
Verification of Hierarchical Artifact Systems

Data-driven workflows, of which IBM’s Business Artifacts are a prime exponent, have been successfully
deployed in practice, adopted in industrial standards, and have spawned a rich body of research in academia,
focused primarily on static analysis. The present work represents a significant advance on the problem of
artifact verification, by considering amuch richer andmore realistic model than in previouswork, incorporating
core elements of IBM’s successful Guard-Stage-Milestonemodel. In particular, themodel features task hierarchy,
concurrency, and richer artifact data. It also allows database key and foreign key dependencies, as well as
arithmetic constraints. The results show decidability of verification and establish its complexity, making use
of novel techniques including a hierarchy of Vector Addition Systems and a variant of quantifier elimination
tailored to our context.

CCS Concepts: • Theory of computation → Verification by model checking; Logic and databases; •
Applied computing → Business process management;

ACM Reference Format:

. 2018. Verification of Hierarchical Artifact Systems. 1, 1 (May 2018), 70 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION

The past decade has witnessed the evolution of workflow specification frameworks from the
traditional process-centric approach towards data-awareness. Process-centric formalisms focus
on control flow while under-specifying the underlying data and its manipulations by the process
tasks, often abstracting them away completely. In contrast, data-aware formalisms treat data as
first-class citizens. A notable exponent of this class is IBM’s business artifact model pioneered in [52],
successfully deployed in practice [12, 14, 20, 25, 67] and adopted in industrial standards. Business
artifacts have also spawned a rich body of research in academia, dealing with issues ranging from
formal semantics to static analysis (see related work).

In a nutshell, business artifacts (or simply “artifacts”) model key business-relevant entities, which
are updated by a set of services that implement business process tasks, specified declaratively by
pre-and-post conditions. A collection of artifacts and services is called an artifact system. IBM
has developed several variants of artifacts, of which the most recent is Guard-Stage-Milestone
(GSM) [22, 40]. The GSM approach provides rich structuring mechanisms for services, including
parallelism, concurrency and hierarchy, and has been incorporated in the OMG standard for Case
Management Model and Notation (CMMN) [15, 47].

Author’s address:

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2018/5-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: May 2018.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

:2

Artifact systems deployed in industrial settings typically specify very complex workflows that
are prone to costly bugs, whence the need for verification of critical properties. Over the past
few years, an active line of research on the verification of artifact systems has emerged. Rather
than relying on general-purpose software verification tools suffering from well-known limitations,
the aim of this work, described below, has been to identify practically relevant classes of artifact
systems and properties for which fully automatic verification is possible. This is an ambitious goal,
since artifacts are infinite-state systems due to the presence of unbounded data. Approaches to
this problem rely critically on the declarative nature of service specifications, bringing into play a
novel marriage of database and computer-aided verification techniques.

In previous work [21, 26], the verification problem was studied for a bare-bones variant of artifact
systems, without hierarchy or concurrency, in which each artifact consists of a flat tuple of evolving
values and the services are specified by simple pre-and-post conditions on the artifact and database.
More precisely, the problem considered was to statically check whether all runs of an artifact
system satisfy desirable properties expressed in LTL-FO, an extension of linear-time temporal logic
where propositions are interpreted as ∃FO sentences on the database and current artifact tuple. In
order to deal with the resulting infinite-state system, in [26], a symbolic approach was developed
to allow a reduction to finite-state model checking and yielding a pspace verification algorithm
for the simplest variant of the model (no database dependencies and uninterpreted data domain).
In [21] the approach was extended to allow for database dependencies and numeric data testable
by arithmetic constraints. Unfortunately, decidability was obtained subject to a rather complex
semantic restriction on the artifact system and property (feedback freedom), and the verification
algorithm has non-elementary complexity.

The present work represents a significant advance on the artifact verification problem on several
fronts. We consider a much richer and more realistic model, called Hierarchical Artifact System
(HAS), abstracting core elements of the GSM model. In particular, the model features task hierarchy,
concurrency, and richer artifact data (including updatable artifact relations). We consider properties
expressed in a novel hierarchical temporal logic, HLTL-FO, that is well-suited to the model. Our
main results establish the complexity of checking HLTL-FO properties for various classes of HAS,
highlighting the impact of various features on verification. The results require qualitatively novel
techniques, because the reduction to finite-state model checking used in previous work is no longer
possible. Instead, the richer model requires the use of a hierarchy of Vector Addition Systems with
States (VASS) [16]. The arithmetic constraints are handled using quantifier elimination techniques,
adapted to our setting.

We next describe the model and results in more detail. A HAS consists of a database and a
hierarchy (rooted tree) of tasks. Each task has associated to it local evolving data consisting of a
tuple of artifact variables and an updatable artifact relation. It also has an associated set of services.
Each application of a service is guarded by a pre-condition on the database and local data and
causes an update of the local data, specified by a post condition (constraining the next artifact
tuple) and an insertion or retrieval of a tuple from the artifact relation. In addition, a task may
invoke a child task with a tuple of parameters, and receive back a result if the child task completes.
A run of the artifact system consists of an infinite sequence of transitions obtained by any valid
interleaving of concurrently running task services.

In order to express properties of HAS’s we introduce a subset of LTL-FO called hierarchical
LTL-FO (HLTL-FO). Intuitively, an HLTL-FO formula uses as building blocks LTL-FO formulas
acting on runs of individual tasks, called local runs, referring only to the database and local data,
and can recursively state HLTL-FO properties on runs resulting from calls to children tasks. The

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :3

language HLTL-FO closely fits the computational model and is also motivated on technical grounds
discussed in the paper. A main justification for adopting HLTL-FO is that LTL-FO (and even LTL)
properties are undecidable for HAS’s.

Hierarchical artifact systems as sketched above provide powerful extensions to the variants
previously studied, each of which immediately leads to undecidability of verification if not carefully
controlled. Ourmain contribution is to put forward a package of restrictions that ensures decidability
while capturing a significant subset of the GSM model. This requires a delicate balancing act aiming
to limit the dangerous features while retaining their most useful aspects. In contrast to [21], this
is achieved without the need for unpleasant semantic constraints such as feedback freedom. The
restrictions are discussed in detail in the paper, and shown to be necessary by undecidability results.

The complexity of verification under various restrictions is summarized in Tables 1 (without
arithmetic, page 40) and 2 (with arithmetic, page 42). As seen, the complexity ranges from pspace
to non-elementary for various packages of features. The non-elementary complexity (a tower of
exponentials whose height is the depth of the hierarchy) is reached for HAS with cyclic schemas,
artifact relations and arithmetic. For acyclic schemas, which include the widely used Star (or
Snowflake) schemas [42, 64], the complexity ranges from pspace (without arithmetic or artifact
relations) to double-exponential space (with both arithmetic and artifact relations). This is a
significant improvement over the previous algorithm of [21], which even for acyclic schemas
has non-elementary complexity in the presence of arithmetic (a tower of exponentials whose
height is the square of the total number of artifact variables in the system). Moreover, we recently
implemented a verifier that can handle HAS with acyclic schemas, and has excellent performance,
demonstrating the practical potential of our approach. The implementation relies on the techniques
developed in the present paper and is described in [2].

The paper is organized as follows. The HAS model is presented in Section 2. We present its
syntax and semantics, including a representation of runs as a tree of local task runs, that factors
out interleavings of independent concurrent tasks. The temporal logic HLTL-FO is introduced in
Section 3, together with a corresponding extension of Büchi automata to trees of local runs. Section
4 justifies the restrictions imposed on the HAS model by showing that lifting any of them leads
to undecidability of verification. In Section 5 we prove the decidability of verification for HAS
without arithmetic, and establish its complexity. To this end, we develop a symbolic representation
of HAS runs and a reduction of model checking to state reachability problems in a set of nested
VASS (mirroring the task hierarchy). In Section 6 we show how the verification results can be
extended in the presence of arithmetic. Finally, we discuss related work in Section 7 and conclude.
The appendix provides more details, proofs and tables of notations.

2 FRAMEWORK

In this section, we present the syntax and semantics of Hierarchical Artifact Systems (HAS’s). The
formal definitions are illustrated with an intuitive example of the HAS specification of a travel
booking business process inspired by Expedia [34]. At a high level, the example captures a process
where a customer books flights and/or makes hotel reservations.

, Vol. 1, No. 1, Article . Publication date: May 2018.

:4

2.1 Syntax of HAS

We begin with the underlying database schema. We assume familiarity with the notions of key and
foreign key (e.g., see [56]), as well as first-order formula (FO), existential FO (∃FO), and quantifier-free
FO (e.g., see [45]).

Definition 1. A database schema DB is a finite set of relation symbols, where each relation R of
DB has an associated sequence of distinct attributes containing the following:
• a key attribute ID (present in all relations),
• a set of foreign key attributes {F1, . . . , Fm}, and
• a set of non-key attributes {A1, . . . ,An} disjoint from {ID, F1, . . . , Fm}.

To each foreign key attribute Fi of R is associated a relation Ri of DB and the inclusion dependency
R[Fi] ⊆ Ri [ID] (stating that the projection of R on Fi is included in the projection of Ri on ID). It is
said that Fi references Ri . We denote by attr (R) the set of attributes of R.

The domain Dom(A) of each attributeA depends on its type. The domain of all non-key attributes
is numeric, specifically R. The domain of each key attribute is a countable infinite domain disjoint
from R. For distinct relations R and R′, Dom(R.ID) ∩ Dom(R′.ID) = ∅. The domain of a foreign key
attribute F referencing R is Dom(R.ID). We denote by DOMid = ∪R∈DBDom(R.ID). Intuitively, in
such a database schema, each tuple is an object with a globally unique id. This id does not appear
anywhere else in the database except in foreign keys referencing it. An instance of a database
schema DB is a mapping D associating to each relation symbol R a finite relation D(R) of the same
arity as R, whose tuples provide, for each attribute, a value from its domain. In addition, D satisfies
all key and inclusion dependencies associated with the keys and foreign keys of the schema. The
active domain of D, denoted adom(D), consists of all elements of D (id’s and reals). A database
schema DB is acyclic if there are no cycles in the references induced by foreign keys. More precisely,
consider the labeled graph FK whose nodes are the relations of the schema and in which there is
an edge from Ri to R j labeled with F if Ri has a foreign key attribute F referencing R j . The schema
DB is acyclic 1 if the graph FK is acyclic, and it is linearly-cyclic if each relation R is contained in at
most one simple cycle. A main reason for considering these special schemas is that they lead to
significantly improved complexity of verification. The most restricted, acyclic schemas, still capture
Star and Snowflake schemas [42, 64], widely used in storing business process data. As mentioned
earlier, the verifier described in [2] exhibits excellent perfomance on HAS with acyclic schemas.

Example 2. The HAS of the travel booking business process has the following database schema:
• FLIGHTS(ID, price, comp_hotel_id)
HOTELS(ID, unit_price, discount_price)

In the schema, the ID’s are key attributes, price, unit_price, discount_price are non-key at-
tributes, and comp_hotel_id is a foreign key attribute satisfying the inclusion dependency:

FLIGHTS[comp_hotel_id] ⊆ HOTELS[ID].
Intuitively, each flight stored in the FLIGHTS table has a hotel compatible for discount. If a flight is
purchased together with a compatible hotel reservation, a discount is applied on the hotel reservation.
Otherwise, the full price needs to be paid. The schema is acyclic, since FLIGHTS[comp_hotel_id] ⊆
HOTELS[ID] is the only inclusion dependency in the schema.

The assumption that the ID of each relation is a single attribute is made for simplicity, and
multiple-attribute IDs can be easily handled. The fact that the domain of all non-key attributes is
1Here a cycle is a sequence of relations {Ri }1≤i≤k where k ≥ 2, R1 = Rk and there is a foreign key reference from Ri−1 to
Ri for every i > 1.

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :5

numeric is also harmless. Indeed, a uninterpreted domain on which only equality can be used can
be easily simulated. Note that the keys and foreign keys used on our schemas are special cases of
the dependencies used in [21]. The limitation to keys and foreign keys is one of the factors leading
to improved complexity of verification and still captures most schemas of practical interest.

We next proceed with the definition of tasks and services, described informally in the introduc-
tion. The definition imposes various restrictions needed for decidability of verification. These are
discussed and motivated in Section 4.

Similarly to the database schema, we consider two infinite, disjoint sets VARid of ID variables and
VARR of numeric variables. We associate to each variable x its domain Dom(x). If x ∈ VARid , then
Dom(x) = {null} ∪ DOMid , where null < DOMid ∪ R (null plays a special role that will become
clear shortly). If x ∈ VARR, then Dom(x) = R. An artifact variable is a variable in VARid ∪ VARR. If
x̄ is a sequence of artifact variables, a valuation of x̄ is a mapping ν associating to each variable in
x̄ an element of its domain Dom(x).

Definition 3. A task schema over database schema DB is a triple T = ⟨x̄T , ST , s̄T , x̄Tin, x̄Tout⟩
where x̄T is a sequence of distinct artifact variables, ST is a relation symbol not in DB with associated
arity k , s̄T is a sequence of k distinct ID variables in x̄T and x̄Tin and x̄

T
out are subsequences of x̄

T called
the input and output variables of T .

We denote by x̄Tid = x̄T ∩ VARid and x̄TR = x̄T ∩ VARR. We refer to ST as the artifact relation or
set of T . Intuitively, an artifact relation is an updatable set where a task can insert/retrieve tuples.
As we shall see, tuples of artifact relations are restricted to contain values from DOMid . The data
stored in the artifact variables and relations together represent the current state of a task.
Example 4. ManageTrips is a task in the travel booking artifact system. This task models the

process whereby the customer creates, stores, and retrieves candidate trips. A trip consists of a flight
and/or hotel reservation. The customer can also choose one of the candidate trips and finalize the
booking. The task has the following artifact variables:

• ID variables: flight_id, hotel_id,
• numeric variables: amount_paid, status.

It also has an artifact relation TRIPS storing candidate trips (flight_id, hotel_id). ManageTrips
has no input/output variables.

Definition 5. An artifact schema is a tuple A = ⟨H ,DB⟩ where DB is a database schema and
H is a rooted tree of task schemas over DB with pairwise disjoint sets of artifact variables2 and distinct
artifact relation symbols.

The rooted tree H defines the task hierarchy. Suppose the set of tasks is {T1, . . . ,Tk }. For
uniformity, we always take task T1 to be the root of H . We denote by ⪯H (or simply ⪯ when
H is understood) the partial order on {T1, . . . ,Tk } induced by H (with T1 the minimum). For a
node T of H , we denote by tree(T) the subtree of H rooted at T , child(T) the set of children of
T (also called subtasks of T), desc(T) the set of descendants of T (excluding T). Finally, desc∗(T)
denotes desc(T)∪ {T }. We denote by SH (or simply S whenH is understood) the relational schema
{STi | 1 ≤ i ≤ k}. An instance of S is a mapping associating to each STi ∈ S a finite relation over
DOMid of the same arity.

Example 6. The travel booking artifact system has the following 4 tasks:T1:ManageTrips,T2:AddHotel,
T3:AddFlight and T4:BookTrip, which form the hierarchy represented in Fig. 1.
2In examples we sometimes use for convenience the same artifact variable names in several tasks, with the understanding
that they represent distinct variables.

, Vol. 1, No. 1, Article . Publication date: May 2018.

:6

T1: ManageTrips

T2: AddHotel T4: BookTripT3: AddFlight T5: CancelTrip

Fig. 1. Tasks hierarchy.

The process implemented by the above tasks can be described informally as follows. At the root
task ManageTrips, the customer can add a flight and/or hotel to the trip by calling the AddHotel or
the AddFlight tasks. The customer can also store candidate trips in the artifact relation TRIPS and
retrieve previously stored trips. After the customer has made a decision, the BookTrip task is called to
book the trip and the payment is processed. After the payment, the customer can decide to cancel the
flight and/or the hotel reservation using the CancelTrip task and receive a refund.

Definition 7. An instance of an artifact schemaA = ⟨H ,DB⟩ is a tuple Ī = ⟨ν̄ , stд,D, S̄⟩ where
D is an instance of DB, S̄ an instance of S, ν̄ a valuation of

⋃k
i=1 x̄

Ti , and stд (standing for “stage”) a
mapping of {T1, . . . ,Tk } to {init, active, closed}.

The stage stд(Ti) of a task Ti has the following intuitive meaning in the context of a run of its
parent: init indicates that Ti is inactive and available to be called, active says that Ti has been
called and has not yet returned its answer, and closed indicates thatTi has returned its answer. As
we shall see, Ti cannot be called while its stage is closed, but the model provides a way to reset
the stage to init. Thus, Ti can be called multiple times during a run of its parent. However, only
one instance of Ti can be active at any given time.

Example 8. Fig. 2 shows an example of an instance of the travel booking business process specified
in HAS. The only active task isManageTrip.

flight_id hotel_id amount_
paid status

F1 H1 0.0 'Shopping'

flight_id hotel_id

F0 null

null H0

ID price comp_hotel_id

F0 $500 H0

F1 $200 H1

TRIPS (Artifact Relation):Artifact Variables: FLIGHTS: HOTELS:

ManageTrips: active DB:

AddHotel, AddFlight: closed BookTrip, CancelTrip: init

ID price discount_price

H0 $100 $80

H1 $120 $100

Fig. 2. An instance of the travel booking schema.

We proceed with the definition of conditions, used to specify task services. We denote by C
an infinite set of relation symbols, each of which has a fixed interpretation as the set of real
solutions of a finite set of polynomial inequalities with integer coefficients. By slight abuse, we
sometimes use the same notation for a relation symbol in C and its fixed interpretation. For a given
artifact schema A = ⟨H ,DB⟩ and a sequence x̄ of variables, a condition on x̄ is a quantifier-free
FO formula over DB ∪ C ∪ {=} whose variables are included in x̄ . The special constant null
can be used in equalities with ID variables. For each atom R(x ,y1, . . . ,ym , z1, . . . , zn) of relation
R(ID,A1, . . . ,Am , F1, . . . , Fn) ∈ DB, {x , z1, . . . , zn} ⊆ VARid and {y1, . . . ,ym} ⊆ VARR. Atoms over
C use only numeric variables. If α is a condition on x̄ , D is an instance of DB and ν a valuation of x̄ ,
we denote by D∪C |= α(ν) the fact that D∪C satisfies α with valuation ν , with standard semantics.
For an atom R(ȳ) in α where R ∈ DB and ȳ ⊆ x̄ , if ν (y) = null for any y ∈ ȳ, then R(ȳ) is false. As
will become apparent, although conditions used in HAS are quantifier-free, ∃FO conditions can be
simulated by adding variables to x̄T , so we use them as shorthand whenever convenient.

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :7

Example 9. The following ∃FO formula indicates that the customer in the travel booking process
has chosen a pair of compatible flight and hotel and paid the discounted amount:

∃q∃p1∃p2FLIGHTS(flight_id,q, hotel_id) ∧ HOTELS(hotel_id,p1,p2) ∧ amount_paid = q + p2.
We next define services of tasks. We start with internal services, which update the artifact

variables and artifact relation of the task.
Definition 10. Let T = ⟨x̄T , ST , s̄T , x̄Tin, x̄Tout⟩ be a task schema of an artifact schema A. An

internal service σ of T is a tuple ⟨π ,ψ ,δ⟩ where:
• π andψ , called pre-condition and post-condition, respectively, are conditions over x̄T
• δ ⊆ {+ST (s̄T),−ST (s̄T)} is a set of artifact relation updates; +ST (s̄T) and −ST (s̄T) are called
an insertion and retrieval of s̄T , respectively.

Intuitively, an internal service of T can be called only when the current instance satisfies the
pre-condition. The update of variables x̄T is valid if the next instance satisfies the post-condition.
Variables can be changed arbitrarily during a service activation, as long as the post condition holds.
This feature allows services to also model actions by external actors who provide input into the
workflow by setting the value of non-propagated variables. Such actors may even include humans
or other parties whose behavior is not deterministic. For example, a bank manager carrying out a
“loan decision” action can be modeled by a service whose result is stored in a variable and whose
value is restricted by the post-condition to either “Approve” or “Deny”. Note that deterministic
actors can be modeled by simply using tighter post-conditions.

As will be seen in the formal definition, +ST (s̄T) causes an insertion of the current value of s̄T
into ST , while −ST (s̄T) causes the removal of some non-deterministically chosen tuple of ST and
its assignment as the next value of s̄T . In particular, if δ = {+ST (s̄T),−ST (s̄T)}, the tuple inserted
by +ST (s̄T) and the one retrieved by −ST (s̄T) are generally distinct, but may be the same as a
degenerate case.

Example 11. TheManageTrips task has 3 internal services: Initialize, StoreTrip and RetrieveTrip.
Initialize creates a new trip with flight_id = hotel_id = null. When RetrieveTrip is called, a
previously stored trip is chosen non-deterministically and removed from TRIPS for processing, and
(flight_id, hotel_id) is set to be the chosen tuple. When StoreTrip is called, the current tuple
(flight_id, hotel_id) is inserted into TRIPS. The latter two services are specified as follows.

RetrieveTrip:
Pre: flight_id = null ∧ hotel_id = null
Post: status = “Shopping”
Update: {−TRIPS(flight_id, hotel_id)}

StoreTrip:
Pre: flight_id , null ∨ hotel_id , null
Post: flight_id = null ∧ hotel_id = null ∧
status = “Shopping”
Update: {+TRIPS(flight_id, hotel_id)}

Fig. 3. Examples of two services.

As seen above, internal services of a task cause transitions on the data local to the task. Interactions
among tasks are specified using two kinds of special services called the opening-services and closing-
services. Specifically, each task T is equipped with an opening service σoT and a closing service σ cT .
Each non-root task T can be activated by its parent task via a call to σoT which includes passing
parameters to T that initialize its input variables x̄Tin. When T terminates (if ever), it returns to the
parent the contents of its output variables x̄Tout via a call to σ cT . Moreover, calls to σoT are guarded by
a condition on the parent’s artifact variables, and closing calls to σ cT are guarded by a condition on
the artifact variables of T .

, Vol. 1, No. 1, Article . Publication date: May 2018.

:8

Definition 12. Let Tc be a child of a task T in A.
(i) The opening-service σoTc ofTc is a tuple ⟨π , fin⟩, where π is a (pre-)condition over x̄T , and fin is a

1-1 mapping from x̄Tcin to x̄T (called the input variable mapping). We denote ranдe(fin) by x̄TTc ↓ (the
variables of T passed as input to Tc).
(ii) The closing-service σ cTc of Tc is a tuple ⟨π , fout ⟩, where π is a (pre-)condition over x̄Tc , and fout

is a 1-1 mapping from x̄Tcout to x̄
T (called the output variable mapping). We denote ranдe(fout) by x̄TTc ↑,

referred to as the returned variables from Tc . It is required that x̄TTc ↑ ∩ x̄
T
in = ∅.

Requiring x̄TTc ↑ ∩ x̄
T
in = ∅ means that a returning child task cannot overwrite the input variables

of the parent task, so that the values of the input variables stay unchanged throughout an execution
of the task. While the definition allows the return of numeric variables, it turns out that for the
purpose of verification one can assume that only ID variables are returned. One can additionally
assume that the sets of variables returned by different subtasks are disjoint. The discussion of
the simplifications is postponed to Section 3, since they must be considered in the context of the
property language HLTL-FO.

For uniformity of notation, we also equip the root task T1 with a service σoT1 with pre-condition
true that initiates the computation by providing a valuation to a designated subset x̄T1in of x̄T1
(the input variables of T1), and a service σ cT1 whose pre-condition is false (so it never occurs
in a run). For a task T we denote by ΣT the set of its internal services, ΣocT = ΣT ∪ {σoT ,σ cT },
Σobs
T = ΣocT ∪ {σoTc ,σ

c
Tc
| Tc ∈ child(T)}, and ΣδT = ΣT ∪ {σoT } ∪ {σ cTc | Tc ∈ child(T)}. Intuitively, Σ

obs
T

consists of the services observable in runs of task T and ΣδT consists of services whose application
can modify the variables x̄T .

Example 13. The opening-service σoT4 of the BookTrip task has pre-condition flight_id , null∧
hotel_id , null∧status = “Shopping”, meaning that both the hotel and flight have been chosen by
the customer but are not yet paid. The input variables x̄T4in of BookTrip are {flight_id, hotel_id},
which are mapped by the mapping fin to variables {flight_id, hotel_id} of ManageTrips. The
closing-service σ cT4 of the BookTrip task has pre-condition status = “Paid”, meaning that the trip
was successfully paid. The output variables x̄T4out of BookTrip are {status, amount_paid}, which are
mapped by fout to the identically named variables {status, amount_paid} of ManageTrips (the
returned variables x̄T1T4↑ from BookTrip).

Definition 14. A Hierarchical Artifact System (HAS) is a triple Γ = ⟨A, Σ,Π⟩, where A is an
artifact schema, Σ is a set of services of tasks inA including σoT and σ cT for each taskT ofA, and Π is
a condition over x̄T1in (where T1 is the root task).

2.2 Semantics of HAS

We next define the semantics of HAS. Intuitively, a run of a HAS on a database D consists of
an infinite sequence of transitions among HAS instances (also referred to as configurations, or
snapshots), starting from an initial artifact tuple satisfying pre-condition Π, and empty artifact
relations. At each snapshot, each active task T can open a subtask Tc if the pre-condition of the
opening service of Tc holds, and the values of a subset of x̄T are passed to Tc as its input variables.
Tc can be closed if the pre-condition of its closing service is satisfied. When Tc is closed, the values
of the return variables of Tc are sent to T . An internal service of T can only be applied after all
active subtasks of T have returned their answer.

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :9

Tree of Local Runs. Because of the hierarchical structure, and the locality of task specifications,
the actions of concurrently active children of a given task are independent of each other and can
be arbitrarily interleaved. To capture just the essential information, factoring out the arbitrary
interleavings, we first define the notion of local run and tree of local runs. Intuitively, a local run
of a task consists of a sequence of services of the task, together with the transitions they cause
on the task’s local artifact variables and relation. The tasks’ input and output are also specified.
A tree of local runs captures the relationship between the local runs of tasks and those of their
subtasks, including the passing of inputs and results. Then the runs of the full artifact system
simply consist of all legal interleavings of transitions represented in the tree of local runs, lifted
to full HAS instances (we refer to these as global runs). We begin by defining instances of tasks
and local transitions. For a mappingM , we denote byM[a 7→ b] the mapping that sends a to b and
agrees withM everywhere else.
Definition 15. Let T = ⟨x̄T , ST , s̄T , x̄Tin, x̄Tout⟩ be a task in Γ and D a database instance over DB.

An instance of T is a pair (ν , S) where ν is a valuation of x̄T and S an instance of ST . For instances
I = (ν , S) and I ′ = (ν ′, S ′) of T and a service σ ∈ ΣobsT , there is a local transition I

σ−→ I ′ if the
following holds. If σ is an internal service ⟨π ,ψ ⟩, then:
• D ∪ C |= π (ν) and D ∪ C |= ψ (ν ′)
• ν ′(y) = ν(y) for each y in x̄Tin
• if δ = {+ST (s̄T)}, then S ′ = S ∪ {ν (s̄T)}, 3
• if δ = {−ST (s̄T)}, then ν ′(s̄T) ∈ S and S ′ = S − {ν ′(s̄T)},
• if δ = {+ST (s̄T),−ST (s̄T)}, then ν ′(s̄T) ∈ S ∪ {ν(s̄T)} and S ′ = (S ∪ {ν (s̄T)}) − {ν ′(s̄T)},
• if δ = ∅ then S ′ = S .

If σ = σoTc = ⟨π , fin⟩ is the opening-service for a childTc ofT then D∪C |= π (ν), ν ′ = ν and S ′ = S .
If σ = σ cTc then S = S ′, ν ′ |(x̄T − x̄TTc ↑) = ν |(x̄

T − x̄TTc ↑) and ν
′(z) = ν (z) for every z ∈ x̄TTc ↑ ∩ VARid

for which ν (z) , null. Finally, if σ = σ cT then I ′ = I .

Example 16. Figure 4 shows two local transitions obtained by calling internal services StoreTrip
and RetrieveTrip of ManageTrips. Figure 5 illustrates a transition caused by closing a sub-task.

flight_id hotel_id amount_
paid status

F0 H0 0.0 'Shopping'

flight_id hotel_id

F0 null

F1 H1

TRIPS (Artifact Relation):

Artifact Variables:

ManageTrips: active

flight_id hotel_id amount_
paid status

null null 0.0 'Shopping'

flight_id hotel_id

F0 null

F1 H1

F0 H0

TRIPS (Artifact Relation):

Artifact Variables:

ManageTrips: active

StoreTrip RetrieveTrip

flight_id hotel_id amount_
paid status

F1 H1 0.0 'Shopping'

flight_id hotel_id

F0 null

F0 H0

TRIPS (Artifact Relation):

Artifact Variables:

ManageTrips: active

Fig. 4. Two transitions caused by the StoreTrip and the RetrieveTrip services.

