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a b s t r a c t

While multinomial logistic models have been widely applied in practice, the research
on design selection has not kept pace. The complication in studying optimal/efficient
designs for multinomial logistic models is the complicated structure of information
matrices due to the model complexity and existence of many variants. A critical step
in deriving optimal/efficient designs is to determine the number of support points
needed. In this paper, we systematically characterize the optimal designs through the
complete class framework. The results hold for any optimal designs, regardless of
optimality criterion chosen, parameters of interest, one-stage or multi-stage designs.
It provides insight in the structure of optimal designs for multinomial logistic models
from theoretical perspective and makes the follow-up derivation much easier.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Multinomial logistic regression model

The logistic regression model is a common tool for analyzing binary responses. Under many circumstances, however,
binary responses may not be sufficient for describing the results (Perevozskaya et al., 2003). For example, in a dose–
response study, while binary response is used to estimate dose–response curve, such response usually does not contain
information about the severity of toxicity. According to Schacter et al. (1997), a subject can suffer from five types of adverse
effects ranging from self-limiting nausea to death in phase I cancer trial. In general, if responses from an experiment
take values from a fixed set containing J (>2) categories, they are called polytomous responses, which usually follow the
multinomial distribution. Polytomous data is often modeled by the multinomial logistic regression model (MLRM) (Agresti,
2013, chap 6), a special case of generalized linear models (GLM) (McCullagh and Nelder, 1989). In particular, given a
polytomous response, say Y , it is modeled by the following,

G(E(Y )) = η. (1)

Here G(·) is called link function that transforms observed responses to log-odds, E is the expectation operator, and η is
the linear component.
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MLRM is a broad class of models. Despite of its simple looking like (1), it could be arbitrarily complex in the following
perspectives.

First, unlike the binary logistic regression where a single log-odds is modeled, one need to model J − 1 log-odds
simultaneously if the response is polytomous and has J response categories.

Second, judged from the relation among response categories, polytomous response can be categorized into three kinds:
nominal, ordinal, and hierarchical. For nominal response, categories are considered as equally important. For example,
blood types, car makes, and etc. On the contrary, there is a nature order among categories of ordinal response, such as
beef quality grade, people’s preference rating to a restaurant, and etc. Hierarchical response is different because some
of response categories are nested in others. For example, in McCullagh and Nelder (1989), a study of mortality due to
radiation consists of three stages. At first stage, outcomes are ‘alive’ and ‘dead’; then at second stage, those who died
are divided into ‘due to cancer’ and ‘other cause’; at last, those who died from cancer are labeled either ’other cancer’ or
‘leukemia’.

Third, each kind of polytomous response requires a properly chosen link function. For nominal response, baseline
link (3) is appropriate since the conclusion drawn from the fitted model with baseline link is still valid if the label
of categories are permuted (McCullagh and Nelder, 1989). As to ordinal response, cumulative link (4) (McCullagh and
Nelder, 1989), or adjacent link (5) (Liu and Agresti, 2005; Agresti, 2013), are preferred for this case because if the order of
categories is reversed, the conclusions made from the fitted model with either of those link functions remain unchanged.
If response is hierarchical, continuation ratio link (6) is recommended by Zocchi and Atkinson (1999).

Fourth, the complexity also lies on the linear component in (1). The linear components are usually summarized into
three types of model assumptions: the proportional odds model (po), the non-proportional odds model (npo) and the
partial proportional odds model (ppo) (Bu et al., 2019). Here the ‘odds’ refers to ‘log-odds’, which is discussed in detail
in next section. For the proportional model, linear components across categories share the same set of parameters,
whereas the non-proportional model assumes each category has its own set of parameters that distinguish themselves
across categories. The members in the partial proportional model share parameters across categories while each of them
possesses its own set of parameters. It is obvious that the partial proportional model is an amalgamation of po and npo
models and therefore is the most general.

1.2. The present knowledge of optimal design for MLR models

While MLRMs are widely applied in practice and the methodology of analyzing such models is well established, the
optimal design research for MLRMs is arguably in its infancy stage with little optimality result available. The available
results, which are summarized in the following paragraphs, are scattered around and lack of systematical work.

As mentioned before there are at least twelve types (at least four types of link functions coupled with at least three
types of model assumptions) of MLRM due to the variety of link functions and model assumptions. The information matrix,
which is the key to the study of optimal design, has its own structure under each model. Therefore, one has to develop
tools for optimal design case by case.

One major obstacle of studying optimal designs for MLRMs is that the information matrix depends on the unknown
parameter θ due to the nonlinearity. A common approach to solve this dilemma is to use locally optimal designs, which
are based on one’s best guess of the unknown parameters. While a good guess is not always guaranteed, this approach
remains of value to obtain benchmarks for all designs (Ford et al., 1992). There are other ways to address this issue, for
example, by using a Bayesian approach (Chaloner and Verdinelli, 1995).

The complicated structure of the information matrix makes it notoriously difficult to derive the corresponding optimal
designs under MLRMs. There are, however, some nice attempts to attack this complexity problem. In Zocchi and Atkinson
(1999), they considered Bayesian D-optimal design for a multinomial logistic model based on hierarchical responses
collected from an experiment on emergence of houseflies. They used Markov Chain Monte Carlo to generate a sample
of parameters in order to access to the objective function. Some properties of the information matrix of the proportional
odds model with cumulative link were explored in Perevozskaya et al. (2003), and locally optimal designs under multiple
optimal criteria were investigated through numerical construction therein. A model with cumulative link for ordinal data
was studied by Yang et al. (2017) and they had shown the size of minimally supported design only depends on number
of predictors. Locally D- and EW-D optimal designs were derived through algorithm approaches. Most recently, Bu et al.
(2019) conducted a comprehensive study on all 12 variants of multinomial logistic regression models and provide general
conclusions on the cardinality of minimally supported designs. Algorithm for D-optimal designs was also provided.

While these results explore some optimal designs, there is a lack of systematic understanding of their characterizations
— arguably speaking, little is known about them. In this paper, we study the characterization of optimal designs for MLRMs
through a complete class framework proposed by a series of papers (Yang and Stufken, 2009; Yang, 2010; Dette and
Melas, 2011; Yang and Stufken, 2012; Dette and Schorning, 2013). The strategy is to find a subclass with simple format
such that, for any design outside the complete class, say, ξ1, there always exists a design in this subclass, say, ξ2, and
the information matrix of ξ2 dominates that of ξ1 in Lowner ordering. Notice that other strategies are also feasible. For
example, the functional approach (Melas, 2006). The main idea of this approach is to express the support points (and
sometimes also the weights) of optimal designs as implicit functions of some auxiliary parameters. In many cases these
functions, which are real and analytic, can be expanded into Taylor series, for the coefficients of which recursive formulae
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are available. While this approach is valuable in studying optimal designs, in this paper, we shall focus on the complete
class strategy.

