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Abstract

For reduced order models (ROMs) of fluid flows, we investigate theoretically and
computationally whether differentiation and ROM spatial filtering commute, i.e.,
whether the commutation error (CE) is nonzero. We study the CE for the Laplacian
and two ROM filters: the ROM projection and the ROM differential filter. Further-
more, when the CE is nonzero, we investigate whether it has any significant effect
on ROMs that are constructed by using spatial filtering. As numerical tests, we use
the Burgers equation with viscosities v = 10~! and v = 10~ and a 2D flow past a
circular cylinder at Reynolds numbers Re = 100 and Re = 500. Our investigation
(i) measures the size of the CE in these test problems and (ii) shows that the/CE has a
significant effect on ROM development for high viscosities, but not so much for low
viscosities.

Keywords Reduced order model - Spatial filter - Commutation error - Data-driven
model

Mathematics Subject Classification (2010) 65M60 - 76F65

1 Introduction

1.1 Motivation and prior work

Reduced order models (ROMs) [11, 15, 34] have been used for decades in the numer-
ical simulation of fluid flows [2, 4, 14, 16, 27, 40, 41]. If the ROM dimension is
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high enough to capture the relevant flow features, ROMs yield efficient and relatively
accurate approximations of the underlying flows. However, to ensure a low compu-
tational cost, the ROM dimension is often lower than the dimension required by an
accurate numerical simulation. This happens, for example, in turbulent flows, where
the ROM dimension is generally significantly lower than the dimension needed to
capture all the relevant flow features [8, 9, 12, 16, 30, 39]. In these challenging
simulations, the low dimensional ROMs often yield inaccurate results. The general
explanation for these inaccurate results is that the ROM:s fail to account for the inter-
action between the resolved ROM modes and the unresolved ROM modes that are
discarded in the often drastic ROM truncation [9, 13, 28, 29, 42, 44, 45]. Thus,
when the ROM dimension is too low to capture the relevant flow features, ROMs are
generally supplemented with a Correction term [1, 3, 12, 13, 16, 21, 27, 30, 37, 42].
In our recent work [44], we have shown that this Correction term can be explic-
itly calculated and modeled with the available data by using the ROM projection as a
ROM spatial filter. (In Section 3.1, we present two examples of ROM spatial filters:
the ROM differential filter and the ROM projection filter.) We note that ROM spatial
filtering has also been used to develop large eddy simulation ROMs, e.g., approx-
imate deconvolution ROMs [45] and eddy viscosity ROMs [3, 16, 27, 33, 36, 42].
In all these ROMs, it has been been assumed that differentiation and ROM spatial
filtering commute:
u  u
== (1)

ax  ox’

where u is a flow variable (such as a component of the velocity fieldu € X = H& (£2)
in the Navier-Stokes equations (4)—(5)) and x is a spatial direction.

1.2 Problem formulation and contributions

In this paper, we investigate theoretically and numerically whether there exists a com-
mutation error (CE), i.e., whether equality (1) holds. At an abstract level, it seems that
the CE (1) is generally nonzero. Indeed, imagine a simple one-dimensional example
in which the ROM basis functions are constants and consider the ROM projection
filter (defined in Section 3.1) as a spatial filter. In this case, the right-hand side of (1)
is zero and the left-hand side of (1) is generally nonzero, i.e., the CE exists.

In this paper we investigate the CE theoretically (for general ROM settings) and
numerically (for two test problems).

In particular, we investigate whether there is a CE for the Laplacian, which plays
a central role in fluid dynamics:

Au = Au. @)

Remark 1 (ROM Closure) It is well known that, in general, nonlinearity and ROM
spatial filtering do not commute:

N @) #N@), 3
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Commutation error in reduced order modeling of fluid flows

where u is a flow variable and A is a nonlinear term in the underlying equations.
Furthermore, in ROMs for nonlinear convection-dominated flows, the difference
between the two terms in (3) is generally significant and needs to be modeled for
accurate approximations. The resulting models are called ROM closure models [42,
44].

We emphasize that the CE in (1) is different from the closure problem in (3).
Indeed, the former quantifies the effect of interchanging the order of spatial dif-
ferentiation and ROM spatial filtering, whereas the latter quantifies the effect of
interchanging the order of nonlinear operations (e.g., multiplication) and ROM
spatial filtering.

We also emphasize that, in this paper, we do not focus on the development of ROM
closure models, which have been investigated in numerous studies, e.g., [1, 3, 12, 13,
16, 21, 27, 30, 37, 42, 44]. Instead, we investigate whether the CE is an important
component of the “correct” ROM closure model, i.e., whether the CE should com-
plement (not replace) current ROM closure models. To our knowledge, this study
represents the first explicit numerical investigation of the CE in a ROM context.

When the CE exists, we also investigate whether it has any significant effect on the
ROM itself. To this end, we consider the recently proposed data-driven correction
ROM (DDC-ROM) [44], in which the Correction term (which is generally added to
improve the ROM’s accuracy) is modeled using the available data [7, 23, 24, 31, 32].
To investigate the effect of the CE on the DDC-ROM by using the metric (51), we
also consider the commutation error DDC-ROM (CE-DDC-ROM), in which available
data is used to model not only the Correction term, but also the CE. Finally, we use
the ideal CE-DDC-ROM (ICE-DDC-ROM), which is the DDC-ROM supplemented
with a fine resolution representation (i.e., without any additional modeling) of the
CE. When the CE-DDC-ROM and the ICE-DDC-ROM yield more accurate results
than the standard DDC-ROM, we conclude that the CE has a significant effect on
the DDC-ROM and, therefore, should be modeled. As numerical tests, we use the
Burgers equation with viscosities v = 107! and v = 1073 and a 2D flow past a
circular cylinder at Reynolds numbers Re = 100 and Re = 500.

The tests that we use in our numerical investigation are relatively simple. In these
settings, standard ROMs can yield relatively accurate approximations if a sufficient
number of ROM basis functions are used, in which case ROM closure modeling (i.e.,
adding a Correction term) is not actually needed. We emphasize, however, that when
only a few ROM basis functions are used, using ROM closure modeling can improve
the ROM accuracy even in these relatively simple settings. In these cases, the study
of the CE becomes relevant. We also note that in this paper we do not focus on the
development of ROM closure models. Instead, we aim at discovering whether the
CE is a significant component of ROM closure models. As a first step in our CE
numerical investigation, we used relatively simple test problems. Of course, in future
studies we will investigate ROM closure models that integrate all the components and
we will test them in more challenging, realistic computational settings that require a
drastic ROM truncation [30, 42].
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1.3 Paper plan

The paper is organized as follows: The reduced order modeling preliminaries are
provided in Section 2. In Section 3, a detailed derivation of the CE is given. The
effects of the CE on ROMs that are constructed by using spatial filtering are discussed
in Section 4. Numerical experiments are given in Section 5, and conclusions and
future research directions are outlined in Section 6.

2 Reduced order modeling

To compute the ROM basis functions, we use the proper orthogonal decomposi-
tion (POD) [10, 16, 27], which we briefly describe in this section. We emphasize,
however, that our theoretical and computational developments carry over to other
ROM basis functions, such as the dynamic mode decomposition [38]. The snap-
shots {u}l, ui cee, u}’:” } are the finite element (FE) solutions of at M different time
instances. The POD seeks a low-dimensional basis that approximates the snapshots
optimally with respect to a certain norm. The commonly used L2 norm will be used
in this paper. We emphasize, however, that other norms could be used to construct the
POD basis [17]. The solution of the minimization problem is equivalent to the solu-
tion of the eigenvalue problem %YYTMhdbj =Aj$;.j=1,---, Ny, where ¢, and
A j denote the vector of the FE coefficients of the POD basis functions and the POD
eigenvalues, respectively, Y denotes the snapshot matrix, whose columns correspond
to the FE coefficients of the snapshots, M}, represents the FE mass matrix, and Ny, is
the dimension of the FE space X”. The eigenvalues are real and non-negative, so they
can be ordered as follows: Ay > Ay > --- > Ay > Ag41 = -+ = Ay, = 0, where
d is the rank of the snapshot matrix Y. The ROM basis is given by the normalized
vectors {¢ j};=1’ which correspond to the first r < N}, largest eigenvalues. Thus, the
ROM space 1s defined as X" := span{¢{, ¢,, --- , ¢,.}.

3 Commutation error

As a mathematical model, we consider the incompressible time-dependent Navier-
Stokes equations (NSE):

3
8—’:—mu+u-w+vp=09x(o,ﬂ, )
Vouw=08 x0TI (5)
u=0092x(0,T], (6)

where u is the velocity, p the pressure, v the kinematic viscosity, 7 the simulation
time, and §2 the domain of the fluid. We use the initial condition u(x, 0) = uy(x). In
this paper, we assume that £2 C R", n € {2, 3}, is a convex polygonal or polyhedron
domain with boundary d52. The discrete FE velocity and pressure spaces are denoted
by xhcx = H(} (£2) and Q" c Q0 = L*(Q), respectively. We denote the usual
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Commutation error in reduced order modeling of fluid flows

L?(£2) norm and inner product with | - || and (-, -), respectively. To derive the com-
mutation error due to filtering, we apply a continuous filter [5] to (4). Discrete ROM
spatial filters are introduced in Section 3.1.

This yields the filtered-NSE (F-NSE), which have been used to develop LES
models [5]:

o -
8—1;—vAu+(u-V)u+Vp=0. @)

The F-NSE (7) eliminate the small length scales in the continuous NSE (4). For this
reason, a ROM for (7) needs fewer POD modes than a ROM for (4) to achieve a
fixed numerical accuracy. However, to develop practical ROMs for the F-NSE (7), we
must first investigate the commutation error, i.e., whether filtering and differentiation
commute. The commutation error (CE) for a spatial derivative is defined in [5] as

u(x) du(x)
Xy Oxp

Exlul(x) := (3)
where X = [x1,...,Xx,] is the spatial variable. In this paper, we are particularly
interested in the CE for the Laplacian term. Similarly to (8), we define the Laplacian
CE as

Ealul(x) == Au(x) — Au(x). ©)
3.1 ROM spatial filter

To develop practical ROMs from the F-NSE (7), we need to replace the continuous
filter in (7) with discrete filters. In this paper, we use the ROM differential filter
(which is associated with a weighted H' projection) and the ROM projection filter
(which is associated with the L? projection).

The ROM differential filter (DF) [43] is defined as: Let § be radius of DF; for fixed
r <dandgivenuyg € X h the differential filter seeks WD F e X" such that

((1-82a) @ " ¢:) = (ua.90). Vi=1,..r. (10)

-
By using ROM approximations for both u_dDF and u,4, i.e., u_dDF = > (ar)jd)j,
j=1

d
ug =y (aq) ;¢ j» we obtain the following linear system:
Jj=1

(Mr + 825;‘) a, = M, 4 aq4, (11)

where M, = (¢;. ¢;), i,j=1,..,rand Myxq = (¢;,9)) i =1,..,r, j=1,..d,
are ROM mass matrices, S, = (V¢,, V(bj), i,j = 1,..,r,is the ROM stiffness

matrix, and a, and a4 represent coefficient vectors of WD Fand ug4, respectively.

For fixed r < d and given uy € X", the ROM projection filter [29, 42] seeks
u;" € X" such that

(" ¢;) = (wa.9;), Vi=1,.r. (12)
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By expanding u;” and u  in terms of the ROM basis, we obtain the following linear
system:
M, ar = M, xq aq, (13)

where a, and a4 are the coefficient vectors of u;" and uy, respectively.
3.2 Filtered-ROM

In Section 3.1, we defined two ROM spatial filters: the ROM differential filter and
the ROM projection filter. In this section, we take another step in the development
of practical ROMs from the F-NSE (7). We assume that filtering and differentiation
commute and replace the continuous velocity u in (7) with its most accurate approx-
d
imation in the snapshot space, i.e., withug = _ (ay) i® j» where d is the rank of the
j=I
snapshot matrix: Vi =1, ..., r,

<%, ¢i> —v(Aug, ¢;) + ((ua - Vyug, ¢;) + @ =0, (14

where
T=— (r;gFS,(bi), (15)
13" = @g - Vyug — (wa - Vyug. (16)

The filter - in the ROM subfilter-scale stress tensor T SF 5 is either = (i.e., the ROM
projection filter (12)) or ~DF (j.e., the ROM differential filter (10)).

