univariate standard
normal distribution.
- Draw samples from p(e;|e_;) with constraints /; < z; < u;
using inverse transform sampling:
- Draw a sample from the standard uniform distribution,

ie., v~ U(0,1).
-e; = OIS + v —15);0,1).
end for

Compute m* =L~ T(e+Lh)

A =AL"T, (30)
a=a—AL""h. (31)

Next, we draw a sample of e following the Gibbs sampling scheme.
Specifically, the conditional distribution of one variable e; condi-
tioned on the remaining variables e_; reduces to a univariate stan-
dard normal distribution N/(0, 1) truncated by bounds [/, u;]. The
bounds on ¢; that satisfy /; < e; < u; are derived from the inequality
Ae > @ given the values of e_;. To draw a sample from this univari-
ate truncated normal distribution, we follow the inverse transform
sampling approach (Geweke 1991). Specifically, we first evaluate
the value of the cumulative distribution function (CDF) /{ and u{
corresponding to the bounds /; and u; on e;. We then draw a uni-
formly distributed sample in the interval [le, u]C.], and convert this
sample back to the Gaussian domain by applying the inverse CDF.
Finally, we can obtain a sample of m from the sample e via eq. (27).
For clarity, the resulting modified Gibbs sampling algorithm is listed
in Algorithm 2.

Given the samples of m, the conditional distribution of the re-
maining unknown parameters can find closed-form expressions fol-
lowing the relationships illustrated in Fig. 1. The conditional prob-
ability density of the outliers is described by

p(Gilm, g, i, vy, d, k)= p(8;lm, rg, y;,d;)
= N ([24, Wi + diag(yn)] '3, Wild; — Gym),

[ Wi + diag(ri)] ') (32)

Algorithm 3 Bayesian Inference via Gibbs Sampling to Solve the
Inverse Problem with Outliers, Equality and Inequality Constraints

Input: the data and the forward model characterized by d;, G;,
and W; fori = 1, ..., D, the equality constraints characterized by
K; and k; fori = 1 : L, and the inequality constraints character-
ized by A and a.
Output: Gibbs samples of m, A4, A, 8, and y.
Initialize m©®, 13, 1", §©, and y©.
fore =1,2,--- do
if There are no equality constraints then
Sample the entire vector m* ~ N'(J~'h, J7!),where J
and & are defined in eqs (24) and (25), respectively.
else
Sample m™) from the truncated Gaussian distribution
using Algorithm 2.
end if
fori =1,..,Ddo
Sample 6}“ ~ /\/(Jgilh(gl., ng_'), where
Js, = 25 "W, + diag(y "),
hs, =35 "Wi(d; — Gm®).
for j =1,..., N, do
Sample yl.(j” ~ Gamma(0.5, 83.()2/2).
end for
Sample Ay ~ Gamma(Ny, /2. (d; — G;m® — §)7
Wi(d; — G;m® — §))2).
end for
fori =1,...,L do
Sample )\X) ~ Gamma(Ny, /2, (k; — K;m*)T
(ki — K;m®))/2).
end for
end for

where the operator diag(x) places the elements of the vector x
along a diagonal matrix. Following eqs (4) and (5), the conditional
probability density for the outlier precision follows:

p(yijlmv A’d? A'/\'7 65 d, k) = p(yijl(sij)
18
= Gamma( =, — | . (33)
272
The conditional probability density of the data weights is given by

p(hglm, X, 8,y,d, k)= p(hg|m,§;, d;)

Ny (d; — Gim — 8;)"Wi(d; — Gim — §;)
= Gamma 7 7 .

(34

Finally, the weights on the equality constraints have the probability
density

P lm, Xq, 8,y,d, k) = p(h;|m, k;)

= Gamma(%, (ki — Kym)" (ki — K,~m)> . (35)

2

We then sample from the above conditional distributions recursively
until the distribution of the Gibbs samples becomes stationary and
until there is a sufficient number of samples to cover the entire pa-
rameter space. The overall Gibbs sampling algorithm is summarized
in Algorithm 3. We use standard numerical functions to generate
random numbers following Gaussian or Gamma distributions.
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The resulting computational complexity of the proposed algo-
rithm per iteration scales as

C=0 (M + M (N,+ Ny + No)+ MNy) (36)

where M is the number of model parameters, N, is the number
of inequality constraints, N; = Zi | N4, is the total number of
measurements, Np = Y1, N, and N; = S5 N, is the total
number of equality constraints. The first term O(M?) derives from
the Cholesky decomposition. The terms O(M?*N,) and O(MN2)
arise from the matrix product G/ W;G; in (24). Note that O(M N,2)
reduces to O(M N;) when W; is a diagonal matrix. Similarly, the
term O(M?N;) results from the matrix product K'K; in (24). Fi-
nally, the last term in (36) stems from the operations on the inequal-
ity constraints in Algorithm 2. In the case without the inequality
constraints, N, = 0 and this term can be removed.