Utilizing this strategy, we obtain complete class results for a broad class of MLRMs. The results are significant
for three reasons. First, it is the first time the characterizations of optimal designs under a varieties of MLRMs are
derived. The results can help us understand the structure of optimal designs systematically. Second, the characterizations
can significantly simplify the search of any specific optimal designs, both analytically and numerically, regardless of
parameters of interest, optimality criteria, one-stage or multiple stage design. Third, a pressing research direction in big
data analysis is the trade-off between computation complexity and statistical efficiency under the constraint of limited
computing resources. The derived characterizations can guide us to develop efficient algorithms of selecting an informative
subdata which can address the trade-off adequately (Wang et al., 2018).

The rest of this paper is organized as follows. Notations and model settings are given in Section 2. The main results
are given in Section 3. Some applications are provided in Section 4. A brief discussion is given in Section 5. All proofs are
included in the Appendix.

2. Notations and settings

2.1. Multinomial logistic regression model

Suppose in an experiment, we observe n polytomous responses with J possible response categories from m distinct
experiment settings. Particularly, at ith experiment settings, ni responses, say yij for j = 1, . . . , ni, are collected, where∑m

i=1 ni = n.
Typically, yij’s from the same experiment setting are summarized into a count vector Yi = (Yi1, . . . , YiJ )′, where Yik

means the counts of responses obtained at ith experiment setting that belong to the kth category, or equivalently, if we
code response categories as integers from 1 to J , then Yik =

∑ni
j=1 1(yij = k) where 1(·) is an indicator function. Let the

πik = Prob(yij = k) for k = 1, 2, . . . , J ,
∑J

j=1 πij = 1, the distribution of Yi is multinomial, Yi ∼ Multinomial(ni, πi1, . . . , πiJ )
with Probability Mass Function being

Prob[Yi = (Yi1, . . . , YiJ )] =

(
ni

Yi1, . . . , YiJ

) J∏
j=1

π
Yij
ij

In probability theory, the multinomial distribution is generalized from the binomial distribution and it belongs to the
exponential family. Therefore, the multinomial logistic model, a generalized version of the logistic model, is appropriate
to model the probabilities. For the ith experiment setting, say si = (xi1, . . . , xip), one needs to model all probabilities
simultaneously in the following general form,

G(πi) = ηi = Xiθ, (2)

where the link function G(·) is a map RJ
↦→ RJ−1, ηi = (η1(πi), . . . , ηJ−1(πi))′ is a (J − 1) × 1 vector, πi = (πi1, . . . , πiJ )′

is a J × 1 vector, Xi = (f1(si), . . . , fJ−1(si))′ is a design matrix of order (J − 1) × ν. Here f ′
s (Xi) stands for its sth row, f is a

function on Rp
↦→ Rν , θ is a vector of unknown parameters of length ν. The linear component is η = Xiθ.

The link function G(·) transforms responses to log-odds. All four links functions can be summarized as follows.

baseline log
πij

πiJ
for j = 1, . . . , J − 1, (3)

cumulative log
πi1 + · · · + πij

πi,j+1 + · · · + πiJ
for j = 1, . . . , J − 1, (4)

adjacent log
πij

πi,j+1
for j = 1, . . . , J − 1, (5)

continuation − ratio log
πij

πi,j+1 + · · · + πiJ
for j = 1, . . . , J − 1. (6)

For baseline link (3), one can arbitrarily choose a so called reference category, of which the probability will be fixed on
the bottom. Here we put πiJ on the denominator only for illustration purpose. Meanwhile, there are many possible pairs
to be used in getting log-odds, but most of them are redundant. For example, with J response categories and baseline
link, there are J(J − 1)/2 possible pairs, however one only needs to model J − 1 selected pairs and the rest of them can
be obtained using the existing ones. In general, for all the link functions above, J − 1 log-odds are sufficient.

Notice that there is no standard criterion of choosing the right type of link functions. For some cases, as illustrated
in McCullagh and Nelder (1989, chap 6), both baseline link and cumulative link yield similar parameter estimates and
conclusions.

The linear component of (2) depends on model assumptions. There are at least three model assumptions in liter-
ature (Bu et al., 2019): proportional odds (po), non-proportional odds (npo), and partial proportional odds (ppo). For
j = 1, . . . , J − 1, let X rt

i be the rtth entry of design matrix Xi,

po ηj(πi) = X j1
i θ1 + · · · + X jν

i θν, (7)



S. Hao and M. Yang / Journal of Statistical Planning and Inference 209 (2020) 144–159 147

npo ηj(πi) = X j1
i θj1 + · · · + X jν

i θjν, (8)

ppo ηj(πi) = X j1
i θ1 + · · · + X jν̃

i θν̃ + X j,ν̃+1
i θj,ν̃+1 + · · · + X jν

i θjν, (9)

where ν̃ is the number of parameters shared across categories in (9).

2.2. Unified model

In an effort to unify them, Glonek (see Glonek and McCullagh, 1995) proposed a transformation that covers a wide
scope of link functions between the multinomial logistic model and the log-linear model. It is written as

C log (Lπi) =

(
ηi
0

)
= Xiθ for i = 1, . . . ,m. (10)

where ηi is defined in (2), C is a J × (2J − 1) constant matrix, with IJ−1 being the identity matrix of order J − 1 and 0J−1
is a vector of (J − 1) 0’s,

C =

(
IJ−1 −IJ−1 0J−1
0′

J−1 0′

J−1 1

)
,

L is a (2J − 1) × J matrix varies through link functions. For baseline, cumulative, adjacent, and continuation-ratio link
functions, the concrete structure of L matrices can be found in the Appendix.

There is a major difference between (2) and (10). Because matrix C has J rows, which means (10) models simultaneously
model J log-odds. A close look at C reveals that the last row is merely for imposing the constraint

∑J
j=1 πij = 1, and this

is the reason that the last row of L is all 1’s regardless of type link functions.

2.3. Information matrix

An important step for deriving the Fisher information matrix is to invert ηi for πi. Provided all the link functions we
introduced, we can find the closed form of πi in terms of Xiθ. As an example, for baseline link, the πij’s could be calculated
via

πij =
exp{Xiθ}

1 + exp{Xiθ}
for j = 1, . . . , J − 1.

Following Bu et al. (2019), the information matrix for θ in (10) is

Ii(θ) = (
∂πi

∂θ′
)′diag{πi}

−1(
∂πi

∂θ′
),

where ∂πi/∂θ
′
= (CD−1

i L)−1Xi and Di = diag{Lπi}. Matrices C and L are defined in (10). Xi is the design matrix related to
design point si = (s1, . . . , sp).