Remark 17. Recall that tuples retrieved from artifact relations are selected non-deterministically.
For example, the RetrieveTrip service above extracts an arbitrary trip from the trips relation. However,
it may be useful to be able to select a particular trip for retrieval. While this capability is not explicitly
provided, it can be simulated. Extracting the trip with a specified flight_id can be done as follows:
3All artifact relation operations preserve the order of variables/attributes.

, Vol. 1, No. 1, Article . Publication date: May 2018.

:10

flight_id hotel_id amount_
paid status

F1 H1 0.0 'Shopping'

flight_id hotel_id

F0 H0

TRIPS (Artifact Relation):

ManageTrips: active

Close-BookTrip

flight_id hotel_id amount_
paid status

F1 H1 $200.0 'Paid'

flight_id hotel_id

F0 H0

TRIPS (Artifact Relation):

ManageTrips: active

flight_id hotel_id amount_
paid status

F1 H1 $200.0 'Paid'

BookTrips: active

flight_id hotel_id amount_
paid status

BookTrips: closed

Fig. 5. Transition caused by a closing service.

(1) an internal service retrieves a trip non-deterministically
(2) a subtask T is called and returns the desired flight_id
(3) the retrieved trip and the chosen flight_id are passed to another subtask T ′ which checks

whether the trip has the chosen flight_id. The run blocks (so is invalidated) if this is not the
case.

We now define local runs.
Definition 18. Let T = ⟨x̄T , ST , s̄T , x̄Tin, x̄Tout⟩ be a non-root task in Γ and D a database instance

over DB. A local run of T over D is a triple ρT = (νin ,νout , {(Ii ,σi)}0≤i<γ), where:

• γ ∈ N ∪ {ω}
• for each i ≥ 0, Ii = (νi , Si) is an instance of T and σi ∈ ΣobsT
• νin is a valuation of x̄Tin
• σ0 = σoT and S0 = ∅,
• ν0 |x̄Tin = νin , ν0(z) = null for z ∈ VARid − x̄Tin and ν0(z) = 0 for z ∈ VARR − x̄Tin
• if for some i , σi = σ cT then γ ∈ N and i = γ − 1 (and ρT is called a returning local run)
• νout = νγ−1 |x̄Tout if ρT is a returning run and ⊥ otherwise
• a segment of ρT is a subsequence {(Ii ,σi)}i ∈J , where J is a maximal interval [a,b] ⊆ {i | 0 ≤
i < γ } such that no σj is an internal service of T for j ∈ [a + 1,b]. A segment J is terminal if
γ ∈ N and b = γ − 1 (and is called returning if σγ−1 = σ cT and blocking otherwise). Segments
of ρT must satisfy the following properties. For each child Tc of T there is at most one i ∈ J
such that σi = σoTc . If J is not blocking and such an i exists, there is exactly one j ∈ J for which
σj = σ

c
Tc
, and j > i . If J is blocking, there is at most one such j.

• for every 0 < i < γ , Ii−1
σi−→ Ii .

Local runs of the root task T1 are defined as above, except that νin is a valuation of x̄T1in such that
D ∪ C |= Π, and νout = ⊥ (the root task never returns).

For a local run as above, we denote γ (ρT) = γ . Note that by definition of segment, a task can
call each of its children tasks at most once between two consecutive services in ΣocT and all of the
called children tasks must complete within the segment, unless it is blocking. These restrictions
are essential for decidability and are discussed in Section 4.

Observe that local runs take arbitrary inputs and allow for arbitrary return values from its
children tasks. The valid interactions between the local runs of a tasks and those of its children is
captured by the notion of tree of local runs.

Definition 19. A tree of local runs is a directed labeled tree Tree where each node is an occurence
of a local run ρT for some task T and every edge connects a local run of a task T with a local run of a
child task Tc and is labeled with a non-negative integer i (denoted i(ρTc)). In addition, the following
properties are satisfied. Let ρT = (νTin ,νTout , {(Ii ,σi)}0≤i<γ) be a node of Tree, where Ii = (νi , Si), i ≥ 0.

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :11

Let i be such that σi = σoTc the opening service of some childTc ofT . There exists a unique edge labeled
i from ρT to a node ρTc = (νin ,νout , {(I ′i ,σ ′i)}0≤i<γ ′) of Tree, and the following hold:

• νi (fin(z)) = νin(z) for every z ∈ x̄Tcin where fin is the input variable mapping of σoTc
• ρTc is a returning run iff there exists j > i such that σj = σ cTc ; let k be the minimum such j.

Then for every z ∈ x̄Tcout if either (1) νk−1(fout (z)) = null4 or (2) variable z is numeric, then
νk (fout (z)) = νout (z), where fout is the output variable mapping of σ cTc .

Finally, for every node ρT of Tree, if ρT is blocking then there exists a child of ρT that is not returning
(so is infinite or blocking).

The above definition is illustrated in Fig. 6. Note that a tree of local runs may generally be rooted
at a local run of any task of Γ. We say that Tree is full if it is rooted at a local run of T1.

i j k ...T1

...T2 T3

Root
Open-T2 Open-T2 Open-T3

i j
k

Fig. 6. A tree of local runs.

Global runs. Intuitively, a global run of Γ on database instance D overDB is an infinite sequence
ρ = {(Ii ,σi)}i≥0, where each Ii is an instance (νi , stдi ,D, Si) of A and σi ∈ Σ, resulting from a tree
of local runs by interleaving its transitions, lifted to full HAS instances. LetD be a database and Tree
a full tree of local runs over D. For a local run ρ = (νin ,νout , {(Im ,σm)}m<γ) (where Im = (νm , Sm))
and i < γ , we denote by σ (ρ, i) = σi , ν (ρ, i) = νi , and S(ρ, i) = Si . Let ⪯ be the pre-order on the set
{(ρ, i) | ρ ∈ Tree, 0 ≤ i < γ (ρ)} defined as the smallest reflexive-transitive relation containing the
following:
(1) for each node ρ and 0 ≤ i ≤ j < γ (ρ), (ρ, i) ⪯ (ρ, j)
(2) for each edge in Tree from ρT to ρTc labeled i , (ρT , i) ⪯ (ρTc , 0) and (ρTc , 0) ⪯ (ρT , i).

Additionally, if ρTc is returning andm is the smallest j > i for which σ (ρT , j) = σ cTc , then
(ρTc ,γ (ρTc)) ⪯ (ρT ,m) and (ρT ,m) ⪯ (ρTc ,γ (ρTc)).

Let ≈ be the equivalence relation induced by ⪯ (i.e., a ≈ b iff a ⪯ b and b ⪯ a). Note that all
classes of ≈ are singletons except for the ones induced by (2), which are of the form {(ρ1, i), (ρ2, j)}
where σ (ρ1, i) = σ (ρ2, j) ∈ {σoT ,σ cT } for some task T . For an equivalence class ε of ≈ we denote by
σ (ε) the unique service of elements in ε . A linearization of ⪯ is an enumeration of the equivalence
classes of ≈ consistent with ⪯. Consider a linearization {εi }i≥0 of ⪯. Note that ε0 = (ρT1 , 0) and let
ν (ρT1 , 0) = ν0. A global run induced by {εi }i≥0 is a sequence ρ = {(Īi ,σi)}i≥0 such that σi = σ (εi)
and each Īi is an instance (ν̄i , stдi ,D, S̄i) of A, defined inductively as follows. For i = 0,
• ν̄0(x̄T1) = ν0(x̄T1) (and arbitrary on other variables)
• stд0 = {T1 7→ active,Ti 7→ init | 2 ≤ i ≤ k}
• S̄0 = {STi 7→ ∅ | 1 ≤ i ≤ k}.

4Although an ID variable with non-null values cannot be overwritten by a returning child task, it can be reset to null later
by an internal transition.

, Vol. 1, No. 1, Article . Publication date: May 2018.

:12

For i > 0, Īi is defined as follows. Suppose first that εi = {(ρ, j)} where ρ is a local run of task T
and σ (ρ, j) is an internal service of T . Then ν̄i = ν̄i−1[x̄T 7→ ν (ρ, j)(x̄T)], S̄i = S̄i−1[ST 7→ S(ρ, j)],
and stдi = stдi−1[T̄ 7→ init | T̄ ∈ desc(T)]. Now suppose ε = {(ρT , j), (ρTc , 0)}, where Tc is a child
of T , ρT and ρTc are local runs of T and Tc , and σ (ε) = σoTc . Then ν̄i = ν̄i−1[x̄

Tc 7→ ν (ρTc , 0)(x̄Tc)],
S̄i = S̄i−1[STc 7→ ∅], and stдi = stдi−1[Tc 7→ active]. Finally, suppose ε = {(ρT , j), (ρTc ,γ − 1)}
where σ (ε) = σ cTc . Then ν̄i = ν̄i−1[x̄T 7→ ν (ρT , j)(x̄T)], stдi = stдi−1[Tc 7→ closed], and S̄i =

Si−1[STc 7→ ∅].
We denote by L(Tree) the set of global runs induced by linearizations of ⪯. The set of global

runs of Γ on a database D is RunsD (Γ) =
⋃{L(Tree) | Tree is a full tree of local runs of Γ on D}

and the set of global runs of Γ is Runs(Γ) = ⋃
D RunsD (Γ).

3 HIERARCHICAL LTL-FO

In order to specify temporal properties of HAS’s we use an extension of LTL (linear-time temporal
logic). Recall that LTL is propositional logic augmented with temporal operators X (next), U (until),
G (always) and F (eventually) (e.g., see [33]). Their semantics is reviewed in Appendix A.1. An
extension of LTL in which propositions are interpreted as FO sentences has previously been defined
to specify properties of sequences of structures [60], and in particular of runs of artifact systems
[21, 26]. The extension is denoted by LTL-FO. In order to specify properties of HAS’s, we shall
use a variant of LTL-FO, called hierarchical LTL-FO, denoted HLTL-FO. Intuitively, an HLTL-FO
formula uses as building blocks LTL-FO formulas acting on local runs of individual tasks, referring
only to the database and local data, and can recursively state HLTL-FO properties on runs resulting
from calls to children tasks. This closely mirrors the hierarchical execution of tasks, and is a natural
fit for this computation model. In addition to its naturalness, the choice of HLTL-FO has several
technical justifications. First, verification of LTL-FO (and even LTL) properties is not possible for
HAS’s.
Theorem 20. It is undecidable, given an LTL-FO formula φ and a HAS Γ = ⟨A, Σ,Π⟩, whether

Γ |= φ. Moreover, this holds even for LTL formulas over Σ (restricting the sequence of services in a
global run).

The proof, provided in Appendix A.2, is by reduction from repeated state reachability in VASS
with resets and bounded lossiness, whose undecidability follows from [48]. Essentially, when
defined on global runs, LTL is expressive enough to encode the transitions of a VASS using the
interleavings of multiple tasks. When combined with resets of counters, which can be simulated by
opening/closing of tasks, verification becomes undecidable.

Another technical argument in favor of HLTL-FO is that it only expresses properties that are
invariant under interleavings of independent tasks. Interleaving invariance is not only a natural
soundness condition, but also allows more efficient model checking by partial-order reduction [53].
Moreover, HLTL-FO enjoys a pleasing completeness property: it expresses, in a reasonable sense,
all interleaving-invariant LTL-FO properties of HAS’s. This is discussed at the end of the section.

To illustrate the difference between LTL-FO and HLTL-FO, we exhibit a simple LTL property
that is not expressible in HLTL.

Example 21. Referring to our travel booking example, suppose that the opening services ofAddFlight
and AddHotel have preconditions flight_id = null and hotel_id = null, respectively. Thus, the
two tasks may be active at the same time. Suppose thatAddFlight has an internal service ChooseFlight

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :13

and AddHotel has an internal service ChooseHotel. Consider the LTL property

G
(
(σoAddFlight ∧ F σ

o
AddHotel) → (¬ChooseHotel U ChooseFlight)

)
stating that whenever the AddFlight task is called before the AddHotel task, the hotel is not chosen
before the flight. Clearly, this property is violated by the example, because it is not invariant with
respect to legal interleavings of services. Indeed, when AddFlight and AddHotel are simulteneously
active, their internal services may interleave arbitrarily. Such properties are conveniently filtered out
by HLTL, which only expresses interleaving-invariant properties.

We next define HLTL-FO. We first define the propositional version of the language, HLTL.
Similarly to LTL-FO, HLTL-FO formulas are obtained by interpreting the propositions as statements
about instances of tasks in a run.

Definition 22. Let Γ = ⟨A, Σ,Π⟩ be an artifact system whereA = ⟨H ,DB⟩. An HLTL formula φ
over a task T ofH is an expression defined as follows:

φ ::= ΣobsT | PφT | [ψ]Tc | X φ | φ U φ | F φ | G φ | (φ ∧ φ) | (¬φ)
where PφT is a finite set of propositions andψ is an HLTL formula over taskTc ∈ child(T). Additionally,
P
φ
T ′ ∩ P

φ
T ′′ = ∅ for all distinct T ′, T ′′ inH . The set of HLTL formulas over T is denoted HLTL(T).

Intuitively, a formula [ψ]Tc holds in a given configuration if T makes a call to Tc and the run of
Tc resulting from the call satisfiesψ .

For an HLTL formula φ, we denote P
φ
H =

⋃
T ∈H P

φ
T . An HLTL-FO formula over task T is

obtained from an HLTL formula over T by interpreting each proposition in P
φ
H as a quantifier-free

FO formula referring to the variables and artifact relations of the tasks, and a fixed specified set of
global variables. Informally, a proposition of PφT mapped by f to a quantifier-free FO formula holds
in a given configuration of T if the formula is true in that configuration. We next formally define
HLTL-FO formulas.
Definition 23. Let Γ = ⟨A, Σ,Π⟩ be an artifact system where A = ⟨H ,DB⟩. Let ȳ be a finite

sequence of variables in VARid ∪ VARR disjoint from
⋃

T ∈H x̄T , called global variables. Let CT be the
set of conditions on x̄T ∪ ȳ extended by allowing atoms of the form ST (z̄) in which all variables in z̄ are
in ȳ ∩ VARid . An HLTL-FO formula over task T using global variables ȳ is a pair (φ, f) (denoted for
conciseness φf) where φ is an HLTL formula overT and f is a mapping on PφH such that f (p) ∈ CT ′ for
every p ∈ PφT ′ . An HLTL-FO formula over Γ is an expression ∀ȳφf , where φf is an HLTL-FO formula
over task T1 using global variables ȳ.

Since HLTL-FO properties depend on local runs of tasks and their relationship to local runs
of their descendants, their semantics is naturally defined using the full trees of local runs. We
first define satisfaction by a local run in the tree, of HLTL-FO formulas with no global variables.
This is done recursively. Let Tree be a full tree of local runs of Γ over some database D. Let φf
be an HLTL-FO formula for task T , with no global variables. If we associate to each expression
[ψ]Tc in φ a distinct proposition [ψ]propTc

, φ can be viewed as an LTL formula using propositions
in P

φ
T ∪ ΣobsT ∪ {[ψ]propTc

| ψ ∈ HLTL(Tc),Tc ∈ child(T)}. Let ρT = (νin ,νout , {(Ii ,σi)}i<γ) be a local
run of T in Tree. For each configuration (Ij ,σj), we define the truth assignment induced on the
propositions of φ by the function f . A proposition σ ∈ ΣobsT holds in (Ij ,σj) if σ = σj . For p ∈ PφT , its
induced truth value is that of the FO formula f (p) in Ij . Finally, the induced truth value of [ψ]propTc
in (Ij ,σj) is true iff σj = σoTc and the local run of Tc connected to ρT in Tree by an edge labeled

, Vol. 1, No. 1, Article . Publication date: May 2018.

:14

j satisfies the HLTL-FO formula ψf . The formula φf is satisfied if the sequence of induced truth
values of its propositions via f satisfies φ. Note that ρT may be finite, in which case a finite variant
of the LTL semantics is used [24] (see Appendix A.1).

A full tree of local runs satisfies an HLTL-FO formula φf over T1 if its root (a local run of T1)
satisfies φf . Finally, let φf (ȳ) be an HLTL-FO over T1 with global variables ȳ. Then ∀ȳφf (ȳ) is
satisfied by Tree, denoted Tree |= ∀ȳφf (ȳ), if for every valuation ν of ȳ, Tree satisfies φf ν where f ν
is obtained from f by replacing each y in f (p) by ν (y) for every p ∈ P . Finally, Γ satisfies ∀ȳφf (ȳ),
denoted Γ |= ∀ȳφf (ȳ), if Tree |= ∀ȳφf (ȳ) for every database instance D and tree of local runs Tree
of Γ on D.

The semantics of HLTL-FO on trees of local runs of a HAS also induces a semantics on the global
runs of the HAS. Let ∀ȳφf (ȳ) be an HLTL-FO formula and ρ ∈ L(Tree), where Tree is a full tree
of local runs of Γ. We say that ρ satisfies ∀ȳφf (ȳ) if Tree satisfies ∀ȳφf (ȳ). This is well defined in
view of the following easily shown fact: if ρ ∈ L(Tree1) ∩ L(Tree2) then Tree1 = Tree2.

Example 24. The following property of the travel booking workflow can be specified in HLTL-FO: if
a discount is applied to the hotel reservation, then a compatible flight must be purchased without
cancellation. One typical way to defeat the policy would be for a user to first book the flight and the
hotel with the discount price, but next cancel the flight trying to avoid paying a penalty. Detecting
such bugs can be subtle, especially when they involve multiple tasks. The following HLTL-FO property
of task ManageTrips says “if BookTrip is called and the discount is applied, then if CancelTrip
is called next and the customer cancels the flight, then the hotel discount must also be canceled and
deducted from the flight refund”. The property is specified as the formula φf , where

φ = G
(
Discounted→ X

(
σoT5:CancelTrip → [G(CancelFlight→ Refund)]T5:CancelTrip

))
,

CancelFlight is the name of the service for canceling only the flight in CancelTrip, and f interprets
the proposition Discounted as the subformula defined in Example 9, and Refund as the formula

∃q∃p1∃p2 FLIGHTS(flight_id,q, hotel_id) ∧ HOTELS(hotel_id,p1,p2) ∧
amount_refunded = q − (p1 − p2).

Simplifications. Before proceeding, we note that several simplifications to HLTL-FO formulas
and HAS specifications can be made without impact on verification. First, although useful at the
surface syntax, the global variables, as well as set atoms, can be easily eliminated from the HLTL-FO
formula to be verified (Lemma 67 in Appendix A.3). It is also useful to note that one can assume,
without loss of generality, two simplifications on artifact systems regarding the interaction of tasks
with their subtasks: (i) for every task T , the set of variables passed to subtasks is disjoint with the
set of variables returned by subtasks, and (ii) all variables returned by subtasks are non-numeric
(Lemma 68 in Appendix A.3). In view of the above, we henceforth consider only properties with no
global variables or set atoms, and artifact systems simplified as described.

Checking HLTL-FO properties using automata. We next show how to check HLTL-FO prop-
erties of trees of local runs of artifact systems. Before we do so, recall the standard construction
of a Büchi automaton Bφ corresponding to an LTL formula φ [58, 63]. The automaton Bφ has
exponentially many states and accepts precisely the set of ω-words that satisfy φ. Recall that we
are interested in evaluating LTL formulas φ on both infinite and finite runs. It is easily seen that for
the Bφ obtained by the standard construction there is a subsetQfin of its states such that Bφ viewed
as a finite-state automaton with final states Qfin accepts precisely the finite words that satisfy φ
(details omitted).

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :15

Consider now an artifact system Γ and let φf be an HLTL-FO formula over Γ. Consider a full
tree Tree of local runs. For taskT , denote by ΦT the set of sub-formulas [ψ]T occurring in φ and by
2ΦT the set of truth assignments to these formulas. For each T and η ∈ 2ΦT , let B(T ,η) be the Büchi
automaton constructed from the formula(

∧ψ ∈ΦT ,η(ψ)=1 ψ
)
∧
(
∧ψ ∈ΦT ,η(ψ)=0 ¬ψ

)
and define the collection of automata Bφ = {B(T ,η) | T ∈ H ,η ∈ 2ΦT }.
We now define acceptance of Tree by Bφ . An adornment of Tree is a mapping α associating

to each edge from ρT to ρTc a truth assignment in 2ΦTc . Tree is accepted by Bφ if there exists an
adornment α such that:

• for each local run ρT ofT with no outgoing edge and incoming edge with adornment η, ρT is
accepted by B(T ,η)
• for each local run ρT of T with incoming edge labeled by η, α(ρT) is accepted by B(T ,η),
where α(ρT) extends ρT by assigning to each configuration (ρ j ,σoTc) the truth assignment
in 2ΦTc adorning its outgoing edge labeled j. (Recall that in configurations (Ij ,σj) for which
σj , σ

o
Tc
, all formulas in ΦTc are false by definition.)

• α(ρT1) is accepted by the Büchi automaton Bφ where α(ρT1) is defined as above.

i j k ...T1

...T2 T3

Root
Open-T2 Open-T2 Open-T3

i j k
η2η1

η3

Accepted by B(T2, η1) Accepted by B(T2, η2) Accepted by B(T3, η3)

Accepted by Bφ

Extended w. η1 Extended w. η2 Extended w. η3

Fig. 7. A tree of local runs accepted by Bφ .

The definition of acceptance is illustrated in Figure 7. The following can be shown.
Lemma 25. A full tree of local runs Tree satisfies φf iff Tree is accepted by Bφ .

HLTL-FO vs. interleaving-invariant LTL-FO. We next show that HLTL-FO expresses, in a
reasonable sense, all interleaving-invariant LTL-FO properties. We consider a notion of interleaving-
invariance of LTL-FO formulas based on their propositional structure, rather than the specifics of
the propositions’ interpretation (which may lead to “accidental” invariance). In view of Lemma 67,
we consider only formulas with no global variables or set atoms. We first recall the logic LTL-FO,
slightly adapted to our context. Let Γ = ⟨A, Σ,Π⟩ be a HAS where A = ⟨H ,DB⟩. An LTL-FO
formula φf over Γ consists of an LTL formula φ with propositions P ∪ Σ together with a mapping
f associating to each p ∈ P a condition over x̄T for some T ∈ H (and we say that f (p) is over T) .
Satisfaction of φf on a global run ρ = {(Ii ,σi)}i≥0 of Γ on database D, where Ii = (νi , stдi ,D, Si), is
defined as usual, modulo the following:

• f (p) over T holds in (Ii ,σi) iff stдi (T) = active and the condition f (p) on νi (x̄T) holds;
• proposition σ in Σ holds in (Ii ,σi) if σ = σi .

Thus, the information about (Ii ,σi) relevant to satisfaction of φf consists of σi , the stage of each
task (active or not), and the truth values in Ii of f (p) for p ∈ P .

, Vol. 1, No. 1, Article . Publication date: May 2018.

:16

We nowmake more precise the notion of (propositional) invariance under interleavings. Consider
an LTL-FO formula φf over Γ. Invariance under interleavings is a property of the propositional
formula φ (so independent on the interpretation of propositions provided by f). Let P ∪ Σ be the
set of propositions of φ and let PT denote the subset of P for which f (p) is a condition over x̄T .
Thus, {PT | T ∈ H} is a partition of P . We define the set L(Γ) of ω-words associated to Γ, on
which φ operates. The alphabet, denoted A(Γ), consists of all triples (κ, stд,σ) where σ ∈ Σ, κ is a
truth assignment to the propositions in P , and stд is a mapping associating to each T ∈ H its stage
(active, init or closed). An ω-word {(κi , stдi ,σi)}i≥0 over A(Γ) is in L(Γ) if the following hold:

(1) for each i > 0, if σi ∈ ΣδT , then κi and κi−1 agree on all PT̄ where T̄ , T ;
(2) the sequence of calls, returns, and internal services obeys the conditions on service sequences

in global runs of Γ;
(3) for each i > 0 and T ∈ H , stдi (T) is the stage of T as determined by the sequence of calls

and returns in {σj }j<i .

The formal definition of (2) and (3) mimics closely the analogous definition of global runs of HAS’s
(omitted). Consider an ω-word u = {(κi , stдi ,σi)}i≥0 in L(Γ). We define the partial order ⪯u on
{i | i ≥ 0} as the reflexive-transitive closure of the relation consisting of all pairs (i, j) such that
i < j and for some T , σi ,σj ∈ ΣobsT . Observe that 0 is always the minimum element in ⪯u . A
linearization of ⪯u is a total order on {i | i ≥ 0} containing ⪯u . One can represent a linearization
of ⪯u as a sequence {i j | j ≥ 0} such that in ⪯u im implies that n ≤ m. For each such linearization
α , we define the ω-word uα = {(κ̄j , stgj ,σi j)}j≥0 in L(Γ) as follows. The stage function is the one
determined by the sequence of services. The functions κ̄j are defined by induction as follows:

• κ̄0 = κ0;
• if j > 0 and σi j ∈ ΣδT then κ̄j = κ̄j−1[PT 7→ κi j (PT)]

Intuitively, uα is obtained from u by commuting actions that are incomparable with respect to ⪯u ,
yielding the linearization α . We note that the relation ⪯u is the analog to our setting of Mazurkiewicz
traces, used in concurrent systems to capture dependencies among process actions [31, 32, 49].
Definition 26. An LTL-FO formula φf over Γ is propositionally invariant with respect to inter-

leavings if for every u ∈ L(Γ) and linearization α of ⪯u , u |= φ iff uα |= φ.

We can show the following (see Appendix A.4).
Theorem 27. HLTL-FO expresses precisely the LTL-FO properties of HAS’s that are propositionally

invariant with respect to interleavings.

4 RESTRICTIONS AND UNDECIDABILITY

We briefly review the main restrictions imposed on the HAS model and motivate them by showing
that they are needed to ensure decidability of verification. Specifically, recall that the following
restrictions are placed:
(1) in an internal transition of a given task (caused by an internal service), only the input

parameters of the task are explicitly propagated from one artifact tuple to the next
(2) each task may overwrite upon return only null variables in the parent task
(3) the artifact variables of a task storing the values returned by its subtasks are disjoint from

the task’s input variables
(4) an internal transition can take place only if all active subtasks have returned
(5) each task has just one artifact relation

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :17

(6) the artifact relation of a task is reset to empty every time the task closes
(7) the tuple of artifact variables whose value is inserted or retrieved from a task’s artifact relation

is fixed
(8) each subtask may be called at most once between internal transitions of its parent

These restrictions are placed in order to control the data flow and recursive computation in the
system. Lifting any of them leads to undecidability of verification, as stated informally next.

Theorem 28. For each i, 1 ≤ i ≤ 8, let HAS(i) be defined identically to HAS but without restriction
(i) above. It is undecidable, given a HAS(i) Γ and an HLTL-FO formula φf over Γ, whether Γ |= φf .

The proofs of undecidability for (1)-(7) are by reduction from the Post Correspondence Problem
(PCP) [54, 57]. They make no use of arithmetic, so undecidability holds even without arithmetic
constraints. The only undecidability result relying on arithmetic is (8). Indeed, restriction (8) can
be lifted in the absence of numeric variables, with no impact on decidability or complexity of
verification. This is because restriction (2) ensures that even if a subtask is called repeatedly, only a
bounded number of calls have a non-vacuous effect.

The proofs using a reduction from the PCP rely on the same main idea: removal of the restriction
allows to extract from the database a path of unbounded length in a labeled graph, and check that
its labels spell a solution to the PCP. For illustration, the proof of undecidability for (2) using this
technique is sketched in Appendix B.

We claim that the above restrictions remain sufficiently permissive to capture a wide class of
applications of practical interest. This is confirmed by numerous examples of practical business
processes modeled as artifact systems, that we encountered in our collaboration with IBM The
restrictions limit the recursion and data flow among tasks and services. In practical workflows,
the required recursion is rarely powerful enough to allow unbounded propagation of data among
services. Instead, as also discussed in [21], recursion is often due to two scenarios:

• allowing a certain task to undo and retry an unbounded number of times, with each retrial
independent of previous ones, and depending only on a context that remains unchanged
throughout the retrial phase (its input parameters). A typical example is repeatedly providing
credit card information until the payment goes through, while the order details remain
unchanged.
• allowing a task to batch-process an unbounded collection of records, each processed in-
dependently, with unchanged input parameters (e.g. sending invitations to an event to all
attendants on the list, for the same event details).