We note that (14)—(16) is an r-dimensional system for the unknown u; € X”. For
clarity, we denote the unknown u; as

r

ug =y =) (an)id;. (17
i=1
Using (17) in (14)—(16), we get: Vi = 1, ..., 1,
<%,¢i) +v(Vu,, Vo) + ((u, - Viu,, ¢;) + 7 =0, (18)
where
5= -5 ¢,). (19)
565 = (u, - Vyu, — (ug - Vyug. (20)

Since (18) does not depend only on u,, it is not a closed system. To close it, we
need to solve the ROM closure problem, i.e., we need to find (ug - Viug = f(u,).
Once a ROM closure model is found, the large eddy simulation ROM (LES-ROM)
(14)—(16) becomes practical. The most commonly used ROM closure models have
been of eddy viscosity type [42]. Alternative ROM closure models, inspired from
image processing and inverse problems (i.e., the approximate deconvolution ROM
[45]) and data-driven modeling (i.e., the data-driven correction ROM [44]) have been
recently proposed. We emphasize that all these LES-ROMs assume that filtering and
differentiation commute. In what follows, we investigate this assumption.
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3.3 CE with differential filter

By using the ROM differential filter, the Laplacian CE in (9) can be written as:

Ealug] = AugPF — Aug”" @1)

where =DPF represents the ROM differential filter. We denote with a,, a4, b, and ¢,

the coefficient vectors of ﬁD F ug, AWD F

evaluating AugPF:

—DF .
,and Auy  , respectively. We start by

AugPt ¢ = —(Vug?t,ve;,), Vi=1,..r. (22)

Its corresponding linear system is

M, b, =-S5, a,. (23)
Using (11) and (23) gives
by = —M'S,(My +8°S,) " My xq aq. (24)
Next, we evaluate AudDF. Using equation (10), we write the following equation for
AudDF:
2 ——DF .
(I =86"A)Auy  ,¢;) = (Aug, ¢;), Vi=1,..,r. (25)
Its corresponding linear system is
(M, +8°S;) ¢, = —S;xa aa, (26)
which yields
¢r = —(M; +58°8,)7" S, aa. 27)

We note that the right hand sides of equations (24) and (27) are not equal. This sug-
gests that, in some cases, for the ROM differential filter, the Laplacian CE can be
nonzero:

,
Ealugl =) (br —cr)jd; #0. (28)
j=1
In the tests used in the numerical investigation in Section 5, the Laplacian CE is
nonzero (see, e.g., Tables 1, 5,9, 13, and 17.)

‘We also note that the vectors b, and ¢,, which are needed in the calculation of the
Laplacian CE in (28), are the solutions of the linear systems (24) and (27), respec-
tively. These linear systems involve only the ROM mass matrices M, and M, «4 and
the ROM stiffness matrices S, and S, x4, which can be computed with low order
finite element discretizations, such as those that we use in Section 5.

3.4 CE with projection filter
By using the ROM projection filter, the Laplacian CE in (9) can be written as

Ealugl == Aug” — Auy (29)
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Table1 Burgers equation, ROM differential filter, smooth initial condition, v = 10! ,andd = 7: Average
CE for different § and r values

r 8 1€ alualll 212 r 1) NE alualllp2(z2y
2 1.00e—01 1.40e+00 5 1.00e—01 1.37¢+00
2 1.00e—02 1.56e—01 5 1.00e—02 8.98¢—02
2 1.00e—03 1.53¢e—01 5 1.00e—03 1.26e—03
2 1.00e—04 1.54¢—01 5 1.00e—04 8.26e—04
3 1.00e—01 1.37e+00 6 1.00e—01 1.37e+00
3 1.00e—02 8.21e—02 6 1.00e—02 9.00e—02
3 1.00e—03 3.21e—02 6 1.00e—03 9.69¢—04
3 1.00e—04 3.22¢—02 6 1.00e—04 1.15¢—04
4 1.00e—01 1.37e+00 7 1.00e—01 1.37e+00
4 1.00e—02 8.77¢—02 7 1.00e—02 9.00e—02
4 1.00e—03 5.54¢—03 7 1.00e—03 9.63¢—04
4 1.00e—04 5.47¢—03 7 1.00e—04 9.64¢—06

where ~ represents the ROM projection filter. We denote with a,, ay4, b, and ¢, the
coefficient vectors of the basis functions in u;", uy, Aug’, and Audr, respectively.
We start by evaluating Aug" :

(Aug", ;) = —(Vug",Ve;), Vi=1,..,r. (30)
Its corresponding linear system is
M, b, =-S5, a,. (31)
Using (13) and (31), we have
by =—M'SM M4 a,. (32)

Next, we evaluate Audr. By using (12) for Audr, we have:

(Aug  ¢) = (Aug, ;) = —(Vua, Ve;), Vi=1,..,r, (33)
which yields

¢ =—M7'S4a4. (34)

Again, we note that the right hand sides of the equations (32) and (34) are not
equal. This suggests that, in some cases, for the ROM projection filter, the Laplacian
CE can be nonzero:

,
Ealugl =) (b, —c:)j ¢; #0. (35)
Jj=1
In the tests used in the numerical investigation in Section 5, the Laplacian CE is
nonzero (see, e.g., Tables 2, 6, 10, 14, 18, and 21).
Again, we note that the vectors by in (32) and ¢, in (34), which are needed in the
calculation of the Laplacian CE in (35), involve only the ROM mass matrices M, and
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Table2 Burgers equation, ROM projection filter, smooth initial condition, v = 10!, and d = 7: Average
CE and average ROM subfilter-scale stress tensor for different » values

r 1Ealualllz2(r2y el
2 1.54¢ — 01 6.51¢ — 03
3 3.22¢ — 02 1.01e — 03
4 5.47¢ — 03 1.35¢ — 04
5 8.26¢ — 04 1.69¢ — 05
6 1.15¢ — 04 1.96¢ — 06
7 0 0

M, 4 and the ROM stiffness matrices S, and S 4, which can be computed with low
order finite element discretizations, such as those that we use in Section 5.

4 Effect of commutation error on DDC-ROM

In this section, we investigate the effect of the commutation error on three LES-
ROMs that are built from equations (18)—(20) supplemented with the Laplacian
CE (9). The first LES-ROM that we investigate is the data-driven correction ROM
(DDC-ROM) [44], which utilizes available data to construct an r-dimensional model
for the Correction term (i.e., the ROM subfilter-scale stress tensor) 7 in (18)—(20);
the DDC-ROM, however, does not include a model for the Laplacian CE (9). The
second LES-ROM that we consider is the ideal CE data-driven correction ROM (ICE-
DDC-ROM), which is the DDC-ROM supplemented with an exact (fine) resolution
Laplacian CE (9). The third LES-ROM that we investigate is the commutation error
DDC-ROM (CE-DDC-ROM), which is the DDC-ROM supplemented with an r-
dimensional data-driven model for the Laplacian CE (9). In Section 5, we investigate
numerically whether the Laplacian CE has any effect on the DDC-ROM, i.e., whether
the ICE-DDC-ROM and the CE-DDC-ROM yield more accurate results than the
standard DDC-ROM. In this section, we outline the construction of the DDC-ROM,
ICE-DDC-ROM, and CE-DDC-ROM.

First, we briefly derive the standard Galerkin-ROM (G-ROM). The ROM approx-
imation of the velocity is defined as

ur(x, 1) =Y (a)j(t)h;(x), (36)

j=1

where {(a,); ;.: 1 (¢) are the sought time-dependent coefficients, which are found by
solving the following system of PDEs: Vi =1, ..., r,

ou
(a—;, ¢,-> +v(Vu,, Vo) + (- Viu,, ¢;) =0, (37)
where we assume that the modes {¢;, ¢,, - -- , @,} are perpendicular to the discrete

pressure space. This assumption holds if in the snapshot creation we use mixed FE
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such as Scott-Vogelius, or the mini-element; see, e.g., [6, 20]. Plugging (36) into (37)
gives the Galerkin ROM (G-ROM):

d, = Aa, +a, Ba,, (38)
which can be written componentwise as follows: Vi =1, ...r,
r r r
@i =Y Aiman(®)+ Y Y Bimn an(t) an(t), (39)
m=1 m=1n=1

where A;, = —v(Ve,,, Vo;) and By = — (¢, - V,,$;), 1 <i,m,n <r.

To construct the DDC-ROM, ICE-DDC-ROM, and CE-DDC-ROM, we utilize
the same approach as that used in Section 3.2 to derive LES-ROMs. However, we
emphasize that in contrast to Section 3.2, this time we do not assume that spatial fil-
tering and differentiation commute. Instead, we model the Laplacian CE (9) in two
of the LES-ROM s (i.e., ICE-DDC-ROM and CE-DDC-ROM). Next, we summarize
the construction of the three LES-ROMs: (i) in the F-NSE (7), we replace u with ug4
(as we did in Section 3.2); (ii) in the Laplacian term, we interchange filtering and
differentiation, and then we add the resulting Laplacian CE (9); and (iii) we replace
the filtered nonlinear term with the nonlinear term of the filtered variables (i.e.,
((uy - Vyu,, ¢;))) and then we add the resulting ROM subfilter-scale stress tensor
T rSF S defined in (20). This construction yields the following ROM: Vi =1, --- ,r,

ou
<a—tr ¢i> +v(Vu,, Vo;) + ((u, - Viu,, ¢;)
+ v(Ealual. ¢ + (7575, 6;) =0 (40)

Equation (40) yields the following dynamical system:
d, = Aa, +a Ba, + Ecg + T, (41)

where A and B are the same as in (38) and the components of Ecg and T are given
by:Vi=1,..r,

(Ece)i = —v(€alual, ¢;), (42)
u =" ¢). 43)

To construct the DDC-ROM [44], we make the following ansatz:
T~ t%(q,) = Aa, +a, Ba,. (44)

As mentioned in [44], we choose the quadratic ansatz (44) to resemble the right
hand side of the G-ROM (38). We note, however, that other ansatz forms can be
considered; we plan to investigate those in a future study.

To compute the operators A and B in (44), we use data-driven modeling ensur-
ing the highest accuracy of the vector 7. To this end, we solve the following
unconstrained optimization problem:

M
min Y T)) — T @, )| (45)
AERVXI‘ j:1

BGRrxrxr
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The data-driven correction ROM (DDC-ROM) has the following form:
dr = (A+ Aa, +a] (B+ Ba,, (46)

where the operators A and B are the G-ROM operators in (38) and the operators A
and B are the solution of the unconstrained minimization problem (45).

Remark 2 (DDC-ROM) The DDC-ROM was proposed in [44] and further improved
in [25]. Details regarding the DDC-ROM construction, including the numerical solu-
tion of the ill-conditioned linear least squares problem corresponding to (45) by using
the truncated singular value decomposition, are presented in Algorithm 1 in [44].
The computational efficiency of the DDC-ROM is discussed in Section 5.3 in [44].
Finally, a physically constrained DDC-ROM, which aims at improving the physical
accuracy of the DDC-ROM, is proposed in [25]. The physical constraints require that
the DDC-ROM operators satisfy the same type of physical laws as those satisfied by
the NSE and replace (45) with a constrained least squares problem. The numerical
results in [25] show that the physically constrained DDC-ROM is significantly more
stable and accurate than the standard DDC-ROM. However, since the main focus of
this paper is the investigation of ROM spatial filtering and the corresponding CE, we
only consider the standard DDC-ROM.