2.4. Optimal designs for MLRM

Let si be a design point (or experiment setting), which is a vector of regression variables. A collection of all possible
design points is named design space and denoted by χ. Let d be an exact design with n runs and support S , where S is a
set of m distinct design points. It can be written as

d = {(si, ni), si ∈ S,

m∑
i=1

ni = n, ni ∈ Z+
},

where ni’s are repetitions associated with si’s and are restricted to be positive integers. The set of all positive integers
is Z+. An optimal exact design is therefore a collection of (si, ni) that collectively optimizes an objective function that
defined in terms of the information matrix. Provided a design d, the information matrix for the unknown parameter can
be represented by

Id =

m∑
i=1

niIi,

where Ii is the information matrix for the design point si. However, it is often an intractable issue to find optimal exact
designs due to its restrictions on repetitions. In particular, the optimal exact design in closed form is frequently sought via
combinatorial tools, but the solution only exists for certain combinations of experiment configurations, such as the number
of total runs, levels of regression variables and etc. Moreover, because this discrete nature on repetitions, numerical
algorithms that work with derivatives are not applicable either. Consequently, optimal designs are often studied in the
context of approximate designs by relaxing the discrete repetitions to continuousweights (or proportions in some literature).
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Formally, ni are replaced by wi = ni/n and the wi’s (weights) are assumed to be real numbers in the interval [0, 1]. An
approximate design ξ as well as its information matrix, is written as follows,

ξ = {(si, wi), si ∈ S,
m∑
i=1

wi = 1, wi ∈ [0, 1]},

Iξ =

m∑
i=1

wiIi =

m∑
i=1

ni

n
Ii =

1
n
Id.

An optimal approximate design is hence sought for. The consequence of relaxation on repetitions is profound since there
are a variety of optimization tools and numerical algorithms that are available in literature. As a trade-off, one has to
take extra effort to carefully round an approximate design to an exact design which is either optimal or efficient prior
to the implementation. Throughout this paper, the term ‘optimal design’ refers to an optimal approximate design unless
otherwise specified.

3. Main result

The strategy for developing those findings is inspired by the complete class framework developed by Yang and Stufken
(2012).

3.1. Model under consideration

Our results are mainly on the baseline proportional odds model and some special cases for models with other links.
In general, a multinomial logistic model with J (≥3) response categories and p continuous regression variables is

C′ log(Lπi) = Xiθ, (11)

where

C′
=

(
IJ−1 −IJ−1 0′

J−1
0J−1 0J−1 1

)
, Xi =

⎛⎜⎜⎝
1 xi1 · · · xip

. . . xi1 · · · xip
1 xi1 · · · xip

0 · · · 0 0 · · · 0

⎞⎟⎟⎠ , (12)

L is an (2J − 1) × J constant matrix and depends on choice of link functions. Xi is the design matrix associated to design
point si = (xi1, . . . , xip), θ = (α1, . . . , αJ−1, β1, . . . , βp) is the parameter vector of which αj’s are intercepts and βi’s are
coefficients of regression variables. Here we only assume xij ∈ [Uj, Vj] for j = 1, . . . , p− 1, where Uj, Vj are real numbers,
and xip is unbounded.

3.2. Information matrix and its blocks

Since the analytical approach requires identification of the maximal set of linear independent non-constant functions,
we first introduce the general structure of the information matrix.

Following Bu et al. (2019), given design point si, the information matrix for θ is

Ii(θ) = (
∂πi

∂θ′
)′diag{πi}

−1(
∂πi

∂θ′
)

= X′

i[(C
′D−1

i L)−1
]
′diag{πi}[(C′D−1

i L)−1
]Xi

(13)

where ∂πi/∂θ
′
= (C′D−1

i L)−1Xi and Di = diag{Lπi}.
We let U be the matrix in the middle except for the design matrix, then (13) can be written as Ii = X′

iUXi. Although
the concrete expression of U varies case by case, according to Corollary 3.1 in Bu et al. (2019), it has a general structure

U =

(
M 0′

J−1
0J−1 1

)
, (14)

where M is a (J −1)× (J −1) symmetric matrix. In addition, if the design matrix Xi is partitioned as follows for blockwise
matrix multiplication

Xi =

(
IJ−1 S
0J−1 01

)
, (15)

where the submatrix S is a (J − 1) × p matrix that holds values of regression variables, and 0J−1 and 01 are vectors of 0’s
with appropriate orders. As a result, we reach to the following lemma for the structure of the information matrix.
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Lemma 3.1. Given matrix partitions in (14) and (15), the information matrix at si = (xi1, . . . , xip) can be presented by blocks.

Ii(θ ) =

(
IJ−1 S
0J−1 01

)′ ( M 0′

J−1
0J−1 1

)(
IJ−1 S
0J−1 01

)
=

(
M MS
S′M S′MS

)
=

(
B1 B2′

B2 B3

)
.

We name those blocks by ‘B’ + numbers, where the letter ‘B’ is short for ‘Block’, and B2′ is B2 block transposed.
Furthermore, let M = {Mij}, and define M·j =

∑J
i=1 Mij and M·· =

∑J−1
i=1
∑J−1

j=1 Mij,

B2 =

⎛⎜⎜⎝
x1M·1 x1M·2 · · · x1M·p
x2M·1 x2M·2 · · · x2M·p

...
...

. . .
...

xpM·1 xpM·2 · · · xpM·p

⎞⎟⎟⎠ , B3 =

⎛⎜⎜⎜⎝
x21M·1 x1x2M·2 · · · x1xpM·p
x2x1M·1 x22M·2 · · · x2xpM·p

...
...

. . .
...

xpx1M·1 xpx2M·2 · · · x2pM·p

⎞⎟⎟⎟⎠ .

The proof is merely matrix multiplications and is therefore omitted here. Lemma 3.1 plays an important role in
following sections where those structures will be extensively exploited.

3.3. Proportional model with 3 response categories

For J = 3 and p = 1, the design point, si = xi, reduces to a scalar and the design matrix as well as θ become

Xi =

(1 0 xi
0 1 xi
0 0 0

)
, θ =

(
α1
α2
β

)
.

In the information matrix, the B2 block reduces to a row vector and the B3 is now a scalar. We investigated such a
matrix and reach to the following theorem on a complete class.

Theorem 3.2. For proportional odds model (11) with 1 continuous regression variable xi ∈ [U, V ], where U, V are real
numbers, and 3 response categories, the following results on complete class hold.

1. For baseline link, designs with at most 2 support points form a complete class.
2. For cumulative, continuation ratio or adjacent link, designs with at most 4 support points form a complete class.

The proof is given in the Appendix. Theorem 3.2 provides upper bounds of the number of support points for MLRM
with 1 continuous covariate and 3 response categories. In particular, optimal designs for such model with baseline link
will have at most 2 support points. Meanwhile, the model with cumulative, continuation ratio and adjacent link will have
at most 4 design points. According to Bu et al. (2019), the minimal number of support points for this case is 2 for baseline
link and 3 for the rest type of links. Combined with Theorem 3.2, optimal designs for the baseline multinomial logistic
regression model with 3 response categories are minimally supported.

3.4. Baseline proportional odds model with J categories

In this section, we generalized complete class result for the baseline proportional odds model to the one with J ≥ 3
response categories. The model is

log(
πj

πJ
) = αj + βx, j = 1, . . . , J − 1.

If it is written in matrices like (11), the design matrix Xi and θ now become

Xi =

⎛⎜⎜⎝
1 xi

. . .
...