Moreover, we recently showed in [2] that HAS and HLTL-FO can express a realistic benchmark of
workflows obtained from existing sets of business process specifications and properties by extending
them with data-aware features. The benchmark was then used to evaluate the performance of a
verifier we implemented using the techniques developed in the present paper.

5 VERIFICATIONWITHOUT ARITHMETIC

In this section we consider verification for the case when the artifact system and the HLTL-FO
property have no arithmetic constraints. We show in Section 6 how our approach can be extended
when arithmetic is present.

The roadmap to verification is the following. Let Γ be a HAS and φf an HLTL-FO formula over
Γ. To verify that every tree of local runs of Γ satisfies φf , we check that there is no tree of local

, Vol. 1, No. 1, Article . Publication date: May 2018.

:18

runs satisfying ¬φf , or equivalently, accepted by B¬φ . Since there are infinitely many trees of local
runs of Γ due to the unbounded data domain, and each tree can be infinite, an exhaustive search
is impossible. We address this problem by developing a symbolic representation of trees of local
runs, called symbolic tree of runs. The symbolic representation is subtle for several reasons. First,
unlike the representations in [21, 26], it is not finite state. This is because summarizing the relevant
information about artifact relations requires keeping track of the number of tuples of various
isomorphism types. Second, the symbolic representation does not capture the full information
about the actual runs, but just enough for verification. Specifically, we show that for every HLTL-FO
formula φf , there exists a tree of local runs accepted by Bφ iff there exists a symbolic tree of runs
accepted byBφ . We then develop an algorithm to check the latter. The algorithm relies on reductions
to state reachability problems in Vector Addition Systems with States (VASS) [16].

One might wonder whether there is a simpler approach to verification of HAS, that reduces it to
verification of a flat system (consisting of a single task). This could indeed be done in the absence
of artifact relations, by essentially concatenating the artifact tuples of the tasks along the hierarchy
that are active at any given time, and simulating all transitions by internal services. However, there
is strong evidence that this is no longer possible when tasks are equipped with artifact relations.
First, a naive simulation using a single artifact relation would require more powerful updating
capabilities (e.g. resetting artifact relations to be empty) than available in the model. Adding these
capabilities would result in a model expressive enough to simulate vector addition systems with
resets where verification is undecidable [48]. Moreover, Theorem 20 shows that LTL is undecidable
for hierarchical systems, whereas the results in this section imply that it is decidable for flat ones
(as it coincides with HLTL for single tasks). While this does not rule out a simulation, it shows
that there can be no effective simulation natural enough to be extensible to LTL properties. A
reduction to the model of [21] is even less plausible, because of the lack of artifact relations. Note
that, even if a reduction were possible, the results of [21] would be of no help in obtaining our
lower complexities for verification, since the algorithm provided there is non-elementary in all
cases.

We next embark upon the development outlined above.

5.1 Symbolic Representation

We begin by defining the symbolic analog of a local run, called local symbolic run. The symbolic
tree of runs is obtained by connecting the local symbolic runs similarly to the way local runs are
connected in trees of local runs.

Each local symbolic run is a sequence of symbolic representations of an actual instance within a
local run of a task T . The representation has the following ingredients:
(1) an equality type of the artifact variables ofT and the elements in the database reachable from

them by navigating foreign keys up to a specified depth h(T). This is called theT -isomorphism
type of the variables.

(2) the T -isomorphism type of the input and return variables (if representing a returning local
run)

(3) for each T -isomorphism type of the set variables of T together with the input variables, the
net number of insertions of tuples of that type in ST .

Intuitively, (1) and (2) are needed in order to ensure that the assumptions made about the database
while navigating via foreign keys in tasks and their subtasks are consistent. The depth h(T) is
chosen to be sufficiently large to ensure the consistency. (3) is required in order to make sure that a

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :19

retrieval from ST of a tuple with a given T -isomorphism type is allowed only when sufficiently
many tuples of that type have been inserted in ST .

We now formally define the symbolic representation, starting with T -isomorphism type. Let x̄T
be the variables of T . We define h(T) as follows. Let FK be the foreign key graph of the schema DB
and F (n) be the maximum number of distinct paths of length at most n starting from any relation
R in FK. Let h(T) = 1 + |x̄T | · F (δ) where δ = 1 if T is a leaf task and δ = maxTc ∈child(T) h(Tc)
otherwise.

Note that when the schema DB is acyclic, the maximum depth h(T) is trivially bounded since
starting from any arbitrary entry in the database, the longest path obtained by navigations with
the keys/foreign keys has length bounded by the number of relations in DB. However, this is not
the case when DB is cyclic, as the paths can be infinite. The maximum depth h(T) of navigations is
now determined by the number of variables in each task and the height of the hierarchy. Intuitively,
when T is a leaf task, the maximum depth is bounded by the number of variables in T because
the longest navigation path is obtained when all variables are used to form the path. When T is a
non-leaf task, a path can be obtained by chaining the navigation paths in multiple child tasks by
passing input and return variables, which gives the above recursive definition of h(T). We explain
this in more detail in the proof of Lemma 47.

We next define expressions that denote navigation via foreign keys starting from the set of
id variables x̄Tid of T . For each x ∈ x̄Tid and R ∈ DB, let xR be a new symbol. An expression is a
sequence ξ1.ξ2. . . . ξm , where ξ1 = xR for some x ∈ x̄Tid and R ∈ DB, ξ2 is an attribute of R, and for
each i , 2 ≤ i < m, ξi is a foreign key and ξi+1 is an attribute in the relation referenced by ξi . We
define the length of ξ1.ξ2. . . . ξm asm. A navigation set ET is a set of expressions such that:
• for each x ∈ x̄Tid , ET contains at most one expression xR (R ∈ DB)
• ET consists of all expressions xR .w where xR ∈ ET and the length of xR .w is at most h(T).

In other words, the expressions in ET denote all possible ways of navigating via foreign keys from
a given subset of x̄Tid , by paths of length at most h(T). In particular, note that ET is closed under
prefix. We can now define T -isomorphism type. Let E+T = ET ∪ x̄T ∪ {null, 0}. The sort of e ∈ E+T
is numeric if e ∈ x̄TR ∪ {0} or e = w .a where a is a numeric attribute; its sort is null if e = null or
e = x ∈ x̄Tid and xR < ET for all R ∈ DB; and its sort is ID(R) for R ∈ DB if e = xR , or e = x ∈ x̄Tid
and xR ∈ ET , or e = w . f where f is a foreign key referencing R.

Definition 29. AT -isomorphism type τ consists of a navigation set ET together with an equivalence
relation ∼τ over E+T such that:

• if e ∼τ e ′ then e and e ′ are of the same sort;
• for every {x ,xR } ⊆ E+T , x ∼τ xR ;
• for every e of sort null, e ∼τ null;
• if u ∼τ v and u . f ,v . f ∈ ET then u . f ∼τ v . f .

We call an equivalence relation ∼τ as above an equality type for τ . The relation ∼τ is extended
to tuples componentwise.

The intuition underlying the above definition is the following. First, the relation ∼τ is an equiva-
lence relation over the navigation set ET extended with the variables x̄T and the constants. Two
expressions can be equal in ∼τ only when they are of the same sort, meaning that they are both
numeric, nulls or navigations ending with foreign key attributes referencing the ID of the same
relation. Second, for an ID variable x , if an expression xR appears in E+T , this means that x contains

, Vol. 1, No. 1, Article . Publication date: May 2018.

:20

a tuple id of relation R, and x and xR are essentially the same. Finally, if two expressions u andv are
equal, then the key and foreign key dependencies require that expressions u . f and v . f extending
u and v with the same expression f must also be equal.

Note that τ provides enough information to evaluate conditions over x̄T . Satisfaction of a
condition φ by an isomorphism type τ , denoted τ |= φ, is defined as follows:

• x = y holds in τ iff x ∼τ y,
• R(x ,y1, . . . ,yn , z1, . . . , zm) holds in τ for relation R(id,a1, . . . ,an , f1, . . . , fm) where the ai ’s
and fi ’s are numeric and foreign key attributes respectively, iff {xR .a1, . . . ,xR .an ,xR . f1, . . . ,
xR . fm} ⊆ ET , and (y1, . . . ,yn , z1, . . . , zm) ∼τ (xR .a1, . . . ,xR .an ,xR . f1, . . . ,xR . fm).
• Boolean combinations of conditions are standard.

Example 30. Figure 8 shows an example of a T -isomorphism type. The database schema con-
tains two relations R(ID,A) and S(ID,B,C) where A is a foreign key attribute referencing ID of S
and {B,C} are numeric attributes. The task T contains 3 ID variables {x ,y, z}. The T -isomorphism
type has the following expressions: variables {x ,y, z}, constants {0, null} and a set of navigations
{xR .A,yR .A,xR .A.B,yR .A.B,xR .A.C,yR .A.C}. Since the schema is acyclic, the navigation depth h(T)
is bounded by the depth of the foreign key graph. The edges in Fig. 8 represent the equality type ∼τ
where two expressions e and e ′ are connected if e ∼τ e ′. Note that since xR .A ∼ yR .A, to ensure that
the FDs are satisfied, we must also have xR .A.B ∼τ yR .A.B and xR .A.C ∼τ yR .A.C in ∼τ .

y

z

x xR

yR

null

xR.A

yR.A

xR.A.B xR.A.C

yR.A.B yR.A.C
0

Fig. 8. A T -isomorphism type.

Let τ be a T -isomorphism type with navigation set ET and equality type ∼τ . The projection of τ
onto a subset of variables z̄ of x̄T is defined as follows. Let ET |z̄ = {xR .e ∈ ET |x ∈ z̄} and ∼τ |z̄
be the projection of ∼τ onto z̄ ∪ ET |z̄ ∪ {null, 0}. The projection of τ onto z̄, denoted as τ |z̄, is a
T -isomorphism type with navigation set ET |z̄ and equality type ∼τ |z̄. Furthermore, the projection
of T -isomorphism onto z̄ up to length k , denoted as τ |(z̄,k), is defined as τ |z̄ with all expressions
in ET |z̄ with length more than k removed.

We apply variable renaming to isomorphism types as follows. Let f be a 1-1 partial mapping
from x̄T to VARid ∪ VARR such that f (x̄Tid) ⊆ VARid , f (x̄TR) ⊆ VARR and f (x̄T) ∩ x̄T = ∅. For a
T -isomorphism type τ with navigation set ET , f (τ) is the isomorphism type obtained as follows.
Its navigation set is obtained by replacing in ET each variable x and xR in ET with f (x) and f (x)R ,
for x ∈ dom(f). The relation ∼f (τ) is the image of ∼τ under the same substitution. As we shall
see, variable renaming and projection are applied to an isomorphism type when a subset of the
variables of a task are passed as input variables to a child task. Projection is also used when a tuple
is inserted in an artifact relation.

As noted earlier, a T -isomorphism type captures all information needed to evaluate a condition
on x̄T . However, the set ST can contain unboundedly many tuples, which cannot be represented by
a finite equality type. This is handled by keeping a set of counters for projections ofT -isomorphism
types on the variables relevant to ST , that is, (x̄Tin∪s̄T). We refer to the projection of aT -isomorphism
type onto (x̄Tin ∪ s̄T) as a TS-isomorphism type, and denote by TS(T) the set of TS-isomorphism
types ofT . We will use counters to record the number of tuples in ST of eachTS-isomorphism type.

We can now define symbolic instances.

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :21

Definition 31. A symbolic instance I of task T is a tuple (τ , c̄) where τ is a T -isomorphism type
and c̄ is a vector of integers where each dimension of c̄ corresponds to a TS-isomorphism type.

We denote by c̄(τ̂) the value of the dimension of c̄ corresponding to the TS-isomorphism type τ̂
and by c̄[τ̂ 7→ a] the vector obtained from c̄ by replacing c̄(τ̂) with a.

Example 32. Examples of symbolic instances can be found in Fig. 9, where the task schema is the
same as the one in Example 30 and the database schema is a single relation R(ID,A) with a single
numeric attribute A. The symbolic instances consist of the T -isomorphism types and collections of
counters of TS-isomorphism types.

Definition 33. A local symbolic run ρ̃T of task T is a tuple (τin ,τout , {(Ii ,σi)}0≤i<γ), where:

• each Ii is a symbolic instance (τi , c̄i) of T
• each σi is a service in ΣobsT
• γ ∈ N ∪ {ω} (if γ = ω then ρ̃T is infinite, otherwise it is finite)
• τin , called the input isomorphism type, is a T -isomorphism type projected to x̄Tin. And τin |= Π if
T = T1.
• at the first instance I0, τ0 |x̄Tin = τin , for every x ∈ x̄Tid −x̄

T
in, x ∼τ0 null, and for every x ∈ x̄TR−x̄Tin,

x ∼τ0 0. Also c̄0 = 0̄ and σ0 = σoT .
• if for some i , σi = σ cT then ρ̃T is finite and i = γ − 1 (and ρ̃T is called a returning run)
• τout is ⊥ if ρ̃T is infinite or finite but σγ−1 , σ cT , and it is τγ−1 |(x̄Tin ∪ x̄Tout) otherwise
• a segment of ρ̃T is a subsequence {(Ii ,σi)}i ∈J , where J is a maximal interval [a,b] ⊆ {i | 0 ≤
i < γ } such that no σj is an internal service of T for j ∈ [a + 1,b]. A segment J is terminal if
γ ∈ N and b = γ − 1. Segments of ρ̃T must satisfy the following properties. For each child Tc of
T there is at most one i ∈ J such that σi = σoTc . If J is not terminal and such i exists, there is
exactly one j ∈ J for which σj = σ cTc , and j > i . If J is terminal, there is at most one such j.
• for every 0 < i < γ , Ii is a successor of Ii−1 under σi (see below).

The successor relation is defined next. We begin with some preliminary definitions.

ATS-isomorphism type τ̂ is input-bound if for every s ∈ s̄T , s /τ̂ null implies that there exists an
expression xR .w in τ̂ such that x ∈ x̄Tin and xR .w ∼τ̂ s . We denote by TSib(T) the set of input-bound
types in TS(T). Informally, a TS-isomorphism type is input-bound if the values of all the variables
in s̄T are uniquely determined by the values of the input variables of T . Since the values of the
input variables are fixed in a local run of T , tuples s̄T reachable from them in the same run by
given navigations are unique. Therefore, the counter values for theseTS-isomorphism types cannot
exceed 1, and are treated as special cases when updated, as shown below.

For τ̂ , τ̂ ′ ∈ TS(T), update δ of the form {+ST (s̄T)} or {−ST (s̄T)} and mapping c̄ib from TSib(T)
to {0, 1}, we define the mapping ā(δ , τ̂ , τ̂ ′, c̄ib) from TS(T) to {−1, 0, 1} as follows. Informally, the
vector ā(δ , τ̂ , τ̂ ′, c̄ib) specifies how the current counters need to be modified to reflect the update δ .
Note that ā0 is the mapping sending TS(T) to 0.

• if δ = {+ST (s̄T)}, then ā(δ , τ̂ , τ̂ ′, c̄ib) is ā0[τ̂ 7→ 1] if τ̂ is not input-bound, and ā0[τ̂ 7→
(1 − c̄ib (τ̂))] otherwise
• if δ = {−ST (s̄T)}, then ā(δ , τ̂ , τ̂ ′, c̄ib) = ā0[τ̂ ′ 7→ −1]
• if δ is {+ST (s̄T),−ST (s̄T)} then ā(δ , τ̂ , τ̂ ′, c̄ib) = ā(δ+, τ̂ , τ̂ ′, c̄ib) + ā(δ−, τ̂ , τ̂ ′, c̄ib) where δ+ =
{+ST (s̄T)} and δ− = {−ST (s̄T)}.

Next, we define the successor relation of symbolic instances. For symbolic instances I = (τ , c̄) and
I ′ = (τ ′, c̄ ′), I ′ is a successor of I by applying service σ ′ iff:

, Vol. 1, No. 1, Article . Publication date: May 2018.

:22

• If σ ′ is an internal service ⟨π ,ψ ,δ⟩, then for τ̂ = τ |(x̄Tin ∪ s̄T) and τ̂ ′ = τ ′ |(x̄Tin ∪ s̄T),
– τ |x̄Tin = τ ′ |x̄Tin,
– τ |= π and τ ′ |= ψ ,
– c̄ ′ ≥ 0̄ and c̄ ′ = c̄ + ā(δ , τ̂ , τ̂ ′, c̄ib), where c̄ib the restriction of c̄ to TSib(T).
• If σ ′ is an opening service ⟨π , fin⟩ of subtask Tc , then τ = τ ′ |= π and c̄ ′ = c̄ .
• If σ ′ is a closing service of subtask Tc , then for x̄Tconst = x̄T − {x ∈ x̄TTc ↑ |x ∼τ null},
τ ′ |x̄Tconst = τ |x̄Tconst and c̄ ′ = c̄ .
• If σ ′ is the closing service σ cT = ⟨π , fout ⟩ of T , then τ |= π and (τ , c̄) = (τ ′, c̄ ′).

Example 34. Figure 9 shows an example of two symbolic transitions. There is a single database
relation R(ID,A), the task T has 3 variables {x ,y, z} and s̄T = {y, z}. There is no input variable. The
two applied services are “ insert_yz” and “ retrieve_yz”:

• The pre-condition of insert_yz is x = y, the post-condition is x = null ∧ y = null ∧ z = null,
and the set update is {+ST (y, z)}. So when applying insert_yz, the current tuple (y, z) is inserted
to ST and the values of all variables are set to null.
• The pre-condition of retrieve_yz is True, the post-condition is x = null, and the set update is
{−ST (y, z)}. So when applying retrieve_yz, a tuple (y, z) will be retrieved from ST , the variables
{y, z} are set to the retrieved tuple, and x is set to null.

Denote by (τ1, c̄1), (τ2, c̄2) and (τ3, c̄3) the 3 symbolic instances. In order for (τ2, c̄2) to be a valid successor
of (τ1, c̄1) by applying insert_yz, the T -isomorphism types τ1 and τ2 must satisfy the pre-condition
and post-condition of insert_yz respectively, and the counter vector c̄2 must be obtained from c̄1 by
incrementing the counter for the projection τ1 |{y, z} by 1. Similarly, in order to apply retrieve_yz,
τ2 and τ3 must satisfy the pre-condition and post-condition of retrieve_yz, and the counter for the
projection τ3 |{y, z} must be decremented by 1 in c̄3.

y

z

x xR

yR

null

xR.A

yR.A

0

y

z

yR

null

yR.A 0
× 1

y

x

null 0
z

y

z

yR yR.A

0
× 2

zR zR.A

y

z

yR

null

yR.A 0
× 1

x

y

z

yR yR.A

0zR zR.A

null

null
y

z

yR yR.A

0
× 2

zR zR.A
null

Counters:

Counters: Counters:

y

z

yR yR.A

0
× 1

zR zR.A
null

T-isomorphism type: T-isomorphism type: T-isomorphism type:

Insert_yz retrieve_yz

Fig. 9. Two local symbolic transitions.

Note that there is a subtle mismatch between transitions in actual local runs and in symbolic
runs. In the symbolic transitions defined above, a service inserting a tuple in ST always causes the
correspoding counter to increase (except for the input-bound case). However, in actual runs, an
inserted tuple may collide with an already existing tuple in the set, in which case the number of
tuples does not increase. Symbolic runs do not account for such collisions (beyond the input-bound
case), which raises the danger that they might overestimate the number of available tuples and allow
impossible retrievals. Fortunately, the proof of Theorem 37 shows that collisions can be ignored at
no peril. More specifically, it follows from the proof that for every actual local run with collisions
satisfying an HLTL-FO property there exists an actual local run without collisions that satisfies
the same property. The intuition is the following. First, given an actual run with collisions, one

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :23

can modify it so that only new tuples are inserted in the artifact relation, thus avoiding collisions.
However, this raises a challenge, since it may require augmenting the database with new tuples. If
done naively, this could result in an infinite database. The more subtle observation, detailed in the
proof of Theorem 37, is that only a bounded number of new tuples must be created, thus keeping
the database finite.
Definition 35. A symbolic tree of runs is a directed labeled tree Sym in which each node is a

local symbolic run ρ̃T for some taskT , and every edge connects a local symbolic run of a taskT with a
local symbolic run of a child task Tc and is labeled with a non-negative integer i (denoted i(ρ̃Tc)). In
addition, the following properties are satisfied. Let ρ̃T = (τin ,τout , {(Ii ,σi)}0≤i<γ) be a node of Sym.
Let i be such that σi = σoTc for some child Tc of T . There exists a unique edge labeled i from ρ̃T to a
node ρ̃Tc = (τ ′in ,τ ′out , {(I ′i ,σ ′i)}0≤i<γ ′) of Sym, and the following hold:

• τ ′in = f −1in (τi)|(x̄
Tc
in ,h(Tc)) where fin is the input variable mapping of σoTc

• ρ̃Tc is a returning run iff there exists j > i such that σj = σ cTc ; let k be the minimum such
j. Let x̄r = x̄TTc ↓ and x̄w = {x |x ∈ x̄TTc ↑,x ∼τk−1 null}. Then τk |(x̄r ∪ x̄w ,h(Tc)) = ((fin ◦
fout)(τout))|(x̄r ∪ x̄w) where fout is the output variable mapping of σ cTc .

For every local symbolic run ρ̃T where γ , ω and τout = ⊥, there exists a child of ρ̃T which is not
returning.

Now consider an HLTL-FO formula φf over Γ. Satisfaction of φf by a symbolic tree of runs
is defined analogously to satisfaction by local runs, keeping in mind that as previously noted,
isomorphism types of symbolic instances of T provide enough information to evaluate conditions
over x̄T . The definition of acceptance by the automaton Bφ , and Lemma 25, are also immediately
extended to symbolic trees of runs. We state the following.

Lemma 36. A symbolic tree of runs Sym over Γ satisfies φf iff Sym is accepted by Bφ .

The key result enabling the use of symbolic trees of runs is the following.
Theorem 37. For an artifact system Γ and HLTL-FO property φf , there exists a tree of local runs

Tree accepted by Bφ , iff there exists a symbolic tree of runs Sym accepted by Bφ .
The only-if part is relatively straightforward and we outline the proof in Section 5.2. The if part

is non-trivial. We prove it by showing a construction of an actual database and an accepted tree of
local runs from any accepted symbolic tree of runs Sym. The construction has 3 major components.

• First, for each finite local symbolic run, we construct an actual accepted local run over a local
database (Lemma 42), using a global equality type that extends the local equality types by
taking into account connections across instances resulting from the propagation of input
variables and insertions/retrievals of tuples from ST , and subject to satisfaction of the key
constraints. The key challenge in this step is to show that our choice of h(T), the maximal
navigation depth in the symbolic representations, is sufficiently large to guarantee satisfaction
of all key constraints (Lemma 47).
• Next, we apply the same construction to each infinite local symbolic run, resulting in an
accepted infinite local run over an infinite database. The infinite database is then turned into
a finite one by carefully merging data values, while avoiding any inconsistencies. One of the
subtleties is showing that the mismatch between symbolic and actual transitions discussed
above, leading to the possible overestimation by the counters in symbolic runs of the number
of tuples available in artifact relations, is not dangerous (Lemma 60).
• Finally, all finite and infinite local runs are recursively combined into a tree of local runs by
renaming and merging data values stored in the variables and the local databases.

, Vol. 1, No. 1, Article . Publication date: May 2018.

:24

5.2 Only-if: from actual runs to symbolic runs

Let Tree be a tree of local runs accepted by Bφ (with database D). The construction of Sym from
Tree is simple. This can be done by replacing each local run ρT ∈ Tree with a local symbolic run
ρ̃T . More precisely, let

ρT = (νin ,νout , {(Ji ,σi)}0≤i<γ)
be a local run in Tree, where Ji = (νi , Si), We construct a corresponding local symbolic run

ρ̃T = (τin ,τout , {(Ii ,σi)}0≤i<γ)
For 0 ≤ i < γ , Ii = (τi , c̄i) is constructed from (νi , Si) as follows. The navigation set ET of τi contains
every xR for every x ∈ x̄T and R such that ν (x) is an ID of relation R in D. Then we define ν∗i to be
a mapping from E+T = ET ∪ {0, null} ∪ x̄T to actual values, where:
• ν∗i (e) = e if e ∈ {0, null},
• ν∗i (e) = νi (x) for e = x or e = xR , and
• ν∗i (e .ξ) = t .ξ if ν∗i (e) is an ID of a tuple t ∈ D.

We construct the equality type ∼τi such that for every e and e ′ in E+T , e ∼τi e ′ iff ν∗i (e) = ν∗i (e ′).
Also we let τin = τ0 |x̄Tin and τout = τγ−1 |x̄Tin ∪ x̄Tout if νout , ⊥ and τout = ⊥ otherwise. Since D
satisfies the functional dependencies, for every τi and expressions e and e ′, e ∼τi e ′ implies that
ν∗i (e) = ν∗i (e ′), so for every attribute a, if e .a and e ′.a are in the navigation set of τi , then e .a ∼τi e ′.a
because ν∗i (e .a) = ν∗i (e ′.a).
To illustrate the construction of the local symbolic runs, consider the two actual transitions

shown in Figure 10. The above construction yields the symbolic instances shown in Figure 9.

Insert_yz retrieve_yzx y z

a a null

x y z

null null null

x y z

null b c

y z

b c

d e

ST:

y z

a null

b c

d e

y z

a null

d e

Variables:ID A

a 1

b 0

c 0

d 0

e 0

R:
ST: ST:Variables:Variables:

Fig. 10. Illustration of the construction of the local symbolic runs.

By construction of the τi ’s, the following facts hold:
Fact 38. For every conditionψ over x̄T , D |= ψ (νi) iff τi |= ψ .

Fact 39. For all i, i ′ and x̄ ⊆ x̄T , if νi (x̄) = νi′(x̄) then τi |x̄ = τi′ |x̄ .

Given {(τi ,σi)}0≤i<γ , the sequence of vectors of TS-isomorphism type counters {c̄i }0≤i<γ is
uniquely defined. Let ρ̃T = (τin ,τout , {(Ii ,σi)}0≤i<γ). In view of Fact 38, it is easy to see that ρ̃T
satisfies all items in the definition of local symbolic run that do not involve the counters. To show
that ρ̃T is a local symbolic run, it remains to show that c̄i ≥ 0̄ for 0 ≤ i < γ . To see that this
holds, we associate a sequence of counter vectors {c̃i }0≤i<γ to the local run ρT , where each c̃i
provides, for each TS-isomorphism type τ̂ , the number of tuples in Si of TS-isomorphism type τ̂
(the TS-isomorphism type of a tuple t ∈ Si is defined analogously to the T -isomorphism type for
each local instance). By definition, c̃i ≥ 0̄ for each i ≥ 0. Thus it is sufficient to show that c̃i ≤ c̄i
for each i . We show this by induction. For i = 0, c̃0 = c̄0 = 0. Suppose c̃i−1 ≤ c̄i−1 and consider the
transition under service σi in ρT and ρ̃T . It is easily seen that c̃i−1 and c̄i−1 are modified in the same
way except in the case when +ST (s̄T) ∈ δ , τ̂i−1 is not input-bound, and νi−1(s̄T) ∈ Si−1. In this case,
if τ̂ is the TS-isomorphism type of νi−1(s̄T), c̃i (τ̂) = c̃i−1(τ̂) whereas c̄i (τ̂) = c̄i−1(τ̂) + 1. In all cases,

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :25

c̃i ≤ c̄i . Thus, ρ̃T is a local symbolic run. The fact that Sym is a tree of symbolic local runs follows
from Fact 39, which ensures the consistency of the isomorphism types passed to and from subtasks.
Finally, the fact that Sym is accepted by Bφ follows from acceptance of Tree by Bφ and Fact 38.

5.3 If part: from symbolic runs to actual runs

We denote by FD the set of key dependencies in the database schema DB and IND the set of foreign
key dependencies. We show the following.

Lemma 40. For every symbolic tree of runs Sym accepted by Bβ , there exists a tree Tree of local
runs accepted by Bβ with a finite database instance D where D |= FD.

Note that the above does not require that D satisfy IND. This is justified by the following.