The ideal commutation error DDC-ROM (ICE-DDC-ROM) is obtained by adding
a high-accuracy (i.e., from fine resolution numerical data) representation of the
Laplacian CE (9):

d, = (A+Aa, +a' (B+ Ba, +Eck. (47)
To construct the CE-DDC-ROM, we make the following ansatz:
(1 + Ecp) = (x + Ecp)™(a,) = Aa, + a/ Ba,. (48)

To compute the operators A and B in (47), we use data-driven modeling ensuring
the highest accuracy of the vector T + Ecg. To this end, we solve the following
unconstrained optimization problem:

M
min D @+ Ecp)t)) = (x + Ecp)™ ™ (ar (1) . (49)
IS rXr :l

BeRrxrxr
The commutation error data-driven ROM (CE-DDC-ROM) has the following form:

d, = (A+ A)a, +a] (B + B)a,, (50)

where the operators A and B are the G-ROM operators in (38) and the operators A
and B are the solution of the unconstrained minimization problem (49).

5 Numerical experiments

In this section, we investigate numerically the following questions:
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(Q1) How large is the CE?
(Q2) Does the CE have a significant effect on ROMs? Should the commutation
error be modeled?

To answer the first question, we evaluate numerically the Laplacian CE and
compute its average, i.e., ||Ealuq]| |z2(12), which is calculated as follows:

\/ S 1Ealual?dr _ / At M (b, (1) — € (4) T M by (1) — €(17))
T T '

Furthermore, we also compare the average of the Laplacian CE with the average
of the ROM subfilter-scale tensor, which we used in Section 4 to construct the DDC-
ROM (46), the ICE-DDC-ROM (47), and the CE-DDC-ROM (50). We calculate the
average of the ROM subfilter-scale tensor, |[|7][,2(.2), as follows:

/f{nrnzclr N \/Ar S T, Ty)
T

T

]

where the vector 7 is defined in (15).

To answer the second question, we test the following ROMs: the DDC-ROM (46),
the ICE-DDC-ROM (47), and the CE-DDC-ROM (50). We emphasize that the ICE-
DDC-ROM and CE-DDC-ROM include a representation of the Laplacian CE (9),
whereas the DDC-ROM does not. Thus, if the ICE-DDC-ROM and CE-DDC-ROM
yield more accurate results than the DDC-ROM, we conclude that the CE plays a
significant role in ROM development. In our numerical investigation, we consider
two test problems: the 1D viscous Burgers equation (Section 5.1) and the 2D channel
flow past a circular cylinder (Section 5.2).

To compute the norm of the error in the numerical experiments, we use the
following formula:

u, — Xr: (uDNS’ ¢i) y

i=1

' , (S

where u, is the ROM approximation and u”VS is the direct numerical simula-

tion (DNS) solution. Thus, we compute the ROM error as the difference between
the ROM approximation and the DNS solution projected onto the ROM space, X".
We emphasize that, while the metric (51) has been utilized in other studies [25,
441, alternative metrics could be used instead (see, e.g., [17] and the discussion in
Section 5.4).

5.1 Experiment 1: Burgers equation
In our first experiment, we consider the Burgers equation:

{ u; —vuxy +uuy =0, x€[0,1], t €[0, 1] (52)

u@,t)=u(l,t) =0, tel0,1].
The DNS results are obtained by using a linear FE scheme with mesh width & =
1/2048 and timestep size At = 1073,
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In this section, we compute d (i.e., the rank of the snapshot matrix Y) as the
number of singular values of the matrix % Y YT My, that are larger than the prescribed
tolerance 1.0e-15.

To investigate the effect of initial conditions, we consider a smooth initial condi-
tion (Section 5.1.1) and a non-smooth initial condition (Section 5.1.2). Furthermore,
to investigate the effect of the viscosity parameter, we consider two viscosity values:
v = 10~"! (Sections 5.1.1 and 5.1.2) and v = 10~ (Section 5.1.3).

5.1.1 Smooth initial condition

We consider the initial condition

2vBm sin(wx)

m , X € [0, 1], (53)

uo(x) =

where « = 5 and 8 = 4.

First, we address (Q1), i.e., we investigate the size of the CE. For various r and §
values, we list the CE computed by using the ROM differential filter (Table 1) and
the ROM projection filter (Table 2). The main conclusion is that the CE exists for
both filters, especially for low r values. We also observe that as r increases, the CE
decreases. Finally, we note that, for the ROM differential filter (Table 1), for a fixed
r value, as § decreases, the CE decreases.

In Table 2, in addition to the CE average, we also list the ROM subfilter-scale
stress tensor average for different » values. We observe that the CE average is larger
than the ROM subfilter-scale stress tensor average.

Next, we address (Q2), i.e., we investigate whether the CE has a significant effect
on ROM:s. To this end, we test the DDC-ROM (46), the ICE-DDC-ROM (47), and the
CE-DDC-ROM (50). We note that the ICE-DDC-ROM and CE-DDC-ROM include a
representation of the Laplacian CE (9), whereas the DDC-ROM does not. For various
r and § values, we list the ROM error, computed by using the metric (51), the ROM
differential filter (Table 3), and the ROM projection filter (Table 4). The § values
used in Table 3 are computed by trial and error: for a given ROM and r value, we
select the & value that yields the most accurate results.

In Fig. 1, we plot the sensitivity of the CE-DDC-ROM error with respect to §. We
notice that the smallest error is attained for small values of §. This could be related
to the use of the L? error metric norm in this paper; other norms (e.g., the H' norm)
could yield different conclusions.

The errors in Tables 3 and 4 are computed by using formula (51). We observe that
the ICE-DDC-ROM and CE-DDC-ROM errors are consistently lower than the DDC-
ROM error. We emphasize that, for low r values, the ICE-DDC-ROM and CE-DDC-
ROM errors are two and even three orders of magnitude lower than the DDC-ROM
error. Thus, we conclude that the CE plays a significant role in ROM development.
Tables 3 and 4 also show that, as r increases, the DDC-ROM error approaches the
ICE-DDC-ROM and CE-DDC-ROM errors. We also note that the § values in Table 3
are small. Thus, in this case, the effect of the ROM differential filter is similar to the
effect of the ROM projection filter.
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Table3 Burgers equation, ROM differential filter, smooth initial condition, v = 10! ,andd = 7: Average
error in G-ROM, DDC-ROM, ICE-DDC-ROM, and CE-DDC-ROM for different § and r values

r 8 G-ROM 8 DDC-ROM
2 - 1.78¢—03 1.00e—05 1.32¢—03

3 - 1.93¢—04 1.00e—05 1.55¢—04

4 - 2.00e—05 1.00e—04 1.69¢—05

5 - 2.03e—06 1.00e—04 1.77e—06

6 - 2.23e—07 1.00e—05 2.02e—07

7 - 9.56e—08 1.00e—05 9.55¢—08

r 8 ICE-DDC-ROM 8 CE-DDC-ROM
2 1.00e-04 1.46e—05 1.00e—04 1.48¢e—05

3 1.00e-06 1.73¢—-07 1.00e—06 1.55e—07

4 1.00e-06 9.46e—08 1.00e—06 9.49¢—08

5 1.00e-05 9.23e—08 1.00e—05 9.25¢—08

6 1.00e-05 9.37¢—08 1.00e—05 9.38¢—08

7 1.00e-08 9.56e—08 1.00e—05 9.56e—08

Table4 Burgers equation, ROM projection filter, smooth initial condition, v = 10~!, and d = 7: Average
error in G-ROM, DDC-ROM, ICE-DDC-ROM, and CE-DDC-ROM for different r values

r G-ROM DDC-ROM ICE-DDC-ROM CE-DDC-ROM
2 1.78e—03 1.32¢—03 1.46e—05 1.48e—05
3 1.93¢e—04 1.55¢—04 1.73e—07 1.55¢—07
4 2.00e—05 7.40e—06 8.72¢—08 8.90e—08
5 2.03e—06 7.29¢—07 9.23¢—08 9.25¢—08
6 2.23e—07 1.60e—07 9.35¢—08 9.35¢—08
7 9.56¢—08 9.56¢—08 9.56e—08 9.56¢—08
r=2 r=>5
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Fig. 1 Burgers equation, ROM differential filter, smooth initial condition, v = 10’1, r = 2, 5: Sensitivity
plots of the CE-DDC-ROM error with respect to §
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5.1.2 Non-smooth initial condition

In this section, we investigate the effect of non-smooth initial conditions on the results
obtained in Section 5.1.1. To this end, we consider the following initial condition:

1, x€(0,1/2],

uo(x) = { 0, x € (1/2,1]. (54)

As initial conditions in the FE and ROM discretizations, we use the L? projection
of (54) on the FE and ROM spaces, respectively.

As in Section 5.1.1, we start by addressing (Q1), i.e., we measure the size of
the CE. For various r and § values, we list the CE computed by using the ROM
differential filter (Table 5) and the ROM projection filter (Table 6). We draw the same
main conclusion as in Section 5.1.1: The CE exists for both filters.

This time, however, as r increases, the CE increases. Furthermore, for the ROM
differential filter (Table 5), we note that for low r values, as § decreases, the CE
increases.

In Table 6, in addition to the CE average, we also list the ROM subfilter-scale
stress tensor average for different r values. The CE average is significantly larger
than the ROM subfilter-scale stress tensor average.

Table 5 Burgers equation, ROM differential filter, non-smooth initial condition, v = 107!, and d = 19:
Average CE for different § and r values

r s ||5A[”d]||L2(L2) r s ||5A[”d]||L2(L2)
2 1.00e—01 1.85¢+00 9 1.00e—01 2.13e+00
2 1.00e—-02 1.12¢+00 9 1.00e—02 2.25¢+01
2 1.00e—03 1.90e+00 9 1.00e—03 7.12e+02
2 1.00e—04 4.18e+00 9 1.00e—04 1.27e+02
2 1.00e—05 4.29¢+00 9 1.00e—05 1.17e+02
3 1.00e—01 2.71e+00 11 1.00e—01 2.13e+00
3 1.00e—02 6.70e+00 11 1.00e—02 2.14e+01
3 1.00e—03 1.07e+01 11 1.00e—03 7.14e+02
3 1.00e—04 2.68e+01 11 1.00e—04 8.15e+01
3 1.00e—05 2.75e+01 11 1.00e—05 3.59¢+01
5 1.00e—01 2.13e+00 17 1.00e—01 2.13e+00
5 1.00e—02 5.00e+01 17 1.00e—02 2.13e+01
5 1.00e—03 2.35¢+02 17 1.00e—03 6.36e+02
5 1.00e—04 3.15e+02 17 1.00e—04 1.10e+02
5 1.00e—05 3.25e+02 17 1.00e—05 1.29¢+00
7 1.00e—01 2.11e+00 19 1.00e—01 2.13e+00
7 1.00e—02 2.90e+01 19 1.00e—02 2.13e+01
7 1.00e—-03 6.25¢+02 19 1.00e—-03 6.05¢+02
7 1.00e—04 2.95e+02 19 1.00e—04 1.20e+02
7 1.00e—05 3.04e+02 19 1.00e—05 1.29¢+00
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Table 6 Burgers equation, ROM projection filter, non-smooth initial condition, v = 10_1, and d = 19:
Average CE and average ROM subfilter-scale stress tensor for different r values

r ||5A[Md]||L2(L2) HTHLZ(LZ)

2 4.29¢ + 00 5.68¢ — 02
3 2.75¢ 4+ 01 3.69¢ — 02
5 3.25¢ 402 2.73e — 02
7 3.04e + 02 1.05¢ — 02
9 1.17e 402 3.46e — 03
11 3.60e 4 01 9.99¢ — 04
17 5.27e¢ — 01 1.39¢ — 05