3.2 Central tendency description: mean, median and mode

Evaluating the moments of the Gibbs samples, for example, the
mean and median, is straightforward. The mode of the posterior
distribution is of particular interest in regard to explaining the data.
Specifically, we seek to estimate the mode of the marginal of the
model parameters, taking into account the range of possible val-
ues of the hyperparameters and their associated uncertainties. Still
referring to Fig. 1, the corresponding marginal distribution can be
written

plmld, k) =fp(m,xd,xk,s,y|d, k) dhy dy d8 dy

= /p(m|Xd, A, 8, y.d, k)
Py, A, 8, yld, k)dry dr, dSdy | (37)

which is a mixture of Gaussian distributions. To estimate the mode
of (37), we utilize the annealed mean shift method (Shen ez al. 2007),
a particularly suited algorithm to find the mode of the empirical
density from Gibbs samples.

As a preliminary, we introduce the kernel density and the mean
shift algorithm. Take the model parameters m as an example. Given
N samples of the model parameters m'""), the multivariate kernel
density can be expressed as (Silverman 1981)

N
pm) = % Y Ku(m—m®), (38)
i 1
det(H) 2 & -= .
= ’C H 2 m_m(l) 5 (39)
2y (a2 - )

where /C is a kernel function that is non-negative, and H is the band-
width matrix that is positive definite. Iy is a scaled kernel defined
as Ky(m) = det(H)*% KMH~ 2 m). One commonly used kernel is the
Gaussian kernel, that is, K(m) = ¢(m), where ¢(m) is the proba-
bility density function of a M-variate standard normal distribution
with mean 0 and covariance I. In practice, one typically assumes
that the bandwidth matrix is isotropic, that is, H = h*I, where 4 is
called the bandwidth (Silverman 1981). Under these assumptions,
the kernel density can be equivalently written as (Silverman 1981)

Som) 1 XN:K<Hm—m(i) 2) o)
pim) = — —_— .
Nh h

The mean shift algorithm seeks the mode of p(m) by setting the
gradient V,, p(m) = 0 in every iteration, resulting in the following

update rule for m (Shen et al. 2007)

{t} _ g
sV g(‘ o ‘2>m<i)
{r+1}
me = N m — m® 2 “h)
=ho(]"" )
h
where ¢ denotes the iteration number, and G(-) = —K'(+)

Since the mean shift is a gradient-based algorithm, it is sensitive
to local maxima. To mitigate the problem, we resort to annealed
mean shift (Shen et al. 2007). Specifically, we initiate the distribu-
tion by a kernel density of sufficiently large bandwidth, and apply
mean shift to find the mode of the kernel density function. We then
slowly decrease the bandwidth, and for each bandwidth, we further
maximize the kernel density via mean shift starting from the previ-
ous mode, until the mode does not change within a threshold. Note
that setting the bandwidth of the kernel to be large is equivalent to
smoothing the true density of m, thus removing the local maxima.
It has been observed that the oversmoothed density function with a
sufficiently large bandwidth is unimodal (Shen ez al. 2007). Using
a continuation principle, the influence of the global peak in the true
density function is introduced gradually when reducing the band-
width. In this way, the algorithm is more likely to attain the global
maximum.

3.3 Conditional distribution of the model parameters

After obtaining the mode of A,, A; and §, denoted ):d, ):k and 3,
respectively, we can use the Gaussian posterior conditional distri-
bution

0(m) = p(m|rg, Ay, 8, d. k), (42)

given by eq. (23) to describe the behaviour of the model parameters
m. Equivalently, we follow the empirical Bayes framework (Casella
1985), in which the hyper parameters A,, A4 and the outliers § are
set to their most probable values instead of being integrated out. The
resulting conditional posterior distribution (42) provides a practical
way to characterize m, as it is simply defined by the mean and the
covariance.

In the case where the inequality constraint Am > a are present,
the distribution (42) will be a truncated Gaussian. The truncated
Gaussian distribution is parametrized by three parameters: the mean
and covariance of the original Gaussian distribution that is not trun-
cated, and the truncation. In our case, the truncation is given by
Am > a and the mean and covariance of the untruncated Gaussian
distribution is the same with those in eq. (23).