Lemma 41. For every tree of local runs Tree with database D |= FD if Tree is accepted by Bβ then
there exists a finite database D ′ |= FD ∪ IND such that Tree with database D ′ is also a tree of local
runs accepted by Bβ .

Proof. We can construct D ′ by adding tuples to D as follows. First, for each relation R such
that R is empty in D, we add an arbitrary tuple t to R. Next, for each foreign key dependency
Ri [F] ⊆ R j [ID], for each tuple t of Ri such that there is no tuple in R j with id t[F], we add to R j a
tuple t ′ where

• t ′[ID] = t[F], and
• t ′[attr (R j) − {ID}] = t ′′[attr (R j) − {ID}] where t ′′ is an existing tuple in R j .

Tree with database D ′ is accepted by Bβ since D ′ is an extension of D. Also D ′ is finite since the
number of added tuples is at most linear in the sum of number of empty relations in D and the
number of tuples in D that violate IND. □

To show Lemma 40, we begin with a construction of a local run ρT on a finite database DT for
each local symbolic run ρ̃T ∈ Sym. The local runs are constructed so that they can be merged
consistently into a tree of local runs Tree with a single finite database D. The major challenge in
the construction of each ρT and DT is that if ρ̃T is infinite, the size of ST can grow infinitely, and a
naive construction of ρT would require infinitely many distinct values in DT . Our construction
needs to ensure that DT is always finite. For ease of exposition, we first consider the case where ρ̃T
is finite and then extend the result to infinite ρ̃T .

5.4 Handling finite local symbolic runs

Recall from the previous section that ν∗(e) denotes the value of expression e in database DT with
valuation ν of x̄T . By abuse of notation, we extend ν∗(e) to e ∈ {xR .w |x ∈ x̄T ,R ∈ DB} ∪ x̄T ∪
{0, null} where there is no restriction on the length ofw . So for expression e = xR .w , ν∗(e) is the
value in DT obtained by foreign key navigation starting from the value ν∗(x) at relation R and by
the sequence of attributesw , if such a value exists. Note that ν∗ may be only partially defined since
DT may not satisfy all foreign key constraints. Analogously, we define ν∗in(e) to be the value of e in
DT at valuation νin and ν∗out (e) to be the value of e in DT at valuation νout .

We prove the following, showing the existence of an actual local run corresponding to a finite
local symbolic run. The lemma provides some additional information used when merging local
runs into a final tree of runs.

, Vol. 1, No. 1, Article . Publication date: May 2018.

:26

Lemma 42. For every finite local symbolic run ρ̃T = (τin ,τout , {(Ii ,σi)}0≤i<γ) (γ , ω), there exists
a local run ρT = (νin ,νout , {(ρi ,σi)}0≤i<γ) on finite database DT |= FD such that for every 0 ≤ i < γ ,

(i) for every expression e = xR .w where ν∗i (e) is defined, there exists expression e ′ = xR .w
′ where

|w ′ | ≤ h(T) such that ν∗i (e) = ν∗i (e ′),
(ii) for all expressions e, e ′ ∈ E+T of τi , if ν∗i (e) and ν∗i (e ′) are defined, then e ∼τi e ′ iff ν∗i (e) = ν∗i (e ′),

and
(iii) for δ = h(Tc) if σi ∈ {σoTc ,σ

c
Tc
} for someTc ∈ child(T) and δ = 1 otherwise, for every expression

e ∈ E+T − {xR .w |x ∈ x̄T , |w | > δ }, ν∗i (e) is defined.

Part (i), needed for technical reasons, says that for all valuesv inDT , ifv is the value of expression
xR .w , then v is also the value of an expression xR .w ′ where the length ofw ′ is within h(T). Part (ii)
says, intuitively, that the equality types in the symbolic local run and the constructed local run are
the same. Part (iii) states that for every 0 ≤ i < γ , at valuation νi , every expression e within δ steps
of foreign key navigation from any variable x is defined in DT . Since δ ≥ 1, this together with (ii)
implies that for every condition π , τi |= π iff DT |= π (νi). So if ρ̃T is accepted by some computation
of a Büchi automaton B(T ,η) then ρT is also accepted by the same computation of B(T ,η).

We provide the proof of Lemma 42 in the remainder of the section. We first show that from each
finite local symbolic run ρ̃T , we can construct a global isomorphism type of ρ̃T , which is essentially
an equality type over the entire set of expressions in the symbolic instances of ρ̃T . Then we show
that the local run ρT and database DT whose domain values are the equivalence classes of the
global isomorphism type, satisfy the properties in Lemma 42.

Global isomorphism types. We prove Lemma 42 by constructing ρT and DT from ρ̃T =
(τin ,τout , {(Ii ,σi)}0≤i<γ) (γ , ω). We first introduce some additional notation.

Let I+ be the set of symbolic instances Ii of ρ̃T (i < γ − 1) such that +ST (s̄T) ∈ δi+1 and τ̂i is not
input-bound. Similarly let I− be the set of symbolic instances Ij (j < γ) such that −ST (s̄T) ∈ δ j
and τ̂j is not input-bound. We define a one-to-one function Retrieve from I− to I+ such that for
every Ii = Retrieve(Ij), i < j and τ̂i = τ̂j . We say that Ij retrieves from Ii . As c̄i ≥ 0 for every i , at
least one mapping Retrieve always exists. Intuitively, Retrieve connects symbolic instance Ij to
Ii such that Ij retrieves a tuple from ST which has the same isomorphism type as a tuple inserted
at Ii . For each Ii = Retrieve(Ij), in the local run ρT we construct, valuations νi and νj have same
values on variables s̄T . Here we ignore input-bound isomorphism types since these can be seen as
part of the input isomorphism type: in ρT , instances having the same input-boundTS-isomorphism
type have the same values on s̄T .

i1 j1 i2 j2 i3 j3

Retrieve Retrieve

ρT :
0

segment 1 segment 2 segment 3

Fig. 11. An illustration of a life cycle.

Recall that a segment S = {(Ii ,σi)}a≤i≤b is a maximum consecutive subsequence of {(Ii ,σi)}0≤i<γ
such that σa is an internal service and for a < i ≤ b, σi is opening service or closing service of
child tasks of T . For our choice of the Retrieve relation, we define a life cycle L = {(Ii ,σi)}i ∈J
as a maximum subsequence of {(Ii ,σi)}0≤i<γ for J ⊆ [0,γ) where for each pair of consecutive
(Ia ,σa) and (Ib ,σb) in L where a < b, (Ia ,σa) and (Ib ,σb) are either in the same segment or
Ia = Retrieve(Ib) (illustrated in Figure 11). Note that a life cycle L is also a sequence of segments.

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :27

From the definition of local symbolic runs, we can show the following properties for segments and
life cycles:

Lemma 43. (i) For every segment S = {(Ii ,σi)}a≤i≤b , for every i, j ∈ [a,b] where i < j, for
x̄ = {x |x ∈ x̄T ,x /τi null}, τi |x̄ = τj |x̄ . (ii) For every life cycle L = {(Ii ,σi)}i ∈J , for every i, j ∈ J
where i < j, for x̄ = {x |x ∈ x̄Tin ∪ s̄T ,x /τi null}, τi |x̄ = τj |x̄ .

Next, for each symbolic instance Ii , we define the pruned isomorphism type λi = (Ei ,∼i) of Ii as
follows. Intuitively, each λi is obtained from τi by removing expressions with “long” navigation from
variables. Formally, let E+T be the extended navigation set of τi and E−T = E+T − {xR .w |x ∈ x̄T , |w | >
δ }, where δ = 1 if T is a leaf task, otherwise δ = maxTc ∈child (T) h(Tc). The choice of δ ensures that
the remaining information in each λi is sufficient for the consistency of keys and foreign keys
within one single transition (i.e. an internal transition or a child task return). A local expression of
Ii is a pair (i, e) where e ∈ E−T , and we define Ei = {(i, e)|e ∈ E−T } as the local navigation set of λi .
We also define the local equality type ∼i of λi to be an equality type over Ei where (i, e) ∼i (i, e ′)
iff e ∼τi e ′, for every e, e ′ ∈ E−T . Intuitively, the set Ei contains all expressions that are assigned
with fresh values when the actual local run is constructed.

Then we define the global isomorphism type as follows. A global isomorphism type is a pair
Λ = (E,∼), where E = ⋃

0≤i<γ Ei is called the global navigation set and ∼ is an equality type over
E called global equality type. For each expression e ∈ E, let [e] denote its equivalence class with
respect to ∼. The global equality type ∼ is constructed as follows:
(1) Initialization: ∼ ← ⋃

0≤i<γ ∼i
(2) Chase: Until convergence, merge two equivalence classes E and E ′ of ∼ if E and E ′ satisfy

one of the following conditions:
• Segment-Condition: For some segment S = {(Ii ,σi)}a≤i≤b , variable x ∈ x̄T and i, i ′ ∈
[a,b] where x /τi null and x /τi′ null, E = [(i,x)] and E ′ = [(i ′,x)].
• Life-Cycle-Condition: For some life cycle L = {(Ii ,σi)}i ∈J , variable x ∈ x̄Tin ∪ s̄T and
i, i ′ ∈ J where x /τi null and x /τi′ null, E = [(i,x)] and E ′ = [(i ′,x)].
• Input-Condition: For some variable x ∈ x̄Tin and i, i ′ ∈ [0,γ), E = [(i,x)] and E ′ = [(i ′,x)].
• FD-Condition: For some local expressions (i, e), (i ′, e ′) and attributeawhere (i, e) ∼ (i ′, e ′),
E = [(i, e .a)] and E ′ = [(i ′, e ′.a)].

From the global isomorphism type Λ defined above, we construct ρT and DT as follows. The
domain ofDT is the set of equivalence classes of∼. Each relationR(id,a1, . . . ,ak) inDT consists of all
tuples ([(i, e)], [(i, e .a1)], . . . [(i, e .ak)]) for which (i, e), (i, e .a1), . . . , (i, e .ak) ∈ E. Note that the chase
step guarantees that for all local expressions (i, e), (i ′, e ′), if (i, e .a), (i ′, e ′.a) ∈ E and (i, e) ∼ (i ′, e ′),
then (i, e .a) ∼ (i ′, e ′.a). It follows that DT |= FD. We next define ρT = (νin ,νout , {(ρi ,σi)}0≤i<γ),
where ρi = (νi , Si). First, let νi (x) = [(i,x)] for 0 ≤ i < γ , νin = ν0 |x̄Tin , and νout = ⊥ if τout = ⊥
and νout = νγ−1 |x̄Tout otherwise. Suppose that, as will be shown below, properties (i)-(iii) of Lemma
42 hold for DT and the sequence {νi }0≤i<γ so defined. Note that (ii) and (iii) imply that the pre-
and-post conditions of all services σi hold. Also, by construction, for every variable x ∈ x̄T where
νi−1(x) = νi (x) is required by the transition under σi we always have (i,x) ∼ (i + 1,x). Consider
the sets {Si }0≤i<γ . Recall the constraints imposed on sets by the definition of local run: S0 = ∅, and
for 0 < i < γ where δi is the set update of σi ,
(1) Si = Si−1 ∪ νi−1(s̄T) if δi = {+ST (s̄T)},
(2) Si = Si−1 − νi (s̄T) if δi = {−ST (s̄T)},
(3) Si = (Si−1 ∪ {νi−1(s̄T)}) − {νi (s̄T)} if δi = {+ST (s̄T),−ST (s̄T)}, and
(4) Si = Si−1 if δi = ∅.

, Vol. 1, No. 1, Article . Publication date: May 2018.

:28

Note that the only cases that can make ρT invalid are those for which δi contains −ST (s̄T). Indeed,
while a tuple can always be inserted, a tuple can be retrieved only if it belongs to ST (or is
simultaneously inserted as in case (3)). Thus, in order to show that the specified retrievals are
possible, it is sufficient to prove the following.

Lemma 44. Let 0 < i < γ be such that (1)-(4) hold for {S j }0≤j<i . If δi = {−ST (s̄T)} then νi (s̄T) ∈
Si−1. If δi = {+ST (s̄T),−ST (s̄T)} then either νi (s̄T) ∈ Si−1 or νi (s̄T) = νi−1(s̄T).

Proof. The key observations, which are easily checked by the construction of Λ, are the follow-
ing:

(†) for every k,k ′ ∈ [0,γ), if τ̂k , τ̂k ′ are not input-bound and Ik and Ik ′ are not in the same life
cycle, then νk (s̄T) , νk ′(s̄T).

(‡) for every k,k ′ ∈ [0,γ), if τ̂k , τ̂k ′ are input-bound, νk (s̄T) = νk ′(s̄T) iff τ̂k = τ̂k ′ .

Now suppose that 0 < i < γ , (1)-(4) hold for {S j }0≤j<i , and δi = {−ST (s̄T)}. Suppose first
that τ̂i is not input-bound. Let L be the life cycle to which Ii belongs, and n < i be such that
In = Retrieve(Ii). By (†), νk (s̄T) , νi (s̄T) for every n < k < i . Since (1)-(4) hold for all j < i ,
νn(s̄T) ∈ Si−1. By construction of Λ (specifically the Life-Cycle chase condition), νn(s̄T) = νi (s̄T).
Thus, νi (s̄T) ∈ Si−1. The case when δi = {+ST (s̄T),−ST (s̄T)} is similar.

Now suppose τ̂i is input-bound and δi = {−ST (s̄T)}. By definition of symbolic local run, c̄i−1(τ̂i) =
1. Thus, there must exist a maximum n < i such that τ̂n = τ̂i and for which the transition under σn
sets c̄n(τ̂i) = 1. Since c̄i−1(τ̂i) = 1 and n is maximal, there is no j, n < j < i for which δ j contains
−ST (s̄T) and τ̂j = τ̂i . From the above and (‡) it easily follows that νn(s̄T) = νi (s̄T) and νi (s̄T) ∈ Si−1.
The case when δi = {+ST (s̄T),−ST (s̄T)} is similar. □

It remains to prove properties (i)-(iii) of Lemma 42. First, as δ ≥ 1 and δ ≥ h(Tc) for every
Tc ∈ child(T), property (iii) is immediately satisfied. We next prove (i) and (ii).

Proof of property (i). We first introduce some additional notation. For each i and (i, e) ∈ Ei , we
denote by [(i, e)]i the equivalence class of (i, e) wrt ∼i . And for x ∈ x̄T we denote by Reachi (x ,w)
the unique equivalence class of ∼i reachable from [(i,xR)]i by some navigation w (if such class
exists). More precisely:
Definition 45. For each 0 ≤ i < γ , we define the navigation graph G(∼i) of the local equality

type ∼i to be the labeled directed graph whose nodes are the equivalence classes of ∼i and where
for each attribute a, there is an edge labeled a from E to F if there exist e ∈ E and f ∈ F such that
(i, e .a) ∈ Ei and e .a ∼τi f . Note that for each E there is at most one outgoing edge labeled a. For
x ∈ x̄T ,x /i null and sequence of attributesw , we denote by Reachi (x ,w) the unique equivalence
class F of ∼i reachable from [(i,x)]i by a path inG(∼i) whose sequence of edge labels spellsw , if such
exists, and the empty set otherwise.

Example 46. The graph G(∼i) of the equality type in Example 30 is shown in Figure 12. In this
G(∼i), the node Reachi (y,AB) is the equivalence class {(i,xR .A.B), (i,yR .A.B), (i, 0)}.

By our choice of h(T) and our construction of the λi ’s, we can show that
Lemma 47. For every 0 ≤ i < γ and expression xR .w , if Reachi (x ,w) is non-empty, then there

exists an expression xR .w̃ where |w̃ | < h(T) such that Reachi (x ,w) = Reachi (x , w̃).

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :29

y

z

x xR

yR

null

xR.A

yR.A

xR.A.B xR.A.C

yR.A.B yR.A.C
0

A

A

C

B

Fig. 12. An illustration of the navigation graph G(∼i).

Proof. It is sufficient to show that for each i , |G(∼i)| < h(T), where |G(∼i)| is the number of
nodes in G(∼i). Indeed, since there is a path from [(i,xR)]i to Reachi (x ,w) in G(∼i), there must
exist a simple such path, of length at most |G(∼i)| < h(T).

To show that |G(∼i)| < h(T), recall that |G(∼i)| is bounded by the number of isomorphism types
of ∼i . Recall that h(T) = 1 + |x̄T | · F (δ) where F (n) is the maximum number of distinct paths of
length at most n starting from any relation in the foreign key graph FK. By definition, for each
variable x , the number of expressions {e |e = xR .w, (i, e) ∈ Ei } is bounded by F (δ). Thus the number
of equivalence classes of ∼i is at most |x̄T | · F (δ) < h(T). So |G(∼i)| < h(T). □

Property (i) now follows from Lemma 47. Let e = xR .w be an expression for which ν∗i (e) is defined.
By construction, Reachi (x ,w) ⊆ ν∗i (e). By Lemma 47, there exists e ′ = xR .w

′ where |w ′ | < h(T)
and Reachi (x ,w ′) = Reach(x ,w). It follows that ν∗i (e ′) is defined and ν∗i (e) ∩ ν∗i (e ′) , ∅. As ν∗i (e)
and ν∗i (e ′) are equivalence classes of ∼, we have ν∗i (e) = ν∗i (e ′), proving (i).
Proof of property (ii). To show property (ii), it is sufficient to show an invariant which implies
property (ii) and is satisfied throughout the construction of Λ. For simplicity, we assume that the
chase step in the construction of ∼ is divided into the following 3 phases.
• The Segment Phase. In this phase, we merge equivalence classes E and E ′ that satisfies either
the Segment-Condition or the FD-condition.
• The Life Cycle Phase. In this phase, we merge equivalence classes E and E ′ that satisfies either
the Life-Cycle-Condition or the FD-condition.
• The Input Phase. In this phase, we merge equivalence classes E and E ′ that satisfies either the
Input-condition or the FD-condition.

It is easily seen that no chase step applies after the input phase. Thus, the above steps compute the
complete chase.

For each equivalence class E of ∼, we let i(E) be the set of indices {i |(i, e) ∈ E} and for each
i ∈ i(E), we denote by E |i the projection of E on the navigation set Ei . One can show that during
the segment phase, for every E of ∼, i(E) are indices within the same segment. During the life cycle
phase, for every E of ∼, i(E) are indices within the same life cycle. And during the input phase, i(E)
can be arbitrary indices.

The invariant is defined as follows.
Lemma 48. (Invariant of Λ) Throughout the construction of Λ, for every equivalence class E of
∼, there exists variable x ∈ x̄T and navigation w where |w | ≤ h(T), such that for every i ∈ i(E),
E |i = Reachi (x ,w).

Lemma 48 implies that for each equivalence class E of ∼ and for each λi , E is a superset of at
most one equivalence class of λi . So (i, e) ∼ (i, e ′) implies (i, e) ∼i (i, e ′) thus Λ|Ei = λi for every
0 ≤ i < γ , which implies property (ii) of Lemma 42.

, Vol. 1, No. 1, Article . Publication date: May 2018.

:30

Proof. We consider each step of the construction of the global equality type ∼. For the initial-
ization step, the invariant holds by Lemma 47.

For the Chase steps, assume that the invariant is satisfied before merging two equivalence classes
E and E ′. For each equivalence class E of ∼, we denote by x(E) and w(E) the variable and the
navigation for E as stated in Lemma 48. To show the invariant is satisfied after merging E and E ′, it
is sufficient to show that there exists variable y and navigation u where |u | ≤ h(T) such that for
every i ∈ i(E), E |i = Reachi (y,u) and for every i ∈ i(E ′), E ′ |i = Reachi (y,u).

Consider the segment phase. Suppose first that E and E ′ are merged due to the Segment-Condition.
For simplicity, we let x = x(E),x ′ = x(E ′),w = w(E) andw ′ = w(E ′). If E = [(i,y)] and E ′ = [(i ′,y)]
where i, i ′ are indices within the same segment S , then by the assumption, we have (i,y) ∈
Reachi (x ,w), so y ∼τi xR .w . As i(E) are indices of a segment S , and by Lemma 43, we have that for
every j ∈ i(E), y ∼τj xR .w , so E |j = Reachj (x ,w) = Reachj (y, ϵ). Similarly, we can show that for
every j ∈ i(E ′), E ′ |j = Reachj (y, ϵ).

Next suppose E and E ′ are merged due to the FD-condition. Thus, E = [(i, e .a)] and E ′ = [(i ′, e ′.a)]
where (i, e) ∼ (i ′, e ′). Let E∗ be the equivalence class of ∼ that contains (i, e) and (i ′, e ′). By the
assumption, for y = x(E∗) and u = w(E∗), we have that E∗ |i = Reachi (y,u) so (i, e) ∈ Reachi (y,u).
By Lemma 47, there exists navigation ũ where |ũ | < h(T) such that Reachi (y,u) = Reachi (y, ũ).
So (i, e .a) ∈ Reachi (y, ũ .a). Then in E, by the hypothesis, we have (i, e .a) ∈ Reachi (x ,w) so
Reachi (y, ũ .a) = Reachi (x ,w). As i(E) are indices of a segment S , and by Lemma 43, we have that for
every j ∈ i(E), for some relationR1 andR2,yR1 .ũ .a ∼τj xR2 .w so E |j = Reachj (x ,w) = Reachj (y, ũ .a).
Similarly, we can show that for every j ∈ i(E ′), E ′ |j = Reachj (y, ũ .a). Therefore, the invariant is
preserved during the segment phase.

Consider the life cycle phase. We can show that the invariant is again preserved, together
with the following additional property: for each equivalence class E of ∼ produced in this phase,
x(E) ∈ x̄Tin ∪ s̄T . Suppose E and E ′ are merged due to the Life-Cycle Condition, where E = [(i,y)],
E ′ = [(i ′,y)] and y ∈ x̄Tin ∪ s̄T . We have that E |j = Reachj (x ,w) = Reachj (y, ϵ) for every j ∈ i(E).
Indeed, by Lemma 43 and because i(E) are indices of some life cycle L, xR .w ∼τi y implies that
xR .w ∼τj y for every index j of L. Similarly, E ′ |j = Reachj (y, ϵ) for every j ∈ i(E ′). The case when
E and E ′ are merged in this stage due to the FD-condition is similar to the above. Following similar
analysis, we can show that the input phase also preserves the invariant together with the property
that for every E produced at the input phase, x(E) ∈ x̄Tin. This uses the fact that τi |x̄Tin = τin for
every 0 ≤ i < γ . □

This completes the proof of Lemma 42.

5.5 Handling infinite local symbolic runs

Next we show that Lemma 42 can be extended to infinite periodic local symbolic runs, which
together with finite runs are sufficient to represent accepted symbolic trees of runs by our VASS
construction (see Lemma 63). Specifically, we show that we can extend the construction of the
global isomorphism type to infinite periodic ρ̃T , while producing only finitely many equivalence
classes. This is sufficient to show that the corresponding database DT is finite. We define periodic
local symbolic runs next.

Definition 49. A local symbolic run ρ̃T = (τin ,τout , {(Ii ,σi)}0≤i<γ) is periodic if γ = ω and
there exists n > 0 and 0 < t ≤ n, such that for every i ≥ n, the symbolic instances Ii = (τi , c̄i) and

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :31

Ii−t = (τi−t , c̄i−t) satisfy that (τi ,σi) = (τi−t ,σi−t) and c̄i ≥ c̄i−t . The integer n and t are called the
offset and period of ρ̃T respectively.

The following is a consequence of Lemma 63, proven later in the section.

Corollary 50. If there exists a symbolic tree of runs Sym accepted by Bβ , then there exists a
symbolic tree of runs Sym′ accepted by Bβ such that for every ρ̃T ∈ Sym, ρ̃T is finite or periodic.

The above corollary indicates that for verification, it is sufficient to consider only finite and
periodic ρ̃T . So what we need to prove is:

Lemma 51. For every periodic local symbolic run ρ̃T = (τin ,τout , {(Ii ,σi)}0≤i<ω), there exists a
local run ρT = (νin ,νout , {(ρi ,σi)}0≤i<ω) on finite database DT |= FD such that for every i ≥ 0,

(i) for every expression e = xR .w where ν∗i (e) is defined, there exists expression e ′ = xR .w
′ where

|w ′ | ≤ h(T) such that ν∗i (e) = ν∗i (e ′),
(ii) for all expressions e, e ′ ∈ E+T of τi , if ν∗i (e) and ν∗i (e ′) are defined, then e ∼τi e ′ iff ν∗i (e) = ν∗i (e ′),

and
(iii) for δ = h(Tc) if σi ∈ {σoTc ,σ

c
Tc
} for someTc ∈ child(T) and δ = 1 otherwise, for every expression

e ∈ E+T − {xR .w |x ∈ x̄T , |w | > δ }, ν∗i (e) is defined.

Intuitively, if we directly apply the construction of ρT and DT from Lemma 42 in the case of
finite ρ̃T , then each life cycle with non-input-boundTS-isomorphism types would be assigned with
distinct sets of values, which could lead to an infinite DT . However, for any two disjoint life cycles
L1 and L2, reusing the same values in L1 and L2 does not cause any conflict. And in particular, if L1
and L2 are identical on the sequence of τi ’s and σi ’s, they can share exactly the same set of values.

Thus at a high level, our goal is to show that any periodic local symbolic run ρ̃T can be partitioned
into finitely many subsets of identical life cycles with disjoint timespans. Unfortunately, this is
generally not true if we pick the Retrieve function arbitrarily (recall that Retrieve defines the set
of life cycles). This is because an arbitrary Retrieve may yield life cycles whose timespans have
unbounded length. If the timespans overlap, it is impossible to separate the life cycles into finitely
many subsets of life cycles with disjoint timespans. So instead of picking an arbitrary Retrieve as
in the finite case, we show that for periodic ρ̃T we can construct Retrieve such that the timespan
of each life cycle has bounded length. This implies that we can partition the life cycles into finitely
many subsets of identical life cycles with disjoint timespans, as desired. Finally we show that given
the partition, we can construct the local run ρT together with a finite DT .

We first define the equivalence relation between life cycles.
Definition 52. Segments S1 = {(Ii ,σi)}a1≤i≤b1 and S2 = {(Ii ,σi)}a2≤i≤b2 are equivalent, denoted

as S1 ≡ S2, if {(τi ,σi)}a1≤i≤b1 = {(τi ,σi)}a2≤i≤b2 .

Recall that I+ (and I−) are the sets of symbolic instances inserting (and retrieving) non-input-
bound TS-isomorphism types respectively. We define that

Definition 53. A segment S = {(Ii ,σi)}a≤i≤b is static if Ia ∈ I−, Ib ∈ I+ and τa |s̄T = τb |s̄T . A
segment S is called dynamic if it is not static.

When we compare two life cycles L1 and L2, we can ignore their static segments since they do
not change the content of ST . We define equivalence of two life cycles as follows.

Definition 54. For life cycle L, let dyn(L) = {Si }1≤i≤k be the sequence of dynamic segments of
L. Two life cycles L1 and L2 are equivalent, denoted as L1 ≡ L2, if |dyn(L1)| = |dyn(L2)| and for
dyn(L1) = {S1i }1≤i≤k and dyn(L2) = {S2i }1≤i≤k , for every 1 ≤ i ≤ k , S1i ≡ S2i .

, Vol. 1, No. 1, Article . Publication date: May 2018.

:32

Note that for each life cycle L, the number of dynamic segments within L is bounded by |s̄T |
since within L, each variable in s̄T is written at most once by returns of child tasks of T . For a task
T , as the number of T -isomorphism types is bounded, the number of services is bounded and the
length of a segment is bounded because each subtask can be called at most once, the number of
equivalence classes of segments is bounded. And since the number of dynamic segments is bounded
within the same life cycle, the number of equivalence classes of life cycles is also bounded. Thus,

Lemma 55. The equivalence relation ≡ on life cycles has finite index.

Our next step is to show that one can define a Retrieve function so that all life cycles have
bounded timespans. The timespan of a life cycle is defined as follows:

Definition 56. The timespan of a life cycle L, denoted by sp(L), is an interval [a,b] where a is the
index of the first symbolic instance of the first dynamic segment of L and b is the index of the last
symbolic instance of the last dynamic segment.

Consider an equivalence class L of life cycles. Suppose that for each L ∈ L, the length of sp(L)
is bounded by some constantm. Then we can further partition L intom subsets L0, . . . ,Lm−1 of
life cycles with disjoint timespan by assigning each L ∈ L where sp(L) = [a,b] to the subset Lk
where k = a modm.