Next, we address (Q2), i.e., we investigate whether the CE has a significant effect
on ROMs. As in Section 5.1.1, we test the DDC-ROM (46), the ICE-DDC-ROM
(47), and the CE-DDC-ROM (50). We note again that the [CE-DDC-ROM and CE-
DDC-ROM include a representation of the Laplacian CE (9), whereas the DDC-ROM
does not. For various r and & values, we list the ROM error, computed by using
the metric (51), the ROM differential filter (Table 7), and the ROM projection filter
(Table 8). We draw the same main conclusion as in Section 5.1.1: The ICE-DDC-
ROM and CE-DDC-ROM errors are consistently lower than the DDC-ROM errors

Table 7 Burgers equation, ROM differential filter, non-smooth initial condition, v = 107! ,and d = 19:
Average error in G-ROM, DDC-ROM, ICE-DDC-ROM, and CE-DDC-ROM for different § and r values

r B G-ROM B DDC-ROM
2 - 7.27¢—03 1.00e—05 6.93¢—03

3 - 1.51e—02 1.00e—04 8.16e—03

5 —~ 4.22¢—03 1.00e—04 4.22¢—03

7 - 9.59¢—04 1.00e—04 9.59¢—04
9 - 2.34e—04 1.00e—04 2.35¢—04
11 -~ 5.44e—05 1.00e—07 5.56e—05
17 - 4.97¢—07 1.00e—07 5.06e—07
19 - 1.30e—07 1.00e—07 1.30e—07

r s ICE-DDC-ROM 8 CE-DDC-ROM
2 1.00e—03 2.67e—04 1.00e—02 1.07e—03

3 1.00e—04 5.85¢—05 1.00e—02 1.36e—03

5 1.00e—07 5.97e—07 1.00e—04 3.13¢—04

7 1.00e—07 1.32¢—07 1.00e—04 6.27¢—05

9 1.00e—06 1.42¢—07 1.00e—05 2.07¢—06
11 1.00e—07 1.38¢—07 1.00e—06 1.48¢—07
17 1.00e—07 1.35¢—07 1.00e—07 1.19¢—07
19 1.00e—07 1.30e—07 1.00e—07 1.30e—07
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Table 8 Burgers equation, ROM projection filter, non-smooth initial condition, v = 10_1, and d = 19:
Average error in G-ROM, DDC-ROM, ICE-DDC-ROM, and CE-DDC-ROM for different r values

r G-ROM DDC-ROM ICE-DDC-ROM CE-DDC-ROM
2 7.27¢e—03 6.93¢—03 2.71e—04 3.71e—03
3 1.51e—02 8.14e—03 5.89¢—05 3.84¢—03
5 4.22¢—-03 4.22¢—-03 5.97e—07 3.14e—04
7 9.59¢—04 9.59¢—04 1.32¢—07 6.44e—05
9 2.34e—04 2.34e—04 1.39¢—07 4.26e—06
11 5.44e—05 5.44e—05 1.30e—07 1.28¢e—07
17 4.97¢—-07 5.00e—07 1.34e—07 1.15e—07
19 1.30e—07 1.30e—07 1.30e—07 1.30e—07

and the G-ROM errors. Furthermore, for low r values, the ICE-DDC-ROM and CE-
DDC-ROM errors are one and even two orders of magnitude lower than the DDC-
ROM error. Thus, we conclude again that the CE plays a significant role in ROM
development. Tables 7 and 8 also show that, as r increases, the DDC-ROM error
approaches the ICE-DDC-ROM and CE-DDC-ROM errors.

5.1.3 Lower viscosity (v = 10~3)

In this section, we investigate the effect of lower viscosity on the results obtained in
Sections 5.1.1 and 5.1.2. The low viscosity results for the smooth initial condition
used in Section 5.1.1 are similar to the low viscosity results for the non-smooth initial
condition used in Section 5.1.2. Thus, for clarity, we only present the former. As in
the previous sections, we start by addressing (Q1), i.e., we measure the size of the CE.
For various r and § values, we list the CE computed by using the ROM differential
filter (Table 9) and the ROM projection filter (Table 10). We draw the same main
conclusion as in Sections 5.1.1 and 5.1.2: The CE exists for both filters.

In Table 10, in addition to the CE average, we also list the ROM subfilter-scale
stress tensor average for different r values. As in Sections 5.1.1 and 5.1.2, the CE
average is larger than the ROM subfilter-scale stress tensor average.

Next, we address (Q2), i.e., we investigate whether the CE has a significant effect
on ROMs. Asin Sections 5.1.1 and 5.1.2, we test the DDC-ROM (46), the ICE-DDC-
ROM (47), and the CE-DDC-ROM (50). We note again that the ICE-DDC-ROM and
CE-DDC-ROM include a representation of the Laplacian CE (9), whereas the DDC-
ROM does not. For various r and § values, we list the ROM error, computed by using
the metric (51), the ROM differential filter (Table 11), and the ROM projection filter
(Table 12). We draw the same main conclusion as in Sections 5.1.1 and 5.1.2: The
ICE-DDC-ROM and CE-DDC-ROM errors are consistently lower than the DDC-
ROM errors and the G-ROM errors. Furthermore, for low r values, the ICE-DDC-
ROM and CE-DDC-ROM errors are two and even three orders of magnitude lower
than the DDC-ROM error. Thus, we conclude again that the CE plays a significant
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Table9 Burgers equation, ROM
differential filter, smooth initial r 8 NEalualll 22y
condition, v = 1073, and d = 3:

Average CE for different § and r 1 1.00e—01 3.61e—04
values 1 1.00e—02 4.39¢—04
1 1.00e—04 4.40e—04
1 1.00e—06 4.40e—04
2 1.00e—01 2.09¢—06
2 1.00e—02 4.28e—06
2 1.00e—04 4.32e—06
2 1.00e—06 4.32e—06
3 1.00e—01 1.36e—15
3 1.00e—02 4.80e—17
3 1.00e—04 3.80e—17
3 1.00e—06 3.74e—17

role in ROM development. We also note that, for the Burgers equation, the lower
viscosity (v = 1073) results are similar to the higher viscosity (v = 1071 results.

5.2 Experiment 2: flow past a circular cylinder

In our second experiment, we consider a 2D channel flow past a circular cylinder. The
domain is a 2.2 x 0.41 rectangular channel with a radius = 0.05 cylinder, centered
at (0.2, 0.2), see Fig. 2. No slip boundary conditions are prescribed on the walls and
cylinder, and the inflow and outflow profiles are given by [25, 26]

6
u10,y,t) = u1(22,y,t) = 0.412y(0.41 -y,

uz(0,y,1) = uz2(2.2,y,1) =0,

where u = (uy, us).

Although imposing a parabolic profile for the outflow velocity is unphysical, we
note that the Dirichlet boundary conditions are common in the ROM field, since they
simplify the theoretical and numerical investigation. We also emphasize that these
outflow velocity boundary conditions do not significantly affect the upstream drag
and lift coefficients [19, 35].

There is no forcing (f = 0) and the flow starts from rest. We run the DNS of
the NSE (4)—(5) from rest (¢t = 0) until the final simulation time 7" = 17. We use

Table 10 Burgers equation,

ROM projection filter, smooth r NEalualll 22y Tllr2e2y
initial condition, v = 1073, and
d = 3: Average CE and average 1 4.40e¢ — 04 2.71e — 07

ROM subfilter-scale stress

tensor for different r values 2 4.32¢ =06 1.73¢ =09

3 0 0
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Table 11 Burgers equation, ROM differential filter, smooth initial condition, v = 10_3, and d = 3:
Average error in G-ROM, DDC-ROM, ICE-DDC-ROM, and CE-DDC-ROM for different § and r values

r 8 G-ROM 8 DDC-ROM

1 - 2.21e—07 1.00e—03 5.81e—08

2 - 9.33e—10 1.00e—08 6.68¢—10

3 - 3.46e—12 1.00e—08 3.46e—12

r 8 ICE-DDC-ROM 8 CE-DDC-ROM
1 1.00e-05 3.50e—10 1.00e—06 4.07¢—10

2 1.00e-08 5.35¢—13 1.00e—08 5.37e—13

3 1.00e-08 3.46e—12 1.00e—08 3.46e—12

the point-wise divergence-free, LBB stable (P;, Pl‘”“') Scott-Vogelius FE pair on a
barycenter refined regular triangular mesh [20]. The mesh provides 35K velocity
degrees of freedom for Re = 100 case, and 103K velocity degrees of freedom for
Re = 500 case. The time step size Ar = 0.002 is used for both DNS and ROM time
evolution. We utilize the commonly used linearized BDF2 temporal discretization,
together with the FE spatial discretization. On the first time step, we use a backward
Euler scheme so that we have two initial time step solutions required for the BDF2
scheme. The scheme forn = 1,2, --- , is: Find (uZH, pZ‘H) e (X", Q") satisfying
for every (vs, qp) € (X", M),

3u2+1 — duj + uz_l
2At

con |+ (Qul — w7 valt vy

(T Vo) +u(Val !, V) =0, (55)
(V- up, qn) =0. (56)

In this section, we compute d (i.e., the rank of the snapshot matrix Y) as the
number of singular values of the matrix % Y YT M), that are larger than the prescribed
tolerance 1.0e-05.

Table 12 Burgers equation, ROM projection filter, smooth initial condition, v = 10_3, and d = 3:
Average error in G-ROM, DDC-ROM, ICE-DDC-ROM, and CE-DDC-ROM for different r values

r G-ROM DDC-ROM ICE-DDC-ROM CE-DDC-ROM
1 2.21e—07 1.35¢—07 3.49¢—-10 4.07¢—10
2 9.33¢e—10 6.68¢—10 5.35¢—13 5.37e—13
3 3.46e—12 3.46e—12 3.46e—12 3.46e—12
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2.2

“ » 0.1 0.41

Fig.2 Geometry of the flow past a circular cylinder numerical experiment

5.2.1 Reynolds number Re = 100

In this section, we present numerical results for Re = 100, where the Reynolds num-
ber is calculated with v = 1073 and the diameter of the cylinder as the characteristic
length scale. To generate the ROM basis, we collect 1501 snapshots, which are the
FE solutions at each time step from + = 7 to t = 10. The time interval [7, 10]
does not include the initial transient. We take the FE solution at + = 7 as the initial
ROM solution. To construct the ROM subfilter-scale stress tensor and the CE in the
DDC-ROM (46), the ICE-DDC-ROM (47), and the CE-DDC-ROM (50), we use 166
snapshots, which are the FE solutions at each time step from ¢t = 7.002 to t = 7.332.
We note that the time interval [7.002, 7.332] represents one period; using snapshots
from more than one period to construct the ROM subfilter-scale stress tensor and the
CE does not improve the accuracy of the results.

As in Section 5.1, we address questions (Q1) and (Q2). We start with (Q1), i.e., we
measure the size of the CE. For various r and § values, we list the CE computed by
using the ROM differential filter (Table 13) and the ROM projection filter (Table 14).
The main conclusion is that the CE exists for both filters, just as for the Burgers
equation in Section 5.1.