3.4 Posterior data uncertainty

The posterior data uncertainty can be estimated given the Bayesian
framework of Fig. 1 following two interpretations of the nature of
outliers. From a first standpoint, we assume that the outliers have
been modelled out, that is, §; represents a forward model. In this
case, we can write the conditional probability distribution of the
observed data d; given the model parameters, noise, and outliers,
that is, the elements that collectively form the forward model, as
pdilm, g, 8;) =N (d;;Gim + §;, (L W;) ™)

i

1
X )‘d,vz exp|:— E)Ldi(d,' — G,-m — Sj)TW,‘(d,‘ — G,-m — 6,)i|

(43)
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Figure 2. Verification of the inversion technique with synthetic data: inferring the distribution of subsurface strain from space-borne geodesy. (a) A surface
velocity field (orange vectors) is calculated along a rectilinear array (black triangles) assuming internal deformation (strain-rate) within the Earth’s interior
corresponding to viscoelastic flow in the Indian lower crust below Nepal. (b) Inverted distribution of strain-rate (background colours) and corresponding
forward model for surface displacements (red vectors) for a data set with white noise without outlier detection. (¢) Inverted strain-rate and forward model for
a noisy data set with outlier detection. (d) Inverted strain-rate and forward model for a data set with outliers (brown vectors), but without outlier detection. In
both d and e, large outliers are added to 18 different stations, about 5 per cent of the data set, representing 4.2 per cent of the data variance. The colour of the

volume elements indicates the magnitude of the deviatoric strain tensor.

The above function p(d;|m, A4, 8;) is the distribution of d;, but
also the likelihood function of m.

From another perspective, the outliers represent a gross data error.
Following eq. (1), as the noise €; and the outliers §; are independent,
the overall covariance of d; is the sum of the covariances of €; and
8;. The posterior distribution of the data can then be written

pldilm, ry,y:) = /P(di|mv Ad» 8;)p(8;lyi)dé;,
1 T —1
xexpq — E(di —Gim)" [(hg; Vi)
+diag(y) '] (@, — G,m)} : (44)

where diag(y;) denotes a diagonal matrix with y; on the diagonal,
diag(y;)"! is the covariance of §;, and (A, W;)~! is the covariance
of the noise ;.

The formulation (44) is reminiscent of other approaches whereby
the overall covariance of d; is decomposed into the sum of the covari-
ance of the measurement noise and the covariance of the prediction
error (Tarantola 2005; Duputel et al. 2014; Jolivet et al. 2015). The
latter measures the inadequacies of using the proposed linear model
G;m to describe the data d;, and can be approximated based on a
perturbation method (Duputel et al. 2014). Our approach is more
general, as we simply regard the outliers as the prediction error. This
allows us to detect outliers wherever the forward model is locally
inadequate. This approach provides the spatial distribution, ampli-
tude and uncertainty of the detected outliers, but no information
about the underlying cause for their presence.

4 VERIFICATION

We illustrate the potential and limitation of the inversion approach
by considering a synthetic case where we control the data uncer-
tainty, number of outliers, and the target model. We consider the
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Figure 3. Impact of modelling assumptions (regularizing constraints) on data misfit and model recovery. (a) Target model (background strain-rate) and exact
data (orange vectors). (b) Inverted distribution of strain-rate using data with 5 per cent outliers (brown vectors), outlier detection, and three regularizing
constraints: a smoothing matrix L, a constraint on the direction of strain Q, and a penalization of isotropic components D. (c) Inverted strain-rate with only two
regularizing constraints: L and D. (d) Inverted strain-rate with two constraints: Q and D. In all cases the data can be fit with more than 99.9 per cent variance
reduction. However, the model is recovered satisfactorily only when appropriate physical assumptions are included in the inversion.

scenario where the distribution of subsurface strain must be imaged
based solely on the measurement of displacement vectors available
at the Earth’s surface. These measurements may originate from
a land-based geodetic network, or from space geodesy (Leprince
et al. 2007), assuming that the observation network was properly
designed (Sathiakumar ef al. 2017). This scenario captures the gen-
eral problem of imaging the accelerated viscoelastic flow in the
lower crust and upper mantle that follows large earthquakes (Tsang
et al. 2016; Moore et al. 2017; Qiu et al. 2018; Tang et al. 2019).

4.1 Problem description

We consider the tectonic context of the Nepalese Himalaya with
the collision of the Indian plate beneath the Eurasian Plate. We
simulate a synthetic data set of surface displacements ata 10 x 12
network of three-component GPS stations organized in a rectilinear
array assuming viscoelastic flow confined in the Indian lower crust
(Landry & Barbot 2019). The surface displacements are calculated
by meshing the subsurface into 12 x 12 x 2 = 288 cuboidal and
dodecahedral volume elements and using the associated Green’s
functions (Barbot et al. 2017; Barbot 2018). Each volume element
has six degrees of freedom, resulting in 6 x 288 = 1728 model
parameters. We then add Gaussian noise and outliers to the data. The
combination of 3 x 120 measurements and 1728 model parameters
gives rise to an underdetermined inverse problem.