We next show how to construct the function Retrieve. In particular, we construct a periodic
Retrieve such that there is a short gap between each pair of inserting and retrieving instances.
This is done in several steps, illustrated in Figure 13. Recall that n and t are the offset and the period
of ρ̃T .
(1) Initialize Retrieve to be an arbitrary one-to-one mapping with domain {Ij |Ij ∈ I−, 0 ≤ j ≤

n} such that for every Ii = Retrieve(Ij), i < j and τ̂i = τ̂j (recall that τ̂i = τi |x̄Tin ∪ s̄T).
(2) For every j ∈ [n + 1,n + t], for j ′ = j − t and for i ′ being the index where Ii′ = Retrieve(Ij′),

(i) if i ′ ∈ [n − t + 1,n], then for i = i ′ + t , let Retrieve ← Retrieve[Ij+k ·t 7→ Ii+k ·t |k ≥ 0],
otherwise

(ii) if i ′ ∈ [0,n−t], then we pick i ∈ [n−t+1,n] satisfying that Ii ∈ I+, τ̂i = τ̂j and Ii is currently
not in the range of Retrieve. Then we let Retrieve← Retrieve[Ij+k ·t 7→ Ii+k ·t |k ≥ 0].

At step 2 for the case i ′ ∈ [0,n − t], the i that we picked always exists for the following reason.
For every TS-isomorphism type τ̂ , let
• M−τ̂ be the number of symbolic instances in I− with TS-isomorphism type τ̂ and indices in
[n − t + 1,n] that retrieves from symbolic instances with indices in [0,n − t], and
• M+τ̂ be the number of symbolic instances in I+ with TS-isomorphism type τ̂ and indices in
[n − t + 1,n] that is NOT retrieved by symbolic instances with indices in [n − t + 1,n].

We haveM+τ̂ −M
−
τ̂ = c̄n(τ̂) − c̄n−t (τ̂) ≥ 0. So for every Ii′ = Retrieve(Ij′) where j ′ ∈ [n− t + 1,n]

and i ′ ∈ [0,n − t], we can always find a unique i ∈ [n − t + 1,n] such that Ii ∈ E+, τ̂i = τ̂j′ = τ̂i′ and
Ii is not retrieved by any retrieving instances with indices in [n − t + 1,n].

n n+t n+2tn-t
...

0 n n+t n+2tn-t
...

0
have not been
retrieved

Case 2(i): Case 2(ii):
j-t j j+tj-t j j+t

Fig. 13. Construction of Retrieve

Let us fix the function Retrieve constructed above. We first show the following:

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :33

Lemma 57. For every periodic ρ̃T , and j > n, Ii = Retrieve(Ij) implies that j − i ≤ 2t and
Ii+t = Retrieve(Ij+t).

Proof. By construction, for every Ii = Retrieve(Ij) where j > i > n, Ii+t = Retrieve(Ij+t).
And it is also guaranteed that for the indices i and j, either (1) i and j are both in the same range
[n+tk+1,n+t(k+1)] for somek ≥ 0, or (2) i ∈ [n+tk+1,n+t(k+1)] and j ∈ [n+t(k+1)+1,n+t(k+2)]
for some k ≥ 0. In both cases, j − i ≤ 2t . □

For every life cycle L, for every pair of consecutive dynamic segments S and S ′, we denote by
дap(S, S ′) the number of static segments in between S and S ′. To show that sp(L) is bounded, it is
sufficient to show that дap(S, S ′) is bounded for every pair of consecutive dynamic segments S and
S ′. For every segment S , we denote by a(S) the index of the first symbolic instance of S . For every
segment S where a(S) > n, we let p(S) = (a(S) − n − 1) mod t .

For every pair of consecutive dynamic segments S and S ′ and by periodicity of Retrieve, there
are no two static segmentsT andT ′ in L in between S and S ′ such that a(S) < a(T) < a(T ′) < a(S ′)
and p(T) = p(T ′). Thus in L, the number of static segments in between S and S ′ is at most n + t .
Then by Lemma 57, the number of symbolic instances in between any pair of consecutive segments
is bounded by max(2t ,n) so дap(S, S ′) ≤ (n + t) · max(2t ,n + t). And as the number of dynamic
segments in L is bounded by |s̄T | and the length of each segment is at most 2|child(T)|, it follows
that:
Lemma 58. For every periodic local symbolic run ρ̃T and life cycle L of ρ̃T , |sp(L)| is bounded by

m = (n + t) ·max(2t ,n + t) · (|s̄T | + 1) · 2|child(T)|.

So for a possibly infinite set of life cycles L where |sp(L)| ≤ m for each L ∈ L, L can be
partitioned into sets L0, . . . ,Lm−1 by assigning each life cycle L ∈ L where sp(L) = [a,b] to the set
La mod m . So for every Li and two distinct L1,L2 in Li where sp(L1) = [a1,b1] and sp(L2) = [a2,b2],
we have a1 , a2. Assume a1 < a2. Then as a1 ≡ a2 (mod m), a2−a1 ≥ m. And since b1−a1+1 < m,
L1 and L2 are disjoint. Thus, given Lemma 55 and Lemma 58, we have

Lemma 59. Every local symbolic run ρ̃T can be partitioned into finitely many subsets of life cycles
such that for each subset L, if L1 ∈ L, L2 ∈ L and L1 , L2 then L1 ≡ L2 and sp(L1) ∩ sp(L2) = ∅.

Next, we show how we can construct the local run ρT and finite database DT from ρ̃T using
the partition. We first construct a global isomorphism type Λ = (E,∼) of ρ̃T using the approach
for the finite case. Then we merge equivalent segments in Λ as follows to obtain a new global
isomorphism type with finitely many equivalence classes. To merge two equivalent segments
S1 = {(Ii ,σi)}a1≤i≤a1+l and S2 = {(Ii ,σi)}a2≤i≤a2+l , first for every 0 ≤ i ≤ l and for every x ∈ x̄T ,
we merge the equivalence classes [(a1 + i,x)] and [(a2 + i,x)] of ∼. Then we apply the chase step
(i.e. the FD-condition) to make sure the resulting database satisfies FD.

The new Λ is constructed as follows. For every two segments S1 = {(Ii ,σi)}a≤i≤b and S2 =
{(Ii ,σi)}c≤i≤d , we define that S1 precedes S2, denote by S1 ≺ S2, if b < c . For each subset L and for
each pair of life cycles L1,L2 ∈ L where dyn(L1) = {S1i }1≤i≤k and dyn(L2) = {S2i }1≤i≤k ,

• for 1 ≤ i ≤ k , merge S1i and S
2
i ,

• for 1 ≤ i < k , for every static segments S1 ⊆ L1 and S2 ⊆ L2 where S1i ≺ S1 ≺ S1i+1,
S2i ≺ S2 ≺ S2i+1 and S1 ≡ S2, merge S1 and S2, and
• for every pair of static segments S1 ⊆ L1 and S2 ⊆ L2 where S1k ≺ S1, S2k ≺ S2 and S1 ≡ S2,
merge S1 and S2.

, Vol. 1, No. 1, Article . Publication date: May 2018.

:34

Finally, ρT and DT are constructed following the same approach as in the finite case. In the
above construction, as the number of subsets of life cycles is finite, and for each L, the number of
dynamic segments is bounded and the number of equivalence classes of static segments is bounded,
the number of equivalence classes of Λ is also finite so DT is finite.

By an analysis similar to the finite case, we can show that ρT and DT satisfy property (i)-(iii) in
Lemma 51 and DT |= FD. In particular, to show property (ii), we can show the same invariant as in
Lemma 48, the invariant holds because every pair of merged segments are equivalent.

Finally, to show Lemma 51, it remains to show that ρT is a valid local run. Similar to the finite
case, it is sufficient to show that

Lemma 60. For every i ≥ 0, if δi = {−ST (s̄T)} then νi (s̄T) ∈ Si−1. If δi = {+ST (s̄T),−ST (s̄T)} then
either νi (s̄T) ∈ Si−1 or νi (s̄T) = νi−1(s̄T).

Proof. The following can be easily checked by the construction of Λ:

(i) for every pair of distinct life cycles L and L′ where sp(L) ∩ sp(L′) , ∅, for every Ik ∈ L and
Ik ′ ∈ L′, if τ̂k , τ̂k ′ are not input-bound then νk (s̄T) , νk ′(s̄T), and

(ii) for every pair of life cycles L and L′ where sp(L) ∩ sp(L′) = ∅, if Ii , Ij ∈ L, Ij = Retrieve(Ii),
τ̂i is not input-bound, Ik ∈ L′ for j < k < i and νk (s̄T) = νi (s̄T) = νj (s̄T), then Ik is contained
in a static segment of L′.

(iii) for every k,k ′ ≥ 0, if τ̂k , τ̂k ′ are input-bound, νk (s̄T) = νk ′(s̄T) iff τ̂k = τ̂k ′ .
Consider the case when δi = {−ST (s̄T)} and τ̂i is not input-bound. Let Ij = Retrieve(Ii) and L

be the life cycle that contains Ii . Consider Ik where j < k < i and let L′ be the life cycle containing
Ik . If sp(L) ∩ sp(L′) , ∅, by (i), νi (s̄T) , νk (s̄T). If sp(L) ∩ sp(L′) = ∅, by (ii), the segment containing
Ik is static, so it does not change ST . Thus, for every segment S between Ij and Ii , the tuple νi (s̄T)
remains in ST after S . So νi (s̄T) ∈ Si−1. The case when δi = {−ST (s̄T),+ST (s̄T)} is similar.

The proof for the case when τ̂i is input-bound is the same as the proof for Lemma 44. □

This completes the proof of Lemma 51.

5.6 Handling symbolic trees of runs

Finally, we show Lemma 40 by providing a recursive construction of a tree of runs Tree and database
D from any symbolic tree of runs Sym where all local symbolic runs are either finite or periodic,
using Lemmas 42 and 51. Intuitively, the construction simply applies the two lemmas to each node
ρ̃T of Sym to obtain a local run ρT with a local database DT . Then the local runs and databases
are combined into a tree of local runs recursively by renaming the values in each ρT and DT in a
bottom-up manner, reflecting the communication among local runs via input and return variables.

Formally, we first define recursively the construction function F where F (SymT) = (TreeT ,DT)
where SymT is a subtree of Sym and (TreeT ,DT) are the resulting subtree of local runs and database
instance. F is defined as follows.

If T is a leaf task, then SymT contains a single local symbolic run ρ̃T . We define that F (SymT) =
F (ρ̃T) = (ρT ,DT) where ρT and DT are the local run and database instance shown to exist in
Lemmas 42 and 51 corresponding to ρ̃T .

If T is a non-leaf task where the root of SymT is ρ̃T = (τin ,τout , {(Ii ,σi)}0≤i<γ), then we first let
(ρT ,Droot) = F (ρ̃T). Next, let J = {i |σi = σoTc ,Tc ∈ child(T)}. For every i ∈ J , we denote by Symi

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :35

the subtree rooted at the child of ρ̃T where the edge connecting it with ρ̃T is labeled i and let ρ̃i be
the root of Symi . We denote by (Treei ,Di) = F (Symi) and by ρi the local run at the root of Treei .
From the construction in Lemmas 42 and 51, we assume that the domains of Droot and the Di ’s are
equivalence classes of local expressions. We first define the renaming function r whose domain is⋃

i ∈J adom(Di) as follows.

(1) Initialize r to be the identity function.
(2) For every i ∈ J , for every expression xR .w where x ∈ x̄Tcin and ν∗in(xR .w) is defined, for

y = fin(x), let r ← r [ν∗in(xR .w) 7→ ν∗i (yR .w)]. Note that ν∗in is defined wrt νin of ρi and Di
and ν∗i is defined wrt νi of ρT and Droot. And we shall see next that for every such xR .w , if
ν∗in(xR .w) is defined, then ν∗i (yR .w) is also defined.

(3) For every i ∈ J where ρ̃i is a returning local symbolic runwhere the index of the corresponding
σ cTc in ρ̃T is j, for every expression xR .w where x ∈ x̄Tcout and ν

∗
out (xR .w) is defined, for

y = fout (x), let r ← r [ν∗out (xR .w) 7→ ν∗j (yR .w)].

We denote by r (D) the database instance obtained by replacing each value v ∈ dom(r) in D with
r (v) and denote by r (Tree) the tree of runs obtained by replacing each value v ∈ dom(r) in Tree
with r (v).

Then if ρ̃T is finite, we define F (SymT) = (TreeT ,DT)where DT = Droot∪
⋃

i ∈J r (Di) and TreeT
is obtained from SymT by replacing the root of SymT with ρT and each subtree Symi with r (Treei).
If ρ̃T is periodic where the period is t and the loop starts with index n, we define F (SymT) =
(TreeT ,DT) where DT = Droot ∪

⋃
i ∈J ,i<n r (Di) and TreeT is obtained from SymT by replacing

the root of SymT with ρT and each subtree Symi with r (Treei′), where i ′ = i if i < n otherwise
i ′ = n + (i − n) mod t .

To prove the correctness of the construction, we first need to show that for every SymT and
(TreeT ,DT) = F (SymT), DT is a finite database satisfying FD and TreeT is a valid tree of runs over
DT . Let ρ̃T and ρT be the root of SymT and TreeT respectively. We show the following:

Lemma 61. For every symbolic tree of runs SymT where (TreeT ,DT) = F (SymT), DT is a finite
database satisfying FD, TreeT is a valid tree of runs over DT , and (ρT ,DT) satisfies properties (i)-(iii)
in Lemma 42 and 51.

Proof. We use a simple induction. For the base case, where T is a leaf task, the lemma holds
trivially. For the induction step, assume that for each i ∈ J , Di is finite and satisfies FD, Treei is a
valid tree of runs over Di , and (ρi ,Di) satisfies property (i)-(iii).

For each i ∈ J , where ρ̃i is a local symbolic run of task Tc ∈ child(T), we first consider the
connection between ρ̃i and ρ̃T via input variables. As ρi satisfies properties (i) and (ii), for every
expressions xR .w and x ′R′ .w

′ in the input isomorphism type τin of ρ̃i , if ν∗in(xR .w) and ν∗in(x ′R′ .w ′)
are defined, then ν∗in(xR .w) = ν∗in(x ′R′ .w ′) iff xR .w ∼τin x ′R′ .w

′. And by definition of symbolic tree
of runs, we have that τin = f −1in (τi)|(x̄

Tc
in ,h(Tc)). So for y = fin(x) and y ′ = fin(x ′), ν∗in(xR .w) =

ν∗in(x ′R′ .w ′) iffyR .w ∼τi y ′R′ .w ′. Then as ρT satisfies (ii) and (iii), ν∗i (yR .w) and ν∗i (y ′R′ .w ′) are defined
and ν∗i (yR .w) = ν∗i (y ′R′ .w ′) iff yR .w ∼τi y ′R′ .w ′ so ν∗i (yR .w) = ν∗i (y ′R′ .w ′) iff ν∗in(xR .w) = ν∗in(x ′R′ .w ′).

If ρ̃i is returning, using the same argument as above, we can show the following. Let j be the index

of the corresponding returning service σ cTc . Let f be the function where f (x) =
{
fin(x), x ∈ x̄Tcin
fout (x),x ∈ x̄Tcout

, Vol. 1, No. 1, Article . Publication date: May 2018.

:36

and let ν be the valuation where ν (x) =
{
νin(x),x ∈ x̄Tcin
νout (x),x ∈ x̄Tcout

, where νin and νout are the input and

output valuation of ρi . For all expressions xR .w and x ′R′ .w
′ where x ,x ′ ∈ x̄Tcout ∪ x̄

Tc
in , if ν

∗(xR .w) and
ν∗(x ′R′ .w ′) are defined, then for y = f (x) and y ′ = f (x ′), ν∗j (yR .w) and ν∗j (y ′R′ .w ′) are also defined
and ν∗j (yR .w) = ν∗j (y ′R′ .w ′) iff ν∗(xR .w) = ν∗(x ′R′ .w ′).

Given this, after renaming, Droot and r (Di) can be combined consistently. Also, one can easily
check that TreeT is a valid tree of runs where (ρT ,DT) satisfies properties (i)-(iii) and DT |= FD.
And DT is a finite database because it is the union of Droot and finitely many r (Di)’s and by the
hypothesis, Droot and the Di ’s are finite. □

Finally, to complete the proof of correctness of the construction, we note:
Lemma 62. For every full symbolic tree of runs Sym where all local symbolic runs in Sym are either

finite or periodic, for (Tree,D) = F (Sym) and every HLTL-FO property φf , Sym is accepted by Bφ iff
Tree is accepted by Bφ on D.

The above follows immediately from the fact that by construction, for every task T and local
symbolic run ρ̃T = (τin ,τout , {(Ii ,σi)}0≤i<γ) in Sym where the corresponding local run in Tree is
ρT = (νin ,νout , {(ρi ,σi)}0≤i<γ), for every condition π over x̄T and 0 ≤ i < γ , τi |= π iff D |= π (νi).
This completes the proof of Lemma 40, and the only-if part of Theorem 37.

5.7 Symbolic Verification

In view of Theorem 37, we can now focus on the problem of checking the existence of a symbolic
tree of runs satisfying a given HLTL-FO property. To begin, we define a notion that captures the
functionality of each task and allows a modular approach to the verification algorithm. Let φf be
an HLTL-FO formula over Γ, and recall the automaton Bφ and associated notation from Section 3.
We consider the relation RT between input and outputs of each task, defined by its symbolic runs
that satisfy a given truth assignment β to the formulas in ΦT . More specifically, we denote byHT
the restriction ofH to T and its descendants, and ΓT the corresponding HAS, with precondition
true. The relation RT consists of the set of triples (τin ,τout , β) for which there exists a symbolic
tree of runs SymT ofHT such that:

• β is a truth assignment to ΦT
• SymT is accepted by Bβ
• the root of SymT is ρ̃T = (τin ,τout , {(Ii ,σi)}0≤i<γ)

Note that there exists a symbolic tree of runs Sym over Γ satisfying φf iff (τin ,⊥, β) ∈ RT1 for some
τin satisfying the precondition of Γ, and β(φf) = 1. Thus, if RT is computable for every T , then
satisfiability of φf by some symbolic tree of runs over Γ is decidable, and yields an algorithm for
model-checking HLTL-FO properties of HAS’s.

We next describe an algorithm that computes the relations RT (τin ,τout , β) recursively. The
algorithm uses as a key tool Vector Addition Systems with States (VASS) [16, 37], which we review
next.

A VASSV is a pair (Q,A) where Q is a finite set of states and A is a finite set of actions of the
form (p, ā,q) where ā ∈ Zd for some fixed d > 0, and p,q ∈ Q . A run of V = (Q,A) is a finite
sequence (q0, z̄0) . . . (qn , z̄n) where z̄0 = 0̄ and for each i ≥ 0, qi ∈ Q , z̄i ∈ Nd , and (qi , ā,qi+1) ∈ A
for some ā such that z̄i+1 = z̄i + ā. We will use the following decision problems related to VASS.

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :37

• State Reachability: For given states q0,qf ∈ Q , is there a run
(q0, z̄0) . . . (qn , z̄n) ofV such that qn = qf ?
• State Repeated Reachability: For given states q0,qf ∈ Q , is there a run
(q0, z̄0) . . . (qm , z̄m) . . . (qn , z̄n) ofV such that qm = qn = qf and z̄m ≤ z̄n ?

Both problems are known to be expspace-complete [37, 46, 55]. In particular, [37] shows that for a
n-states, d-dimensional VASS where every dimension of each action has constant size, the state
repeated reachability problem can be solved inO((logn)2c ·d logd) non-deterministic space for some
constant c . The state reachability problem has the same complexity.

VASS construction. Let T be a task, and suppose that relations RTc have been computed for all
childrenTc ofT . We show how to compute RT using an associated VASS. For each truth assignment
β ofΦT , we construct a VASSV(T , β) = (Q,A) as follows. The states inQ are all tuples (τ ,σ ,q, ō, c̄ib)
where τ is a T -isomorphism type, σ a service, q a state of B(T , β), and c̄ib a mapping from TSib(T)
to {0, 1}. The vector ō indicates the current stage of each child Tc of T (init, active or closed)
and also specifies the outputs of Tc (an isomorphism type or ⊥). That is, ō is a partial mapping
associating to some of the childrenTc ofT the value⊥, aTc -isomorphism type projected to x̄Tcin ∪x̄

Tc
out

or the value closed. Intuitively, Tc < dom(ō) means that Tc is in the init state, and ō(Tc) = ⊥
indicates thatTc has been called but will not return. If ō(Tc) is an isomorphism type τ , this indicates
that Tc has been called, has not yet returned, and will return the isomorphism type τ . When Tc
returns, ō(Tc) is set to closed, and Tc cannot be called again before an internal service of T is
applied.

The set of actionsA consists of all triples (α , ā,α ′)whereα = (τ ,σ ,q, ō, c̄ib),α ′ = (τ ′,σ ′,q′, ō′, c̄ ′ib),
δ ′ is the update of σ ′, and the following hold:

• τ ′ is a successor of τ by applying service σ ′;
• ā = ā(δ ′, τ̂ , τ̂ ′, c̄ib) (defined in Section 5.1), where τ̂ = τ |(x̄Tin ∪ s̄T) and τ̂ ′ = τ ′ |(x̄Tin ∪ s̄T)
• c̄ ′ib = c̄ib + ā
• if σ ′ is an internal service, dom(ō′) = ∅.
• If σ ′ = σoTc , then Tc < dom(ō) and for τTcin = f −1in (τ |(x̄TTc ↓,h(Tc))), for some output τTcout of
Tc and truth assignment βTc to ΦTc , tuple (τ

Tc
in ,τ

Tc
out , β

Tc) is in RTc . Note that τ
Tc
out can be ⊥,

which indicates that this call to Tc does not return. Also, ō′ = ō[Tc 7→ τTcout].
• If σ ′ = σ cTc , then ō(Tc) = (f

−1
out ◦ f −1in)(τ ′ |(x̄TTc ↓ ∪ x̄

T
Tc ↑,h(Tc))) and ō

′ = ō[Tc 7→ closed].
• q′ is a successor of q in B(T , β) by evaluating ΦT using (τ ′,σ ′). If σ ′ = σoTc , formulas in ΦTc
are assigned the truth values defined by βTc .

An initial state of V(T , β) is a state of the form v0 = (τ0,σ0,q0, ō0, c̄0ib) where τ0 is an initial
T -isomorphism type (i.e., for every x ∈ x̄Tid − x̄

T
in , x ∼τ0 null, and for every x ∈ x̄TR − x̄Tin , x ∼τ0 0),

σ0 = σ
o
T , q0 is the successor of some initial state of B(T , β) under (τ0,σ0), dom(ō0) = ∅, and c̄0ib = 0̄.

Computing RT (τin ,τout , β) fromV(T , β). Checking whether (τin ,τout , β) is in RT can be done
using a (repeated) reachability test onV(T , β), as stated in the following key lemma.

Lemma 63. (τin ,τout , β) ∈ RT iff there exists an initial state v0 = (τ0,σ0,q0, ō0, c̄0ib) ofV(T , β) for
which τ0 |x̄Tin = τin and the following hold:

• If τout , ⊥, then there exists a state vn = (τn ,σn ,qn , ōn , c̄nib) where τout = τn |(x̄Tin ∪ x̄Tout),
σn = σ

c
T , qn ∈ Q f in where Q f in is the set of accepting states of B(T , β) for finite runs, such that

vn is reachable from v0. A path from (v0, 0̄) to (vn , z̄n) is called a returning path.
• If τout = ⊥, then one of the following holds:

, Vol. 1, No. 1, Article . Publication date: May 2018.

:38

– there exists a state vn = (τn ,σn ,qn , ōn , c̄nib) in which qn ∈ Q inf where Q inf is the set of
accepting states of B(T , β) for infinite runs, such that vn is repeatedly reachable from v0. A
path (v0, 0̄) . . . (vn , z̄n) . . . (vn , z̄ ′n) where z̄n ≤ z̄ ′n is called a lasso path.

– there exists state vn = (τn ,σn ,qn , ōn , c̄nib) in which ōn(Tc) = ⊥ for some child Tc of T and
qn ∈ Q f in , such that vn is reachable from v0. The path from (v0, 0̄) to (vn , z̄n) is called a
blocking path.

The proof of Lemma 63 is by induction on the task hierarchyH .

Proof. Base Case. Consider RT (τin ,τout , β) whereT is a leaf task. AsT has no subtask, dom(ō)
is always empty so ō can be ignored. Note that, by definition, there can be no blocking path of
V(T , β).
For the if part, consider (τin ,τout , β) ∈ RT . Suppose first that τout , ⊥. By definition, there

exists a finite local symbolic run (τin ,τout , {(Ii ,σi)}0≤i<γ) accepted by B(T , β), where γ ∈ N and
σγ−1 = σ cT . Consider an accepting computation {qi }0≤i<γ of B(T ,η) on {(Ii ,σi)}0≤i<γ , such that
qγ−1 ∈ Qf in . We can construct a returning path P = {(pi , z̄i)}0≤i<γ ofV(T , β) where for each state
pi = (τi ,σi ,qi , ōi , c̄iib), (τi ,σi ,qi) is obtained directly from {(Ii ,σi)}0≤i<γ and {qi }0≤i<γ , z̄i = c̄i , and
c̄iib is the projection of c̄i to input-bound TS-isomorphism types.

Now suppose τout = ⊥. By definition, and since T is a leaf task, there exists an infinite symbolic
run (τin ,τout , {(Ii ,σi)}0≤i<ω) accepted by B(T , β). Consider the sequence {qi }0≤i<ω of states in
an accepting computation of B(T ,η) on {(Ii ,σi)}0≤i<ω . There must exist qf ∈ Qinf such that for
infinitely many i , qi = qf . So we can construct a path P = {(pi , z̄i)}0≤i<ω of V(T , β) where for
each state pi = (τi ,σi ,qi , ōi , c̄iib) is obtained in the same way as in the case where τout , ⊥. By the
Dickson’s lemma [29], there exists two distinct indicesm and n such thatm < n, (τm ,σm ,qm , c̄mib) =
(τn ,σn ,qn , c̄nib), qm = qn = qf and z̄m ≤ z̄n . Thus, the sequence (p0, z̄0), . . . , (pm , z̄m), . . . , (pn , z̄n)
is a lasso path ofV(T , β).
For the only-if direction, if there exists a returning path inV(T , β), then by definition, τin and

τout together with the sequence {(Ii ,σi)}0≤i≤n where each (Ii ,σi) is obtained directly from (pi , z̄i)
is a valid local symbolic run ρ̃T . And ρ̃T is accepted by B(T , β) since qn is in Q f in . If there exists a
lasso path inV(T , β), then we can obtain a finite sequence {(Ii ,σi)}0≤i≤n similar to above. And we
can construct {(Ii ,σi)}0≤i<ω by repeating the subsequence from indexm + 1 to index n infinitely
many times. As qn = qf ∈ Q inf , (τin ,⊥, {(Ii ,σi)}0≤i<ω) is an infinite local symbolic run accepted
by B(T , β), so (τin ,⊥, β) ∈ RT .
Induction. Consider a non-leaf task T , and suppose the statement is true for all its children tasks.

For the if part, suppose (τin ,τout , β) ∈ RT . Then there exists an adorned symbolic tree of
runs SymT with root ρ̃T = (τin ,τout , {(Ii ,σi)}0≤i<γ) accepted by Bβ̄ . We construct a path P =

{(pi , z̄i)}0≤i<γ ofV(T , β) as follows. The transitions in ρ̃T caused by internal services are treated
as in the base case. Suppose that σi = σoTc for some child Tc of T . Then there is an edge labeled
(i, βTc) from ρ̃T to a symbolic tree of runs accepted by Bβ̄Tc , rooted at a run ρ̃Tc ofTc with input τTcin
and output τTcout . Thus, (τ

Tc
in ,τ

Tc
out , β

Tc) ∈ RTc andV(T , β) can make the transition from (pi−1, z̄i−1)
to (pi , z̄i) as in its definition (including the updates to ō). If τTcout , ⊥ then there exists a minimum
j > i for which σj = σ cTc and once againV(T , β) can make the transition from (pj−1, z̄j−1) to (pj , z̄j)
as in its definition, mimicking the return of Tc using the isomorphism type τTcout stored in ō(Tc).
Now consider the resulting path P = {(pi , z̄i)}0≤i<γ . By applying a similar analysis as in the base

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :39

case, if γ , ω and τout , ⊥, then P is a returning path. If γ , ω and τout = ⊥, then P is a blocking
path. If γ = ω, then there exists a prefix P ′ of P such that P ′ is a lasso path.

