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Highlights
• Incorporate nudging based data assimilation into a reduced order modeling framework.
• Prove that the new DA-ROM converges exponentially fast in time to the true solution.
• Demonstrate that the DA-ROM strategy can provide long time accuracy in ROMs.

Abstract

We propose, analyze, and test a novel continuous data assimilation reduced order model (DA-ROM) for simulating
incompressible flows. While ROMs have a long history of success on certain problems with recurring dominant structures, they
tend to lose accuracy on more complicated problems and over longer time intervals. Meanwhile, continuous data assimilation
(DA) has recently been used to improve accuracy and, in particular, long time accuracy in fluid simulations by incorporating
measurement data into the simulation. This paper synthesizes these two ideas, in an attempt to address inaccuracies in ROM
by applying DA, especially over long time intervals and when only inaccurate snapshots are available. We prove that with a
properly chosen nudging parameter, the proposed DA-ROM algorithm converges exponentially fast in time to the true solution,
up to discretization and ROM truncation errors. Finally, we propose a strategy for nudging adaptively in time, by adjusting
dissipation arising from the nudging term to better match true solution energy. Numerical tests confirm all results, and show
that the DA-ROM strategy with adaptive nudging can be highly effective at providing long time accuracy in ROMs.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Reduced order models (ROMs) for fluids dominated by relatively few recurrent spatial structures are generally
built as follows [1–3]: (i) postulate a collection of snapshots, either from numerical experiments or from physical
data; (ii) from those snapshots, select a small number (e.g., 10) of ROM basis functions; (iii) project the equations
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of motion into this basis; and (iv) advance the velocity in time to interrogate flows different from the one generating
the snapshots. ROMs have been explored for decades [2]. When successful, ROMs can decrease the computational
cost of a brute force, direct numerical simulation (DNS) by orders of magnitude.

One of the main roadblocks for ROMs of realistic flows is their lack of accuracy, e.g., in complex problems,
for long time intervals, or when a low-dimensional ROM basis is used. To increase the ROM accuracy in practical
applications, several approaches are currently used. We list some of these below:

(i) Closure Modeling: To model the effect of the discarded ROM modes, a Correction term is generally added
to the standard ROM [4–7]. Given the drastic truncation used in ROMs for realistic flows, the Correction term is
essential for accuracy.

(ii) Numerical Stabilization: To eliminate/alleviate the spurious numerical oscillations generated when ROMs
are used for convection-dominated flows, numerical stabilization techniques can be used [7–9].

(iii) Data-Driven Modeling: Recently, available numerical or experimental data have been used to construct
ROM operators [10] or to determine the unknown coefficients in classical ROM operators [4,6,11].

(iv) Improved Basis: Another approach for increasing the ROM accuracy in practical applications is the
construction of an improved (more accurate) ROM basis that better captures the behavior of the underlying
system [12–15].

(v) Physical Accuracy: To develop physically sound ROMs, recent effort has been directed at ensuring that the
ROMs satisfy the same physical balances/conservation laws as those satisfied by the equations of motion [16,17].

In this paper, we propose to increase the ROM accuracy through the use of data assimilation (DA), and in
particular we use a type of DA recently introduced by Azouani et al. [18] called continuous data assimilation to
create a novel DA-ROM. In weather modeling, climate science, and hydrological and environmental forecasting,
DA has been used for decades to incorporate observational data in simulations, in order to increase the accuracy
of solutions and to obtain better estimates of initial conditions [19]. Continuous data assimilation has recently
become popular due to a seminal paper of Azouani et al. [18], and since then it has been used to improve
solutions to many different types of evolutionary systems including for Navier–Stokes simulations [20], with noisy
data [21], with nudging applied to only one component [22], from a numerical viewpoint [23], for multiphysics fluid
problems [24,25], surface quasi-geostrophic simulations [26], and a generalization to types of transient nonlinear
systems [27].

In this paper, we use DA to improve the ROM accuracy, complete with mathematical proof. Specifically, we add
to the standard ROM a feedback control term of the form

µ IH (ur − uobs), (1.1)

which nudges the ROM approximation (ur ) towards the reference solution (uobs) corresponding to the observed
data. We note that although the DA terminology is ‘nudging’, one can also consider it as a penalization of the
solution so that its interpolant better matches the measurement data (i.e., the interpolant of the true solution).

In (1.1), IH is an interpolation operator onto a coarser mesh of size H and µ > 0 is a nudging parameter.
The nudging term (1.1) increases the accuracy of the new DA-ROM by utilizing the available low-resolution data,
without the need to increase the number of ROM basis functions. Two key components of the nudging term are that
it allows the simple implementation of DA into existing ROM codes, and moreover, permits us to prove herein that
the DA-ROM solution will converge to the true solution, exponentially fast in time, up to discretization and ROM
truncation errors (such results are seemingly unavailable for other types of DA). In addition to these key features
of the DA we apply herein, the intent of this DA is also different from other uses of DA for ROMs, e.g., [28–31]:
In the latter the authors use ROMs to speed up classical DA algorithms (e.g., 4D-VAR), whereas the DA-ROM
proposed in this paper is intended to improve the ROM accuracy.

The rest of the paper is organized as follows: In Section 2, we introduce some notation and preliminaries
necessary for our analysis. In Section 3, we construct the new DA-ROM and perform a careful error analysis.
In Section 4, we perform a numerical investigation of the new DA-ROM in the numerical simulation of a 2D flow
past a circular cylinder and discuss implementation of the DA-ROM algorithm with an adaptive nudging parameter,
which can be used to further improve the accuracy of solutions. Finally, in Section 5, we draw conclusions and
outline future research directions.
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2. Notation and preliminaries

Let Ω ⊂ Rd , d = 2 or 3, be a bounded open domain. The L2(Ω ) norm and inner product will be denoted by
∥ · ∥ and (·, ·), respectively, and all other norms will be appropriately labeled with subscripts.

We consider the Navier–Stokes equations (NSE) with no-slip boundary conditions:

ut + u · ∇u + ∇ p − ν∆u = f, and ∇ · u = 0, in Ω × (0, T ]
u = 0, on ∂Ω × (0, T ], and u(x, 0) = u0(x), in Ω .