To regularize the problem, we impose additional constraints.
Since viscoelastic flow is deviatoric, that is, incompressible, we
constrain the trace of the strain tensor to vanish. This is enforced by

the algebraic constraint Dm = 0. As the viscoelastic flow relaxes
a known stress field, we penalize the direction of strain in five di-
rections orthogonal to the local stress tensor at the centre of each
volume element. The direction of a strain or stress tensor is mean-
ingful considering that any symmetric second-order tensor can find
a six-component vector representation. These constraints on the di-
rection of flow can be written Qm = 0. We also impose a smooth
distribution of strain based on the assumption that the wavelength
of the forces driving the flow is large. This leads to the regular-
izing constraints Lm = 0. These modelling assumptions yield a
linear inverse problem (the forward model is algebraic) with equal-
ity constraints and a regularization constraint of unknown weights.
Specifically, we have L = 3, K; = D, K, = Q and K5 = L, with
ki=0,i=1...L.

The benchmark considered here is challenging due to the pres-
ence of a large number of data and parameters, the disproportion
of model parameters compared to the available data, measurement
noise, the presence of outliers and the weak sensitivity of the data to
the model parameters resulting from the Saint Venant principle. We
use Algorithm 3 to estimate the data uncertainty for each measure-
ment, and the individual weights of the constraints. This configu-
ration allows us to document the quality of fit to the data, but also
the quality of model recovery, since the latter is also known. We
estimate the posterior distribution by drawing x = 200 000 samples
in total. We regard the first 140 000 samples as the burn-in samples.
For each case considered in this section, the simulation takes about
5 hr on a 64-bit windows OS laptop with two Intel 17-4940MX CPU,
3.10GHz processors with 32.0 GB RAM.
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Figure 4. Effect of outliers. (a) A surface velocity field (orange vectors) is calculated along a rectilinear array (white triangles) assuming internal deformation
(strain-rate) within the Earth’s interior (mesh of dodecahedra). Large outliers are added to 36 different stations (dark red vectors), representing about 10 per cent
of the data set. The colour of the volume elements indicates the magnitude of the deviatoric strain tensor. With the outlier detection the distribution of strain is
recovered within less than 1 per cent error with a corresponding variance reduction of the exact data of more than 99 per cent. The true data and forward model
are indistinguishable at this scale. The true and recovered models also appear extremely similar. (b) The evolution of the outlier vector (running median of §) as
a function of iterations during Gibbs sampling. The data altered with outliers (dashed blue profiles) are all detected. The data with white noise (black profiles)
are not biased by false positive detection. (c) Inferred distribution of strain with 20 per cent of outliers in the data set. The model is only 20 per cent similar
to the target model. (d) Corresponding evolution of the running median of §. Although many outliers are properly detected, some outliers are not, and some
non-outliers are inadequately flagged as such. Without outlier detection, the model cannot be recovered satisfactorily (not shown). Vertical exaggeration (x5).

4.2 Outlier detection

We first demonstrate the potential importance of outlier detection
(Fig. 2). A target model is shown in Fig. 2(a), with the associated
surface displacement vectors at the location of the synthetic geodetic
network. In a first case, we only add white noise to the synthetic
data and follow the algorithm without outlier detection. The model
is recovered with a variance reduction of 99.16 per cent, that is,
the target and recovered model differ by less than 1 per cent. The
data are also well fit by the forward model. We also follow the
algorithm with outlier detection, which only has a modest impact
on the model recovery (99.14 per cent in this case). The small
difference in performance is expected from the stochastic nature of
the algorithm.

We then consider a data set where large outliers are added to 18
different stations, about 5 per cent of the data set, representing 4.2
per cent of the data variance. Without outlier detection, the model
recovery and data variance reduction are 0 per cent. In contrast, with
outlier detection, the model recovery reaches 98.20 per cent with
a data variance reduction of 99.9 per cent. These results indicate
the importance of outlier detection, the capacity of the proposed
algorithm to detect a small set of outliers, and the minimal loss of
performance in doing so.

The model is well recovered if no outliers are present, or if
they are properly detected. In contrast, models are poorly recov-
ered when outliers are not taken into account in the analysis. For
example, simpler approaches using weighted least squares (Parker

1994), regularized least squares (Tarantola & Valette 1982; Taran-
tola 2005), pseudo-inverse (Aster ef al. 2012), a QR decomposition
(Golub & Van Loan 1996) or the lasso and basis pursuit techniques
(van den Berg & Friedlander 2008), all fail to recover the target
model in the presence of even a few outliers. We do not illustrate
these negative results because the differences between the target and
recovered models are so large that they are meaningless.