1 xi
0 . . . 0 0

⎞⎟⎟⎠ , θ =

⎛⎜⎜⎝
α1
...

αJ−1
β

⎞⎟⎟⎠
In its information matrix, the B2 block is still a row vector and B3 is a scalar. But B1 block now is of order J − 1 by

J − 1. We have the following complete class result for this case.

Theorem 3.3. For the baseline proportional odds model (11) with J ≥ 3 response categories and 1 continuous regression
variable xi ∈ [U, V ], where U, V are real numbers, designs with at most 2 support points form a complete class.

Theorem 3.3 generalizes complete class result for the baseline proportional model to an arbitrary number of response
categories. That is, the optimal design for the baseline proportional odds model consists at most 2 support points
regardless of the number of response categories. It broadens the scope of its applications.
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3.5. Baseline proportional odds model with J categories and p regression variables

We now consider arbitrary J and p. The baseline proportional odds model with J ≥ 3 response categories and p ≥ 2
continuous regression variables can be written as

log(
πj

πJ
) = αj + β1x1 + · · ·βpxp, j = 1, . . . , J − 1,

where Jth response category is conventionally set to be a reference category, and xi are the value of ith regression variable.
Here we only assume xj ∈ [Uj, Vj] for j = 1, . . . , p − 1, where Uj, Vj are finite real numbers.

As introduced at the beginning of this section, the design matrices and parameter vector are exactly the same as (12).
For example, when J = 4, p = 2, the design matrix is

X =

⎛⎜⎝1 0 0 x1 x2
0 1 0 x1 x2
0 0 1 x1 x2
0 0 0 0 0

⎞⎟⎠ , θ =

⎛⎜⎜⎜⎝
α1
α2
α3
β1
β2

⎞⎟⎟⎟⎠ .

In general, by Lemma 3.1, key components in the information matrix are as follows.
The B1 block is the matrix M of order (J − 1) × (J − 1) with

Mij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

eαi+αj+2
∑p

t=1 βt xt

[1+(
∑J−1

s=1 eαs )e
∑p

t=1 βt xt ]2
, i ̸= j

eαi+
∑p

t=1 βt xt [1+(
∑J−1

s=1,s̸=j e
αs )e

∑p
t=1 βt xt ]

[1+(
∑J−1

s=1 eαs )e
∑p

t=1 βt xt ]2
, i = j.

The B2 block is a p × (J − 1) matrix with the ijth entry being

xiM·j = xi
eαj+

∑p
t=1 βt xt

[1 + (
∑J−1

j=1 eαj )e
∑p

t=1 βt xt ]2
, for j = 1, . . . , J − 1

and the B3 block is a p × p matrix with ijth entry being

xixjM·· =
e
∑p

t=1 βt xt
∑J−1

s=1 e
αs

[1 + (
∑J−1

j=1 eαj )e
∑p

t=1 βt xt ]2
.

We focus on the transformed design points, with support points si = (xi1, . . . , xi,p−1, ci), where ci =
∑p

t=1 βtxt and
βt ̸= 0 for all possible t . Note that such transformation does not change the complete class result, because of the following
factorization of the information matrix. For a design point x and its transformed design point s

I(s, θ) = X′UX = Q′F′UFQ, (16)

where X is the design matrix for x = (x1, . . . , xp) and F is the design matrix for s = (x1, . . . , c), and FQ = X ,

A(θ ) =

⎛⎜⎜⎝
1

. . .

1
0 · · · β1 · · · βp

⎞⎟⎟⎠
−1

, F =

⎛⎜⎝1 x1 · · · c
. . .

...
...

...

1 x1 · · · c

⎞⎟⎠ .

Let I(s, θ) stand for the information matrix at s = (x1, . . . , c), one can easily obtain I(s, θ) from I(x, θ) by (16). The
structures of them are identical. Under this setting, we have the following theorem.

Theorem 3.4. In the transformed design space, for an arbitrary design ξ = {(si, wi), i = 1, . . . ,m;
∑m

i=1 wi = 1}, there exists
a design ξ̃ such that the following inequality for information matrices hold:

Iξ (θ ) ≤ Iξ̃ (θ ),

where

ξ̃ = {(F̃ℓ1, wℓ1) and (F̃ℓ2, wℓ2), ℓ = 1, . . . , 2p−1
}

and F̃ℓ1 = (aℓ1, . . . , aℓ,p−1, c̃1), F̃ℓ2 = (aℓ1, . . . , aℓ,p−1, c̃2). Here aℓ,j = Uj or Vj, and (aℓ1, . . . , aℓ,p−1) are all combinations of
them for ℓ = 1, . . . , 2p−1, and c̃1 and c̃2 are two numbers need to be solved.

The proof is deferred to the Appendix as well. Theorem 3.4 shows that the optimal designs for the baseline proportional
model with p covariates are made of two equivalent classes of design points of which the value of its first p−1 covariates
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Table 1
Locally optimal designs for the baseline proportional odds models.
(α1, α2, α3, β) criterion design space N design # of points

(0.5, −0.6, 0.9, 2) D [−3, 3] 121 (−1.25, 0.3106)
(0.35, 0.6894) 2

(0.5, −0.6, 0.9, 2) A [−3, 3] 121 (−1.4, 0.2198)
(0.2, 0.7802) 2

(0.5, −0.6, 0.9, 2) D [0, 3] 61 (0.0, 0.4580)
(1.1, 0.5420) 2

(0.5, −0.6, 0.9, 2) A [0, 3] 61 (0.0, 0.4509)
(1.2, 0.5491) 2

(1, 2, 4, −0.3) D [−10, 30] 81 (6.5, 0.6877)
(17.0, 0.3123) 2

(1, 2, 4, −0.3) A [−10, 30] 81 (5.0, 0.8536)
(21.5, 0.1464) 2

(1, 2, 4, −0.3) D [0, 30] 61 (6.5, 0.6877)
(17.0, 0.3123) 2

(1, 2, 4, −0.3) A [0, 30] 61 (6.0, 0.7751)
(24.5, 0.2249) 2

are easily found. The significance is not only the optimal designs for such a general model are in a simple structure, also
algorithms would benefit from it since it reduces the dimension of an optimization problem from p to 1.

Note that when J = 2, Theorem 3.4 reduces to Theorem 2 in Yang et al. (2011), where similar result for binary logistic
regression is derived. Therefore, it generalized Yang’s result to the baseline log-odds model.

4. Applications

All designs in this section are locally optimal. Therefore, one needs to provide initial values of parameters in order
to derive a design aiming at estimating them. Initial values are not randomly chosen, on the contrary, it should be
determined prudently by either consulting experts or look up historical experiment results. We have mentioned that the
locally optimal design can serve as a benchmark for other designs. However, a set of badly chosen initial values which are
far away from the ‘truth’ would result in a benchmark that has not too much practical meaning even though it is locally
optimal.