(2.1)

Here u is the velocity, f = f (x, t) is the known body force, p is the pressure, and ν is the kinematic viscosity.
We denote the natural velocity space by X = H 1

0 (Ω )d and pressure space by Q = L2
0(Ω ) and by (Xh, Qh) ⊂

(X, Q), corresponding inf–sup stable finite element (FE) spaces. We assume herein that (Xh, Qh) = (Pk,Pk−1)
finite elements, either Taylor–Hood or Scott–Vogelius on appropriate meshes. In our computations, k = 2.

Additionally, we define the discretely divergence-free space Vh as

Vh := {vh ∈ Xh : (∇ · vh, qh) = 0 ∀qh ∈ Qh} ⊂ X.

The Poincaré inequality will be used throughout this paper: there exists a constant CP depending only on Ω such
that

∥φ∥ ≤ CP∥∇φ∥ ∀φ ∈ X.

We define the trilinear form

b(w, u, v) = (w · ∇u, v) ∀u, v, w ∈ X,

and the explicitly skew-symmetric trilinear form given by

b∗(w, u, v) :=
1
2

(w · ∇u, v) −
1
2

(w · ∇v, u) ∀u, v, w ∈ X .

An important property of the b∗ operator is that b∗(u, v, v) = 0 for u, v ∈ X . We will utilize the following bound
on the operator b∗ from Lemma 6.14 of [32].

Lemma 2.2. Let u, v, w ∈ X and let s ∈ (0, 1] if d = 2 and s ∈ [1/2, 1] if d = 3. There exists a constant Cb > 0
dependent only on Ω and s satisfying

|b∗(u, v, w)| ≤ Cb∥u∥
1−s

∥∇u∥
s
∥∇v∥∥∇w∥.

The following lemma is proven in [23], and is useful in our analysis.

Lemma 2.3. Suppose constants r and B satisfy r > 1, B ≥ 0. Then, if the sequence of real numbers {an} satisfies

ran+1 ≤ an + B, (2.4)

we have that

an+1 ≤ a0

(
1
r

)n+1

+
B

r − 1
.

In order to construct a ROM, in the ensuing section we will consider a full order model based on a FE
discretization of (2.1). We let tn

= n∆t, n = 0, 1, 2, . . . , M , where M := T/∆t , denotes a partition of the interval
[0, T ]. We then consider the BDF2 time discretization with Taylor–Hood elements: Given initial conditions u0 and
u1, let u0

h = Phu0
∈ Xh and u1

h = Phu1
∈ Xh , where Ph denotes the L2 projection into the FE space. Then, for

n = 1, 2, . . . , M , we find un+1
h ∈ Xh and pn+1

h ∈ Qh satisfying(
3un+1

h − 4un
h + un−1

h

2∆t
, vh

)
+ ν(∇un+1

h , ∇vh) + b∗(un+1
h , un+1

h , vh)

−(pn+1
h , ∇ · vh) = ( f n+1, vh) ∀vh ∈ Xh

(∇ · un+1
h , qh) = 0 ∀qh ∈ Qh .

(2.5)
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2.1. ROM preliminaries

We define Y = {û1
h, . . . , ûM

h } to be the snapshot matrix consisting of the basis coefficient vectors of the FE
solutions {u1

h, . . . , uM
h } of (2.5) for M different time instances. The proper orthogonal decomposition (POD) seeks

a low-dimensional basis that approximates these snapshots optimally with respect to a certain norm; in this paper,
we use the L2 norm. Let Nh denote the dimension of the FE velocity space and Mh the FE mass matrix. This
minimization can be set up as an eigenvalue problem Y Y T Mhω j = λ jω j , j = 1, . . . , Nh , where the eigenvalues
are real and non-negative, so they can be ordered as λ1 ≥ · · · ≥ λR ≥ λR+1 = · · · = λNh = 0, where R is the rank
of the snapshot matrix. The FE basis coefficients of the individual POD basis functions ϕ̂i will then be given by

ϕ̂i =
1
λi

Y T ωi , i = 1, . . . , R.

Letting ϕi be the function corresponding to the coefficients ϕ̂i , we then take the ROM space to be Xr :=

span{ϕi }
r
i=1, where r ≤ R, and note that since discrete FE solutions of the NSE are discretely divergence free,

it follows that Xr ⊂ Vh . The ROM approximation of the velocity is defined as

ur (x, t) =

r∑
j=1

a j (t)ϕ j (x),

where the coefficients a j (t) are determined by solving the Galerkin ROM (G-ROM):

(ur,t , ϕi ) + ν(∇ur , ∇ϕi ) + b∗(ur , ur , ϕi ) = ( f, ϕi ). (2.6)

We emphasize that, since Xr ⊂ Vh , the G-ROM (2.6) does not include a ROM pressure approximation. ROMs that
include a pressure approximation are surveyed in, e.g., [1,3].

We define the L2 ROM projection Pr : L2
→ Xr by: for all v ∈ L2(Ω ), Pr (v) is the unique element of Xr such

that

(Pr (v), vr ) = (v, vr ) ∀ vr ∈ Xr . (2.7)

Letting Sr = (∇ϕi , ∇ϕ j ), i, j = 1, . . . , r denote the POD stiffness matrix, it can be shown that the following
inverse inequality holds for our ROM basis [33].

Lemma 2.8 (POD Inverse Estimate).

∥∇ϕ∥ ≤ |||Sr |||
1/2
2 ∥ϕ∥ ∀ϕ ∈ Xr , (2.9)

where |||Sr |||2 is the matrix 2-norm of the ROM stiffness matrix.

In order to establish an error estimate for the ROM projection, we first make the following assumption on the
finite element error:

Assumption 2.10. Let C(ν, p) denote a constant which is dependent upon the viscosity and pressure. We assume
that the finite element error uh satisfies the following error estimate

∥uM
− uM

h ∥
2
+ νh2∆t

M∑
n=1

∥∇(un
− un

h)∥2
≤ C(ν, p)(h2k+2

+ ∆t4). (2.11)

Remark 2.12. Error estimates of this form have been proven for varying amounts of regularity on the continuous
solution u and p. Some examples include the scheme used in the numerical experiments in Section 4.