4.3 Limitations

We now illustrate some shortcomings of the approach. First, as
the inverse problem considered is underdetermined, the solution
depends on the modelling assumptions. Fig. 3 shows the model
recovery as a function of the type and number of constraints as-
sumed in the inversion. We consider data with white noise and 5
per cent outliers. Considering constraints on the direction of strain,
incompressibility of flow, and smoothness of the deformation field,
the model is recovered with a 98.25 per cent variance reduction.
Accordingly, the data is reduced at the 99.9 per cent level. If the
constraint on the direction of strain is relaxed, the model recovery
deteriorates significantly, despite a 99.9 per cent variance reduction
of the data. If the constraints of spatial smoothness are relaxed, the
model recovery is catastrophically wrong. In all these cases the data
can be fit with more than 99.9 per cent variance reduction. However,
the model is recovered satisfactorily only when appropriate physical
assumptions are included in the inversion.
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Figure 5. Inversion of space-borne geodetic data: case of the 2015 M,, = 7.8 Gorkha, Nepal earthquake. (a) Interferometric synthetic aperture radar (InSAR)
line-of-sight displacements and GPS displacements (white vectors) for the 2015 M,, = 7.8 Gorkha earthquake. (b) Residuals after inversion for the distribution
of coseismic slip. (c¢) Fault slip corresponding to the mean of the Gibbs sampling. The vectors indicate the amplitude and direction of fault slip. (d) The standard

deviation of the fault slip based on Gibbs sampling.

Another limitation of our approach is in the presence of a large
number of outliers (Fig. 4). For example, Fig. 4(b) shows the evolu-
tion of outlier identification during Gibbs sampling when 10 per cent
outliers are present. All outliers are correctly identified without any
false detection. The outlier detection converges after about 50 000
iterations. The estimation of the remaining parameters converges
after 140 000 iterations. The distribution of internal strain can be
recovered and the surface data can be reduced within 1 per cent vari-
ability when up to 10 per cent of the data contain outliers. Above this
threshold, our assumptions on the statistics of outliers break down
and the recovered model shows substantial deviations from the orig-
inal. Below 10 per cent of outliers, the model is recovered with less
than 1 per cent variations. For example, for 5 per cent outliers, the
data variance reduction is 99.999 per cent and the model variance
reduction is 98.206 per cent. Fig. 2(c) shows the model recovery for
the case of 20 per cent outliers, showing a substantial smearing of
the strain distribution. Fig. 2(d) illustrates the corresponding outlier
detection. Even though many outliers are correctly detected, some
are not and some outlier-free data are incorrectly labeled as outliers
(false positives).

Despite these limitations, these results give us confidence that
the method is correctly implemented and that the approach can be
useful to tackle inversion of real data when only a small fraction of
the data is contaminated by outliers.

5 EXAMPLES

We now consider various examples of natural and man-made de-
formation that illustrate the potential of the method. All exam-
ples include a heterogeneous data set consisting of measurements

collected by different instruments that may be corrupted by outliers.
In Section 5.1, we quantify various point estimates of the model
parameters. In Section 5.2, we investigate the truncated posterior
distribution of the model parameters. Examples 5.1 and 5.2 both
include inequality constraints. In Section 5.3, we consider a case of
man-made deformation with a relative large number of outliers.

5.1 Coseismic slip distribution of the 2015 M,, = 7.8
Gorkha, Nepal earthquake

We now illustrate the algorithm considering surface displacements
caused by large earthquakes. We first consider the case of the 2015
M,, = 7.8 Gorkha, Nepal earthquake (Avouac et al. 2015; Galetzka
et al. 2015; Lindsey et al. 2015; Wang & Fialko 2015; Hubbard
etal. 2016; Mencin et al. 2016; Qiu et al. 2016; Castaldo et al. 2017,
Wang & Fialko 2018), a relatively small earthquake that shook the
Kathmandu region due to the intense seismic activity on the Main
Himalayan Thrust that accommodates the shortening between the
Indian and the Eurasian plates (Cattin & Avouac 2000; Bollinger
et al. 2004; Grandin et al. 2012; Bollinger et al. 2013; Sapkota
et al. 2013; Stevens & Avouac 2015). The surface deformation
was captured by InSAR (Lindsey et al. 2015; Qiu et al. 2016)
and GPS data (Avouac et al. 2015; Galetzka et al. 2015; Feng
et al. 2017). These data are not associated with well identified
uncertainties and may contain outliers due to contamination of the
interferometric phase by tropospheric and ionospheric delays and
loss of coherence due to changing scattering properties of the ground
caused by seasonal changes and strong shaking from the earthquake
near the epicentre (Massonnet & Rabaute 1993; Rosen et al. 2000;
Jolivet et al. 2011; Hu et al. 2014; Agram & Simons 2015).
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Figure 6. Modes of the slip distribution. (a) Mean of the statistical distribution of fault slip. The arrows represent the vector and the background colour, its
norm. (b) Median of the statistical distribution of fault slip. (c) Mode of the statistical distribution of fault slip. (d) Difference between the median and the
mode. (e) Difference between the median and the mean. (f) Difference between the mode and the mean.