We use the optimal weights exchange algorithm (OWEA) in Yang et al. (2013) for approximate designs. Although
the scope of this paper is on models with continuous regression variables, we still need to discretize the design space in
order to use the algorithm. A common practice is to use an equally spaced grid on the design space, as we did in following
examples.

4.1. Examples

Example 1. Consider the following baseline proportional odds model, with J = 4

log(
π1

π4
) = α1 + βx,

log(
π2

π4
) = α2 + βx,

log(
π3

π4
) = α3 + βx.

We select two sets of initial parameters (0.5,−0.6, 0.9, 2) and (1, 2, 4, −0.3), for the given design spaces, we use
R program to find optimal approximate designs for both A- and D-optimal criteria. These approximate designs are
summarized in Table 1. Here the N stands for number of grid points in design space, and entries on the column ‘design’
are written in the format of (point, weight). Finally, we count the number of support points and add them to the last
column.

It is noticeable that all those designs consist of two support points, which is consistent with our findings in Theorem 3.3.
In fact, according to Bu et al. (2019), designs with 2 support points for this model are also minimally supported which is the
minimum requirement for the information matrix being non-singular and hence parameter estimation being unbiased.
Therefore, optimal designs could be both optimal and minimally supported. An interesting observation is, contrary to
common case where the D-optimal design has equal weights, the minimally supported D-optimal design is not equally
weighted. For example, for the first set of initial parameter values, the D-optimal design has two points −1.25, 0.35 with
weights 0.3106 and 0.6894. Meanwhile, the A-optimal design has two weights being 0.2198 and 0.7802.
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Table 2
Locally optimal designs for the cumulative proportional odds model.
(α1, α2, β) Criterion Design space N Design # of points

(1, 2.88, −0.5) D [−10, 15] 501

(0.55, 0.3970)
(3.85, 0.0214)
(3.90, 0.1853)
(7.20, 0.3963)

4∗

(1, 2.88, −0.5) A [−10, 15] 501 (−1.00, 0.6539)
(3.45, 0.3461) 2

(1, 2.88, −0.5) D [0, 15] 1501
(0.53, 0.3949)
(3.86, 0.2066)
(7.18, 0.3985)

3

(1, 2.88, −0.5) A [0, 15] 1501
(0.00, 0.7456)
(3.95, 0.2209)
(9.27, 0.0335)

3

(−2, 1, 0.8) D [−10, 10] 2001
(−2.20, 0.3180)
(0.62, 0.3630)
(3.44, 0.3190)

3

(−2, 1, 0.8) A [−10, 10] 2001
(−2.10, 0.2800)
(0.85, 0.6918)
(3.68, 0.0282)

3

(−2, 1, 0.8) D [0, 9] 901
(0.00, 0.6361)
(3.94, 0.0454)
(4.00, 0.3185)

3

(−2, 1, 0.8) A [0, 9] 901
(0.00, 0.8630)
(4.07, 0.0117)
(4.50, 0.1253)

3

Example 2. In Perevozskaya et al. (2003), an early pioneer paper that studies designs for MLRM, they provided the locally
optimal designs for the following model, which is a cumulative link model with 4 response categories.

log
γj(x)

1 − γj(x)
= x − αj for j = 1, 2, 3,

where γj(x) = Prob(Y ≤ j|x) =
∑j

s=1 πis. Here those intercept terms are unknown parameters and they set the slope
to be a constant. Such a model is used for dose–response study. Inspired by this paper, we reparameterize model in the
fashion of the proportional odds model and assume the slope is also unknown. For simplicity, we only consider 3 response
categories. The model is formulated as

log
γ1(x)

1 − γ1(x)
= α1 + βx,

log
γ2(x)

1 − γ2(x)
= α2 + βx.

Notice that there is a natural order that α1 ≥ α2.
Similarly, two sets of initial parameter values are chosen upon which A- and D-optimal designs are derived for given

design spaces. Table 2 summarizes key information of those designs.

Most of those designs in Table 2 have 3 support points, except those on the first two rows. In particular, the D-optimal
design on the first row have two points, 3.85, 3.90, that can be combined as one since they are actually two adjacent grid
points and 3.85 has very small weight. Such a design can be considered as the one with three support points, 0.55, 7.20
and a, where a ∈ (3.85, 3.90). As Theorem 3.2 shows optimal designs have at most 4 support points, the abundance of
3-point designs and absence of 4-point designs might give a hint that our current result could be improved. Finally, it is
worth mentioning that, according to Bu et al. (2019), those D-optimal designs are also minimally supported.

In practice, when there is no information on unknown parameters, an intuitive yet commonly used strategy is to
implement uniform designs. Such a design puts equal weights on design points, and sometimes those points are equally
spread in design space as well. However, they are known as lacking efficiency. For example, Yang et al. (2017) and Bu et al.
(2019) proved uniform designs are less efficient for D-optimality under some variants of multinomial logistic regression.
We have the same observation here. Consider the following two uniform designs in Table 3, of which puts equal weights
to its support.

For simplicity, we compare optimal designs with uniform designs. Here in Table 3, ‘A-eff’ and ‘D-eff’ are shorts for the
relative efficiency under A- and D-optimality respectively, and they are calculated by

eff =
Φ(Σoptimal)
Φ(Σuniform)

. (17)
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Table 3
Uniform designs and efficiency to the optimal designs.
Design space Design points # of points A-eff D-eff

[−10, 15] −10, −5, 0, 5, 10, 15 6 0.5339 0.2589
[0, 15] 0, 2, 4, 8, 15 5 0.6740 0.5862
[−10, 10] −10, −6, −2, 0, 2, 6, 10 7 0.4822 0.1892
[0, 9] 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 10 0.3563 0.2278

Table 4
Original design in a toxicity study.
Dose 0 62.5 125 250 500
Observations 297 242 312 299 285

When eff > 1, it indicates uniform design is more efficient, and vice versa. As shown, uniform designs are not as
efficient as those optimal designs. On the contrary, the difference in efficiency is quite huge. For example, given the
design space [−10, 15], there are 2 points and 4 points for the A- and D-optimal designs, and they are almost 1 and 3
times more efficient than the uniform design with 5 points.

Example 3. In Agresti (2013, chap 6), a developmental toxicity study with pregnant mice was introduced. In this
experiment, a certain chemical substance in distilled water of different concentrations (from 0 to 500 mg/kg per day)
was given to pregnant mice in successive 10 days and their uterine contents were analyzed in order to examine the
defects of fetuses. There are three outcomes for each fetus: nonlive, malformation, or normal. The outcome is ordinal
with ‘nonlive’ being the most preferable. The original design has 5 levels of concentration, 0, 62.5, 125, 250, 500, where 0
is the level of control group. Those design points spread out in the design space, [0, 500]. Design points and the number
of observations are summarized in Table 4.