For the only-if direction, let P be a path ofV(T , β), starting from a state p0 = (τ0,σ0,q0, ō0, c̄0ib)
where τ0 |x̄Tin = τin . If P is a returning path, let vn = (τn ,σn ,qn , ōn , c̄nib) be its last state and τout =
τn |(x̄Tin ∪ x̄Tout). If P is not a returning path, then τout = ⊥. From P we can construct a adorned
symbolic tree of runs SymT accepted by Bβ̄ as follows. The root of SymT is a local symbolic run
ρ̃T constructed analogously to the construction in the only-if direction in the base case. Then for
each σi = σoTc , by the induction hypothesis, there exists a symbolic tree of runs SymTc whose root
has input isomorphism type τTcin , output isomorphism type τTcout and is accepted by BβTc (note that
τTcin , τ

Tc
out and βTc are uniquely defined by P and i). We connect SymT with SymTc with an edge

labeled (i, βTc).
If P is a returning or blocking path, then SymT is accepted by Bβ̄ . If P is a lasso path, then we

first modify the root ρ̃T of SymT by repeating the subsequence fromm + 1 to n infinitely, then
for each integer i such thatm + 1 ≤ i ≤ n and SymT is connected with some SymTc with edge
labeled index (i, βTc), for each repetition Ii′ of symbolic instance Ii , we make a copy of SymTc and
connect SymT with SymTc with edge labeled (i ′, βTc). The resulting SymT is accepted by Bβ̄ . Thus,
(τin ,τout , β) ∈ RT . □

Complexity of verification. We now have all ingredients in place for our verification algorithm.
Let Γ be a HAS and φf an HLTL-FO formula over Γ. In view of the previous development, Γ |= φf
iff ¬φf is not satisfiable by a symbolic tree of runs of Γ. We outline a non-deterministic algorithm
for checking satisfiability of ¬φf , and establish its space complexity O(f), where f is a function
of the relevant parameters. The space complexity of verification (the complement) is then upper
bounded by O(f 2) by Savitch’s theorem [57].

Recall that φf is satisfiable by a symbolic tree of runs of Γ iff (τin ,⊥, β) ∈ RT1 for some τin
satisfying the precondition of Γ, and β(¬φf) = 1. By Lemma 63, membership in RT1 can be reduced
to state (repeated) reachability in the VASSV(T1, β). For a given VASS, (repeated) reachability is
decided by non-deterministically generating runs of the VASS up to a certain length, using space
O(logn · 2c ·d logd) where n is the number of states, d is the vector dimension and c is a constant
[37]. The same approach can be used for the VASS V(T1, β), with the added complication that
generating transitions requires membership tests in the relations RTc ’s for Tc ∈ child(T1). These in
turn become (repeated) reachability tests in the corresponding VASS. Assuming that n and d are
upper bounds for the number of states and dimensions for allV(T , β) with T ∈ H , this yields a
total space bound of O(h logn · 2c ·d logd) for membership testing inV(T1, β), where h is the depth
ofH .

In our construction ofV(T , β), the vector dimension d is the number of TS-isomorphism types.
The number of states n is at most the product of the number of T -isomorphism types, the number
states in B(T , β), the number of all possible ō and the number of possible states of c̄ib . The worst-case
complexity occurs for HAS with unrestricted schemas (cyclic foreign keys) and artifact relations.
To understand the impact of the foreign key structure and artifact relations, we also consider the
complexity for acyclic and linear-cyclic schemas, and without artifact relations. A careful analysis
yields the following (see Appendix C). For better readability, we state the complexity for HAS over
a fixed schema (database and maximum arity of artifact relations). The impact of the schema is
detailed in Appendix C.

, Vol. 1, No. 1, Article . Publication date: May 2018.

:40

Theorem 64. Let Γ be a HAS over a fixed schema and φf an HLTL-FO formula over Γ. The
deterministic space complexity upper bounds of checking whether Γ |= φf are summarized in Table 1. 5

Table 1. Space complexity upper bounds for verification without arithmetic (N : size of (Γ,φf); h: depth of
hierarchy; c : constants depending on the schema).

Acyclic Linearly-Cyclic Cyclic
w/o. Artifact relations c · NO (1) O(N c ·h) h- exp(O(N))
w. Artifact relations O(exp(N c)) O(2- exp(N c ·h)) (h + 2)- exp(O(N))

Note that the worst-case space complexity is non-elementary, as for feedback-free systems [21].
However, the height of the tower of exponentials in [21] is the square of the total number of artifact
variables of the system, whereas in our case it is the depth of the hierarchy, likely to be much
smaller.

Lower bounds. Several complexity lower bounds for verification can be immediately obtained.
When there are no artifact relations, the verification problem is pspace-hard, as LTL model checking
alone is already pspace-complete [63]. When artifact relations are present, one can show expspace-
hardness by a direct simulation of VASS by HAS, and the fact that model checking for VASS is
expspace-complete [37, 46, 55]. These lower bounds are tight when the schema is acyclic. Lower
bounds for the other cases remain open.

6 VERIFICATIONWITH ARITHMETIC

We next outline the extension of our verification algorithm to handle HAS and HLTL-FO properties
whose conditions use arithmetic constraints expressed as polynomial inequalities with integer
coefficients over the numeric variables (ranging over R). We note that one could alternatively limit
the arithmetic constraints to linear inequalities with integer coefficients (and variables ranging
over Q), yielding the same complexity. These are sufficient for many applications.

The seed idea behind our approach is that, in order to determine whether the arithmetic con-
straints are satisfied, we do not need to keep track of actual valuations of the task variables and the
numeric navigation expressions they anchor (for which the search space would be infinite). Instead,
we show that these valuations can be partitioned into a finite set of equivalence classes with respect
to satisfaction of the arithmetic constraints, which we then incorporate into the isomorphism
types of Section 5, extending the algorithm presented there. This however raises some significant
technical challenges, which we discuss next.

Intuitively, this approach uses the fact that a finite set of polynomials P partitions the space into a
bounded number of cells containing points located in the same region (= 0, < 0, > 0) with respect to
every polynomial P ∈ P. Isomorphism types are extended to include a cell, which determines which
arithmetic constraints are satisfied in the conditions of services and in the property. In addition to
the requirements detailed in Section 5, we need to enforce cell compatibility across symbolic service
calls. For instance, when a task executes an internal service, the corresponding symbolic transition
from cell c to c ′ is possible only if the projections of c and c ′ on the subspace corresponding
to the task’s input variables have non-empty intersection (since input variables are preserved).
Similarly, when the opening or closing service of a child task is called, compatibility is required

5k- exp is the tower of exponential functions of height k .

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :41

between the parent’s and the child’s cell on the shared variables, which amounts again to non-
empty intersection between cell projections. This suggests the following first-cut (and problematic)
attempt at a verification algorithm: once a local transition imposes new constraints, represented
by a cell c ′, these constraints are propagated back to previously guessed cells, refining them via
intersection with c ′. If an intersection becomes empty, the candidate symbolic run constructed so
far has no corresponding actual run and the search is pruned. The problem with this attempt is that
it is incompatible with the way we deal with sets in Section 5: the contents of sets are represented
by associating counters to the isomorphism types of their elements. Since extended isomorphism
types include cells, retroactive cell intersection invalidates the counters and the results of previous
VASS reachability checks.

We develop an alternative solution that avoids retroactive cell intersection altogether. More
specifically, for each task, our algorithm extends isomorphism types with cells guessed from a pre-
computed set constructed by following the task hierarchy bottom-up and including in the parent’s
set those cells obtained by appropriately projecting the children’s cells on shared variables and
expressions. Only non-empty cells are retained. We call the resulting cell collection the Hierarchical
Cell Decomposition (HCD).

The key benefit of the HCD is that it arranges the space of cells so that consistency of a symbolic
run can be guaranteed by performing simple local compatibility tests on the cells involved in each
transition. Specifically, (i) in the case of internal service calls, the next cell c ′ must refine the current
cell c on the shared variables (that is, the projection of c ′ must be contained in the projection of c);
(ii) in the case of child task opening/closing services, the parent cell c must refine the child cell
c ′. This ensures that in case (i) the intersection with c ′ of all relevant previously guessed cells is
non-empty (because we only guess non-empty cells and c ′ refines all prior guesses), and in case
(ii) the intersection with the child’s cell c ′ is a no-op for the parent cell. Consequently, retroactive
intersection can be skipped as it can never lead to empty cells.

A natural starting point for constructing the HCD is to gather for each task all the polynomials
appearing in its arithmetic constraints (or in the property sub-formulas referring to that task), and
associate sign conditions to each. This turns out to be insufficient. For example, the projection from
the child cell can impose on the parent variables new constraints which do not appear explicitly in
the parent task. It is a priori not obvious that the constrained cells can be represented symbolically,
let alone efficiently computed. The tool enabling our solution is the Tarski-Seidenberg Theorem [61],
which ensures that the projection of a cell is representable by a union of cells defined by a set of
polynomials (computed from the original ones) and sign conditions for them. The polynomials can
be efficiently computed using quantifier elimination.

Observe that a bound on the number of newly constructed polynomials yields a bound on the
number of cells in the HCD, which in turn implies a bound on the number of distinct extended
isomorphism types manipulated by the verification algorithm, ultimately yielding decidability of
verification. A naive analysis produces a bound on the number of cells that is hyperexponential in
the height of the task hierarchy, because the number of polynomials can proliferate at this rate
when constructing all possible projections, and p polynomials may produce 3p cells. Fortunately, a
classical result from real algebraic geometry ([6], reviewed in Appendix D.2) bounds the number of
distinct non-empty cells to only exponential in the number of variables (the exponent is independent
of the number of polynomials). This yields an upper bound of the number of cells (and also the
number of extended isomorphism types) which is singly exponential in the number of numeric
expressions and doubly exponential in the height of the hierarchyH . We state below our complexity

, Vol. 1, No. 1, Article . Publication date: May 2018.

:42

results for verification with arithmetic, relegating details (including a fine-grained analysis) to
Appendix D.

Theorem 65. Let Γ be a HAS over a fixed database schema and φf an HLTL-FO formula over Γ. If
arithmetic is allowed in (Γ,φf), then the deterministic space complexity upper bounds for checking
whether Γ |= φf are summarized in Table 2.

Table 2. Space complexity upper bounds for verification with arithmetic (N : size of (Γ,φ);h: depth of hierarchy;
c : constants depending on the schema.)

Acyclic Linearly-Cyclic Cyclic
w/o. Artifact relations O(exp(N c ·h)) O(exp(N c ·h2)) (h + 1)- exp(O(N))
w. Artifact relations O(2- exp(N c ·h)) O(2- exp(N c ·h2)) (h + 2)- exp(O(N)))

7 RELATEDWORK

We have already discussed the main related work in the introduction. We summarize next other
related work on verification of artifact systems.

Initial work on formal analysis of artifact-based business processes in restricted contexts has
investigated reachability [35, 36], general temporal constraints [36], and the existence of complete
execution or dead end [13]. For each considered problem, verification is generally undecidable;
decidability results were obtained only under rather severe restrictions, e.g., restricting all pre-
conditions to be “true” [35], restricting to bounded domains [13, 36], or restricting the pre- and
post-conditions to be propositional, and thus not referring to data values [36]. [17] adopts an artifact
model variation with arithmetic operations but no database. Decidability relies on restricting runs
to bounded length. [66] addresses the problem of the existence of a run that satisfies a temporal
property, for a restricted case with no database and only propositional LTL properties. All of these
works model no underlying database, sets (artifact relations), task hierarchy, or arithmetic.

A recent line of work has tackled verification of artifact-centric processes with an underlying
relational database. [7–10, 23] evolve the business processmodel and property language, culminating
in [38], which addresses verification of first-order µ-calculus (hence branching time) properties
over business processes expressed in a framework that is equivalent to artifact systems whose input
is provided by external services. [11, 19] extend the results of [38] to artifact-centric multi-agent
systems where the property language is a version of first-order branching-time temporal-epistemic
logic expressing the knowledge of the agents. This line of work uses variations of a business process
model called DCDS (data-centric dynamic systems), which is sufficienty expressive to capture the
GSM model, as shown in [59]. In their unrestricted form, DCDS and HAS have similar expressive
power. However, the difference lies in the tackled verification problem and in the restrictions
imposed to achieve decidability. We check satisfaction of linear-time properties for every possible
choice of initial database instance, whereas the related line checks branching-time properties
and assumes that the initial database is given. None of the related works address arithmetic. In
the absence of arithmetic, the restrictions introduced for decidability are incomparable (neither
subsumes the other).

Beyond artifact systems, there is a plethora of literature on data-centric processes, dealing with
various static analysis problems and also with runtime monitoring and synthesis. We discuss the
most related works here and refer the reader to the surveys [18, 27] for more. Static analysis for
semantic web services is considered in [51], but in a context restricted to finite domains. The

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :43

works [3, 28, 60] are ancestors of [26] from the context of verification of electronic commerce
applications. Their models could conceptually (if not naturally) be encoded in HAS but correspond
only to particular cases supporting no arithmetic, sets, or hierarchies. Also, they limit external
inputs to essentially come from the active domain of the database, thus ruling out fresh values
introduced during the run.

Petri nets arewidely used inmodeling business processes (see [62] for a survey). A few decidability
results have been obtained for Petri-net-based models extended with data components [4, 43, 44, 50].
Although equivalent to Petri nets, our use of VASS in this paper is fundamentally different because
our model of business data does not include an explicit Petri net component. Instead, we reduce
the verification problem to known solvable problems for VASS.

The present paper extends our previous work [1] by including formal definitions, technical
development, and the full proofs of the main results. The proof techniques provide new insights,
including a novel use of VASS and quantifier elimination in artifact verification algorithms.

8 CONCLUSION

We showed decidability of verification for a rich artifact model capturing core elements of IBM’s
successful GSM system: task hierarchy, concurrency, database keys and foreign keys, arithmetic
constraints, and richer artifact data. The extended framework requires the use of novel techniques
including nested Vector Addition Systems and a variant of quantifier elimination tailored to
our context. We improve significantly on previous work on verification of artifact systems with
arithmetic [21], which only exhibits non-elementary upper bounds regardless of the schema
shape, even absent artifact relations. In contrast, for acyclic and linearly-cyclic schemas, even in
the presence of arithmetic and artifact relations, our new upper bounds are elementary (doubly-
exponential in the input size and triply-exponential in the depth of the hierarchy). Moreover,
the complexity of our verification algorithm gracefully reduces to pspace (for acyclic schema)
and expspace in the hierarchy depth (for linearly-cyclic schema) when arithmetic and artifact
relations are not present. The sole remaining case of nonelementary complexity occurs for arbitrary
cyclic schemas. Altogether, our results provide substantial new insight and techniques for the
automatic verification of artifact systems. We recently used the techniques developed in the paper to
implement a verifier for HASwith acyclic database schemas, that exhibits very good performance on
a realistic benchmark obtained from existing sets of business process specifications and properties
by extending them with data-aware features [2]. This points to HAS with acyclic schemas as a
sweet spot for verification, and is a strong indication of the practical potential of our approach.

REFERENCES

[1] ANONYMOUS1. details omitted due to double-blind reviewing.
[2] ANONYMOUS2. details omitted due to double-blind reviewing.
[3] Serge Abiteboul, Victor Vianu, Brad Fordham, and Yelena Yesha. 2000. Relational transducers for electronic commerce.

JCSS 61, 2 (2000), 236–269.
[4] Eric Badouel, Loïc Hélouët, and Christophe Morvan. 2016. Petri nets with structured data. Fundamenta Informaticae

146, 1 (2016), 35–82.
[5] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. 2006. Algorithms in Real Algebraic Geometry (Algorithms and

Computation in Mathematics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.
[6] Saugata Basu, Richard Pollak, and Marie-Françoise Roy. 1996. On the number of cells defined by a family of polynomials

on a variety. Mathematika 43, 1 (1996), 120–126.
[7] Francesco Belardinelli, Alessio Lomuscio, and Fabio Patrizi. 2011. A Computationally-Grounded Semantics for Artifact-

Centric Systems and Abstraction Results. In IJCAI. 738–743.

, Vol. 1, No. 1, Article . Publication date: May 2018.

:44

[8] Francesco Belardinelli, Alessio Lomuscio, and Fabio Patrizi. 2011. Verification of Deployed Artifact Systems via Data
Abstraction. In ICSOC.

[9] Francesco Belardinelli, Alessio Lomuscio, and Fabio Patrizi. 2012. An Abstraction Technique for the Verification of
Artifact-Centric Systems. In KR.

[10] Francesco Belardinelli, Alessio Lomuscio, and Fabio Patrizi. 2012. Verification of GSM-Based Artifact-Centric Systems
through Finite Abstraction. In ICSOC.

[11] Francesco Belardinelli, Alessio Lomuscio, and Fabio Patrizi. 2014. Verification of Agent-Based Artifact Systems. J.
Artif. Intell. Res. (JAIR) 51 (2014), 333–376.

[12] Kamal Bhattacharya, Nathan S Caswell, Santhosh Kumaran, Anil Nigam, and Frederick Y Wu. 2007. Artifact-centered
operational modeling: Lessons from customer engagements. IBM Systems Journal 46, 4 (2007), 703–721.

[13] Kamal Bhattacharya, Cagdas Gerede, Richard Hull, Rong Liu, and Jianwen Su. 2007. Towards formal analysis of
artifact-centric business process models. In International Conference on Business Process Management. Springer, 288–304.

[14] Kamal Bhattacharya, Robert Guttman, Kelly Lyman, Fenno F Heath III, Santhosh Kumaran, Prabir Nandi, Frederick
Wu, Prasanna Athma, Christoph Freiberg, Lars Johannsen, et al. 2005. A model-driven approach to industrializing
discovery processes in pharmaceutical research. IBM Systems Journal 44, 1 (2005), 145–162.

[15] BizAgi and Cordys and IBM and Oracle and Singularity and SAP AG and Agile Enterprise Design and Stiftelsen
SINTEF and TIBCO and Trisotech. 2013. Case Management Model and Notation (CMMN), FTF Beta 1. (Jan. 2013).
http://www.omg.org/spec/CMMN/1.0/Beta1/ OMG Document Number dtc/2013-01-01, Object Management Group.

[16] Michel Blockelet and Sylvain Schmitz. 2011. Model checking coverability graphs of vector addition systems. In
Mathematical Foundations of Computer Science 2011. Springer, 108–119.

[17] Diego Calvanese, Giuseppe De Giacomo, Richard Hull, and Jianwen Su. 2009. Artifact-centric workflow dominance. In
Service-Oriented Computing. Springer, 130–143.

[18] Diego Calvanese, Giuseppe De Giacomo, and Marco Montali. 2013. Foundations of data-aware process analysis: a
database theory perspective. In PODS.

[19] Diego Calvanese, Giorgio Delzanno, and Marco Montali. 2015. Verification of Relational Multiagent Systems with
Data Types. In AAAI. 2031–2037.

[20] Tian Chao, David Cohn, Adrian Flatgard, Sandy Hahn, Mark Linehan, Prabir Nandi, Anil Nigam, Florian Pinel, John
Vergo, and Frederick y Wu. 2009. Artifact-based transformation of IBM global financing. In International Conference on
Business Process Management. Springer, 261–277.

[21] Elio Damaggio, Alin Deutsch, and Victor Vianu. 2012. Artifact systems with data dependencies and arithmetic. ACM
Transactions on Database Systems (TODS) 37, 3 (2012), 22. Also in ICDT 2011.

[22] Elio Damaggio, Richard Hull, and Roman Vaculín. 2013. On the equivalence of incremental and fixpoint semantics for
business artifacts with Guard–Stage–Milestone lifecycles. Information Systems 38, 4 (2013), 561–584.

[23] Giuseppe De Giacomo, Riccardo De Masellis, and Riccardo Rosati. 2012. Verification of Conjunctive Artifact-Centric
Services. Int. J. Cooperative Inf. Syst. 21, 2 (2012), 111–140.

[24] Giuseppe De Giacomo and Moshe Y Vardi. 2013. Linear temporal logic and linear dynamic logic on finite traces. In
Proceedings of the Twenty-Third international joint conference on Artificial Intelligence. AAAI Press, 854–860.

[25] Henk de Man. 2009. Case management: Cordys approach. (2009).
[26] Alin Deutsch, Richard Hull, Fabio Patrizi, and Victor Vianu. 2009. Automatic verification of data-centric business

processes. In ICDT. ACM, 252–267.
[27] Alin Deutsch, Richard Hull, and Victor Vianu. 2014. Automatic Verification of Database-Centric Systems. SIGMOD

Record 43, 3 (2014), 5–17.
[28] Alin Deutsch, Liying Sui, and Victor Vianu. 2007. Specification and Verification of Data-driven Web services. JCSS 73,

3 (2007), 442–474.
[29] Leonard Eugene Dickson. 1913. Finiteness of the odd perfect and primitive abundant numbers with n distinct prime

factors. American Journal of Mathematics 35, 4 (1913), 413–422.
[30] Volker Diekert and Paul Gastin. 2004. Pure Future Local Temporal Logics Are Expressively Complete for Mazurkiewicz

Traces. In LATIN 2004: Theoretical Informatics, 6th Latin American Symposium, Buenos Aires, Argentina, April 5-8, 2004,
Proceedings. 232–241.

[31] Volker Diekert and Paul Gastin. 2006. Pure future local temporal logics are expressively complete for Mazurkiewicz
traces. Inf. Comput. 204, 11 (2006), 1597–1619.

[32] Volker Diekert and Grzegorz Rozenberg. 1995. The book of traces. World scientific.
[33] E. Allen Emerson. 1990. Temporal and Modal Logic. In Handbook of Theoretical Computer Science, Volume B: Formal

Models and Sematics, J. Van Leeuwen (Ed.). North-Holland Pub. Co./MIT Press, 995–1072.
[34] Expedia.Com. 2016. (2016). Retrieved Aug 25, 2016 from http://www.expedia.com
[35] Cagdas E Gerede, Kamal Bhattacharya, and Jianwen Su. 2007. Static analysis of business artifact-centric operational

models. In SOCA. IEEE, 133–140.

, Vol. 1, No. 1, Article . Publication date: May 2018.

http://www.omg.org/spec/CMMN/1.0/Beta1/
http://www.expedia.com

Verification of Hierarchical Artifact Systems :45

[36] Cagdas E Gerede and Jianwen Su. 2007. Specification and verification of artifact behaviors in business process models.
In ICSOC. Springer, 181–192.

[37] Peter Habermehl. 1997. On the complexity of the linear-time µ-calculus for Petri nets. In Application and Theory of
Petri Nets 1997. Springer, 102–116.

[38] Babak Bagheri Hariri, Diego Calvanese, Giuseppe De Giacomo, Alin Deutsch, and Marco Montali. 2013. Verification of
relational data-centric dynamic systems with external services. In PODS.

[39] Joos Heintz, Pablo Solernó, and Marie-Françoise Roy. 1989. On the Complexity of Semialgebraic Sets. In IFIP Congress.
293–298.

[40] Richard Hull, Elio Damaggio, Riccardo De Masellis, Fabiana Fournier, Manmohan Gupta, Fenno Terry Heath III, Stacy
Hobson, Mark Linehan, Sridhar Maradugu, Anil Nigam, et al. 2011. Business artifacts with guard-stage-milestone
lifecycles: managing artifact interactions with conditions and events. In DEBS. ACM, 51–62.

[41] H.W. Kamp. 1968. Tense logic and the theory of linear order. (1968). Phd thesis, University of California, Los Angeles.
[42] Ralph Kimball and Margy Ross. 2011. The data warehouse toolkit: the complete guide to dimensional modeling. (2011).
[43] Sławomir Lasota. 2016. Decidability border for petri nets with data: WQO dichotomy conjecture. In International

Conference on Applications and Theory of Petri Nets and Concurrency. Springer, 20–36.
[44] Ranko Lazić, Tom Newcomb, Joël Ouaknine, Andrew W Roscoe, and James Worrell. 2008. Nets with tokens which

carry data. Fundamenta Informaticae 88, 3 (2008), 251–274.
[45] Leonid Libkin. 2004. Elements of Finite Model Theory. Springer.
[46] Richard Lipton. 1976. The reachability problem requires exponential space. Research Report 62, Department of Computer

Science, Yale University, New Haven, Connecticut (1976).
[47] Mike Marin, Richard Hull, and Roman Vaculín. 2012. Data Centric BPM and the Emerging Case Management Standard:

A Short Survey. In BPM Workshops.
[48] Richard Mayr. 2003. Undecidable problems in unreliable computations. Theoretical Computer Science 297, 1 (2003),

337–354.
[49] Antoni Mazurkiewicz. 1977. Concurrent program schemes and their interpretations. DAIMI Report Series 6, 78 (1977).
[50] Marco Montali and Andrey Rivkin. 2016. Model checking Petri nets with names using data-centric dynamic systems.

Formal Aspects of Computing 28, 4 (2016), 615–641.
[51] Srini Narayanan and Sheila A McIlraith. 2002. Simulation, verification and automated composition of web services. In

WWW. ACM, 77–88.
[52] Anil Nigam and Nathan S Caswell. 2003. Business artifacts: An approach to operational specification. IBM Systems

Journal 42, 3 (2003), 428–445.
[53] Doron Peled. 1994. Combining partial order reductions with on-the-fly model-checking. In Computer aided verification.

Springer, 377–390.
[54] E. L. Post. 1947. Recursive Unsolvability of a Problem of Thue. J. of Symbolic Logic 12 (1947), 1–11.
[55] Charles Rackoff. 1978. The covering and boundedness problems for vector addition systems. Theoretical Computer

Science 6, 2 (1978), 223–231.
[56] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. 2005. Database System Concepts, 5th Edition. McGraw-Hill.
[57] Michael Sipser. 1997. Introduction to the theory of computation. PWS Publishing Company.
[58] A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. 1987. The Complementation Problem for Büchi Automata with

Applications to Temporal Logic. Theoretical Computer Science 49 (1987), 217–237.
[59] Dmitry Solomakhin, Marco Montali, Sergio Tessaris, and Riccardo De Masellis. 2013. Verification of Artifact-Centric

Systems: Decidability and Modeling Issues. In ICSOC. 252–266.
[60] Marc Spielmann. 2003. Verification of relational transducers for electronic commerce. JCSS 66, 1 (2003), 40–65.
[61] Alfred Tarski. 1951. A decision method for elementary algebra and geometry. 1948 (1951).
[62] Wil MP Van der Aalst. 2013. Business process management: a comprehensive survey. ISRN Software Engineering 2013

(2013).
[63] Moshe Y Vardi and Pierre Wolper. 1986. An automata-theoretic approach to automatic program verification. In LICS.

322–331.
[64] Panos Vassiliadis and Timos Sellis. 1999. A survey of logical models for OLAP databases. ACM Sigmod Record 28, 4

(1999), 64–69.
[65] Pierre Wolper, Moshe Y Vardi, Prasad Sistla, et al. 1983. Reasoning about infinite computation paths. In Foundations of

Computer Science, 1983., 24th Annual Symposium on. IEEE, 185–194.
[66] Xiangpeng Zhao, Jianwen Su, Hongli Yang, and Zongyan Qiu. 2009. Enforcing constraints on life cycles of business

artifacts. In Theoretical Aspects of Software Engineering. IEEE, 111–118.
[67] Wei-Dong Zhu, Brian Benoit, Bob Jackson, Johnson Liu, Mike Marin, Seema Meena, Juan Felipe Ospina, Guillermo

Rios, et al. 2015. Advanced Case Management with IBM Case Manager. (2015).

, Vol. 1, No. 1, Article . Publication date: May 2018.

:46

A FRAMEWORK AND HLTL-FO

A.1 Review of LTL

We review the classical definition of linear-time temporal logic (LTL) over a set P of propositions.
LTL specifies properties of infinite words (ω-words) {τi }i≥0 over the alphabet consisting of truth
assignments to P . Let τ≥j denote {τi }i≥j , for j ≥ 0.

The meaning of the temporal operators X, U is the following (where |= denotes satisfaction and
j ≥ 0):

• τ≥j |= Xφ iff τ≥j+1 |= φ,
• τ≥j |= φ Uψ iff ∃k ≥ j such that τ≥k |= ψ and τ≥l |= φ for j ≤ l < k .

Observe that the above temporal operators can simulate all commonly used operators, including G
(always) and F (eventually). Indeed, Fφ ≡ true U φ and Gφ ≡ ¬(F¬φ).