These deformation data can be reduced assuming that the surface
displacements were caused by slip on the fault surface, which can be
discretized into 2841 individual triangular fault patches. Slip on the
fault has a component in the strike and dip directions (no opening is
allowed), giving rise to 5682 unknowns. The surface displacements
caused by the earthquake are measured by InSAR, in particular,
the Japanese Advanced Land Observing Satellite (ALOS2) L-band
SAR satellite (Lindsey et al. 2015). We keep 8306 line-of-sight
measurements from the interferogram (Fig. 5a) based on noise and
distance from the epicentre considerations (Qiu et al. 2016; Feng
etal. 2017). An additional data set includes a sparse GPS network of
18 continuously recording stations (Galetzka et al. 2015), providing
three-component displacement vectors based on the difference of
position before and after the earthquake (Fig. 5a). The absolute
uncertainty of these measurements is unknown, but GPS processing
provides an estimate of relative errors between the displacement
components among all stations.

The distribution of slip on the fault can be smooth or rough de-
pending on the rupture physics, so we only allow as much roughness
as required by the data (Shirzaei & Biirgmann 2013; Amey et al.
2018; Marchandon et al. 2018). We also require a relative uniform

direction of fault slip, so we penalize slip in directions orthogonal
to the overall dip direction and we strictly forbid slip that deviates
more than 45° from the dip direction (Barbot et al. 2013). This re-
sults in a linear inverse problem with regularization and inequality
constraints that require outlier detection with estimation of uncer-
tainties and weights.

Here, we draw 100 000 samples and discard the first 10 000 sam-
ples. Our algorithm produces a probability distribution of model
parameters and there is an infinite set of solutions, each associated
with a probability. From this set, the mode and the first and second
moments of the distribution are of particular interest, corresponding
to the model producing the best fit to the data (the most likely
model), the average model and the model variance. Fig. 5(c) shows
the mean model parameters, showing a concentration of fault slip,
of the order of 5m, at the centre of the modelled fault, with slip
aligned with the direction of convergence. The residuals between
the data and the forward model are shown in Fig. 5(b). The model
variance (Fig. 5d) correlates with the amplitude of slip.

Fig. 6 showcases the mean, median, and mode of the posterior
distribution and their differences. Overall, these point estimates
feature a similar spatial distribution. However, the mode is a less

0202 U2JBIN €0 U0 Npa-osN@)oqueds Aq 8111 /9G/vEE/L/L2ZNoesqe-aiue/IB/wod dno oiwspese)/:sd)y wolj papeojumoq



345

Outlier-insensitive Bayesian inference for linear inverse problem

—~
Y

1 2 3 4 5

;é Fault coseismic slip (m)
=
o
[
o
EXN
N
(b) Non ey
LOS disp. (cm) LOS disp. (cm) | LOS disp. (m) /
—— | — Py
5050 0 50 150 0o 50 11 0o .1 3
t .f )
E ; ./ j 3 /ﬂ J
£ 0] i 7 7 1
5} /
P | g
Line-of-sight Line-of-sight Line*of-sight
=50 direction b direction 4 direction
N -
(c) . : ; : . ,
100
Model (cm) Model (cm)
|
-50 0 50 -50 0 50 -
50 — i
e b 4 |
é /
£ o g, /. 1 TL7 ot
5 ' A / b
> 7
-50 B i
T T T T T T T
-100 -50 0 50 100 -50 0 50 100 -20 40
(d) East (km) East (km) East (km)
0.3 - 0.3 -
Median | |[Mean Median || §
2 2 @
k%) ‘@ =
$ 0.2 $02
© o
2 2
So01 So1
Q Q
[ [
a [on
0 — 0 T T T o
20 22 24 26 28 3 32 34 36 38 4.0 0 0.1 0.2 0.3 0.4 0.5
Strike-slip (m) Dip-slip (m)

Figure 7. Inversion of heterogeneous data sets (SAR interferograms and SAR amplitude cross-correlation) for coseismic slip. (a) The fault geometry with 700
elementary fault patches, each with two degrees of freedom (strike-slip and dip-slip components of the slip vector) and the recovered slip distribution (mean
value of the model distribution). (b) InSAR line-of-sight (LOS) displacements for interferograms 1, 2 and 3. (c) Forward model based on the first moment of
fault slip for data sets 1, 2 and 3. (d) Histograms of the strike-slip and dip-slip components with joint mode, mean and median, of the patch situated at the

centre of the fault, highlighted by a rectangle in A.

robust estimate, leading to high-wavenumber noise in the mode
spatial distribution. The median and mean are similar in regions of
high slip, but exhibit systematic differences of the order of 5 cm in
regions of low slip. The mode differs from the mean and median
by a spatially random noise with a standard deviation of the order
of 1 m. Due to the large variance of the mode, applications requir-
ing a smooth distribution of slip may prefer the mean or median
estimates.