Using Assumption 2.10, the following error estimates for the ROM projection can be proven [34]:

Lemma 2.13. The L2 ROM projection of un satisfies the following error estimates:
M∑

n=1

∥un
− Pr (un)∥2

≤ C(ν, p)
(

h2k+2
+ ∆t4

+

d∑
j=r+1

λ j

)
, (2.14)
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M∑
n=1

∥∇(un
− Pr (un))∥2

≤ C(ν, p)
(

h2k
+ |||SR|||2h2k+2

+ (1 + |||SR|||2)∆t4

+

d∑
j=r+1

∥∇ϕ j∥
2λ j

)
. (2.15)

We then make the following assumption similar to that made in [34,35]:

Assumption 2.16. The L2 ROM projection of un satisfies the following error estimates:

max
n

∥un
− Pr (un)∥2

≤ C(ν, p)
(

(h2k+2
+ ∆t4) +

d∑
j=r+1

λ j

)
, (2.17)

max
n

∥∇(un
− Pr (un))∥2

≤ C(ν, p)
(

h2k
+ |||SR|||2h2k+2

+ (1 + |||SR|||2)∆t4

+

d∑
j=r+1

∥∇ϕ j∥
2λ j

)
. (2.18)

2.2. Data assimilation preliminaries

We consider IH to be an interpolation operator that satisfies: For a given mesh τH (Ω ) with H ≤ 1,

∥IH (w) − w∥ ≤ C I H∥∇w∥, (2.19)

∥IH (w)∥ ≤ C I ∥w∥, (2.20)

for any w ∈ H 1(Ω ). For example, this holds for the L2 projection onto piecewise constants, and the Scott–Zhang
interpolant. For the (unknown) true solution u, IH (u) represents an approximation of what is observed of the true
solution. We assume in this paper that IH (u) can be observed at any time.

3. Error analysis

For simplicity of exposition, our analysis considers a first order DA-ROM algorithm, which takes the following
form: Find un+1

r ∈ Xr such that for all vr ∈ Xr ,
1
∆t

(un+1
r − un

r , vr ) + b∗(un+1
r ,un+1

r , vr ) + ν(∇un+1
r , ∇vr )

+ µ(IH (un+1
r − u(tn+1)), IHvr ) = ( f n+1, vr ), (3.1)

for n = 1, 2, . . . , M , with the initial condition given by u0
r = Pr (u0), and where µ ≥ 0 is the nudging parameter.

Extension to other time stepping methods is possible, and, for example, extension to BDF2 can be done following
the usual techniques [23]. All of our numerical tests use the analogous BDF2 algorithm.

The nudging used above is µ(IH (un+1
r − u(tn+1)), IHvr ), which differs from the usual continuous DA nudging

in that interpolation is also applied to the test function vr . This was originally suggested in [36], and since also
used in [37,38]. As shown in [36] and below, using this nudging term does not affect convergence analysis; some
extra terms arise that can be handled without difficulty. However, this term does provide for simple unconditional
convergence, without any data restrictions, since choosing vr = un+1

r in the nudging term produces

µ(IH (un+1
r − u(tn+1)), IH un+1

r ) =
µ

2

(
∥IH un+1

r ∥
2
− ∥IH u(tn+1)∥2

+ ∥IH (un+1
r − u(tn+1))∥2) . (3.2)

Combining this with usual ROM stability analysis for NSE yields the following stability lemma:

Lemma 3.3. The solutions to (3.1) satisfy for all M > 1,

∥uM
r ∥

2
≤ ∥u0

r ∥
2
(

1
1 + λ∆t

)M

+ Cλ−1(ν−1 F2
+ µU 2) := Cdata,

where F := ∥ f ∥L∞(0,∞;H−1), U := ∥u∥L∞(0,∞;L2), and λ = νC−2
P .
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Proof. This result follows as in [23] by letting vr = un+1
r in (3.1) and using Cauchy–Schwarz and Young’s

inequalities, along with (3.2). The non-negative DA term ∥IH un+1
r ∥

2 can be dropped from the left after bounding
the right hand side. □

To analyze rates of convergence of the approximation, we make the following regularity assumptions on the
NSE [39]:

Assumption 3.4. We assume that the solution of the NSE satisfies

u ∈ L∞(0, T ; H 1(Ω )) ∩ H 1(0, T ; H k+1(Ω )) ∩ H 2(0, T ; H 1(Ω )),

p ∈ L2(0, T ; H k+1(Ω )),

f ∈ L2(0, T ; L2(Ω )).

Here, k comes from the finite element spaces being (Pk,Pk−1) for velocity–pressure. In our computations, k = 2.
These are strong assumptions, which may not be true for all flows, and represent a best case scenario for solution
regularity.

We next prove that solutions to (3.1) converge to the true solution exponentially fast, up to discretization and
ROM projection error.

Theorem 3.5. Define

α1 := ν − 2µ(β2 − 1)C2
I H 2,

α2 := 2µ −
µC2

I

2β1
−

µ

2β2
− 6ν−1Cb

2
|||Sr |||2∥∇un+1

∥
2,

which have parameters µ, H, βi > 0, i = 1, 2 that are chosen so that αi > 0, i = 1, 2. Then under the regularity
conditions of Assumption 3.4, we have that

∥ un+1
− un+1

r ∥
2
≤ ∥u0

− u0
r ∥

2
(

1
1 + 2λ∆t

)n+1

+ Cλ−1
{

ν−1∆t2
+ ν−1h2k

+ β1C2
I µ

(
h2k+2

+ ∆t4
+

d∑
j=r+1

λ j

)

+ (ν−1Cb
2
+ ν−1Cb

2
|||Sr |||2)

(
h2k

+ ∆t4
+

d∑
j=r+1

∥∇ϕ j∥
2λ j

) }
,

(3.6)

where λ = min{α1C−2
P , α2}.

Remark 3.7. The ∆t2 term that shows up on the right hand side of (3.6) is a result of the first order time stepping
in (3.1). If we instead used a second order approximation, like BDF2, then this term would be replaced by ∆t4.