The standard construction of a Büchi automaton Bφ corresponding to an LTL formula φ is given
in [58, 63]. The automaton Bφ has exponentially many states and accepts precisely the set of
ω-words that satisfy φ.

It is sometimes useful to apply LTL on finite words rather than ω-words. The finite semantics
we use for temporal operators is the following [24]. Let {τi }0≤i≤n a finite sequence of truth values
of P . Similarly to the above, let τ≥j denote {τi }j≤i≤n , for 0 ≤ j ≤ n. The semantics of X and U are
defined as follows:

• τ≥j |= Xφ iff n > j and τ≥j+1 |= φ,
• τ≥j |= φ Uψ iff ∃k, j ≤ k ≤ n such that τ≥k |= ψ and τ≥l |= φ for j ≤ l < k .

It is easy to verify that for the Bφ obtained by the standard construction [58, 63] there is a subset
Qfin of its states such that Bφ viewed as a finite-state automaton with final states Qfin accepts
precisely the finite words that satisfy φ.

A.2 Proof of Theorem 20

We show that it is undecidable whether a HAS Γ = ⟨A, Σ,Π⟩ satisfies an LTL formula over Σ.
The proof is by reduction from the repeated state reachability problem of VASS with reset arcs
and bounded lossiness (RB-VASS) [48]. An RB-VASS extends the VASS reviewed in Section 5 as
follows. In addition to increments and decrements of the counters, an action of RB-VASS also allows
resetting the values of some counters to 0. And after each transition, the value of each counter can
decrease non-deterministically by an integer value bounded by some constant c . The results in [48]
(Definition 2 and Theorem 18) indicate that the repeated state reachability problem for RB-VASS is
undecidable for every fixed c ≥ 0, since the structural termination problem for Reset Petri-net with
bounded lossiness can be reduced to the repeated state reachability problem for RB-VASS’s. In our
proof, we use RB-VASS’s with c = 1.

Formally, a RB-VASS V (with lossiness bound 1 and dimension d > 0) is a pair (Q,A) where
Q is a finite set of states and A is a set of actions of the form (p, ā,q) where ā ∈ {−1,+1, r }d , and
p,q ∈ Q . A run of V = (Q,A) is a sequence (q0, z̄0), . . . (qn , z̄n) where z̄0 = 0̄ and for each i ≥ 0,
qi ∈ Q , z̄i ∈ Nd , and for some ā such that (qi , ā,qi+1) ∈ A, and for 1 ≤ j ≤ d :

• if ā(j) ∈ {−1,+1}, then z̄i+1(j) = z̄i (j) + ā(j) or z̄i+1(j) = z̄i (j) + ā(j) − 1, and

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :47

• if ā(j) = r , then z̄i+1(j) = 0.

For a given RB-VASSV = (Q,A) and a pair of statesq0,qf ∈ Q , we say thatqf is repeatedly reachable
from q0 if there exists a run (q0, z̄0) . . . (qn , z̄n) . . . (qm , z̄m) of V such that qn = qm = qf and
z̄n ≤ z̄m . As discussed above, checking whether qf is repeatedly reachable from q0 is undecidable.

We now show that for a given RB-VASS V = (Q,A) and (q0,qf), one can construct a HAS
Γ = ⟨A, Σ,Π⟩ and LTL property Φ over Σ such that qf is repeatedly reachable from q0 iff Γ |= Φ.
At a high level, the construction of Γ uses d tasks to simulate the d-dimensional vector of counters.
Each task is equipped with an artifact relation, and the number of elements in the artifact relation
is the current value of the corresponding counter. Increment and decrement the counters are
simulated by internal services of these tasks, and reset of the counters are simulated by closing and
reopening the task (recall that this resets the artifact relation to empty). Then we specify in the
LTL formula Φ that the updates of the counters of the same action are grouped in sequence. Note
that this requires coordinating the actions of sibling tasks, which is not possible in HLTL-FO. The
construction is detailed next.

The database schema of Γ consists of a single unary relation R(id). The artifact system has a root
task T1 and subtasks {P0, P1, . . . , Pd ,C1, . . . ,Cd } which form the following tasks hierarchy:

T1

P1 P2 Pd-1 Pd

C1 C2 Cd-1 Cd

P0

Fig. 14. Tasks hierarchy.

The tasks are defined as follows. The root taskT1 has no variables nor internal services. The task
P0 contains a numeric variable s , indicating the current state of the RB-VASS. For each q ∈ Q , P0
has a service σq , whose pre-condition is true and post-condition sets s to q.

For i ≥ 1, task Pi has no variable. It has a single internal serviceσ ri whose pre- and post-conditions
are both true.

Each Ci has an ID variable x , an artifact relation Si and a pair of services σ+i and σ−i , which
simply insert x into Si and removes an element from Si , respectively. Intuitively, the size of Si is
the current value of the i-th counter. Application of service σ ri corresponds to resetting the i-th
counter. And application of services σ+i and σ−i correspond to increment and decrement of the i-th
counter, respectively.

Except for the closing condition of T1, all opening and closing conditions of tasks are true.

We encode the set of actions A into an LTL formula as follows. For each state p ∈ Q , we denote
by α(p) the set of actions starting from p. For each action α = (p, ā,q) ∈ A, we construct an LTL
formula φ(α) as follows. First, let ϕ1, . . .ϕd ,ϕd+1 be LTL formulas where:

• ϕd+1 = Xσq ,
• for i = d,d − 1, . . . , 1:
– if ā(i) = +1, then ϕi = σ+i ∧ Xϕi+1,

, Vol. 1, No. 1, Article . Publication date: May 2018.

:48

– if ā(i) = −1, then ϕi = (σ−i ∧ Xϕi+1) ∨ (σ−i ∧ X(σ−i ∧ Xϕi+1)), and
– if ā(i) = r , then ϕi = σ ci ∧ X(σ ri ∧ X(σoi ∧ Xϕi+1)) where σoi and σ ci are the opening and
closing services of task Ci .

Let φ(α) = Xϕ1. Intuitively, φ(α) specifies a sequence of service calls that update the content of the
artifact relations S1, . . . Sd according to the vector ā. In particular, for ā(i) = r , the subsequence of
services σ ci σ

r
i σ

o
i first closes task Ci then reopens it. This empties Si . For ā(i) = +1, by executing

σ+i , the size of Si might be increased by 1 or 0, depending on whether the element to be inserted is
already in Si . And for ā(i) = −1, we let σ−i to be executed either once or twice, so the size of Si can
decrease by 1 or 2 nondeterministically. Then we let

Φ = Φinit ∧
∧
p∈Q

G ©­«σp →
∨

α ∈α (p)
φ(α)ª®¬ ∧ GFσqf

where Φinit is a formula specifying that the run is correctly initialized, which simply means that
the opening services σoT of all tasks are executed once at the beginning of the run, and then a σq0 is
executed.

The second clause says that for every state p ∈ Q , whenever the run enters a state p (by calling
σp), a sequence of services as specified in φ(α) is called to update S1, . . . , Sk , simulating the action
α that starts from p.

Finally, the last clause GFσqf guarantees that the service σqf is applied infinitely often, which
means that qf is reached infinitely often in the run.

We can prove the following lemma, which implies Theorem 20:

Lemma 66. For RB-VASS (Q,A) and statesq0,qf ∈ Q , there exists a run (q0, z̄0), . . . , (qm , z̄m), . . . , (qn , z̄n)
of (Q,A) where qm = qn = qf and z̄m ≤ z̄n iff there exists a global run ρ of Γ such that ρ |= Φ.

A.3 Simplifications

We first show that the global variables, as well as set atoms, can be eliminated from HLTL-FO
formulas.

Lemma 67. Let Γ be a HAS and ∀ȳφf (ȳ) an HLTL-FO formula over Γ. One can construct in linear
time a HAS Γ̄ and an HLTL-FO formula φ̄f , where φ̄f contains no atoms ST (z̄), such that Γ |= ∀ȳφf (ȳ)
iff Γ̄ |= φ̄f .

Proof. Consider first the elimination of global variables. Suppose Γ has tasks T1, . . . ,Tk . The
Hierarchical artifact system Γ̄ is constructed from Γ by adding ȳ to the variables ofT1 and augmenting
the input variables of all other tasks with ȳ (appropriately renamed). Note that ȳ is unconstrained,
so it can be initialized to an arbitrary valuation and then passed as input to all other tasks. Let Γ̄
consist of the resulting tasks, T̄1, . . . , T̄k . It is clear that Γ |= ∀ȳφf (ȳ) iff Γ̄ |= φ̄f .

Consider now how to eliminate atoms of the form ST (z̄) from φ̄f . Recall that for all such atoms,
z̄ ⊆ ȳ, so z̄ is fixed throughout each run. The idea is keep track of the membership of z̄ in ST

using two additional numeric artifact variables xz̄ and yz̄ , such that xz̄ = yz̄ indicates that ST (z̄)
holds6. Specifically, a pre-condition ensures that xz̄ , yz̄ initially holds, then xz̄ , yz̄ is enforced as
soon as there is an insertion +ST (s̄T) for which s̄T = z̄, and xz̄ , yz̄ is enforced again whenever
6This is done to avoid introducing constants, that could also be used as flags.

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :49

there is a retrieval of a tuple equal to z̄. This can be achieved using pre-and-post conditions of
services carrying out the insertion or retrieval. Then the atom ST (z̄) can be replaced in φ̄f with
(xz̄ = yz̄). □

We next consider two simplifications of artifact systems regarding the interaction of tasks with
their subtasks.

Lemma 68. Let Γ be a HAS and φf an HLTL-FO property over Γ. One can construct a HAS Γ̃ and
an HLTL-FO formula φ̃f such that Γ |= φf iff Γ̃ |= φ̃f and: (i)⋃Tc ∈child(T) x̄

T
Tc ↑ and

⋃
Tc ∈child (T) x̄

T
Tc ↓

are disjoint for each task T in Γ̃, (ii) for each child task Tc ∈ child(T), x̄TTc ↑ ∩ VARR = ∅.

Proof. Consider (i). We describe here informally the construction of Γ̃ that eliminates over-
lapping between

⋃
Tc ∈child(T) x̄

T
Tc ↑ and

⋃
Tc ∈child(T) x̄

T
Tc ↓. For each task T and for each subtask Tc

of T , for each variable x ∈ x̄TTc ↓, we introduce to T a new variable x̂ whose type is the same
as the type (id or numeric) of x . We denote by x̂TTc ↓ the set of variables added to T for subtask
Tc . Then instead of passing x̄TTc ↓ to Tc , T passes x̂TTc ↓ to Tc when Tc opens. And for the opening
service σoTc with opening condition π , we check π in conjunction with

∧
x ∈x̄TTc ↓

(x = x̂). Note that⋃
Tc ∈child (T) x̂

T
Tc ↓ and

⋃
Tc ∈child(T) x̄

T
Tc ↑ are disjoint. By this construction, in each run of Γ̃, after

each application of an internal service σ of taskT , the variables in x̂TTc ↓ for each subtaskTc receives
a set of non-deterministically chosen values. Then each subtask Tc can be opened only when x̂TTc ↓
and x̄TTc ↓ have the same values. So passing x̂TTc ↓ to Tc is equivalent to passing x̄TTc ↓ to Tc .

To guarantee that there is a bijection from the runs of Γ to the runs of Γ̃, we also need to make
sure that the values of x̂TTc ↓ are non-deterministically chosen before the first application of internal
service. (Recall that they either contain 0 or null at the point when T is opened.) So we extend T
with an extra binary variable xinit and an extra internal service σ init

T . Variable xinit indicates whether
task T has been “initialized”. The service σ init

T has precondition that checks whether xinit = 0
and post-condition sets xinit = 1. It sets all id variables to null and numeric variables 0 except
for variables in x̂TTc ↓ for any Tc . So application of σ init

T assigns values to x̂TTc ↓ for every subtask Tc
non-deterministically and all other variables are initialized to the initial state when T is opened.
All other services are modified such that they can be applied only when xinit = 1 and initialize x̂TTc ↓
with non-deterministically chosen values for all subtaskTc . So in a projected run ρT of Γ̃, the suffix
with xinit = 1 corresponds to the original projected run of Γ. Thus we only need to rewrite the
HLTL-FO property φf to φ̃f such that each formula in ΦT only looks at the suffix of projected run
ρT after xinit is set to be 1 (namely, eachψ ∈ ΦT is replaced with F((xinit = 1) ∧ψ)).

Now consider (ii). We outline the construction of Γ̃ and φ̃f informally. For each task T , we
introduce a set of new numeric variables {xTc |Tc ∈ child(T),x ∈ x̄TTc ↑ ∩ VARR} to x̄T . Intuitively,
these variables contain non-deterministically guessed returning values from each child task Tc .
These are passed to each child task Tc as additional input variables. Before Tc returns, these are
compared to the values of the returning numeric variables of Tc , and Tc returns only if they are
identical. More formally, for each child task Tc of T , variables {xTc |x ∈ x̄TTc ↑ ∩ VARR} are passed
from T to Tc as part of the input variables of Tc . For each variable xTc in T , we let xTc→T ∈ x̄Tc
be the corresponding input variable of xTc . And for each xTc , we denote by xr et the variable in
x̄Tc satisfying that fout (x) = xr et for fout in the original Γ. Then at Tc , we remove all numeric

, Vol. 1, No. 1, Article . Publication date: May 2018.

:50

variables from x̄Tcr et and add condition
∧

x ∈x̄TTc ↑∩VARR
xr et = xTc→T to the closing condition of Tc .

Note that we need to guarantee that the variables in {xTc |Tc ∈ child(T),x ∈ x̄TTc ↑ ∩ VARR} obtain
non-deterministically guessed values. This can be done as in the simulation for (i).

Conditions on x̄T after a subsetT ’s children has returned are evaluated using the guessed values
for the variables returned so far. Specifically, the correct value to be used is the latest returned by
a child transaction, if any (recall that children tasks can overwrite each other’s numeric return
variables in the parent). Keeping track of the sequence of returned transactions and evaluating
conditions with the correct value can be easily done directly in the verification algorithm, at
negligible extra cost. This means that we can assume that tasks have the form in (ii) without the
exponential blowup in the conditions, but with a quadratic blowup in the number of variables.

To achieve the simulation fully via the specification is costlier because some of the conditions
needed have exponential size. We next show how this can be done. Intuitively, we guess initially an
order of the return of the children transactions and enforce that it be respected. We also keep track
of the children that have already returned. Let child(T) = {T1, . . . ,Tn}. To guess an order of return,
we use new ID variables ō = {oi j | 1 ≤ i, j ≤ n}. Intuitively, oi j , null says that Ti returns before
Tj . We also use new ID variables {ti | 1 ≤ i ≤ n}, where ti , null means that Ti has returned. The
variables ō are subject to a condition specifying the axioms for a total order:

∧1≤i, j≤n(oi j , null ∨ oji , null)
∧1≤i<j≤n¬(oi j , null ∧ oji , null)
∧1≤i, j,m≤n((oi j , null ∧ ojm , null) → oim , null)

These are enforced using pre-conditions of services as well as one additional initial internal service
(which in turn requires a minor modification to φf , similarly to (i)). When Ti returns, ti is set to a
non-null value, and the condition∧

1≤i, j≤n
(ti , null ∧ tj = null) → oi j , null

enforcing that transactions return in the order specified by ō is maintained using pre-conditions.
Observe that, at any given time, the latest transaction that has returned is the Ti such that

ti , null ∧
∧

1≤j≤n
((oi j , null) → tj = null)

For each formula π over x̄T , we construct a formula o(π) by replacing each variable x ∈ x̄TR with
xTc for the latest Tc where x ∈ x̄TTc ↑ if there is such Tc). The size of the resulting o(π) is exponential
in the maximum arity of database relations. Finally we obtain Γ̃ and φ̃f by replacing, for every
T ∈ H , each condition π over x̄T with o(π). One can easily verify that Γ̃ |= φ̃f iff Γ |= φf and for
every task T of Γ, x̄TTc ↑ does not contain numeric variables. This completes the proof of (ii). □

The construction in (i) takes linear time in the original specification and property. For (ii), the
construction introduces a quadratic number of new variables and the size of conditions becomes
exponential in the maximum arity of data-base relations. However, as discussed in Appendix A,
the verification algorithm can be slightly adapted to circumvent the blowup in the specification
without penalty to the complexity. Intuitively, this makes efficient use of non-determinism, avoiding
the explicit enumeration of choices required in the specification, which leads to the exponential
blowup.

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :51

A.4 Proof of Theorem 27

For conciseness, we refer throughout the proof to propositionally interleaving-invariant LTL-FO
simply as interleaving-invariant LTL-FO.

Showing that HLTL-FO expresses only interleaving-invariant LTL-FO properties is straightfor-
ward. The converse however is non-trivial. We begin by showing a normal form for LTL formulas,
which facilitates the application to our context of results from [30, 31] on temporal logics for
concurrent processes. Consider the alphabet H(Γ) = {(κ,σ) | (κ, stд,σ) ∈ A(Γ)}. Thus, H(Γ) is A(Γ)
with the stage information omitted. Let H(Γ) = h(L(Γ)) where h((κ, stд,σ)) = (κ,σ). We define
local-LTL to be LTL using the set of propositions PΣ = {(p,σ) | p ∈ PT ,σ ∈ ΣobsT }. A proposition
(p,σ) holds in (κ̄, σ̄) iff σ̄ = σ and κ̄(p) is true. The definition of interleaving-invariant local-LTL
formula is the same as for LTL.

Lemma 69. For each interleaving-invariant LTL formulaφ overL(Γ) one can construct an interleaving-
invariant local-LTL formula φ̄ over H(Γ) such that for every u ∈ L(Γ), u |= φ iff h(u) |= φ̄ where
h((κ, stд,σ)) = (κ,σ).

Proof. We use the equivalence of FO and LTL over ω-words [41]. It is easy to see that each LTL
formula φ over L(Γ) can be translated into an FO formulaψ (φ) overH(Γ) using only propositions
in PΣ, such that for every u ∈ L(Γ), u |= φ iff h(u) |= ψ (φ). Indeed, it is straightforward to define by
FO means the stage of each transaction in a given configuration, as well as each proposition in P ∪Σ
in terms of propositions in PΣ, on words inH(Γ). One can then construct from the FO sentenceψ (φ)
an LTL formula φ̄ equivalent to it over words inH(Γ), using the same set of propositions PΣ. The
resulting LTL formula is thus in local-LTL, and it is easily seen that it is interleaving-invariant. □

We use the propositional variant HLTL of HLTL-FO, whose semantics over ω-words inH(Γ)
is defined similarly to the semantics of HLTL-FO on global runs. Recall that in HLTL, the LTL
formulas applying to transaction T use propositions in PT ∪ ΣobsT and expressions [ψ]Tc where Tc
is a child of T andψ is an HLTL formula applying to Tc .

We show the following key fact.

Lemma 70. For each interleaving-invariant local-LTL formula overH(Γ) there exists an equivalent
HLTL formula overH(Γ).

Proof. To show completeness of HLTL, we use a logic shown in [30, 31] to be complete for
expressing LTL properties invariant with respect to valid interleavings of actions of concurrent pro-
cesses (or equivalently, well-defined on Mazurkievicz traces). The logic, adapted to our framework,
operates on partial orders ⪯u of words u ∈ H(Γ), and is denoted LTL(⪯). For u = {(κi ,σi) | i ≥ 0},
we define the projection of u onT as the subsequence πT (u) = {(κi j |PT ,σi j)}j≥0 where {σi j | j ≥ 0}
is the subsequence of {σi | i ≥ 0} retaining all services in ΣobsT . LTL(⪯) uses the set of propositions
PΣ and the following temporal operators on ⪯u :

• XTφ, which holds in (κi ,σi) if πT (v) , ϵ for v = {(κj ,σj) | j ≥ m}, wherem is a minimum
index such that i ≺u m, and φ holds on πT (v);
• φ UT ψ , which holds in (κi ,σi) if πT (v) , ϵ for v = {(κj ,σj) | j ≥ i}, and φ U ψ holds on
πT (v).

, Vol. 1, No. 1, Article . Publication date: May 2018.

:52

From Theorem 18 in [30] and Proposition 2 and Corollary 26 in [31] it follows that LTL(⪯) expresses
all local-LTL properties overH(Γ) invariant with respect to interleavings.

We next show that HLTL can simulate LTL(⪯). To this end, we consider an extension of HLTL
in which LTL(⪯) formulas may be used in addition to propositions in PT ∪ ΣobsT in every formula
applying to transaction T . We denote the extension by HLTL+LTL(⪯). Note that each formula ξ
in LTL(⪯) is an HLTL+LTL(⪯) formula. The proof consists in showing that the LTL(⪯) formulas
can be eliminated from HLTL+LTL(⪯) formulas. This is done by recursively reducing the depth
of nesting of XT and UT operators, and finally eliminating propositions. We define the rank of an
LTL(⪯) formula to be the maximum number of XT and UT operators along a path in its syntax
tree. For a formula ξ in HLTL+LTL(⪯), we define r (ξ) = (n,m) where n is the maximum rank of an
LTL(⪯) formula occurring in ξ , andm is the number of such formulas with rank n. The pairs (n,m)
are ordered lexicographically.

Let ξ be an HLTL+LTL(⪯) formula. For uniformity of notation, we define [ξ]T1 = ξ . We associate
to ξ the tree Tree(ξ) with root [ξ]T1 , whose nodes are all occurrences of subformulas of the form
[ψ]T in ξ , with an edge from [ψi]Ti to [ψj]Tj if the latter occurs inψi and Tj is a child of Ti inH .

Consider an HLTL+LTL(⪯) formula ξ such that r (ξ) ≥ (1, 1). Suppose ξ has a subformula XTφ
in LTL(⪯) of maximum rank. Pick one such occurrence and let T̄ be the minimum task (wrt H)
such that XTφ occurs in [ψ]T̄ . We construct an HLTL+LTL(⪯) formula ξ̄ such that r (ξ̄) < r (ξ),
essentially by eliminating XT . We consider 4 cases: T = T̄ , T is a descendant or ancestor of T̄ , or
neither.

Suppose first that T = T̄ . Consider an occurrence of XTφ. Intuitively, there are two cases: XTφ is
evaluated inside the run of T corresponding to [ψ]T , or at the last configuration. In the first case
(¬σ cT holds), XTφ is equivalent to Xφ. In the second case (σ cT holds), XTφ holds iff φ holds at the
next call to T . Thus, ξ is equivalent to ξ1 ∨ ξ2, where:

(1) ξ1 says that φ does not hold at the next call to T (or no such call exists) and XTφ is replaced
inψ by ¬σ cT ∧ Xφ

(2) ξ2 says that φ holds at the next call toT (which exists) andXTφ is replaced inψ by ¬σ cT → Xφ.

We next describe how ξ1 states that φ does not hold at the next call to T (ξ2 is similar). We need
to state that either there is no future call to T , or such a call exists and ¬φ holds at the first such
call. Consider the path from T1 to T in H . Assume for simplicity that the path is T1,T2, . . . ,Tk
where Tk = T . For each i , 1 ≤ i < k , we define inductively (from k − 1 to 1) formulas αi , βi (¬φ)
such that αi says that there is no call leading to T in the remainder of the current subrun of Ti ,
and βi (¬φ) says that such a call exists and the first call leads to a subrun of T satisfying ¬φ. First,
αk−1 = G(¬σoTk) and βk−1(¬φ) = ¬σ

o
Tk

U [¬φ]Tk . For 1 ≤ i < k − 1, αi = G(σoTi+1 → [αi+1]Ti+1) and
βi (¬φ) = (σ 0

Ti+1
→ [αi+1]Ti+1) U [βi+1(¬φ)]Ti+1 . Now ξ1 = ξ

0
1 ∨

∨
1≤j<k ξ

j
1 where ξ

0
1 states that there

is no next call to T and ξ j1 states that Tj is the minimum task such that the next call to T occurs
during the same run of Tj (and satisfies ¬φ). More precisely, let [ψ1]T1 , [ψ2]T2 , . . . [ψk]Tk be the path
leading from [ξ]T1 to [ψ]T in Tree(ξ) (soψ1 = ξ andψk = ψ). Then ξ 01 is obtained by replacing each
ψi by ψ̄i , 1 ≤ i < k , defined inductively as follows. First, ψ̄k−1 is obtained fromψk−1 by replacing
[ψk]Tk with [ψk]Tk ∧ αk−1. For 1 ≤ i < k − 1, ψ̄i is obtained from ψi by replacing [ψi+1]Ti+1 with
[ψ̄i+1]Ti+1 ∧ αi . For 1 ≤ j < k , ξ j1 is obtained by replacing inψj , [ψj+1]Tj+1 with [ψ̄j+1]Tj+1 ∧ βj (¬φ).
It is clear that ξ1 states the desired property. The formula ξ2 is constructed similarly. Note that
r (ξ1 ∨ ξ2) < r (ξ).

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :53

Now suppose T is an ancestor of T̄ . We reduce this case to the previous (T = T̄). Let T ′ be the
child of T . Suppose [ψT]T is the ancestor of [ψ]T̄ in Tree(ξ). Then ξ is equivalent to ξ̄ = ξ1 ∨ ξ2
where:

(1) ξ1 says that φ does not hold at the next action of T wrt ⪯ (or no such next action exists) and
ψ is replaced byψ (XTφ ← false) (← denotes substitution)

(2) ξ2 says that φ holds at the next action of T wrt ⪯ andψ is replaced byψ (XTφ ← true)

To state that φ does not hold at the next call to T (or no such call exists) ξ1 is further modified by
replacing in ψT , [ψT ′]T ′ with [ψT ′]T ′ ∧ (G(¬σ cT ′) ∨ (¬σ cT ′ U (σ cT ′ ∧ ¬XTφ)). Smilarly, ξ2 is further
modified by replacing inψT , [ψT ′]T ′ with [ψT ′]T ′ ∧ (¬σ cT ′ U (σ cT ′ ∧ XTφ)). Note that there are now
two occurrences of XTφ in the modifiedψT ’s. By applying twice the construction for the case T̄ = T
we obtain an equivalent ξ̄ such that r (ξ̄) < r (ξ).

Next consider the case when T̄ is an ancestor of T . Suppose the path from T1 to T in H is
T1, . . . ,Ti , . . .Tk where Ti = T̄ and Tk = T . Consider the value of XTφ in the run ρψ of T̄ on which
ψ is evaluated. Similarly to the case T = T̄ , there are two cases: φ holds at the next invocation of T
following ρψ , or it does not. Thus, ξ is equivalent to ξ1 ∨ ξ2, where:

(1) ξ1 says that φ does not hold at the next call to T (or no such call exists) and XTφ is replaced
inψ by βi (φ), where βi (φ) says that there exists a future call leading to T in the current run
of T̄ , and the first such run of T satisfies φ; βi (φ) is constructed as in the case T = T̄ .

(2) ξ2 says that φ holds at the next call to T following the current run of T̄ and XTφ is replaced
inψ by αi ∨ βi (φ) where αi , constructed as for the case T = T̄ , says that there is no future
call leading to T in the current run of T̄ .

To say that φ does not hold at the next call to T following ρψ (or no such call exists), ξ1 is modified
analogously to the case T̄ = T , and similarly for ξ2.

Finally suppose the least common ancestor of T̄ and T is T̂ distinct from both. Let [ψT̂]T̂ be the
ancestor of [ψ]T̄ in Tree(ξ). Consider the value of XTφ in the run of T̄ on which ψ is evaluated.
There are two cases: φ holds at the next invocation ofT following the run of T̄ , or it does not. Thus,
ξ is equivalent to ξ1 ∨ ξ2, where:

(1) ξ1 says that φ does not hold at the next call to T (or no such call exists) andψ is replaced by
ψ (XTφ ← false)

(2) ξ2 says that φ holds at the next call to T andψ is replaced byψ (XTφ ← true)

To say that φ does not hold at the next call to T (or no such call exists), ξ1 is modified analogously
to the case T̄ = T , and similarly for ξ2, taking into account the fact that the next call toT , if it exists,
must take place in the current run of T̂ or of one of its ancestors. This completes the simulation of
XTφ.

Now suppose ξ has a subformula (φ1 UT φ2) of maximum rank. Pick one such occurrence and
let T̄ be the minimum task (wrtH) such that (φ1 UT φ2) occurs in [ψ]T̄ . There are several cases:
T̄ = T , T̄ is an ancestor or descendant of T , or neither. The simulation technique is similar to the
above. We outline the construction for the most interesting case when T̄ = T .

, Vol. 1, No. 1, Article . Publication date: May 2018.