Table 13 NSE, Re = 100, ROM differential filter, d = 14: Average CE for different § and r values

r 8 =1.00e—04 5 =1.00e—03 8 =1.00e—-2 8 =1.00e—01 8 =1.50e—01
2 1.05e+01 1.05¢+01 1.02e+01 3.42¢+00 1.90e+00
3 1.01e+01 1.01e+01 9.48e+00 1.71e+00 8.98¢—01
4 1.85e+01 1.84e+01 1.53e+01 1.13e+00 5.33e—01
5 2.39¢+01 2.38e+01 1.95¢+01 1.18e+00 5.45¢e—01
6 2.50e+01 2.49¢+01 1.98e+01 1.01e+00 4.63¢—01
7 3.03e+01 3.03e+01 2.33e+01 1.00e+00 4.55¢—01
8 2.90e+01 2.90e+01 2.20e+01 9.28¢—01 4.22¢—01
9 3.82e+01 3.80e+01 2.59¢+01 9.51e—01 4.31e—01
10 3.08e+01 3.05¢+01 1.76e+01 4.85¢—01 2.19¢—01
11 1.41e+01 1.40e+01 8.05¢+00 2.03e—01 9.12¢e—02
12 1.35¢+01 1.34e+01 7.69¢+00 1.92¢—01 8.63¢—02
13 4.36¢+00 4.33¢+00 2.58e+00 7.88e—02 3.58e—02
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Table 14 NSE, Re = 100, ROM projection filter, and d = 14: Average CE and average ROM subfilter-
scale stress tensor for different r values

r 2 3 4 5 6 7

€ alualll 22y 1.0le—02  1.00e—02  1.85¢—02  2.39¢—02  2.50e—02  3.03¢—02

Il 22 381e+00  6.05e—02  125¢+00  1.75¢—01  1.43e+00  4.09¢—02
r 8 9 10 11 12 13

I€alualll 22y 2:90e—02  3.82e—02  3.08¢—02  1.4le—02  1.35¢—02  4.36e—03
Il 22 424e—01  8.61e—02  420e—01  2.44e—02  142¢—01  1.91e—02

As in Section 5.1.2, we note that the CE displays a non-monotonic behavior with
respect to r; we explain this behavior in Section 5.4.

In Table 14, in addition to the CE average, we also list the ROM subfilter-scale
stress tensor average for different r values. The CE average is lower than or on the
same order as the ROM subfilter-scale stress tensor average. We note, however, that
the CE is multiplied by the inverse of the Reynolds number in the ICE-DDC-ROM
(47) and the CE-DDC-ROM (50).

Next, we address (Q2), i.e., we investigate whether the CE has a significant effect
on ROMs. To this end, we test the DDC-ROM (46), the ICE-DDC-ROM (47), and the
CE-DDC-ROM (50). We note that the ICE-DDC-ROM and CE-DDC-ROM include a
representation of the Laplacian CE (9), whereas the DDC-ROM does not. For various
r and § values, we list the ROM error, which is computed by using the metric (51),
the ROM differential filter (Table 15), and the ROM projection filter (Table 16). We
observe that the ICE-DDC-ROM and CE-DDC-ROM errors are generally lower than
the DDC-ROM error. This time, however, the improvements in the ICE-DDC-ROM
and CE-DDC-ROM over the DDC-ROM are small. This is different from the Burg-
ers equation in Section 5.1, where the ICE-DDC-ROM and CE-DDC-ROM errors
were orders of magnitude lower than the DDC-ROM error. Thus, for the Re = 100
case, we conclude that the CE plays only a minor role in ROM development. This

Table 15 NSE, Re = 100, ROM differential filter: Average error in G-ROM, DDC-ROM, ICE-DDC-
ROM, and CE-DDC-ROM for different § and r values

r 8 G-ROM DDC-ROM ICE-DDC-ROM CE-DDC-ROM
2 1.00e—03 3.41e—01 3.3368e—01 2.9718e—04 3.3368¢e—01
2 1.00e—02 3.41e—01 3.3368¢—01 2.9627¢—04 3.3368¢e—01
3 1.00e—03 1.10e—02 2.2324¢—-04 3.2809e—04 2.3673e—04
3 1.00e—02 1.10e—02 2.2324e—-04 3.2688¢—04 2.3560e—04
4 1.00e—03 4.29¢—-02 4.1966e—04 3.4675¢—04 4.1425¢—04
4 1.00e—02 4.29¢—-02 4.1966e—04 3.4762¢—04 4.1447e—04
5 1.00e—03 2.33e—02 3.4739¢—04 3.4129¢e—04 3.3897¢—04
5 1.00e—02 2.33e—02 3.4739¢—04 3.3851e—04 3.3617¢—04
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Table 16 NSE, Re = 100, d = 14, ROM projection filter: Average error in G-ROM, DDC-ROM, ICE-
DDC-ROM, and CE-DDC-ROM for different » values

r G-ROM DDC-ROM ICE-DDC-ROM CE-DDC-ROM
2 3.41e—01 3.35¢—01 2.97e—-04 3.30e—01
3 1.10e—02 2.23e—04 3.28e—04 2.37¢—-04
4 4.29¢—-02 4.20e—04 3.47e—04 4.14e—-04
5 2.33e—-02 3.47¢e—-04 3.41e—04 3.39¢e—04
6 3.51e—02 3.41e—04 3.50e—04 3.39¢e—04
7 4.87¢—03 4.35¢—04 4.19¢—04 4.11e—-04
8 7.19¢—03 4.29¢—04 4.17¢—-04 4.13e—04
9 5.82¢—03 4.34¢—-04 4.11e—04 4.11e—-04
10 7.14e—03 4.16e—04 4.13e—04 4.10e—04
11 1.52¢—-03 4.36¢—04 4.34e—-04 4.33¢e—-04
12 1.86e—03 4.42¢—-04 4.48e—04 4.40e—-04
13 1.21e-03 6.58¢—04 6.83¢—04 6.58¢—04

happens because, in this case, the magnitude of the CE multiplied by the inverse of
the Reynolds number is lower than the magnitude of the Correction term.

5.2.2 Reynolds number Re = 500

To investigate the effect of the Reynolds number on the results in Section 5.2.1, in
this section we consider Re = 500, which corresponds to v = 2 X 10~ (see [25,
44] for details on the computational setting). To generate the ROM basis, we collect
1501 snapshots, which are the FE solutions at each time step fromt = 5to ¢ = 8 and
represent almost seven periods.

To construct the ROM subfilter-scale stress tensor and the CE in the DDC-ROM
(46), the ICE-DDC-ROM (47), and the CE-DDC-ROM (50), we use 219 snapshots
from the time interval (5, 5.438], which represents approximately one period.

As in Section 5.2.1, we start by addressing (Q1), i.e., we measure the size of the
CE. For various r and é values, we list the CE computed by using the ROM differ-
ential filter (Table 17) and the ROM projection filter (Table 18). As in Section 5.2.1,
we observe that the CE exists for both filters.

In Table 18, in addition to the CE average, we also list the ROM subfilter-scale
stress tensor average for different r values. The CE average is larger than or on the
same order as the ROM subfilter-scale stress tensor average. We note, however, that
the CE is multiplied by the inverse of the Reynolds number in the ICE-DDC-ROM
(47) and the CE-DDC-ROM (50).

Next, we address (Q2), i.e., we investigate whether the CE has a significant effect
on ROMs. To this end, we test the DDC-ROM (46), the ICE-DDC-ROM (47), and the
CE-DDC-ROM (50). We note that the ICE-DDC-ROM and CE-DDC-ROM include a
representation of the Laplacian CE (9), whereas the DDC-ROM does not. For various
r and § values, we list the ROM error, which is computed by using the metric (51),
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Table 17 NSE, Re = 500, ROM differential filter, d = 20: Average CE for different § and r values

r 8 =1.00e—04 5 =1.00e—03 8 =1.00e—2 § =1.00e—01 8 =1.50e—01
3 5.46e—02 5.44e—02 5.06e—02 6.40e—03 3.08¢—03
4 2.58e—02 2.58¢—02 1.96e—02 1.48¢—03 7.00e—04
5 4.18¢—02 4.16e—02 3.18¢—02 1.78¢e—03 8.30e—04
6 2.38¢—02 2.36e—-02 1.90e—02 1.46e—03 6.86e—04
7 2.36e—02 2.34e—02 1.80e—02 1.10e—03 5.14e—04
8 2.36e—02 2.36e—02 1.72e—02 6.84e—04 3.12e—04
9 3.02¢e—02 3.00e—02 1.62¢—02 5.62e—04 2.56e—04
10 3.70e—02 3.64e—02 1.64e—02 4.70e—04 2.14e—04

the ROM differential filter (Table 19), and the ROM projection filter (Table 20). We
observe that the ICE-DDC-ROM and CE-DDC-ROM errors are lower than the DDC-
ROM error, but the improvements in the ICE-DDC-ROM and CE-DDC-ROM over
the DDC-ROM are small, just as in Section 5.2.1. Thus, for the Re = 500 case, we
conclude that the CE plays only a minor role in ROM development, just as for the
Re = 100 test case in Section 5.2.1. Again, this happens because, in this case, the
magnitude of the CE multiplied by the inverse of the Reynolds number is much lower
than the magnitude of the Correction term.

5.3 Predictive regime

In the numerical experiments in this section, we considered the reconstructive regime.
This regime aims at checking whether the tested ROMs can reproduce the dynamics
of the underlying system on the time interval [Tiin, Tmax], Which is the same time
interval as the time interval used to generate the ROM basis functions. Thus, in the
reconstructive regime, the ROMs are validated on the same time interval as the time
interval used to train the ROMs. Of course, testing the ROMs in the reconstructive
regime is a necessary first step in checking the ROM accuracy.

The predictive regime is a significantly harder test case than the reconstructive
regime. In the predictive regime, the ROMs are trained on a short time interval, e.g.,

[Tmin, %], and validated on a longer time interval [Tin, Tmax].- In other words,

the ROM basis functions are constructed from incomplete data, but the ROMs are
validated on the entire time interval.

Table 18 NSE, Re = 500, ROM projection filter, and d = 20: Average CE and average ROM subfilter-
scale stress tensor for different » values

r 2 3 4 5 6 7

NEalualll 22y 744e—02  5.46e—02  2.58¢—02  4.18¢—02  2.38¢—02  2.36e—02
ITli2 2 3.71e+01 3.86e—01  2.49¢—01  3.40e+00 6.11e—01  3.58e+00
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Table 19 NSE, Re = 500, d = 20, ROM differential filter: Average error in G-ROM, DDC-ROM,
ICE-DDC-ROM, and CE-DDC-ROM for different § and r values

r 8 G-ROM DDC-ROM ICE-DDC-ROM CE-DDC-ROM
2 1.00e—03 7.23e—01 5.16e—01 8.04e—04 5.16e—01
2 1.00e—02 7.23¢—01 5.16e—01 7.27e—04 5.16e—01
3 1.00e—03 8.44e—02 1.55¢—03 9.70e—04 1.49¢—-03
3 1.00e—02 8.44¢—02 1.55¢—03 9.81e—04 1.50e—03
4 1.00e—03 4.80e—02 1.87e—03 1.06e—03 1.86e—03
4 1.00e—02 4.80e—02 1.87¢—03 1.06e—03 1.86e—03
5 1.00e—-03 1.26e—01 1.20e—03 1.08¢—03 1.21e—-03
5 1.00e—02 1.26e—01 1.20e—03 1.08¢—03 1.21e—03

In this section, we perform a numerical investigation of the CE in the pre-
dictive regime. In our numerical investigation, we consider two test problems: In
Section 5.3.1, we consider the 1D viscous Burgers equation test problem that we used
in Section 5.1.1. In Section 5.3.2, we consider the 2D channel flow past a circular
cylinder test problem that we used in Section 5.2.2.