A continuation-ratio proportional model is considered because the response is hierarchical. With 3 response categories,
if we target at the following model,

log
π1

πi2 + πi,3
= α1 + βx,

log
π2

πi,3
= α2 + βx,

(18)

where the x means the concentration. For this example, we set (α1, α2, β) = (0.1, −0.5, 0.016), which is the initial
estimate provided by Agresti (2013, chap 6). We use the OWEA algorithm to find the A- and D-optimal designs in the
space [0, 500]. Both designs are summarized in Table 5. The numbers of support points, regardless of optimal criteria, are
all equal to 2, which is less than the upper bound of 4 provided in Theorem 3.2. Also, the design points are not uniformly
allocated.

In fact, for this toxicity study, Agresti (2013, chap 6) fitted a continuation-ratio non-proportional model, and give
estimations for β1 = 0.0064, β2 = 0.0174.

log
π1

πi2 + πi,3
= α1 + β1x,

log
π2

πi,3
= α2 + β2x.

(19)

Although we have not derived any complete class result for such model, optimal designs can still be derived
numerically. In this case, we search locally optimal designs at (α1, α2, β1, β2) = (0.4, 1, 0.0064, 0.0174), which serves
as initial ‘guess’ of unknown parameters.

As shown in Table 5, designs have 3 levels of concentrations for the D-optimality and only 2 for the A-optimality.
Under both criteria, the control level 0 is always included. The significance is that an experimenter can reduce the levels
of concentrations which saves labor and reduces the experimental cost. Lastly, we still observed that those designs have
the number of design points that are less than the theoretical maximum as we derived in Theorem 3.2.

The last column in Table 5 is the relative efficiency that comparing the original design in Agresti (2013, chap 6) to the
optimal design in Table 5. The formula is similar to (17). It is obvious that the original design is lacking the efficiency for
both A- and D-optimality. For example, the D-optimal design based on 3 points for the npo model is almost 2 times as
efficient as the original design. The take away message is optimal or efficient designs for models like (18) and (19), can
be based on only a limited number of design points. Those observations are in line with the spirit of theorems derived in
this paper.
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Table 5
Locally optimal designs for continuation models.
(α1, α2, β1, β2) Criterion Design space N Design # of points Efficiency

Locally Optimal Designs for the Proportional Odds Model

(0.1, −0.5, 0.016) D [0, 500] 501 (0, 0.6323)
(121, 0.3677) 2 0.2296

(0.1, −0.5, 0.016) A [0, 500] 501 (0, 0.9926)
(122, 0.0074) 2 0.2984

Locally Optimal Designs for the Non-proportional Odds Model

(0.4, 1, 0.0064, 0.0174) D [0, 500] 501
(0, 0.4653)
(117, 0.3741)
(365, 0.1606)

3 0.5108

(0.4, 1, 0.0064, 0.0174) A [0, 500] 501 (0, 0.9797)
(105, 0.0203) 2 0.2533

5. Discussion

The multinomial logistic regression model plays an important role in statistical analysis. However, the research on
optimal designs is still at its infancy stage. Deriving optimal designs for MLRM in general is difficult. As stated in
introduction, there are two major obstacles. First, the MLRM consists of at least 12 types of variants and each has its
own concrete expression of both the model and the information matrix. So far relevant optimal designs are generated
case by case. Second, the information matrix depends on the unknown parameters, and mostly, the locally optimal designs
are studied.

Although there are an increasing number of researches on related fields, the optimal design for MLRM is still under
development and almost all of existing designs emerged in literature so far are constructed in a numerical manner. While
these results are helpful in some sense, they are in fact merely computational and cannot provide further insights. In
recent decades, some preliminary theoretical results have been established regarding the unified model representation,
the information matrix and etc. There are, nevertheless, still no such studies for optimal designs from theoretical
perspective.

In this paper, we accessed the optimal designs for MLRMs via an analytical approach. The main result is on the
complete class of optimal designs for some prevalent models. In particular, we derived the upper bound for the number
of support points of optimal designs. Such results provide evidence for the claim that optimal designs for MLRM usually
do not have many support points. This is important because one can expect a simple design constructed by numerical
algorithms.

Numerical examples are also explored. It is shown that the number of support points of those designs are in line with
our theory. In particular, some examples have the number of supports that is exactly what indicated by our theorem.
More interestingly, designs from some other examples have less support points than what we derived in theory. Since
our theory holds regardless of initial values of parameters and optimal criteria, there might be some other cases that have
exactly the maximum number of support points. Moreover, and even more exciting, it might be possible to improve our
result in the future.

In addition, selecting initial values for parameters is tricky. For example, Agresti (2013, chap 6) argues that cumulative
link indicates that the cumulative probability must be stochastically ordered, otherwise, the model will be poorly fitted.
This is the general guidelines for choosing initial parameters. Some bad chosen sets not only result in inadequately fitted
models, but also ill-organized designs. As to our experience, some of the choice of initial parameter would result in the
singular information matrix, and one has to be prudent to exclude design points like this in the algorithm, since the
framework of OWEA relies on the non-singular information matrices.

The study of designs for the multinomial logistic regression model is still under development. There are many
interesting yet untouched topics in this field. For example, designs for MLRM with mixed type of regression variables,
or when there are higher power terms or interactions in linear components, and etc. We hope our work can trigger more
research in these topics.

CRediT authorship contribution statement

Shuai Hao: Methodology, Writing - original draft. Min Yang: Methodology, Writing - review & editing.

Acknowledgments

The authors are grateful for many insightful comments and suggestions from an anonymous referee, an associate editor,
and editor, which helped to improve the article. Yang’s research was supported by NSF grant DMS-1811291.



S. Hao and M. Yang / Journal of Statistical Planning and Inference 209 (2020) 144–159 155

Appendix A. L matrices

Lbaseline =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0

. . .
...

1 0
0 0 . . . 0 1
0 0 . . . 0 1
...

...
. . .

...
...

0 0 . . . 0 1
1 1 . . . 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Lcumulative =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0
1 1 0 . . . 0
...

...
. . .

...

1 1 . . . 1 0
0 1 . . . 1 1
0 0 1 . . . 1
...

...
. . .

. . .
...

0 0 . . . 0 1
1 1 . . . 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Lcontinuation =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0

. . .
...

1 0
0 1 . . . . . . 1
0 0 1 . . . 1
...

...
. . .

...
...

0 0 . . . 0 1
1 1 . . . 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Ladjacent =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0

. . .
...

1 0
0 1
0 1
...

. . .

0 1
1 1 . . . 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Appendix B. Proofs

Proof of Theorem 3.2. We only provide proofs for baseline link and cumulative link. For continuation ratio and adjacent
link, the arguments are similar to that of cumulative link. Since the information matrix at J = 3, p = 1 is simple, we work
on them directly.