These results indicate that the method is adequate to tackle the
inversion of heterogeneous data sets, providing a detailed descrip-
tion of the data and model statistics in cases with a relatively large
parameter space.

5.2 Coseismic slip distribution of the 2015, M, = 7.2
Sarez, Tajikistan earthquake

The December 2015, M,, = 7.2, Tajikistan earthquake (Metzger
et al. 2017; Sangha et al. 2017) was the largest one to rupture in
the Pamir Plateau since the namesake 1911 Lake Sarez earthquake

in 1911 (Ambraseys & Bilham 2012; Kulikova et al. 2016). The
Pamir Plateau is part of a complex tectonic setting on the western
end of India Eurasia collision zone that experienced close to 300 km
of shortening since the collision between India and Eurasian in the
past 50 Ma (Mohadjer ef al. 2010; Schurr et al. 2014; Kufner et al.
2018). The 2015 M,, = 7.2 earthquake was a predominantly left-
lateral strike-slip rupture that started on the shores of Lake Sarez
and propagated unilaterally for approximately 60 km.

Due to the remoteness, the near-field surface displacements asso-
ciated with fault slip were only captured by remote sensing (Sangha
et al. 2017). The surface displacements are measurements from
InSAR and pixel offsets derived from amplitude cross-correlation
(Leprince et al. 2007; Wang et al. 2014; Wang & Jonsson 2015,
Fig. 7b), including two coseismic interferograms with complemen-
tary look angles. The first interferogram is derived from a pair of
Sentinell images acquired in ascending orbit (track 100) in 6 De-
cember 2015 and 30 December 2015. The second interferogram is
from descending orbit (track 5) from 18 November 2015 and 12
December 2015 acquisitions. The pixel tracking data in the near
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Figure 8. Kinematic inversion of explosion, collapse and compaction source for the 2017 North Korean nuclear explosion at Mount Mantap. (a) Pair-wise
distribution (orange dots in off-diagonal figures) and histograms (orange bars in the diagonal figures) of the random samples drawn from the marginal
distribution (37). The dashed ellipses (in the off-diagonal figures) represent the 66, 95 and 99 per cent confidence intervals of the pair-wise distribution of the
conditional probability density in (42) and the dashed curves (in the diagonal figures) represent its marginal. The marginal and conditional distributions vary
slightly. E11, E>> and E33 represent uniaxial strain in the horizontal and depth directions. 2, E13 and E»3 represent the shear components. (b) Geometry of the
explosive and compaction sources. The model parameters for the explosion and collapse do not correlate with each other. The parameters for the compaction
do not correlate with each other either. However, the parameters for the explosion and the subsequent collapse correlate due to the similar displacements that
they produce. (c¢) Data, mean model, outliers (the number of outliers is indicated in the upper left-hand corner), and residuals of the optimization based on the
mean model. The variance reduction is greater than 80 per cent with outlier detection and only 50 per cent without outlier detection.

field (data set 3) is based on the amplitude images of the first inter-
ferogram. The slip model is discretized with 700 rectangular fault
patches (Okada 1985, 1992), each with two degrees of freedom
(the strike-slip and dip-slip components). The dip-slip component
is penalized and the slip vector is bounded by a rake angle of £45°
from the strike direction. The slip distribution is assumed smooth.
The inversion involves heterogeneous data sets, regularization with
unknown weights and inequality constraints. All results presented
below are based on 80000 iterations of the Gibbs sampler after
8000 burn-in iterations.

The mean model is shown in Fig. 7(a), showing a coseismic rup-
ture spread out on three different fault segments, running across a
major fault bend. The largest slip occurs near the surface. The for-
ward models based on the mean slip model for the data sets 1 and 2,
and pixel offsets along the line-of-sight in the near-field from cross-
correlation of the amplitude image pair forming interferogram 1 are

shown in Fig. 7(c). Because of the inequality constraint, the pos-
terior probability is truncated. We illustrate the posterior marginal
distribution for a single patch (Fig. 7d) located at the centre of the
fault bend (bold square in Fig. 7a). The distribution indicates the
dominance of strike-slip faulting, with the distribution of strike slip
and dip slip covering 4 and 0.5 m, respectively. Various point esti-
mates can be extracted from the Gibbs samples, including the joint
mean, median and mode of the distribution. Similarly as for the
Nepal case (Fig. 6), the mean and median of the joint distribution
are similar, but differ significantly from the joint mode.