Remark 3.8. The use of βi ’s and αi ’s improves on the usual restriction of the relationship between H , ν, and µ,
i.e., that ν −2µC2

I H 2 > 0 (see e.g. [23] and references therein). It reveals that this usual restriction can be relaxed,
or even eliminated, but at the cost of increasing the error bound: smaller β2 creates a larger β1, and β1 scales the
(potentially large) error term µ

∑d
j=r+1 λ j in the error bound. Furthermore, we note that, as shown in Remark 3.3

in [40], |||Sr |||2 increases when r increases. Thus, for fixed βi , to enforce α2 > 0, one needs relatively large µ values,
which in turn increases the error bound. The practical value from this result is likely more heuristic than sharp,
since improvements in upper bounds on error do not always translate to better results in a particular setting (where
a dominant error source can mask other error sources). However, our bounds clearly show that using smaller H
improves the error bound, which is not surprising since taking small H corresponds to having more observational
data.
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Proof. The NSE (true) solution satisfies

1
∆t

(un+1
− un, vr ) + b∗(un+1,un+1, vr ) + ν(∇un+1, ∇vr ) + (pn+1, ∇ · vr )

= ( f n+1, vr ) + τu(un+1
; vr ), (3.9)

where

τu(un+1
; vr ) =

(
un+1

− un

∆t
− ut (tn+1), vr

)
. (3.10)

Subtracting (3.1) from (3.9) and letting en
:= un

r − un , we obtain

1
∆t

(en+1
− en, vr ) + ν(∇en+1, ∇vr ) + µ(IH en+1, IHvr )

= τu(un+1
; vr ) + b∗(un+1

r , en+1, vr ) + b∗(en+1, un+1, vr ) + (pn+1, ∇ · vr ). (3.11)

Decompose the error as a part inside the ROM space and one outside by adding and subtracting the L2 projection
of un into the ROM space, Pr (un) (see (2.7)):

en
= (un

r − Pr (un)) + (Pr (un) − un) =: φn
r + ηn.

Letting vr = φn+1
r in (3.11), we note that since φn+1

r ∈ Xr ⊂ Vh , for any qh ∈ Qh ,

(pn+1, ∇ · φn+1
r ) = (pn+1

− qh, ∇ · φn+1
r ). (3.12)

Adding and subtracting φn+1
r to both components of the nudging term we have

(IHφn+1
r + IHηn+1

+ φn+1
r − φn+1

r , IHφn+1
r + φn+1

r − φn+1
r )

= ∥φn+1
r ∥

2
+ (φn+1

r , IHφn+1
r − φn+1

r ) + (IHφn+1
r + IHηn+1

− φn+1
r , IHφn+1

r + φn+1
r − φn+1

r )

= ∥φn+1
r ∥

2
+ (φn+1

r , IHφn+1
r − φn+1

r ) + (IHηn+1, IHφn+1
r + φn+1

r − φn+1
r )

+ (IHφn+1
r − φn+1

r , IHφn+1
r − φn+1

r + φn+1
r )

= ∥φn+1
r ∥

2
+ 2(φn+1

r , IHφn+1
r − φn+1

r ) + (IHηn+1, IHφn+1
r ) + ∥IHφn+1

r − φn+1
r ∥

2.

(3.13)

Using the polarization identity on the term (φn+1
r −φn

r , φn+1
r ), the fact that (ηn+1

− ηn, φn+1
r ) = 0 (by the definition

of the L2 projection), and dropping the nonnegative term 1
2∆t ∥φ

n+1
r − φn

r ∥
2 on the left hand side, we have

1
2∆t

[∥φn+1
r ∥

2
− ∥φn

r ∥
2] + ν∥∇φn+1

r ∥
2
+ µ∥φn+1

r ∥
2
+ µ∥IHφn+1

r − φn+1
r ∥

2

≤ ν|(∇ηn+1, ∇φn+1
r )| +

⏐⏐τu(un+1
; φn+1

r )
⏐⏐+ |b∗(un+1

r , ηn+1, φn+1
r )|

+ |b∗(ηn+1, un+1, φn+1
r )| + |b∗(φn+1

r , un+1, φn+1
r )| + |(pn+1

− qh, ∇ · φn+1
r )|

+ µ|(IHηn+1, IHφn+1
r )| + 2µ|(φn+1

r , IHφn+1
r − φn+1

r )|.

(3.14)

By Poincaré, Cauchy–Schwarz, and Young’s inequalities, we bound the first term on the right hand side and the
pressure term,

ν(∇ηn+1, ∇φn+1
r ) ≤

ν

4c1
∥∇ηn+1

∥
2
+ c1ν∥∇φn+1

r ∥
2,

(pn+1
− qh, ∇ · φn+1

r ) ≤
ν−1

4c2
∥pn+1

− qn+1
h ∥

2
+ c2ν∥∇φn+1

r ∥
2.

(3.15)

We then bound the consistency term using Taylor’s theorem (see Lemma 7.67 of [32]), and Poincaré, Cauchy–
Schwarz, and Young’s inequalities:⏐⏐τu(un+1

; φn+1
r )

⏐⏐ ≤

un+1
− un

∆t
− ut (tn+1)

 ∥φn+1
r ∥

≤
CC2

P∆t2ν−1

4c3
∥ut t∥

2
L2(tn ,tn+1;L2(Ω)) + c3ν∥∇φn+1

r ∥
2.

(3.16)
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The first two nonlinear terms are now bounded similarly to those in [17] using Cauchy–Schwarz and Young’s
inequalities, and the first inequality from Lemma 2.2 with s = 1:

b∗(ηn+1, un+1, φn+1
r ) ≤

ν−1Cb
2

4c4
∥∇un+1

∥
2
∥∇ηn+1

∥
2
+ c4ν∥∇φn+1

r ∥
2, (3.17)

b∗(un+1
r , ηn+1, φn+1

r ) ≤
ν−1Cb

2

4c5
∥∇un+1

r ∥
2
∥∇ηn+1

∥
2
+ c5ν∥∇φn+1

r ∥
2. (3.18)

How we treat the third nonlinear term is the key difference in the proof from standard schemes (see chapter 9
of [39]). Due to the added dissipation from the DA term on the left-hand side of (3.14), we are able to hide the
term containing φn+1

r , rather than invoking a discrete Gronwall’s inequality. Thus, for this term we use Lemma 2.2
with s =

1
2 and the ROM inverse inequality (2.9) to obtain

b∗(φn+1
r , un+1, φn+1

r ) ≤ Cb∥φ
n+1
r ∥

1/2
∥∇φn+1

r ∥
1/2

∥∇un+1
∥∥∇φn+1

r ∥

≤
ν−1Cb

2
|||Sr |||2

4c6
∥∇un+1

∥
2
∥φn+1

r ∥
2
+ c6ν∥∇φn+1

r ∥
2.