5.3.1 Burgers equation, smooth initial condition
In this section, we consider the numerical test in Section 5.1.1. For clarity, we include

results only for the ROM projection filter. All the parameters are the same as those
used in Section 5.1.1; the only difference is that now we construct the ROMs by using

Table 20 NSE, Re = 500, d = 20, ROM projection filter: Average error in G-ROM, DDC-ROM, ICE-
DDC-ROM, and CE-DDC-ROM for different r values

r G-ROM DDC-ROM ICE-DDC-ROM CE-DDC-ROM
2 7.23¢—01 5.16e—01 3.17e—03 5.16e—01
3 8.44e—02 1.55¢—03 8.36e—04 1.49¢—03
4 4.80e—02 1.01e—-03 1.02¢—-03 1.12¢—-03
5 1.26e—01 1.20e—03 1.06e—03 1.21e—03
6 1.50e—01 1.27¢—03 1.08¢—03 1.24e—03
7 1.49¢—01 1.49¢—03 1.19¢—03 1.47¢e—03
8 2.41e—02 1.40e—03 1.52¢—-03 1.39¢—-03
9 2.56e—02 1.52¢—03 1.52¢—03 1.52¢e—03
10 2.36e—-02 1.44e—03 1.46e—03 1.44e—-03
11 2.6le—02 1.44e—03 1.45¢—03 1.46e—03
12 1.52¢—-02 1.54e-03 1.44¢-03 1.57¢—-03
13 1.55¢—02 1.53¢e—03 1.45¢—03 1.53e—03
14 1.11e—02 1.51e—03 1.46¢—03 1.51e—-03
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Table 21 Predictive regime;
Burgers equation, ROM r NEalualll 22y zllr22y
projection filter, smooth initial

condition, v = 107!, and d = 5: 1 2.9508¢ — 01 1.8396¢ — 02

Average CE and ROM 2 2.4307¢ — 02 9.7433¢ — 04

subfilter-scale stress tensor for

different r values 3 1.1821e — 03 3.4550e — 05
4 4.4356e — 05 1.0123¢ — 06

only data from the time interval [Tmin, TIL(‘;‘] = [0, 0.1], whereas in Section 5.1.1

we used data on the time interval [ Tinin, Tmax] = [0, 1]. Thus, we train the ROMs on
a time interval that is ten times shorter than the time interval on which we test the
ROMs.

First, we address (Q1), i.e., we measure the size of the CE. In Table 21, for various
r values, we list the magnitude of the CE together with the magnitude of the ROM
subfilter-scale stress tensor. The main conclusion is that, for all r values, the CE
exists. Furthermore, the CE average dominates the ROM subfilter-scale stress tensor
average. We also observe that, as expected, as r increases, the magnitudes of the
averages of the CE and the ROM subfilter-scale stress tensor decrease.

Next, we address (Q2), i.e., we investigate whether the CE has a significant effect
on ROMs. To this end, we test the DDC-ROM (46), the ICE-DDC-ROM (47), and
the CE-DDC-ROM (50). We note again that the ICE-DDC-ROM and CE-DDC-ROM
include a representation of the Laplacian CE (9), whereas the DDC-ROM does not.
In Table 22, for various r values, we list the ROM error, which is computed by using
the metric (51). We observe that the CE-DDC-ROM errors are consistently lower
than the DDC-ROM error (which, in turn, are lower than the G-ROM errors). We
emphasize that, for r = 2, 3,4, the CE-DDC-ROM errors are one and even two
orders of magnitude lower than the DDC-ROM errors. Thus, we conclude that the
CE plays a significant role in ROM development. Table 22 also shows that the CE-
DDC-ROM errors are significantly lower than the ICE-DDC-ROM errors. We note,
however, that this does not contradict the nature of the ICE-DDC-ROM, which is
ideal only on the training interval (i.e., [0, 0.1]), but not on the entire testing interval
(i.e., [0, 1]).

The results in Tables 21 and 22 obtained in the predictive regime are similar to
those obtained in Section 5.1.1 for the reconstructive regime: The CE is relatively

Table 22 Predictive regime; Burgers equation, ROM projection filter, smooth initial condition, v = 1071,
and d = 5: Average error in G-ROM, DDC-ROM, ICE-DDC-ROM, and CE-DDC-ROM for different r
values

G-ROM DDC-ROM ICE-DDC-ROM CE-DDC-ROM
1 4.0154¢ — 02 2.0314e — 02 2.0194e — 02 1.3837¢ — 02
2 1.1492¢ — 02 8.4462¢ — 03 8.4463¢ — 03 8.2671e — 04
3 3.3987¢ — 03 2.8191e — 03 2.8191e — 03 1.7522¢ — 05
4 1.0226e — 03 4.8016e — 04 4.8016e — 04 2.7080e — 05
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large and the ROMs that model the CE are significantly more accurate than the ROMs
that do not model the CE.

5.3.2 Channel flow past a circular cylinder, Re = 500

In this section, we consider the numerical test in Section 5.2.2. For clarity, we include
results only for the ROM projection filter. All the parameters are the same as those
used in Section 5.2.2; the only difference is that now we construct the ROM basis and
ROMs by using only data from the time interval [5, 5.3], whereas in Section 5.2.2
we used data from the time interval [5, 8] for the ROM basis and data from the time
interval (5, 5.438] for the ROMs. Thus, we train the ROMs on a time interval that is
ten times shorter than the time interval on which we test the ROMs.

We investigate whether the CE has a significant effect on ROMs. To this end, we
test the DDC-ROM (46), the ICE-DDC-ROM (47), and the CE-DDC-ROM (50). We
note again that the ICE-DDC-ROM and CE-DDC-ROM include a representation of
the Laplacian CE (9), whereas the DDC-ROM does not. Tables 23 and 24 list the
ROM error computed by using the metrics (51) and (57), respectively. We observe
that the ICE-DDC-ROM and CE-DDC-ROM errors are similar to the DDC-ROM
error, just as in the reproductive case in Section 5.2.2. Thus, for the Re = 500 case,
we conclude that the CE plays only a minor role in ROM development, just as in
the reproductive case in Section 5.2.2. Again, this happens because, in this case, the
magnitude of the CE multiplied by the inverse of the Reynolds number is lower than
the magnitude of the Correction term. Table 23 also shows that the CE-DDC-ROM
errors are generally lower than the ICE-DDC-ROM errors. We note, however, that
this does not contradict the nature of the ICE-DDC-ROM, which is ideal only on the
training interval (i.e., [5, 5.3]), but not on the entire testing interval (i.e., [5, 8]).

Table 23 Predictive regime; NSE, ROM projection filter, Re=500, and d = 20: Average error computed
by using metric (51) for G-ROM, DDC-ROM, ICE-DDC-ROM, and CE-DDC-ROM for different r values

r G-ROM DDC-ROM ICE-DDC-ROM CE-DDC-ROM
2 2.97e—-01 9.26e—03 7.23e—03 8.64e—03
3 3.68e—01 1.03e—01 1.98e—01 1.04e—01
4 3.39e—01 5.78e—03 5.79e—03 5.55e—03
5 3.79e—01 1.17e—01 1.95e—01 1.18e—01
6 6.54e—02 3.29e—03 3.69e—03 3.41e—03
7 5.87e—02 1.97e—02 3.00e—02 1.99e—02
8 5.29e—-02 2.80e—03 2.86e—03 2.80e—03
9 5.92e—-02 1.75e—02 3.12e—02 1.77e—02
10 3.49e—02 2.55e—03 2.76e—03 2.57e—03
11 3.22e—02 9.63e—03 1.54e—02 9.57e—03
12 2.18e—02 2.34e—03 2.33e—03 2.34e—03
13 2.22e—02 5.92e—03 1.12e—02 5.92e—03
14 1.01e—02 2.00e—03 2.02e—03 2.02e—03
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Table 24 Predictive regime; NSE, ROM projection filter, Re=500, and d = 20: Average error computed
by using metric (57) for G-ROM, DDC-ROM, ICE-DDC-ROM, and CE-DDC-ROM for different r values

r G-ROM DDC-ROM ICE-DDC-ROM CE-DDC-ROM
2 3.42e—01 1.42e—01 1.41e—01 1.42e—01
3 3.91e—01 1.56e—01 2.33e—01 1.57e—01
4 3.51e—01 7.90e—02 7.89e—02 7.89e—02
5 3.86e—01 1.34e—01 2.05e—01 1.35e—01
6 7.52e—02 3.47e—02 3.47e—02 3.47e—02
7 6.66e—02 3.63e—02 4.29¢e—02 3.64e—02
8 5.93e—-02 2.52e—02 2.52e—02 2.52e—02
9 6.32e—02 2.75e—02 3.79e—02 2.76e—02
10 3.85e—02 1.54e—02 1.54e—02 1.54e—02
11 3.51e—02 1.65e—02 2.05e—02 1.64e—02
12 2.47e—02 1.12e—02 1.12e—02 1.12e—02
13 2.43e—02 1.12e—02 1.47e—02 1.12e—02
14 1.24e—02 7.49¢—03 7.50e—03 7.49e—03

5.4 Rates of convergence

In the numerical experiments in this section, we used formula (51) to compute the
ROM error as the difference between the ROM approximation and the DNS solution
projected onto the ROM space X", which is the space spanned by the first » ROM
basis functions: X" = span{¢, @,,--- , @,}. Since the second term in the ROM
error formula (51) (i.e., >, (uDNS, ¢l~) ¢;), changes when r changes, in some of
the tables in this section, the ROM error did not display monotonic convergence with
respect to r.

We believe that the ROM error formula (51) is appropriate to quantify the ROM
accuracy since, for a fixed r value, it measures the distance between the ROM solu-
tion and the best approximation in the ROM space X". If, however, the goal is to
illustrate monotonic convergence with respect to r, the following formula seems more
appropriate:

d
ur = (425 6,) 8 (57

i=1

where u, is the ROM approximation and #?"5 is the DNS solution. The difference
between formula (57) and formula (51) is that the sum in the former goes from 1 to
d, whereas in the latter it goes from 1 to r. Thus, in formula (57), the ROM error is
computed as the difference between the ROM approximation and the DNS solution
projected onto the ROM space X?, which is the space spanned by the first d ROM
basis functions: X¢ = span{¢;, ¢,, - - - ,¢4}. Since the second term in the ROM
error formula (57) (i.e., Zle (uD NS, ¢,~) ¢;) does not change with respect to r, we
expect the ROM error computed with (57) to display monotonic convergence with
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respect to r. Next, we show that this is indeed the case for the test problems used in
Sections 5.1.1 and 5.2.2 in the reconstructive regime.

First, we consider the test problem in Section 5.1.1. We use the same parameters as
those used in Section 5.1.1, except that we choose v = 1 and d = 9. In Table 25, we
list the average ROM errors for the G-ROM (38), the DDC-ROM (46), the ICE-DDC-
ROM (47), and the CE-DDC-ROM (50) computed with formula (57). In Table 26,
we list the rates of convergence corresponding to these errors. As expected, all the
ROM errors in Tables 25 converge monotonically with respect to r. This is clearly
displayed in Table 26, where all the numerical rates of convergence are very close to
the theoretical rates of convergence [22] (i.e., close to 1).

Next, we consider the test problem in Section 5.2.2. We use the same parameters
as those used in Section 5.2.2. In Table 27, we list the average ROM errors for the G-
ROM (38), the DDC-ROM (46), the ICE-DDC-ROM (47), and the CE-DDC-ROM
(50) computed with formula (57). Again, almost all the ROM errors in Table 27
converge asymptotically with respect to r.

In Table 26, we use the following formula to compute the rate of convergence
(ROC) [17, 18]:

ROC(r) = log(E(r)) — log(E(r — 1)) L, i -
log(A(r) —log(A(r—1)) T :

where E represents the ROM error (for the G-ROM, DDC-ROM, ICE-DDC-
ROM, and CE-DDC-ROM) and A =,/ % Zfl:r 11 Ai represents the POD truncation

erTor.