The main task is to identify the complete class. For a complete class Ξ , define two designs ξ /∈ Ξ and ξ̃ ∈ Ξ on the
design space χ ,

ξ = {(ci, wi), ci ∈ χ,

m∑
i=1

wi = 1}

ξ̃ = {(c̃i, w̃i), c̃i ∈ χ,

k∑
i=1

w̃i = 1}

(B.1)

Part I. For the baseline link, the information matrix at design point x is

I =

⎛⎜⎜⎝
eα1+βx(1+eα2+βx)

(1+eα1+βx
+eα2+βx)2

−
eα1+α2+2βx

(1+eα1+βx
+eα2+βx)2

eα1+βxx
(1+eα1+βx

+eα2+βx)2

−
eα1+α2+2βx

(1+eα1+βx
+eα2+βx)2

eα2+βx(1+eα1+βx)
(1+eα1+βx

+eα2+βx)2
eα2+βxx

(1+eα1+βx
+eα2+βx)2

eα1+βxx
(1+eα1+βx

+eα2+βx)2
eα2+βxx

(1+eα1+βx
+eα2+βx)2

eβx(eα1+eα2 )x2

(1+eα1+βx
+eα2+βx)2

⎞⎟⎟⎠ . (B.2)

To prove the complete class result,
Step 1: (Selection) Let c = βx (where β ̸= 0), then there is a bijection between x and c , and x = c/β . Among the first

two columns, select the following set as maximal linear independent nonconstant functions:

Ψ1(c) =
eα1+c(1 + eα2+c)

(1 + eα1+c + eα2+c)2
,

Ψ2(c) = −
eα1+α2+2c

(1 + eα1+c + eα2+c)2
,

Ψ3(c) =
eα1+cc

β(1 + eα1+c + eα2+c)2
,

and let

Ψ4(c) =
c2ec(eα1 + eα2 )

β2(1 + eα1+c + eα2+c)2
.

Here let g(c) = (1+ eα1+c
+ eα2+c)2, and inequality g(c) > 0 holds on its domain. Such an arrangement is due to the fact

that the B1 block in (B.2) only has two linear independent functions in terms of c.
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Step 2: (Simplification) The task is to show the following system for any two designs ξ and ξ̃ in (B.1),
m∑
i=1

wiΨ1(ci) =

k∑
i=1

w̃iΨ1(c̃i),

m∑
i=1

wiΨ2(ci) =

k∑
i=1

w̃iΨ2(c̃i),

m∑
i=1

wiΨ3(ci) =

k∑
i=1

w̃iΨ3(c̃i),

m∑
i=1

wiΨ4(ci) ≤

k∑
i=1

w̃iΨ4(c̃i),

(B.3)

and it is sufficient to show
{1, Ψ1, Ψ2, Ψ3} and {1, Ψ1, Ψ2, Ψ3, Ψ4} are Chebyshev Systems,
{1, Ψ1, Ψ2, Ψ3} and {1, Ψ1, Ψ2, Ψ3, −Ψ4} are Chebyshev Systems.

(B.4)

Due to the existence of denominators in Ψ (c), the recursive construction of F (c) described in Theorem 2 in Yang and
Stufken (2012) are expected to be cumbersome and the resultant function F (c) can be rather complicated. Instead, we
perform a series simplifications which preserve either the equality in (B.3) or the Chebyshev System in (B.4) but with
more simple functions.

First, we omit the ‘−’ sign in Ψ2 and β in Ψ3 which does not change the equality in (B.3). Then multiply all Ψ functions
including the constant Ψ0 = 1 by the denominator and conduct row or column operations that does not change the sign
of matrix determinant. At last we get rid of positive constants like eα1 , eα2 and β2 which preserve the Chebyshev System.
Eventually, a set of functions Ψ is simplified to

{1, ec, e2c, cec, c2ec}.

To show (B.4) is equivalent to verifying either those following claims hold

{1, ec, e2c, cec} and {1, ec, e2c, cec, c2ec} are Chebyshev Systems,

{1, ec, e2c, cec} and {1, ec, e2c, cec, −c2ec} are Chebyshev Systems.

Step 3: (Calculation) The sequence of fℓ,ℓ functions can be easily calculated according to Theorem 3 of Yang and Stufken
(2012). Here f11 = ec, f22 = 2ec, f33 = −ec/2, f44 = 2, and F (c) =

∏4
i=1 fii(c) = −2ec < 0. Then designs with at most 2

support points form a complete class is a direct consequence of the case (b) of Theorem 2 in Yang and Stufken (2012).
Part II. For cumulative link, the information matrix at the support point x is

I =

⎛⎜⎜⎜⎝
eα1+α2+βx

(eα2−eα1 )(1+eα1+βx)2
−

eα1+α2+βx

(eα2−eα1 )(1+eα1+βx)(1+eα2+βx)
xeα1+α2+2βx

(1+eα1+βx)2(1+eα2+βx)

−
eα1+α2+βx

(eα2−eα1 )(1+eα1+βx)(1+eα2+βx)
e2α2+βx

(eα2−eα1 )(1+eα2+βx)2
xeα2+βx

(1+eα1+βx)(1+eα2+βx)2

xeα1+α2+2βx

(1+eα1+βx)2(1+eα2+βx)
xeα2+βx

(1+eα1+βx)(1+eα2+βx)2
x2eα2+βx(1+2eα1+βx

+eα1+α2+2βx)
(1+eα1+βx)2(1+eα2+βx)2

⎞⎟⎟⎟⎠
Following the same steps:
Step 1: Let c = βx, we propose the assignments of functions:

Ψ1 =
eα1+α2+c

(eα2 − eα1 )(1 + eα1+c)2
,

Ψ2 = −
eα1+α2+c

(eα2 − eα1 )(1 + eα1+c)(1 + eα2+c)
,

Ψ3 =
e2α2+c

(eα2 − eα1 )(1 + eα2+c)2
,

Ψ4 =
ceα1+α2+2c

β(1 + eα1+c)2(1 + eα2+c)
,

Ψ5 =
ceα2+c

β(1 + eα1+c)(1 + eα2+c)2
,

Ψ6 =
c2eα2+c(1 + 2eα1+c

+ eα1+α2+2c)
β2(1 + eα1+c)2(1 + eα2+c)2

.
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One can easily verify functions Ψ1 to Ψ5 form the set of maximal linear independent nonconstant functions among the
first two columns I(θ).

Step 2. To show

m∑
i=1

wiΨ1(ci) =

k∑
i=1

w̃iΨ1(c̃i),

m∑
i=1

wiΨ2(ci) =

k∑
i=1

w̃iΨ2(c̃i),

m∑
i=1

wiΨ3(ci) =

k∑
i=1

w̃iΨ3(c̃i),

m∑
i=1

wiΨ4(ci) =

k∑
i=1

w̃iΨ4(c̃i),

m∑
i=1

wiΨ5(ci) =

k∑
i=1

w̃iΨ5(c̃i),

m∑
i=1

wiΨ6(ci) ≤

k∑
i=1

w̃iΨ6(c̃i),

or its sufficient condition

{1, Ψ1, Ψ2, Ψ3, Ψ4, Ψ5} and {1, Ψ1, Ψ2, Ψ3, Ψ4, Ψ5, Ψ6} are Chebyshev Systems,

{1, Ψ1, Ψ2, Ψ3, Ψ4, Ψ5} and {1, Ψ1, Ψ2, Ψ3, Ψ4, Ψ5, −Ψ6} are Chebyshev Systems.