(3.19)

The first nudging terms on the right hand side of (3.14) are bounded using (2.20), Cauchy–Schwarz, and Young’s
inequality

µ(IHηn+1, IHφn+1
r ) ≤

µ

4β1
∥IHφn+1

r ∥
2
+ µβ1∥IHηn+1

∥
2

≤
µC2

I

2β1
∥φn+1

r ∥
2
+ 2µβ1C2

I ∥η
n+1

∥
2.

(3.20)

The second nudging term is bounded using Cauchy–Schwarz and Young’s inequality, and (2.19), yielding

2µ(φn+1
r , IHφn+1

r − φn+1
r ) ≤

µ

4β2
∥φn+1

r ∥
2
+ µβ2∥IHφn+1

r − φn+1
r ∥

2

=
µ

4β2
∥φn+1

r ∥
2
+ µ(β2 − 1)∥IHφn+1

r − φn+1
r ∥

2
+ µ∥IHφn+1

r − φn+1
r ∥

2

≤
µ

4β2
∥φn+1

r ∥
2
+ C2

I H 2µ(β2 − 1)∥∇φn+1
r ∥

2
+ µ∥IHφn+1

r − φn+1
r ∥

2.

(3.21)

Now letting ci =
1

12 , i = 1, 2, . . . , 6, combining terms, and recalling our definition of α1 and α2 given in the
statement of the theorem, (3.14) becomes

∥φn+1
r ∥

2
+α1∆t∥∇φn+1

r ∥
2
+ α2∆t∥φn+1

r ∥
2

≤ ∥φn
r ∥

2
+ C∆t3ν−1

∥ut t∥
2
L2(tn ,tn+1;L2(Ω)) + C∆tν−1Cb

2
∥∇ηn+1

∥
2
∥∇un+1

∥
2

+ C∆tν−1Cb
2
∥∇ηn+1

∥
2
∥∇un+1

r ∥
2
+ Cν∆t∥∇ηn+1

∥
2
+ Cν−1∆t∥pn+1

− qh∥
2

+ 2C2
I β1∆tµ∥ηn+1

∥
2,

(3.22)

where C is a generic constant which is independent of ν, p, u, T, H, C I . Next, we bound the fourth term on the
right hand side further using the ROM inverse inequality (2.9), and the stability result from Lemma 3.3

C∆tν−1Cb
2
∥∇ηn+1

∥
2
∥∇un+1

r ∥
2

≤ CCdata∆tν−1Cb
2
|||Sr |||2∥∇ηn+1

∥
2. (3.23)

Now applying Lemma 2.13, using our regularity assumptions to bound the terms ∥∇un+1
∥

2 and ∥ut t∥
2
L2(tn ,tn+1;L2(Ω))

,

taking qh to be the nodal interpolant of pn+1, and λ := min{C−2
P α1, α2} in (3.22), it then follows that

(1+2λ∆t)∥φn+1
r ∥

2

≤ ∥φn
r ∥

2
+ Cν−1∆t3

+ Cν−1∆th2k
+ 2C2

I β1∆tµ
(

h2k+2
+ ∆t4

+

d∑
j=r+1

λ j

)

+ ∆t(Cν−1Cb
2
+ CCdataν

−1Cb
2
|||Sr |||2 + Cν)

(
h2k

+ ∆t4
+

d∑
j=r+1

∥∇ϕ j∥
2λ j

)
.

(3.24)
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Fig. 1. Shown above is the domain for the flow past a cylinder test problem.

Finally, by Lemma 2.3, we obtain

∥φn+1
r ∥

2
≤ ∥φ0

r ∥
2
(

1
1 + 2λ∆t

)n+1

+ 2λ−1∆t−1
{

Cν−1∆t3
+ Cν−1∆th2k

+ 2β1C2
I ∆tµ

(
h2k+2

+ ∆t4
+

d∑
j=r+1

λ j

)

+ ∆t(Cν−1Cb
2
+ CCdataν

−1Cb
2
|||Sr |||2 + Cν)

(
h2k

+ ∆t4
+

d∑
j=r+1

∥∇ϕ j∥
2λ j

) }
.

(3.25)

The triangle inequality completes the proof. □

4. Numerical experiments

In this section, we perform a numerical investigation of the new DA-ROM. In Section 4.1, we illustrate the
theoretical scalings proved in Section 3. In Section 4.2, we investigate the numerical accuracy of the new DA-ROM.
In Section 4.3, we investigate the new DA-ROM when inaccurate snapshots are used in its construction. Finally, in
Section 4.4, we propose and investigate an adaptive nudging procedure.

For our numerical tests, we use the BDF2 analogue of (3.1): Given u0
r , u1

r ∈ Xr , for n = 1, 2, 3, . . ., find
un+1

r ∈ Xr such that for all vr ∈ Xr ,

1
2∆t

(3un+1
r − 4un

r + un−1
r , vr ) + b∗(un+1

r ,un+1
r , vr ) + ν(∇un+1

r , ∇vr )

+ µ(IH (un+1
r − u(tn+1)), IHvr ) = ( f n+1, vr ). (4.1)

We apply (4.1) to 2D channel flow past a cylinder [41], with Reynolds number Re = 500. The domain is the
rectangular channel [0, 2.2]×[0, 0.41], with a cylinder centered at (0.2, 0.2) and radius 0.05, see Fig. 1. There is no
external forcing ( f = 0), no-slip boundary conditions are prescribed for the walls and the cylinder, and an inflow
profile is given by

u1(0, y, t) = u1(2.2, y, t) =
6

0.412 y(0.41 − y),

u2(0, y, t) = u2(2.2, y, t) = 0.