We note, however, that in Tables 25 and 27, the improvements in the CE-DDC-
ROM, ICE-DDC-ROM, and DDC-ROM errors over the G-ROM error are much
smaller than the corresponding improvements in Sections 5.1.1 and 5.2.2. The reason

Table 25 Burgers equation, ROM projection filter, smooth initial condition, v = 1, and d = 9: Average
error in G-ROM, DDC-ROM, ICE-DDC-ROM, and CE-DDC-ROM for different r values computed with
formula (57)

r G-ROM DDC-ROM ICE-DDC-ROM CE-DDC-ROM
1 1.5142e¢ — 01 1.4047¢ — 01 1.2669¢ — 01 1.2829¢ — 01
2 2.0326e — 02 1.9058e — 02 1.6665¢ — 02 1.6665¢ — 02
3 2.7029¢ — 03 2.5604e — 03 2.2314e — 03 2.2314e — 03
4 3.6104e — 04 3.2263¢ — 04 3.0067¢ — 04 3.0067e — 04
5 4.8384e — 05 4.1544e — 05 4.0587¢ — 05 4.0587e — 05
6 6.4558¢ — 06 5.8634¢ — 06 5.4464¢ — 06 5.4464¢ — 06
7 8.5465¢ — 07 7.9244¢ — 07 7.2401e — 07 7.2401e — 07
8 1.1363¢ — 07 1.1018e — 07 9.6637¢ — 08 9.6623¢ — 08
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Table 26 Burgers equation, ROM projection filter, smooth initial condition, v = 1, and d = 9: Rates
of convergence of G-ROM, DDC-ROM, ICE-DDC-ROM, and CE-DDC-ROM for different r values
computed with formula (57)

r ﬁ oA G-ROM DDC-ROM ICE-DDC-ROM CE-DDC-ROM
i=r+1

1 3.9643¢ — 03 - — - -

2 5.2666e — 04 9.9486¢ — 01 9.8959¢ — 01 1.0049¢ + 00 1.0111e + 00

3 7.0529¢ — 05 1.0035e + 00 9.9840e — 01 1.0001e + 00 1.0001e + 00

4 9.5032¢ — 06 1.0043¢ + 00 1.0334¢ + 00 9.9999¢ — 01 9.9999¢ — 01

5 1.2828¢ — 06 1.0036e + 00 1.0236e + 00 9.9999¢ — 01 9.9999¢ — 01

6 1.7214e — 07 1.0028e + 00 9.7487¢ — 01 1.0000e + 00 1.0000e + 00

7 2.2879¢ — 08 1.0020e + 00 9.9171e — 01 9.9991e — 01 9.9991e — 01

8 3.0123¢ — 09 9.9518¢ — 01 9.7311e — 01 9.9326e — 01 9.9332¢ — 01

for this behavior can be seen by applying the triangle inequality to the ROM error
formula (57)

d r
_ DNS ) . .= DNS’ ; ;
ur ;(u )i < |u le(u o)
+ Xd: (45, 9:) & (59)
i=r+1

Table 27 NSE, Re = 500, d = 20, ROM projection filter: Average error in G-ROM, DDC-ROM, ICE-
DDC-ROM, and CE-DDC-ROM for different r values computed with formula (57)

r G-ROM DDC-ROM ICE-DDC-ROM CE-DDC-ROM
2 3.35e—01 1.41e—01 1.41e—01 1.41e—01
3 3.60e—01 1.42e—01 1.96e—01 1.42e—01
4 3.60e—01 7.85e—02 7.84e—02 7.85e—02
5 3.86e—01 9.32e—02 2.03e—01 9.41e—02
6 7.32e—02 3.45e—02 3.47e—02 3.45e—02
7 6.52e—02 3.50e—02 4.17e—02 3.48¢—02
8 5.96e—02 2.54e—02 2.56e—02 2.54e—02
9 6.41e—02 2.69e—02 3.75e—02 2.69e—02
10 3.84e—02 1.49e—02 1.49e—02 1.49e—02
11 3.44e—02 1.51e—02 1.92e—02 1.50e—02
12 2.32e—02 1.06e—02 1.06e—02 1.06e—02
13 2.27e—02 1.02e—02 1.36e—02 1.02e—02
14 1.21e—02 6.60e—03 6.60e—03 6.59¢e—03
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and noticing that the last term in (59) (i.e., the ROM truncation error) dominates the
second term in (59) (i.e., the ROM error in (51) used in Sections 5.1.1 and 5.2.2).

We emphasize, however, that the numerical tests that we used in this section are
relatively simple. Furthermore, as we noted before, in this paper we did not focus
on the development of ROM closure models. Instead, we aimed at discovering all
the components that are needed to assemble the “correct” ROM closure model. The
numerical results suggest that, for the metrics used in this paper, the CE could be a
significantcomponent of ROM closure models. Of course, in future studies we will
investigate ROM closure models that integrate all the components (i.e., the ROM
subfilter-scale stress tensor, the ROM CE, and physical constraints [25]) and will test
them in challenging, realistic computational settings [30, 42].

Finally, we present results for the relative ROM error:

i~ L, 2.0,
| @Pvs.9) )

(60)

where u, is the ROM approximation and " is the DNS solution.

For clarity, we consider only the test problem in Section 5.1.1 and the ROM pro-
jection filter. We use the same parameters as those used in Section 5.1.1, except that
we choose v = 1 and d = 9. In Table 28, we list the relative ROM errors for the G-
ROM, the DDC-ROM, the ICE-DDC-ROM, and the CE-DDC-ROM computed with
formula (60).

The results in Table 28 obtained for the relative error are qualitatively similar to
the results obtained in Tables 25 and 27 for the absolute error: The improvements in
the CE-DDC-ROM, ICE-DDC-ROM, and DDC-ROM errors over the G-ROM error
are much smaller than the corresponding improvements in Section 5.1.1.

Table 28 Burgers equation, LZ—POD, ROM projection filter, smooth initial condition, v = 1, and d =
9: Relative error in G-ROM, DDC-ROM, ICE-DDC-ROM, and CE-DDC-ROM for different r values
computed with formula (60)

G-ROM DDC-ROM ICE-DDC-ROM CE-DDC-ROM
1 1.5842¢ — 01 1.4696¢ — 01 1.3255¢ — 01 1.3422¢ — 01
2 2.1265¢ — 02 1.9938e — 02 1.7435¢ — 02 1.7435¢ — 02
3 2.8278e — 03 2.6788e — 03 2.3346¢ — 03 2.3346e — 03
4 3.7773e — 04 3.3754¢ — 04 3.1456¢ — 04 3.1456¢ — 04
5 5.0620e — 05 4.3453e — 05 4.2462¢ — 05 4.2462e — 05
6 6.7542¢ — 06 6.1344¢ — 06 5.6981e — 06 5.6981e — 06
7 8.9415¢ — 07 8.2907e — 07 7.5747e — 07 7.5747¢ — 07
8 1.1889¢ — 07 1.1527e¢ — 07 1.0110e — 07 1.0100e — 07
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5.5 ROM basis

Both in the ROM basis construction and in the numerical investigation of the CE,
we used the L2 norm, || - ||, defined on the space X = H(} (£2). We note, however,
that we could use different norms, e.g., the HO1 norm ||v||H01 := ||Vv|| and its cor-
responding inner product (u, v) = (Vu, Vv). The ROM basis constructed using

the HO1 norm is different from the ROM basis built using the L? norm. Similarly,
using the the H(} norm instead of the L2 norm has an effect on the CE, since the
ROM mass matrix, M, = (¢,, ¢j), i,j = 1,.,r, and the ROM stiffness matrix,
Sy = (Vé;, V¢j), i, j =1, .., r, have different forms.

In this section, we investigate numerically the CE for the projection filter and the
HOl norm and inner product in the reconstructive regime. For simplicity, we use the
H(} norm and inner product only to generate the ROM basis. To derive the CE, we
use the L? norm and inner product, just as we did in Section 3.4 (using the H(; norm
and inner product to derive the CE would require the use of higher order FEs). We
consider the same test problem as that used in Section 5.1.1, but with v = 1 and
d = 9. We build the ROM basis by using the POD approach described in Section 2,
but with the HO1 inner product instead of the L? inner product. Furthermore, we use
the same derivation of the CE as that used in Section 3.4, but with the ROM mass
matrix, M,, and the ROM stiffness matrix, S,, built with the H(; ROM basis.

First, we address (Q1), i.e., we measure the size of the CE. In Table 29, for various
r values, we list the magnitude of the CE together with the magnitude of the ROM
subfilter-scale stress tensor. The main conclusion is that, for all » values, the CE
exists. Furthermore, the CE average dominates the ROM subfilter-scale stress tensor
average. We also observe that, as expected, as r increases, the magnitudes of the
averages of the CE and the ROM subfilter-scale stress tensor decrease.

Next, we address (Q2), i.e., we investigate whether the CE has a significant effect
on ROMs. To this end, we test the DDC-ROM (46), the ICE-DDC-ROM (47), and
the CE-DDC-ROM (50). We note again that the ICE-DDC-ROM and CE-DDC-ROM
include a representation of the Laplacian CE (9), whereas the DDC-ROM does not.

Table 29 HO1 ROM basis; Burgers equation, ROM projection filter, smooth initial condition, v = 1, and
d = 9: Average CE and ROM subfilter-scale stress tensor for different r values

r NEalualll 22 lzllr2q2)

1 4.7667¢ — 01 1.8613¢ — 03
2 1.5660e¢ — 01 9.6419¢ — 05
3 3.2568¢ — 02 6.4306e — 06
4 5.5176e — 03 4.7886¢ — 07
5 8.3244e¢ — 04 3.7957¢ — 08
6 1.1579¢ — 04 3.1112¢ — 09
7 1.4949¢ — 05 2.5525¢ — 10
8 1.8482¢ — 06 2.0374e¢ — 11
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Table 30 HUl ROM basis; Burgers equation, ROM projection filter, smooth initial condition, v = 1, and
d = 9: Average error in G-ROM, DDC-ROM, ICE-DDC-ROM, and CE-DDC-ROM for different r values

r G-ROM DDC-ROM ICE-DDC-ROM CE-DDC-ROM
1 1.2643¢ — 02 9.1244e — 03 1.1745¢ — 03 1.3460¢ — 03
2 1.8191e — 03 1.3926¢ — 03 1.4379¢ — 05 1.4669¢ — 05
3 1.9644¢ — 04 1.6081e — 04 1.5983¢ — 07 1.4209¢ — 07
4 2.0358¢ — 05 7.3515¢ — 06 7.6074e — 08 7.6990e — 08
5 2.0651e — 06 7.3785¢ — 07 7.6377e¢ — 08 7.6577e¢ — 08
6 2.1943¢ — 07 1.6302¢ — 07 7.6560e — 08 7.6681e — 08
7 7.9222¢ — 08 7.8591e — 08 7.6662¢ — 08 7.6664¢ — 08
8 7.6690e — 08 7.6685¢ — 08 7.6666e — 08 7.6666e — 08

In Table 30, for various r values, we list the ROM error calculated with formula (51).
We observe that the CE-DDC-ROM errors are consistently lower than the DDC-
ROM error (which, in turn, are lower than the G-ROM errors). We emphasize that,
for r = 2, 3, 4, the CE-DDC-ROM errors are one and even two orders of magnitude
lower than the DDC-ROM errors. Thus, we conclude that the CE plays a significant
role in ROM development.

The results in Tables 29 and 30 obtained for the HOl ROM basis are similar to those
obtained in Section 5.1.1 for the L> ROM basis: The CE is relatively large and the
ROMs that model the CE are significantly more accurate than the ROMs that do not
model the CE.

6 Conclusions and future work

In this paper, we investigated theoretically and computationally whether the com-
mutation error (CE) exists, i.e., whether differentiation and ROM spatial filtering
commute. To our knowledge, this is the first investigation of the CE in a ROM con-
text. We studied whether there is a CE for the Laplacian for two ROM filters: the
ROM projection and the ROM differential filter. Furthermore, when the CE was
nonzero, we investigated whether it had any significant effect on the ROM develop-
ment. To this end, we considered the data-driven correction ROM (DDC-ROM) [44],
in which the Correction term (which is generally added to improve the ROM’s accu-
racy) is modeled by using the available data. To investigate the effect of the CE on
the DDC-ROM, we considered the commutation error DDC-ROM (CE-DDC-ROM),
in which available data is used to model not only the Correction term, but also the
CE. Finally, we also used the ideal CE-DDC-ROM (ICE-DDC-ROM), which is the
DDC-ROM supplemented with a fine resolution representation of the CE. When the
CE-DDC-ROM and ICE-DDC-ROM yielded more accurate results than the standard
DDC-ROM, we concluded that, when the metric (51) is used, the CE has a significant
effect on the ROM development. As numerical tests, we used the Burgers equation
with viscosities v = 10~' and v = 1073 and a 2D flow past a circular cylinder at
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Reynolds numbers Re = 100 and Re = 500. For the Burgers equation test case, we
considered smooth and non-smooth initial conditions.