We did similar simplifications as introduced in part I and it turns out one needs to work with the following set of
functions,

{(1 + eα1+c)2(1 + eα2+c)2, ec(1 + eα2+c)2, ec(1 + eα1+c)(1 + eα2+c), ec(1 + eα1+c)2, cec (1 + eα1+c),

ze2c(1 + eα2+c), c2ec(1 + 2eα1+c
+ eα1+α2+2c)}

However, the major difficulty is the resultant function F (c) is still way too complicated from which one can draw
conclusions regarding complete class. Instead, the best we can do so far is to investigate the Chebyshev System on an
augmented set of linear independent functions:

{1, ec, e2c, e3c, e4c, cec, ce2c, ce3c, c2ec(1 + 2eα1+c
+ eα1+α2+2c)}.

That is, we managed to reach to check the following,

{1, ec, e2c, e3c, e4c, cec, ce2c, ce3c} and

{1, ec, e2c, e3c, e4c, cec, ce2c, ce3c, c2ec(1 + 2eα1+c
+ eα1+α2+2c)} are Chebyshev Systems,

or

{1, ec, e2c, e3c, e4c, cec, ce2c, ce3c} and

{1, ec, e2c, e3c, e4c, cec, ce2c, ce3c, −c2ec(1 + 2eα1+c
+ eα1+α2+2c)} are Chebyshev Systems.

Step 3 Direct calculation shows F (c) =
∏8

ℓ=1 fℓℓ = −8ez(3 + 2eα1+z
+ 3eα1+α2+2z) < 0. Then according to case (b) of

Theorem 2 in Yang and Stufken (2012), designs with at most 4 points form a complete class. □

Proof of Theorem 3.3. For baseline link, by Lemma 3.1, the information matrix at the support point x is summarized
blockwise.

The B1 block,

Mij =

⎧⎪⎨⎪⎩
−

eαi+αj+2βx

[1+(
∑J−1

s=1 eαs )eβx]2
, i ̸= j,

eαi+βx
[1+(

∑J−1
s=1,s̸=j e

αs )eβx]

[1+(
∑J−1

s=1 eαs )eβx]2
, i = j.
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The B2 block is a row vector and its jth entry is

xM·j = x

⎧⎨⎩ eαj+βx
[1 + (

∑J−1
s=1,s̸=j e

αs )eβx
]

[1 + (
∑J−1

s=1 eαs )eβx]2
−

J−1∑
i=1,i̸=j

eαi+αj+2βx

[1 + (
∑J−1

s=1 eαs )eβx]2

⎫⎬⎭
=

xeαj+βx

[1 + (
∑J−1

j=1 eαj )eβx]2
, for j = 1, . . . , J − 1,

and the B3 block is a scalar,

x2M·· =
x2eβx∑J−1

s=1 e
αs

[1 + (
∑J−1

j=1 eαj )eβx]2
.

In order to select a maximal set of linear independent nonconstant functions, we first introduce the following lemma
that summaries the relevant property of the information matrix.

Lemma. For the information matrix for the baseline proportional model with J categories, its B1 block only has two linear
independent functions and its B2 block only has one linear independent function.

The proof is evident in the calculations of the B1, B2, and B3 blocks.
Following standard steps.

Step 1: Let c = βx (where β ̸= 0), then there is a bijection between x and c , and x = c/β ,

Ψ1 =
ec

[1 + (
∑J−1

s=1 eαs )ec]2
,

Ψ2 =
e2c

[1 + (
∑J−1

s=1 eαs )ec]2
,

Ψ3 =
cec

β[1 + (
∑J−1

j=1 eαj )ec]2
,

and let

Ψ4 = x2M·· =
c2ec

∑J−1
s=1 e

αs

β2[1 + (
∑J−1

j=1 eαj )ec]2
.

Let g(c) = [1 + (
∑J−1

j=1 eαj )ec]2, and inequality g(c) > 0 holds on all over its domain. Then one needs to verify either of
those two claims hold.

{1, Ψ1, Ψ2, Ψ3} and {1, Ψ1, Ψ2, Ψ3, Ψ4} are Chebyshev Systems,
{1, Ψ1, Ψ2, Ψ3} and {1, Ψ1, Ψ2, Ψ3, −Ψ4} are Chebyshev Systems.

After simplification, it is equivalent to work on the following set of functions

{1, ec, e2c, cec, c2ec}.

That is one need to verify those following claims:

{1, ec, e2c, cec} and {1, ec, e2c, cec, c2ec} are Chebyshev Systems,

{1, ec, e2c, cec} and {1, ec, e2c, cec, −c2ec} are Chebyshev Systems.

The result in Theorem 3.2 applies, and designs with at most 2 support points form a complete class. □

Proof of Theorem 3.4. The proof is inspired by Yang et al. (2011). For a given design ξ , the information matrix is

Iξ (θ ) = n
m∑
i=1

wiF′

iUiFi.

First of all, define following weights, rj =
Vj−xij
Vj−Uj

such that

rjUj + (1 − rj)Vj = xij
rjU2

j + (1 − rj)V 2
j ≥ x2ij

for j = 1, . . . , p − 1.
(B.5)
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The first equality is easy to verify, and the second inequality is due to the fact that the function f (x) = x2 is convex. Note
that this is exactly the Lemma 1 appears in Yang et al. (2011).

For an arbitrary design point, say si = (xi1, . . . , xi,p−1, ci), consider the following two design points, s̃i1 = (U1, xi2, . . . ,
xi,p−1, ci) and s̃i2 = (V1, xi2, . . . , xi,p−1, ci), and their design matrices are F̃i1 and F̃i2. Let w̃i1 = r1wi and w̃i2 = wi − w̃i1,
then wiF′

iUiFi and
∑2

ℓ=1 w̃iℓF̃′

iℓŨiℓF̃iℓ are exactly the same except the first diagonal element in their B3 blocks. Here Ũ is
the matrix U evaluated at s̃iℓ.

This is true due to two facts. First the (B.5) holds. Second, entries in B1, B2 as well as off-diagonal ones in B3 are linear
in xi1, and only the first diagonal components in the B3 block are quadratic in xi1. As a result,

wiF′

iUiFi ≤

2∑
ℓ=1

w̃iℓF̃′

iℓŨiℓF̃iℓ.

Repeat the procedures until xi,p−1, and we have the following

wiF′

iUiFi ≤

2p−1∑
ℓ=1

w̃iℓF̃′

iℓŨiℓF̃iℓ. (B.6)

Note that the right hand side of (B.6) only depends on ci, and they have the same set of linear independent nonconstant
functions. Then following Theorem 3.3, there exist two points c̃i1 and c̃i2 such that

Iξ (θ) ≤

m∑
i=1

2p−1∑
ℓ=1

w̃iℓF̃′

iℓŨiF̃iℓ ≤

2∑
i=1

w̃i

2p−1∑
ℓ=1

w̃iℓF̃′

iℓŨiℓF̃iℓ

That is the complete class consists of two equivalent classes of 2p design points in total. □
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