We take ν = 0.0002, and enforce the zero-traction boundary condition with the usual ‘do-nothing’ condition at the
outflow.

The DNS is run to t = 15 with the usual BDF2-FEM discretization [39] using (P2, Pdisc
1 ) Scott–Vogelius

elements on a barycenter refined Delaunay mesh that provided 103K velocity dof, a time step of ∆t = 0.002,
and with the simulations starting from rest (v0

h = v1
h = 0). Lift and drag calculations were performed for the

computed solution and compared to the literature [41,42], which verified the accuracy of the DNS. To generate the
ROM basis, we used one period of snapshot data (0.28 s, or 140 time steps), starting at t = 5; by t = 5, the solution
had reached a periodic-in-time state.

For the calculations of lift and drag, we used the global integral formulation from [43], where a pressure is not
necessary if the test functions are chosen appropriately in the discretely divergence free space Vh .
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Fig. 2. Shown above is a FE mesh (in red) and the H =
2.2
8 coarse mesh and nodes (in black). (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

Table 1
DA-ROM rates of convergence with respect to the ROM truncation.

No. modes (
∑d

j=r+1 λ j (1 + ∥∇ϕ j ∥
2))1/2 Error Rate

8 2.218e+2 4.980e−2 –
10 1.077e+2 4.850e−2 1.74
12 9.246e+1 3.046e−2 2.51
14 7.680e+1 1.793e−2 1.70
16 4.590e+1 1.360e−2 1.36
18 3.334e+1 9.498e−3 1.12
20 2.601e+1 6.974e−3 1.24

The coarse mesh for DA is constructed using the intersection of a uniform rectangular mesh with the domain.
We take H to be the width of each rectangle, and use H =

2.2
20 (400 measurement locations) in our tests. Fig. 2

shows in red a 35K dof mesh and associated H =
2.2
8 coarse mesh in black.

For the DA-ROM computations, we start from zero initial conditions v1
h = v0

h = 0, use the same spatial and
temporal discretization parameters as the DNS, and start assimilation with the t = 5 DNS solution (i.e., time 0 for
DA-ROM corresponds to t = 5 for the DNS).

4.1. Rates of convergence

In this section, we illustrate numerically the rates of convergence in Section 3. Theorem 3.5 gave a DA-ROM
error estimate that depends on the ROM eigenvalues and eigenfunctions, for sufficiently large n and assumptions
on µ and H :

∥un+1
− un+1

r ∥ ≤ C(ν)

⎛⎜⎝∆t2
+ hk+1

+

⎛⎝ d∑
j=r+1

λ j (1 + ∥∇ϕ j∥
2)

⎞⎠1/2
⎞⎟⎠ ,

where (λ j , ϕ j ) are the eigenpairs of the ROM eigenvalue problem described in Section 2.1. Table 1 illustrates the
dependence of the error bound on the dimension of the DA-ROM space, r . Taking µ = 100, H =

2.2
20 , Re = 500,

we run the ROM with varying r and calculate the L2 spatial error at t = 1. We also calculate the quantity in the
error estimate corresponding to the eigenvalues and eigenfunctions (i.e.,

∑d
j=r+1 λ j (1 + ∥∇ϕ j∥

2))1/2), and use this
and the error to calculate the corresponding convergence rate with respect to increasing r . From the theorem, we
expect a rate of 1, and our results are consistent with this rate.

4.2. Numerical accuracy

In this section, we investigate the numerical accuracy of the new DA-ROM. Specifically, we compare the
performance of the DA-ROM to that of the standard ROM (µ = 0) and the DNS solution in predicting energy, drag,
and lift. We run to t = 15, and run tests with both N = 8 and N = 16 modes, with varying µ, and for Re = 500
and 1000. Results for energy and drag prediction are shown in Fig. 3 for Re = 500 and Fig. 4 for Re = 1000,
and in Tables 2–3 for error to DNS, and max lift and drag prediction. A clear improvement is observed in all cases
for using DA, with µ = 500 giving the best, or close to best, prediction in every case, but from the tables we
observe similar accuracy for µ = 100, 500, 1000. The standard ROM (µ = 0) and small nudging µ = 1, 10 are
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Table 2
L2(10, 15; L2(Ω )) error, max lift and drag on [2,11], and errors from the computed reference
solution (reference max lift = 2.96520, reference max drag = 3.48329), for varying µ, N = 8
and 16, and Re = 500.

Re = 500

µ ∥u − ur ∥L2(10,15;L2) cmax
l |error | cmax

d |error |

N = 8

0 3.280e−1 3.150 1.848e−1 3.879 3.955e−1
1 3.216e−1 3.148 1.824e−1 3.874 3.911e−1

10 2.716e−1 3.128 1.623e−1 3.840 3.568e−1
50 1.560e−1 3.068 1.025e−1 3.739 2.559e−1

100 1.163e−1 3.022 5.626e−2 3.662 1.791e−1
500 9.638e−2 2.933 3.223e−2 3.490 6.739e−3

1000 9.976e−2 2.926 3.903e−2 3.433 5.068e−2

N = 16

0 9.838e−2 2.9969 3.171e−2 3.553 6.9200e−2
1 9.835e−2 2.9957 3.070e−2 3.551 6.736e−2

10 9.770e−2 2.9856 2.039e−2 3.535 5.190e−2
50 8.863e−2 2.9564 8.611e−2 3.491 7.703e−2

100 7.330e−2 2.9374 2.784e−2 3.463 2.075e−2
500 4.594e−2 2.9083 5.694e−2 3.413 7.029e−2

1000 6.456e−2 2.9109 5.409e−2 3.394 8.936e−2

Table 3
L2(10, 15; L2(Ω )) error, max lift and drag on [2,11], and errors from the computed reference
solution (reference max lift = 3.19080, reference max drag = 3.71098), for varying µ,
N = 8 and 16, and Re = 1000.