The most important conclusions of our theoretical and numerical investigation
that used the metric (51) are the following: (i) The CE exists for all cases consid-
ered. (ii) The CE has a significant effect on the ROM development for low Reynolds
numbers, but not so much for higher Reynolds numbers. This happens because, for
higher Reynolds numbers, the CE (which arises from the diffusion term) is domi-
nated by the Correction term (which arises from the nonlinear term). We note that,
for the Burgers equation, the CE had a significant effect on ROMs even for low vis-
cosity values; however, for non-smooth initial conditions (results not included), the
CE effect was lower than the CE effect for higher viscosity. (iii) The non-smooth ini-
tial conditions (in the Burgers equation) decreased the effect of the CE on the ROM
development.

These first steps in the theoretical and numerical investigation of the CE showed
that, in some cases, it can be significant and has to be modeled. There are, however,
several other research directions that need to be pursued for a better understanding of
the ROM CE. For example, we plan to investigate whether there is an upper bound for
the Reynolds number for which the CE has a significant effect on the ROM. We also
plan to use alternative metrics to compute the ROM error and study their effect on
the conclusions of this CE investigation. Furthermore, we plan to study the ROM CE
for differential operators that are different from the Laplacian, e.g., first-order spatial
derivatives, such as those in the quasi-geostrophic equations. The effect of the CE on
3D complex flows also needs to be studied. Finally, we plan to investigate whether
the CE has a significant effect on spatially-filtered ROMs that are different from
the DDC-ROM considered in this paper, e.g., the physically constrained data-driven
ROM [25] or the approximate deconvolution ROM [45].

Acknowledgements We thank the three anonymous reviewers for their constructive comments and
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References

1. Baiges, J., Codina, R., Idelsohn, S.: Reduced-order subscales for POD models. Comput. Methods
Appl. Mech. Engrg. 291, 173-196 (2015)

2. Ballarin, F., Manzoni, A., Quarteroni, A., Rozza, G.: Supremizer stabilization of POD—galerkin
approximation of parametrized steady incompressible Navier—Stokes equations. Int. J. Numer. Meth.
Engng. 102, 1136-1161 (2015)

3. Benosman, M., Borggaard, J., San, O., Kramer, B.: Learning-based robust stabilization for reduced-
order models of 2D and 3D Boussinesq equations. Appl. Math. Model. 49, 162-181 (2017)

4. Bergmann, M., Ferrero, A., Iollo, A., Lombardi, E., Scardigli, A., Telib, H.: A zonal Galerkin-free
POD model for incompressible flows. J. Comput. Phys. 352, 301-325 (2018)

5. Berselli, L.C., Iliescu, T., Layton, W.J.: Mathematics of large eddy simulation of turbulent flows.
Scientific Computation. Springer, Berlin (2006)

6. Brenner, S., Scott, R.: The mathematical theory of finite element methods, vol. 15. Springer, Berlin
(2007)

7. Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from data by sparse
identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 113(15), 3932-3937 (2016)

8. Carlberg, K., Barone, M., Antil, H.: Galerkin v. least-squares Petrov—Galerkin projection in nonlinear
model reduction. J. Comput. Phys. 330, 693-734 (2017)

@ Springer



B. Koc et al.

13.

14.

15.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

. Couplet, M., Sagaut, P, Basdevant, C.: Intermodal energy transfers in a proper orthogonal

decomposition—Galerkin representation of a turbulent separated flow. J. Fluid Mech. 491, 275-284
(2003)

. Fareed, H., Singler, J.R.: A note on incremental pod algorithms for continuous time data. Appl.

Numer. Math. (2019)

. Feppon, F.,, Lermusiaux, P.EJ.: Dynamically orthogonal numerical schemes for efficient stochastic

advection and Lagrangian transport. SIAM Rev. 60(3), 595-625 (2018)

. Fick, L., Maday, Y., Patera, A.T., Taddei, T.: A stabilized POD model for turbulent flows over a range

of Reynolds numbers: optimal parameter sampling and constrained projection. J. Comp. Phys. 371,
214-243 (2018)

Gouasmi, A., Parish, E.J., Duraisamy, K.: A priori estimation of memory effects in reduced-order
models of nonlinear systems using the Mori—Zwanzig formalism. Proc. R. Soc. A 473(2205),
20170385 (2017)

Gunzburger, M., Jiang, N., Schneier, M.: An ensemble-proper orthogonal decomposition method for
the nonstationary Navier-Stokes equations. SIAM J. Numer. Anal. 55(1), 286-304 (2017)
Hesthaven, J.S., Rozza, G., Stamm, B.: Certified reduced basis methods for parametrized partial
differential equations. Springer, Berlin (2015)

. Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, coherent structures, dynamical systems and

symmetry. Cambridge (1996)

. Iliescu, T., Wang, Z.: Are the snapshot difference quotients needed in the proper orthogonal

decomposition? SIAM J. Sci. Comput. 36(3), A1221-A1250 (2014)

Iliescu, T., Wang, Z.: Variational multiscale proper orthogonal decomposition: Navier-Stokes equa-
tions. Num. Meth. P.D.E.s 30(2), 641-663 (2014)

John, V.: Reference values for drag and lift of a two dimensional time-dependent flow around a
cylinder. Int. J. Num. Meth. Fluids 44, 777-788 (2004)

John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed
finite element methods for incompressible flows. SIAM Rev. (2016)

Kondrashov, D., Chekroun, M.D., Ghil, M.: Data-driven non-Markovian closure models. Phys. D 297,
33-55 (2015)

Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for parabolic prob-
lems. Numer. Math. 90(1), 117-148 (2001)

Loiseau, J.C., Brunton, S.L.: Constrained sparse Galerkin regression. J. Fluid Mech. 838, 42-67
(2018)

Lu, F, Lin, K.K., Chorin, A.J.: Data-based stochastic model reduction for the Kuramoto—Sivashinsky
equation. Phys. D 340, 46-57 (2017)

Mohebujjaman, M., Rebholz, L.G., Iliescu, T.: Physically-constrained data-driven correction for
reduced order modeling of fluid flows. Int. J. Num. Meth. Fluids 89(3), 103-122 (2019)
Mohebujjaman, M., Rebholz, L.G., Xie, X., Iliescu, T.: Energy balance and mass conservation in
reduced order models of fluid flows. J. Comput. Phys. 346, 262-277 (2017)

Noack, B.R., Morzynski, M., Tadmor, G.: Reduced-order modelling for flow control, vol. 528
Springer Verlag (2011)

Noack, B.R., Schlegel, M., Ahlborn, B., Mutschke, G., Morzynski, M., Comte, P., Tadmor, G.:
A finite-time thermodynamics of unsteady fluid flows. J. Non-Equil. Thermody. 33(2), 103-148
(2008)

Oberai, A.A., Jagalur-Mohan, J.: Approximate optimal projection for reduced-order models. Int. J.
Num. Meth. Engng. 105(1), 63-80 (2016)

Osth, ., Noack, B.R., Krajnovié, S., Barros, D., Borée, J.: On the need for a nonlinear subscale
turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed
body. J. Fluid Mech. 747, 518-544 (2014)

Pan, S., Duraisamy, K.: Data-driven discovery of closure models. SIAM J. Appl. Dyn. Syst. 17(4),
2381-2413 (2018)

Peherstorfer, B., Willcox, K.: Data-driven operator inference for nonintrusive projection-based model
reduction. Comput. Methods Appl. Mech. Engrg. 306, 196-215 (2016)

Protas, B., Noack, B.R., Osth, J.: Optimal nonlinear eddy viscosity in Galerkin models of turbulent
flows. J. Fluid Mech. 766, 337-367 (2015)

Quarteroni, A., Manzoni, A., Negri, F.: Reduced basis methods for partial differential equations: an
introduction, vol. 92 Springer (2015)

@ Springer



Commutation error in reduced order modeling of fluid flows

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Rebholz, L., Xiao, M.: Improved accuracy in algebraic splitting methods for Navier-Stokes equations.
SIAM J. Sci. Comput. 39(4), A1489-A1513 (2017)

Rebollo, T.C., Avila, E.D., Marmol, M.G., Ballarin, F., Rozza, G.: On a certified Smagorinsky reduced
basis turbulence model. SIAM J. Numer. Anal. 55(6), 3047-3067 (2017)

San, O., Maulik, R.: Neural network closures for nonlinear model order reduction. Adv. Comput.
Math. 44(6), 1717-1750 (2018)

Schmid, PJ.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656,
5-28 (2010)

Stabile, G., Rozza, G.: Finite volume POD-galerkin stabilised reduced order methods for the
parametrised incompressible Navier-Stokes equations. Comput. & Fluids 173, 273-284 (2018)
Strazzullo, M., Ballarin, F., Mosetti, R., Rozza, G.: Model reduction for parametrized optimal control
problems in environmental marine sciences and engineering. SIAM J. Sci. Comput. 40(4), B1055—
B1079 (2018)

Taira, K., Brunton, S.L., Dawson, S., Rowley, C.W., Colonius, T., McKeon, B.J., Schmidt, O.T.,
Gordeyev, S., Theofilis, V., Ukeiley, L.S.: Modal analysis of fluid flows: an overview. AIAA J.:
4013-4041 (2017)

Wang, Z., Akhtar, 1., Borggaard, J., Iliescu, T.: Proper orthogonal decomposition closure models for
turbulent flows: a numerical comparison. Comput. Meth. Appl. Mech. Eng. 237-240, 10-26 (2012)
Wells, D., Wang, Z., Xie, X., Iliescu, T.: An evolve-then-filter regularized reduced order model for
convection-dominated flows. Int. J. Num. Meth. Fluids 84, 598-615 (2017)

Xie, X., Mohebujjaman, M., Rebholz, L.G., Iliescu, T.: Data-driven filtered reduced order modeling
of fluid flows. SIAM J. Sci. Comput. 40(3), B834-B857 (2018)

Xie, X., Wells, D., Wang, Z., Iliescu, T.: Approximate deconvolution reduced order modeling.
Comput. Methods Appl. Mech. Engrg. 313, 512-534 (2017)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Birgul Koc' - Muhammad Mohebujjaman? - Changhong Mou' - Traian lliescu’

Muhammad Mohebujjaman
jaman@psfc.mit.edu

Changhong Mou
cmou@vt.edu

Traian Iliescu
iliescu@vt.edu

Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA

Plasma Science and Fusion Center, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

@ Springer


http://orcid.org/0000-0003-1437-7362
mailto: jaman@psfc.mit.edu
mailto: cmou@vt.edu
mailto: iliescu@vt.edu

	Commutation error in reduced order modeling of fluid flows
	Abstract
	Introduction
	Motivation and prior work
	Problem formulation and contributions
	Paper plan

	Reduced order modeling
	Commutation error 
	ROM spatial filter
	Filtered-ROM
	CE with differential filter
	CE with projection filter

	Effect of commutation error on DDC-ROM
	Numerical experiments
	Experiment 1: Burgers equation
	Smooth initial condition
	Non-smooth initial condition
	Lower viscosity (=10-3)

	Experiment 2: flow past a circular cylinder
	Reynolds number Re=100
	Reynolds number Re=500

	Predictive regime
	Burgers equation, smooth initial condition
	Channel flow past a circular cylinder, Re=500

	Rates of convergence
	ROM basis

	Conclusions and future work
	References
	Affiliations