5.3 Application to the 2017, North Korea nuclear test

We now consider man-made internal deformation to demonstrate
the importance of outlier detection. On 3 September 2017, two
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seismic events separated by about 8.5 min were detected at North
Korea’s Punggye-ri nuclear test site (Wang et al. 2018). Analysis
of seismic waveforms revealed a predominantly isotropic explosive
source located beneath Mount Mantap for the first event (Liu ef al.
2018). Because of the large surface displacements in the near field
(Fig. 8) the coherence is not sufficient to form radar interferometry.
Instead, correlation of the amplitude of space-borne radar images
determined up to 3.5 m of divergent horizontal motion with 0.5 m
of subsidence (Wang et al. 2018). These data, however, are contam-
inated by the many small-scale landslides triggered by the violent
nuclear explosion. This represent a scenario where the data are suf-
ficient to reconstruct the 3-D displacement of the surface pending
the successful identification of outliers.

We model the deformation using a pair of cuboidal volume el-
ements (Barbot et al. 2017; Barbot 2018), each with six degrees
of freedom corresponding to the associated strain components. The
first volume element represent the main event. The second one, the
smaller event that followed a few minutes later, a few hundred me-
ters to the southeast. In general, strain can be positive or negative,
corresponding to extension or compression, or various directions
of shear, so we do not impose inequality constraints. The surface
deformation data include the pixel-tracking of four pairs of radar
amplitude images from the TerraSAR-X satellite of the German
Aerospace Agency (DLR). The correlation of each pair provides
the displacements in the azimuthal direction of satellite flight and
the line-of-sight displacements in the range direction (Michel et al.
1999; Hu et al. 2014; Wang et al. 2014; Wang & Fialko 2015). These
data were acquired in ascending and descending modes, providing
enough constraints to recover the full vector-valued displacement
field.

We applied the proposed algorithm and use 90 000 Gibbs samples
after 10 000 burn-ins. The Gibbs samples for the strain components
are shown in Fig. 8(a). The joint posterior marginal distribution
(eq. 37) indicates that the strain components of each source are
weakly correlated to each other. However, there is a negative cor-
relation between the components of the two sources. This is due to
the fact that the sources are close to each other and produce similar
surface displacements, but with different wavelengths and slightly
offset. The analysis confirms the strong horizontal extension of the
main source associated with little vertical deformation (Wang et al.
2018). The secondary source corresponds to a secondary phase of
collapse associated with the breakdown of underground infrastruc-
ture. The distribution of surface deformation, model, outliers and
residuals are shown in Fig. 8(c). The algorithm detects a large num-
ber of outliers, some scattered around the images, some closely
distributed (the number of outlier points is indicated in each panel).
With outlier detection, the data variance reduction exceeds 80 per
cent. Without it, it reaches only 50 per cent.

The conditional posterior probability distribution of eq. (42)
is indicated by the ellipses and the dashed curves in Fig. 8(a).
Although the marginal and conditional probability density should
not match exactly, their close similarity indicates that the closed-
form expressions available for the conditional probability density
can be a useful tool to describe the statistics of the model param-
eters in practice, include for propagating uncertainties for further
processing and analysis. In particular, the conditional probability
captures qualitatively well the mean and correlation between the
model parameters. These results provide additional validation of
the self-consistency of the method and its potential to help reduce
complex, heterogeneous data sets with a large number of outliers.

6 CONCLUSIONS

We have derived a general method to solve the linear inverse problem
for multiple data sets possibly contaminated with outliers within
the framework of Bayes’ theory. The approach allows to determine
the weights of a priori constraints without intervention from the
practitioner, that is, free of tuning. If relevant from the physics of
the problem, inequality constraints can be incorporated. The method
relies on the Gibbs sampling method, which is a particular flavour
of MCMC methods. The prior distribution for the model parameters
is uniform within the range allowed by the inequality constraints.

The assumptions regarding the priors and the linearity of the
forward model allows us to derive the conditional probability of
the random variables in closed form, each associated with well-
established random number generators. This allows us to draw sam-
ples from the posterior distribution without relying on Metropolis
sampling. The approach is therefore only modestly computation-
ally expensive. This is demonstrated by examples of geophysical
data inversion involving large data sets and a large model parameter
space. By casting the problem as a general linear inverse problem
under equality and inequality constraints with outlier detection, we
expect the solution method to be of practical interest for a wide
range of applications in various fields of science.
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