Re = 1000

µ ∥u − ur ∥L2(10,15;L2) cmax
l |error | cmax

d |error |

N = 8

0 3.546e−1 3.656 4.652e−1 4.665 9.540e−1
1 3.515e−1 3.649 4.652e−1 4.651 9.400e−1

10 3.230e−1 3.597 4.062e−1 4.536 8.250e−1
50 2.183e−1 3.437 2.459e−1 4.205 4.945e−1

100 1.514e−1 3.337 1.462e−1 4.015 3.040e−1
500 1.273e−1 3.191 2.020e−4 3.749 3.820e−2

1000 1.391e−1 3.183 7.407e−3 3.703 8.192e−3

N = 16

0 6.697e−1 2.956 2.344e−1 3.260 4.509e−1
1 6.619e−1 2.957 2.337e−1 3.262 4.492e−1

10 5.944e−1 2.965 2.259e−1 3.279 4.317e−1
50 3.647e−1 3.001 1.903e−1 3.357 3.543e−1

100 2.137e−1 3.036 1.550e−1 3.435 2.762e−1
500 8.135e−2 3.106 8.498e−2 3.599 1.124e−1

1000 9.137e−2 3.126 6.460e−2 3.619 9.182e−1

significantly less accurate. The effect of DA on accuracy is similar for both choices of N , and for both choices of
Re.

4.3. Inaccurate snapshots

In this section, we investigate the DA-ROM performance when the snapshots are inaccurate. Specifically, we
consider the same test as in Section 4.2, but now with only a small amount of data being used to build the ROM
basis. This is an important aspect of the ROM to investigate, because in practical applications complete data is
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Fig. 3. Shown above are energy and drag coefficient versus time, for Re = 500 DA-ROM with different choices of µ, H =
2.2
20 , and with

8 modes (top) and 16 modes (bottom).

Fig. 4. Shown above are energy and drag coefficient versus time, for Re = 1000 DA-ROM with different choices of µ, H =
2.2
20 , and with

8 modes (top) and 16 modes (bottom).
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Fig. 5. Pictured above are the first 5 basis functions generated by the ROM for first the full basis, then inaccurate bases 1 and 2, which
both use less than one period of data to generate the basis.

Fig. 6. Energy and drag coefficient versus time plots with different values of µ for Re = 500 using 8 modes and H =
2.2
20 .

generally not available, or the amount of data needed to sufficiently capture the behavior of the true solution is
unknown.

We generated these inaccurate snapshots for Re = 500 using less than one period of data: basis 1 used 64%
of one period of DNS data (the first 90 time step solutions from the 140 which comprise a full period, starting at
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Fig. 7. Energy and drag coefficient versus time plots with different values of µ for Re = 500 using 12 modes and H =
2.2
20 .

t = 5) while basis 2 used 84% (the first 120 time step solutions). See Fig. 5 for the first five basis functions generated
by the ROM; the basis functions for the full ROM are also included for comparison.

In Fig. 6, we show the results of the DA-ROM using only 8 modes, with basis 1 and 2 defined above, and µ

ranging from 100 to 500. DA significantly improves the accuracy of the ROM, and basis 2 does better at predicting
the drag coefficient than basis 1.

Fig. 7 shows energy and drag coefficient plots versus time using N = 12 modes, and the nudging parameter µ

is varied from 100 to 500. We see similar results as the case of using 8 modes; for both bases, DA significantly
improves the accuracy of the ROM, compared to the ROM without DA (µ = 0), which becomes more and more
inaccurate as time goes on. Basis 2 is able to accurately predict the drag coefficient.

The results in this section suggest that DA can dramatically improve the accuracy of a ROM when insufficient
data is available to build the ROM, which is the general case in practical applications. We also emphasize that
the improvement in the DA-ROM accuracy over the standard ROM accuracy is significantly larger in the realistic
case of inaccurate snapshot construction. Indeed, comparing Figs. 6 and 7 with Fig. 3, we notice that the absolute
improvement in the DA-ROM is much larger in the former than in the latter (this could be clearly seen from the
magnitude of the y-axis).

4.4. Adaptive nudging

To further improve the accuracy of the DA-ROM solution, we also consider nudging that is adaptive in time.
While the error estimate we prove guarantees convergence up to discretization error and ROM truncation error
exponentially fast in time, it may not be sufficient to expect good numerical results. In practice, the ROM truncation
error is often quite large, and can make the error bounds be too large to guarantee accurate predictions, especially
over long time intervals. We propose below an adaptive nudging technique that will help produce better results by
forcing the DA-ROM predicted energy to be more accurate.

To our knowledge, the ideas below for adaptive nudging in time are new, and moreover they are not restricted to
the ROM setting. The authors plan to consider this in a general setting, and in much more depth, in a forthcoming
work where the ideas are explored both analytically and numerically, and considering sensitivity with respect to
parameters.
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4.4.1. Algorithm
In this section, we propose to change µ adaptively in time, based on the accuracy of the energy prediction of

the ROM as well as the sign of the contribution of the DA term to the energy balance. The semi-discrete algorithm
reads: Find ur ∈ Xr such that for all vr ∈ Xr ,

((ur )t , vr ) + b∗(ur , ur , vr ) + ν(∇ur , ∇vr ) + µ(IH (ur − u), IHvr ) = ( f, vr ), (4.2)

with v0 = Pr (u0), and µ is the adaptive nudging parameter.
We begin the discussion with an energy estimate. Choosing vr = ur vanishes the nonlinear term, and after

bounding the forcing term in the usual way we obtain the energy estimate
d
dt

∥ur∥
2
+ ν∥∇ur∥

2
+ µ

(
∥IH (ur )∥2

− ∥IH (u)∥2
+ ∥IH (ur − u)∥2)

≤ ν−1
∥ f ∥−1.

We assume this estimate is sharp in the following analysis, and that we know ∥u(tn)∥ in addition to IH (u)(tn).
Needing to know the kinetic energy at every time step may be an obstacle to using adaptive nudging, but if H is
sufficiently small, then approximating ∥u(tn)∥ with ∥IH (u)(tn)∥ could be a workaround in practice. We will consider
this issue in more detail in a forthcoming work.

The adaptive strategy is to adjust µ so the contribution of the data assimilation term removes dissipation if the
ROM-DA energy is too small, and adds dissipation if the energy is too large. We use the term dissipation loosely,
since here we refer to dissipation from the DA term only meaning that it adds positivity to the left hand side of the
energy estimate. Now after step n we can calculate (1) the DA-ROM energy 1

2∥un
r ∥

2 and the true energy 1
2∥u(tn)∥2;

and (2) the sign of the contribution of the data assimilation term (DAT):

D AT := ∥IH (ur )(tn)∥2
− ∥IH (u)(tn)∥2

+ ∥IH (ur − u)(tn)∥2.

With this information, we check the energy error to see if it is too high (or too low), and if so, then add dissipation
by increasing µ if D AT > 0 and decreasing µ otherwise; or do the opposite to decrease dissipation.

Algorithm 4.1 (DA-ROM with Adaptive Nudging).

1. Initialize problem variables and parameters for (4.1).
2. Define L to be the frequency in number of time steps to adapt µ.
3. Define δµ to be the adjustment size to use for changing µ.
4. Define tol to be the tolerance for making a change to µ.
5. For time step n = 1, 2, ...

if mod(n,L)==0

(a) Calculate DAT= ∥IH (ur )(tn)∥2
− ∥IH (u)(tn)∥2

+ ∥IH (ur − u)(tn)∥2

and Edi f f =
1
2

(
∥ur (tn)∥2

− ∥u(tn)∥2
)

(b) if (Edi f f > tol and DAT> 0) or (Edi f f < −tol and DAT< 0)
Set µ = µ + δµ.

if (Edi f f < −tol and DAT> 0) or (Edi f f > tol and DAT< 0)
Set µ = µ − δµ.

end
Calculate ur (tn+1) from (4.1).

How to select good L , δµ, and tol are interesting and important questions. In our numerical tests below, we used
L = 10, tol = 10−3, and δµ = 1 for the plots, but also varied the parameters to give some preliminary testing of
parameter sensitivity. We intend to explore sensitivity more in depth for adaptive nudging in a forthcoming paper.

4.4.2. Numerical results
We follow the same problem setup outlined in Section 4.2, using Re = 1000, again using the full ROM basis with

N = 8 modes, but now choosing µ adaptively in time. Fig. 8 shows the energy plot for the DA-ROM algorithm with
the adaptive nudging (L = 10, tol = 1e − 3, δµ = 1, starting µ = 100), and compares with DNS, standard ROM
(DA-ROM with µ = 0), and DA-ROM with constant µ = 100. We observe the adaptive nudging has a positive
effect on energy error, slowly reducing the error and causing the adaptive DA-ROM energy to almost coincide
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Fig. 8. Energy, µ, and D AT versus time, for Re = 1000 DA-ROM with N = 8 and and H =
2.2
20 , using different choices of µ (adaptive

used L = 10, tol = 1e − 3, δµ = 1), with N = 8 modes and H =
2.2
20 .

Table 4
L2(10, 15; L2(Ω )) and energy error for varying starting µ, tol, L , δµ, for DA-ROM with adaptive
nudging, using N = 8 and Re = 1000.

Starting µ tol L δµ Final µ ∥u − ur ∥L2(10,15;L2) Energy error at t=15

100 1e−2 10 1 239 1.201e−1 8.868e−4
100 1e−3 10 1 333 1.217e−1 4.499e−4
100 1e−4 10 1 334 1.218e−1 5.543e−4
100 1e−2 20 5 250 1.200e−1 6.857e−4
100 1e−3 20 5 340 1.218e−1 4.421e−4
100 1e−4 20 5 330 1.218e−1 4.782e−4
100 1e−3 50 1 244 1.224e−1 1.150e−3
100 1e−3 50 5 350 1.218e−1 5.135e−4
100 1e−3 50 10 350 1.217e−1 4.546e−4

10 1e−2 10 1 267 1.202e−1 4.098e−4
10 1e−3 10 1 333 1.217e−1 4.499e−4
10 1e−2 50 5 270 1.203e−1 3.636e−4

500 1e−2 10 1 500 1.273e−1 1.636e−3
500 1e−3 10 1 334 1.218e−1 4.627e−4
500 1e−3 50 5 345 1.218e−1 4.826e−4

with the DNS energy. Plots in the figure also show the adaptive µ versus time, and DAT versus time; by t = 10,
both appear to have leveled off. To test the sensitivity of the adaptive nudging parameters, we tested with varying
parameters, and results are given in Table 4, as L2(10, 15; L2(Ω )) error, the final µ, and the energy error at the
final time.

When tol ≤ 1e − 3, we observe very little sensitivity in the results for any change of the other parameters. For
tol = 1e −2, the energy errors were slightly larger and the final µ varied somewhat from the value around 350 that
was found with smaller tol (smaller for small starting µ, larger for large starting µ), likely because this tolerance
provided less opportunity for µ to adapt.

5. Conclusions

In this paper, we put forth a new data assimilation reduced order model (DA-ROM) for fluid flows. The new
DA-ROM adds to the standard ROM a feedback control term that nudges the ROM approximation towards the
reference solution corresponding to the observed data. The new DA-ROM’s implementation is extremely simple.
The nudging term can be implemented into existing codes completely at the linear algebraic level, without any
changes to the rest of the discretization. The nudging term dramatically increases the accuracy of the new DA-ROM
by utilizing the available low-resolution data, without the need to increase the number of ROM basis functions. We
proved that with a properly chosen nudging parameter, the new DA-ROM algorithm converges exponentially fast in
time to the true solution, up to discretization and ROM truncation errors. We also proposed a strategy for nudging
adaptively in time, by adding or removing dissipation arising from the nudging to better match true solution energy.
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Finally, we performed a numerical investigation of the new DA-ROM in the simulation of a 2D flow past a circular
cylinder. The numerical results showed that the adaptive nudging DA-ROM significantly improves the long time
ROM accuracy, especially when the snapshots used to construct the ROM are inaccurate, which is generally the
case in realistic applications.

We intend to pursue several research avenues. First, we will investigate whether numerical analysis can help
determine the optimal parameter in the adaptive nudging approach for the new DA-ROM. We also want to extend
the numerical investigation of the DA-ROM to complex 3D flows. Finally, we will examine whether using a spectral
type of nudging in the DA-ROM instead of the current physical nudging yields better results.
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