:54

Consider the run of T on which [ψ]T is evaluated. There are two cases: (†) (φ1 UT φ2) holds on
the concatenation of the future runs of T , or (†) does not hold. Thus, ξ is equivalent to ξ1 ∨ ξ2
where:

(1) ξ1 says that (†) holds and ψ is modified by replacing the occurrence of (φ1 UT φ2) with
Gφ1 ∨ (φ1 U φ2), and

(2) ξ2 says that (†) does not hold and ψ is modified by replacing the occurrence of (φ1 UT φ2)
with (φ1 U φ2).

We show how ξ1 ensures (†). LetT1, . . . ,Tk be the path from root toT inH . For each i , 1 ≤ i < k ,
we define inductively (from k − 1 to 1) formulas αi , βi as follows. Intuitively, αi says that all future
calls leading to T from the current run of Ti must result in runs satisfying G φ1:

• αk−1 = G(σoTk → [G φ1]Tk),

• for 1 ≤ i < k − 1, αi = G(σoTi+1 → [αi+1]Ti+1)

The formula βi says that there must be a future call to T in the current run of Ti satisfying φ1Uφ2
and all prior calls result in runs satisfying Gφ1:

• βk−1 = (σoTk → [Gφ1]Tk) U [φ1Uφ2]Tk ,

• for 1 ≤ i < k − 1, βi = (σoTi+1 → [αi+1]Ti+1) U [βi+1]Ti+1 .

Now ξ1 is
∨

1≤j<k ξ j where ξ j states that the concatenation of runs resulting from calls toT within
the run of Tj on which [ψj]Tj is evaluated, satisfies (φ1 U φ2). More precisely, let [ψ1]T1 , . . . , [ψk]Tk
be the path from [ξ]T1 to [ψ]T in Tree(ξ) (soψ1 = ξ andψk = ψ). For each j we defineψ j

i , 1 ≤ i < k
as follows:

• if j < k − 1,ψ j
k−1 is obtained fromψk−1 by replacing [ψk]Tk with [ψk]Tk ∧ αk−1

• if j = k − 1,ψ j
k−1 is obtained fromψk−1 by replacing [ψk]Tk with [ψk]Tk ∧ βk−1

• for j < i < k − 1,ψ j
i is obtained fromψi by replacing [ψ j

i+1]Ti+1 with [ψ
j
i+1]Ti+1 ∧ αi

• ψ j
j is obtained fromψj by replacing [ψ j

j+1]Tj+1 with [ψ
j
j+1]Tj+1 ∧ βj

• for 1 ≤ i < j,ψ j
i is obtained fromψi by replacing [ψi+1]Ti+1 with [ψ

j
i+1]Ti+1 .

Finally, ξ j = [ψ j
1]T1 . The formula ξ2 is constructed along similar lines. This completes the case

(φ1 UT φ2).
Consider now the case when the formula of maximum rank is a proposition (p,σ) ∈ PΣ, where

p ∈ PT and σ ∈ ΣobsT . There are several cases:

• (p,σ) occurs in [ψ]T . Then (p,σ) is replaced with p ∧ σ .
• (p,σ) occurs in [ψ]T̄ where T̄ , T and T̄ is not a child or parent of T . Then (p,σ) is replaced
with false.

• (p,σ) occurs in [ψT ′]T ′ for some parent T ′ of T . If σ ∈ ΣT then (p,σ) is replaced with false in
ψT ′ . If σ = σoT then (p,σ) is replaced by [p]T . If σ = σ cT , we use the past temporal operator S
whose semantics is symmetric to U. This can be simulated in LTL, again as a consequence of
Kamp’s Theorem [41]. The proposition (p,σ) is replaced inψT ′ by σ cT ∧((¬σoT) S [F(σ cT ∧p)]T)

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :55

• (p,σ) occurs in [ψT ′]T ′ for some child T ′ of T . Let [ψT]T be the parent of [ψT ′]T ′ in Tree(ξ).
As above, if σ ∈ ΣT then (p,σ) is replaced with false inψT ′ . If σ = σoT ′ , there are two cases:
(1) p holds in T when the call to T ′ generating the run on which ψT ′ is evaluated is made,
and (2) the above is false. Thus,ψT is replaced byψ 1

T ∨ψ 2
T whereψ 1

T corresponds to (1) and
ψ 2
T to (2). Specifically:

– ψ 1
T is obtained fromψT by replacing [ψT ′]T ′ with p ∧ [ψ 1

T ′]T ′ , whereψ 1
T ′ is obtained from

ψT ′ by replacing (p,σoT ′) with σoT ′
– ψ 2

T is obtained fromψT by replacing [ψT ′]T ′ with ¬p ∧ [ψ 2
T ′]T ′ whereψ 2

T ′ is obtained from
ψT ′ by replacing (p,σoT ′) with false.

Now suppose σ = σ cT ′ . Again, there are two cases: (1) if T ′ returns then p holds in the run of
T when T ′ returns, and (2) this is false. The two cases are treated similarly to the above.

This concludes the proof of the lemma. □

Theorem 27 now follows. Let φf be an interleaving-invariant LTL-FO formula over Γ. By Lemma
69, we can assume that φ is in local-LTL and in particular uses the set of propositions PΣ. By Lemma
70, there exists an HLTL formula ξ equivalent to φ over ω-words inH(Γ), using propositions in
P ∪ Σ. Moreover, by construction, each sub-formula [ψ]T of ξ uses only propositions in PT ∪ ΣobsT .
It is easily seen that ξf is a well-formed HLTL-FO formula equivalent to φf on all runs of Γ.

B RESTRICTIONS AND UNDECIDABILITY

We provide a proof of Theorem 28 for relaxing restriction (2). Recall that HAS(2) allows subtasks of
a given task to overwrite non-null ID variables. The same proof idea can be used for restrictions (1)
to (7).

Proof. We show undecidability by reduction from the Post Correspondence Problem (PCP)
[54, 57]. Given an instance P = {(ai ,bi)}1≤i≤k of PCP, where each (ai ,bi) is a pair of non-empty
strings over {0, 1}, we show how to construct a HAS(2) Γ and HLTL-FO formula φf such that there
is a solution to P iff there exists a run of Γ satisfying φf (i.e., Γ ̸ |= ¬φf).

The database schema of Γ contains a single relation

G(id, next, label)

where next is a foreign-key attribute referencing attribute id and label is a non-key attribute. Let
α , β be distinct id values in G. A path in G from α to β is a sequence of IDs i0, . . . , in in G where
α = i0, β = in , and for each j, 0 ≤ j < n, i j+1 = i j .next. It is easy to see that there is at most one
path from α to β for which i j , α , β for 0 < j < n, and the path must be simple (i0, i1, . . . , in are
distinct). If such a path exists, we denote byw(α , β) the sequence of labels i0.label, . . . , in .label
(a word over {0, 1}, assuming the values of label are 0 or 1). Intuitively, Γ and φf do the following
given database G:

(1) non-deterministically pick two distinct ids α , β in G

(2) check that there exists a simple path from α to β and that w(α , β) witnesses a solution to
P ; the uniqueness of the simple path from α to β is essential to ensure that w(α , β) is well
defined.

, Vol. 1, No. 1, Article . Publication date: May 2018.

:56

Step 2 requires simultaneously parsingw(α , β) as as1 . . . asm and bs1 . . .bsm for some si ∈ [1,k], 1 ≤
i ≤ m, by synchronously walking the path from α to β with two pointers Pa and Pb . More precisely,
Pa and Pb are initialized to α . Then repeatedly, an index sj ∈ [1,k] is picked non-deterministically,
and Pa advances |asj | steps to a new position P ′a , such that the sequence of labels along the path
from Pa to P ′a is asj and no id along the path equals α or β . Similarly, Pb advances |bsj | steps to
a new position P ′b , such that the sequence of labels along the path from Pb to P ′b is bsj and no id
along the path equals α or β . This step repeats until Pa and Pb simultaneously reach β (if ever). The
property φf checks that eventually Pa = Pb = β , sow(α , β) witnesses a solution to P .

In more detail, we use two tasks Tp and Tc where Tc is a child task of Tp (see Figure 15).

start end Pa PbTp:

Tc: start end Pa Pb Pa’ Pb’

Fig. 15. Undecidability for HAS(2).

Task Tp has two input variables start, end (initialized to distinct ids α and β by the global precondi-
tion), and two artifact variables Pa and Pb (holding the two pointers). Tp also has a binary artifact
relation S whose set variables are (Pa , Pb). At each segment of Tp , the subtask Tc is called with
(Pa , Pb , start, end) passed as input. Then an internal service of Tc computes P ′a and P ′b , such that
Pa , P

′
a , Pb and P ′b satisfy the condition stated above for some sj ∈ [1,k]. Then Tc closes and returns

P ′a and P ′b toTp , overwriting Pa and Pb (note that this is only possible because restriction (2) is lifted).
At this point we would like to call Tc again, but multiple calls to a subtasks are disallowed between
internal transitions. To circumvent this, we equipTp with an internal service that simply propagates
(Pa , Pb , start, end). The variables start, end are automatically propagated as input variables of Tp .
Propagating (Pa , Pb) is done by inserting it into S and retrieving it in the next configuration (so
δ = {+S(Pa , Pb),−S(Pa , Pb)}). Now we are allowed to call again Tc , as desired.

It can be shown that there exists a solution to P iff there exists a run of the above system that
reaches a configuration in which Pa = Pb = end. This can be detected by a second internal service
success of Tp with pre-condition Pa = Pb = end. Thus, the HLTL-FO property φf is simply [F
(success)]Tp . Note that this is in fact an HLTL formula. Thus, checking HLTL-FO (and indeed HLTL)
properties of HAS(2) systems is undecidable. □

C COMPLEXITY OF VERIFICATIONWITHOUT ARITHMETIC

Let Γ be a HAS and φf an HLTL-FO formula over Γ. Recall the VASS V(T , β) constructed for
each task T and assignment β to ΦT . According to the discussion of the complexity of verification
in Section 5, checking whether Γ ̸ |= φf can be done in O(h logn · 2c ·d log(d)) nondeterministic
space, where c is a constant, h is the depth ofH , and n,d bound the number of states, resp. vector
dimensions ofV(T , β) for all T and β . We will estimate these bounds using the maximum number
of T -isomorphism types, denotedM , and the maximum number of TS-isomorphism types, denoted
D. We also denote by N the size of (Γ,φf). To complete the analysis, the specific boundsM and D
will be computed for acyclic, linear-cyclic, and cyclic schemas, as well as with and without artifact
relations.

By our construction, the vector dimension of eachV(T , β) is the number of TS-isomorphism
types, so bounded by D. The number of states is at most the product of the number of distinct

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :57

T -isomorphism types, the number states in B(T , β), the number of all possible ō and the number of
possible states of c̄ib . And since the number of Tc -isomorphism types is no more than the number
ofT -isomorphism types ifTc is child ofT , the number of all possible ō is at most (3+M) |child(T) | ≤
(3+M)N . Note that the number of states in B(T , β) is at most exponential in the size of the HLTL-FO
property φf (extending the classical construction [65]). Thus, n = M · 2O (N) · (3 +M)N · 2D bounds
the number of states of allV(T , β). It follows thatO(h logn · 2c ·d log(d)) = O(h ·N · logM · 2c ·D ·logD),
yielding the complexity of checking Γ ̸ |= φf . Thus, checking whether Γ |= φf can be done in
O(h2 · N 2 log2M · 2c ·D logD) deterministic space by Savitch’s Theorem [57], for some constant c .

For artifact systems with no artifact relation, the bounds degrade to O(h · N logM) and O(h2 ·
N 2 log2M).
The number of T - and TS-isomorphism types depends on the type of the schema DB of Γ, as

described next. In our analysis, we denote by r the number of relations in DB and a the maximum
arity of relations in DB. We also let k = maxT ∈H |x̄T |, s = maxT ∈H |s̄T | and h be the height ofH .

Acyclic schema. if DB is acyclic, then the length of each expression in the navigation set is
bounded by the number of relations in DB. So the size of the navigation set of eachT -isomorphism
type is at most ark . The total number ofT -isomorphism types is at most the product of the number
of possible navigation sets and the number of possible equality types. SoM = (r + 1)k · (ark)ar k is
a bound for the number of T -isomorphism types for every T .

For TS-isomorphism types, we note that within the same path inV(T , β), all TS-isomorphism
types have the same projections on x̄Tin since the input variables are unchanged throughout a local
symbolic run. So within each query of (repeated) reachability, each TS-isomorphism type can be
represented by (1) the equality connections from expressions starting with x ∈ x̄Tin to expressions
starting with x ∈ s̄T and (2) the equality connections within expressions starting with x ∈ s̄T .
For (1), the total number of all possible connections is at most M1

M2 where M1 is the number of
expressions starting with x ∈ x̄Tin andM2 is the number of expressions starting with x ∈ s̄T . For (2),
the total number of all possible connections is at mostMM2

2 . Note thatM1 ≤ ark andM2 ≤ ar s . So
the total number ofTS-isomorphism type is at mostD = (r +1)s · (ark ·ar s)ar s = (r +1)s · (a2rk ·s)ar s .
So for DB of fixed size and ST of fixed arity, the number of T -isomorphism type is exponential in k
and the number of TS-isomorphism type is polynomial in k .

By substituting the above values ofM and D in the space boundO(h2 · N 2 log2M · 2c ·D logD), we
obtain:

Theorem 71. For HAS Γ with acyclic schema and HLTL-FO property φf over Γ, Γ |= φf can be
checked in O(exp(N c1)) deterministic space, where c1 = O(ar log r s). If Γ does not contain artifact
relations, then Γ |= φf can be checked in c2 · NO (1) deterministic space, where c2 = O(a2r log2 ar).

Note that if DB is a Star schema [42, 64], which is a special case of acyclic schema, then the size
of the navigation set is at most ark instead of ark . So verification has the complexities stated in
Theorem 71, with constants c1 = O(ars) and c2 = O(ar 2 log2 ar) respectively.

Note that with the simulation used in Lemma 68, the number of variables is at most quadratic in
the original number of variables. This only affects the constants in the above complexities.

Linearly-cyclic schema. Consider the case where DB is linearly cyclic. To bound the number
of T - and TS-isomorphism types, it is sufficient to bound h(T), which equals to 1 + k · F (δ) where
δ = maxTc ∈child (T){h(Tc)} if T is a non-leaf task and δ = 1 if T is a leaf. And recall that F (δ) is the

, Vol. 1, No. 1, Article . Publication date: May 2018.

:58

maximum number of distinct paths of length at most δ starting from any relation in the foreign
key graph FK. If DB is linearly cyclic, then by definition, the graph of cycles in FK form an acyclic
graph G (each node in G is a cycle in the FK graph and there is an edge from cycle u to cycle v iff
there is an edge from some node in u to some node in v in FK).

Consider each path P of length at most δ in FK. P can be decomposed into a list of subsequences
of nodes, where each subsequence consists of nodes within the same cycle in FK (as shown in
Figure 16).

...

Fig. 16. A path in a Linearly-Cyclic Foreign Key graph.

So F (δ) can be bounded by the product of (1) the number of distinct paths inG starting from any
cycle and (2) the maximum number distinct paths of length at most δ formed using subsequences
of nodes from cycles within the same path inG . It is easy to see that (1) is at most ar . And since the
length of a path in G is at most r , (2) is at most δ r . Thus F (δ) is bounded by ar · δ r = (a · δ)r .

So if DB is linearly cyclic, then h(T) is bounded by 1 + ark if T is a leaf task and h(T) is bounded
by 1+ (a · δ)r ·k ifT is non-leaf task where δ = maxTc ∈child(T){h(Tc)}. By solving the recursion, for
every task T , we have that h(T) ≤ c · (a · k)r ·h for some constant c . So the size of the navigation set
of each T -isomorphism type is at most c · (a · k)r (h+1). Thus the number of T - and TS-isomorphism
types are bounded by (r + 1)k · (c · (a · k)r (h+1))c ·(a ·k)r (h+1) . By an analysis similar to that for acyclic
schemas, we can show that

Theorem 72. For HAS Γ with linearly-cyclic schema and HLTL-FO property φf over Γ, Γ |= φf
can be checked in O(2- exp(N c1 ·h)) deterministic space where c1 = O(r). If Γ does not contain artifact
relations, then Γ |= φf can be checked in O(N c2 ·h) deterministic space where c2 = O(r).

Cyclic schema. If DB is cyclic, then each relation in FK has at most a outgoing edges so F (δ) is
bounded by aδ . So h(T) = O(k · aδ) where δ = 1 if T is a leaf task and δ = maxTc ∈child(T) h(Tc)
otherwise. Solving the recursion yields h(T) = h- exp(O(N)). By pursuing the analysis similarly to
the above, we obtain the following:

Theorem 73. For HAS Γ with cyclic schema and HLTL-FO property φf over Γ, Γ |= φf can be
checked in (h + 2)- exp(O(N)) deterministic space. If Γ does not contain artifact relations, then Γ |= φf
can be checked in h- exp(O(N)) deterministic space.

To summarize, the schema type determines the size of the navigation set, and hence the complexity
of verification, as follows (h the height of the task hierarchy and N the size of (Γ,φf)).

• Acyclic schemas are the least general, yet sufficiently expressive for many applications. A
special case of acyclic schema is the Star schema [42, 64] (or Snowflake schema) which is
widely used in modeling business process data. For fixed acyclic schemas, the navigation sets
have constant depth.

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :59

• Linearly-cyclic schemas extend acyclic schemas but yield higher complexity. In general, the
size of the navigation set is exponential in h and polynomial in N . Linearly-cyclic schemas
allow very simple cyclic foreign key relations such as a single Employee-Manager relation.
They include important special cases such as schemas where each relation has at most one
foreign key attribute.
• Cyclic schemas allow arbitrary foreign keys but also come with much higher complexity (a
tower of exponentials of height h), as the size of navigation sets become hyper-exponential
wrt h.

D VERIFICATIONWITH ARITHMETIC

We next outline the technical details for verification with arithmetic, starting with a review of
quantifier elimination and real algebraic geometry.

D.1 Review ofQuantifier Elimination

The quantifier elimination (QE) problem for the reals can be stated as follows.
Definition 74. For real variables Y = {yi }1≤i≤l and a formula Φ(Y) of the form (Q1x1) . . . (Qkxk)

F (y1 . . .yl ,x1 . . . xk) whereQi ∈ {∃,∀} and F (y1 . . .yl ,x1 . . . xk) is a Boolean combination of polyno-
mial inequalities with integer coefficients, the quantifier elimination problem is to output a quantifier-
free formula Ψ(Y) such that for every Y ∈ Rl , Φ(Y) is true iff Ψ(Y) is true.

The best known algorithm for solving the QE problem for the reals has time and space complexity
doubly-exponential in the number of quantifier alternations and singly-exponential in the number
of variables. When applying QE in verification of HAS, we are only interested in formulas that are
existentially quantified. According to Algorithm 14.6 of [5], the result for this special case can be
stated as follows:

Theorem 75. For existentially quantified formula Φ(Y), an equivalent quantifier-free formula Ψ(Y)
can be computed in time and space (s · d)O (k)O (l), where s is the number of polynomials in Φ, d is the
maximum degree of the polynomials, k is the quantifier rank of Φ and l = |Y |.

Note that in the special case when l = 0, quantifier elimination simply checks satisfiability. Thus
we have:

Corollary 76. Satisfiability over the reals of a Boolean combination Φ of polynomial inequalities
with integer coefficients can be decided in time and space (s ·d)O (k), where s is the number of polynomials
in Φ, d is the maximum degree of the polynomials, and k is the number of variables in Φ.

Also in Section 14.3 of [5], it is shown that if the bit-size of coefficients in Φ is bounded by τ ,
then the bit-size of coefficients in Ψ is bounded by τ · dO (k)O (l).

D.2 Review of General Real Algebraic Geometry

We next review a classic result in general real algebraic geometry.
Definition 77. For a given set of polynomials P = {P1, . . . , Ps } over k variables {xi }1≤i≤k , a

sign condition of P is a mapping σ : P 7→ {−1, 0,+1}. We denote by κ(σ ,P) the semialgebraic set
{x |x ∈ Rk , siдn(P(x)) = σ (P),∀P ∈ P}7 called the cell of the sign condition σ for P.
7The sign function siдn(x) equals −1 if x < 0, 0 if x = 0 and 1 if x > 0.

, Vol. 1, No. 1, Article . Publication date: May 2018.

:60

We use the following result from [6, 39]:

Theorem 78. Given a set of polynomials P with integer coefficients over k variables {xi }1≤i≤k ,
the number of distinct non-empty cells, namely #{σ : P 7→ {−1, 0,+1} |κ(σ ,P) , ∅}, is at most
(s · d)O (k), where s = |P | and d is the maximum degree of polynomials in P.

Given a set of polynomials P, we can use the following naive approach to compute the set of sign
conditions resulting in non-empty cells. We simply enumerate sign conditions of P and discard sign
conditions that results in empty cells or cells equivalent to any recorded sign conditions known to
be non-empty. Checking whether a cell is empty and checking whether two cells are equivalent
can be reduced to checking satisfiability of a formula of polynomial inequalities. By Corollary 76,
this naive approach takes space (s · d)O (k).

Theorem 79. Given a set of polynomials P over {xi }1≤i≤k , the set of non-empty cells {σ : P 7→
{−1, 0,+1} | κ(σ ,P) , ∅} defined by P can be computed in space (s · d)O (k) where s = |P | and d is
the maximum degree of polynomials in P.

D.3 Cells for Verification

Intuitively, in order to handle arithmetic in our verification framework, we need to extend each
isomorphism type τ with a set of polynomial inequality constraints over the set of numeric
expressions in the extended navigation set E+T .

We say that an expression e is numeric if e = x for some numeric variable x or e = xR .w and the
last attribute ofw is numeric. For each taskT , we denote by ETR the set of numeric expressions ofT
where for each xR .w ∈ ETR , |w | ≤ h(T).

The constraints over the numeric expressions are represented by a non-empty cell κ (formally
defined below). When a service is applied, the arithmetic parts of the conditions are evaluated
against κ. And for every transition I

σ ′−→ I ′ where κ,κ ′ are the cells of I , I ′ respectively, if any
variables are modified by the transition, then the projection of κ ′ onto the preserved numeric
expressions has to refine the projection of κ onto the preserved numeric expressions. Similar
compatibility checks are required when a child task returns to its parent.

We introduce some more notation. For everyT ∈ H , we consider polynomials in the polynomial
ring Z[ETR]. For each polynomial P , we denote by var (P) the set of numeric expressions mentioned
in P and for a set of polynomials P, we denote by var (P) the set ⋃P ∈P var (P). For P ⊂ Z[ETR]
and E ⊆ ETR , we denote by P|E the set of polynomials {P |P ∈ P,var (P) ⊆ E}.
We next define the cells used in our verification algorithm. At task T , for a set of numeric

expressions E ⊆ ETR and a set of polynomials P where var (P) ⊆ E, we define the cells over (E,P)
as follows.

Definition 80. A cell κ over (E,P) is a subset of R |E | for which there exists a sign condition σ of
P such that κ = κ(σ ,P).

For P ⊂ Z[ETR], we denote by K(P, E) the set of cells over (E,P|E). Namely, K(P, E) =
{κ(σ ,P|E)|σ ∈ P|E 7→ {−1, 0,+1}}. And we denote by K(P) the set of cells⋃E⊆ETR K(P, E).
Compatibility between cells is tested using the notion of refinement. Intuitively, a cell κ refines

another cell κ ′ if κ can be obtained by adding extra numeric expressions and/or constraints to κ ′.
Formally,

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :61

Definition 81. For cell κ over (E,P) and cell κ ′ over (E ′,P ′) where κ = κ(σ ,P) and κ ′ =
κ(σ ′,P ′), we say that κ refines κ ′, denoted by κ ⊑ κ ′, if E ′ ⊆ E, P ′ ⊆ P and σ |P ′ = σ ′. Note that if
E = E ′, then κ ⊑ κ ′ iff κ ⊆ κ ′.

We next define the projection of a cell onto a set of variables. For each cell κ over (E,P) where
E ⊆ ETR and variables x̄ ⊆ x̄T , the projection of κ onto x̄ , denoted by κ |x̄ , is defined to be the
projection of κ onto the expressions E|x̄ where E|x̄ = {e ∈ E|e = xR .w ∨ e = x ,x ∈ x̄}. By the
Tarski-Seidenberg theorem [61], κ |x̄ is a union of disjoint cells. Also, the projections κ |x̄ can be
obtained by quantifier elimination. LetΦ(κ) be the conjunctive formula definingκ using polynomials
in P. Then by treating E|x̄ as the set of free variables, the formula Ψ(κ) obtained by eliminating
E − E|x̄ from Φ(κ) defines κ |x̄ . We denote by proj(κ, x̄) the set of polynomials mentioned in Ψ(κ).
It is easy to see that κ |x̄ is a union of cells over (E|x̄ , proj(κ, x̄)).
The following notation is useful for checking compatibility between a cell and the projection

of another cell: we define that a cell κ refines another cell κ ′ wrt to projection to x̄ , denoted as
κ ⊑x̄ κ ′, if there exists a cell κ̃ ⊆ κ ′ |x̄ such that κ ⊑ κ̃.

Example 82. We illustrate the key notations of cells, projection and refinement in Figure 17. Consider
a task T with only two numeric variables {x ,y} where x is an input variable. Figure 17(a) illustrates
a cell κ1 defined by 3 half-planes L1, L2 and L3, which are polynomial constraints from the task T .
When an internal service of T is applied, the pre-condition is first evaluated against {L1,L2,L3}, then
the value of x is propagated, so the triangular region κ1 is projected to the x-axis and comes the cell
κ2 illustrated in Figure 17(b). Finally, the post-condition is evaluated thus the resulting cell κ3 is a
refinement of κ2 with the additional constraints L4 and L5 from the post-condition.

(a) A cell of {x, y} defined by
half-planes L1, L2 and L3

Project onto {x}

(b) Projecting onto {x} results in
a region defined by a < x < b

L1L2

L3

κ1 κ2

a b

Refine with L4, L5

c3

a b

L4

L5κ3

(c) Refinement of κ2

Fig. 17. Illustration of cells, projection, and refinement

Finally, we introduce notation relative to variable passing between parent task and child task.
For each task T and Tc ∈ child(T), we denote by ETc→T

R the set of numeric expressions {e |e ∈
ETcR , e = x ∨ e = xR .w,x ∈ x̄Tcin ∪ x̄Tcout}. In other words, ETc→T

R is the subset of expressions in
ETcR connected with expressions in ETR by calls/returns of Tc . Let fin , fout be the input and output
mapping betweenT andTc . For each expression e ∈ ETc→T

R , we define eTc→T to be an expression in
ETR as follows. If e = x , then eTc→T = (fin ◦ fout)(x). If e = xR .w , then eTc→T = ((fin ◦ fout)(x))R .w .
For a set of variables E ⊆ ETc→T

R , we define ETc→T to be {eTc→T |e ∈ E}. For a polynomial P over
ETc→T
R where Tc ∈ child(T), we denote by PTc→T the polynomial obtained by replacing in P each

numeric expression e with eTc→T . For a cell κ of Tc where κ = κ(σ ,P) and var (P) ⊆ ETc→T
R for

every P ∈ P, we let κTc→T to be the cell of T which equals κ(σ ′,P ′), where P ′ = {PTc→T |P ∈ P}
and σ ′ is a sign condition over P ′ such that σ ′(PTc→T) = σ (P) for every P ∈ P.

, Vol. 1, No. 1, Article . Publication date: May 2018.

:62

D.4 Hierarchical Cell Decomposition

We now introduce the Hierarchical Cell Decomposition. Intuitively, for each task T , we would like
to compute a set of polynomials P and a set of cells KT such that for each subset E of ETR , the set
of cells over (E,P|E) in KT is a partition of R |E | .

The set of cells KT satisfies the property that for the set of polynomials P mentioned at any
condition of T in the specification Γ and HLTL-FO property φf , each cell κ ∈ KT uniquely defines
the sign condition of P. This allows us to compute the signs of any polynomial in any condition in
the local symbolic runs. In addition, for each pair of cells κ,κ ′ ∈ KT , we require that the projection
of κ and κ ′ to the input variables x̄Tin (and x̄Tin ∪ s̄T) be disjoint or identical. So to check whether
two cells κ and κ ′ of two consecutive symbolic instances in a local symbolic run are compatible
when applying an internal service, we simply need to check whether their projections on x̄Tin are
equal (note that refinement is implied by equality). Finally, for each child task Tc of T , for each cell
κ ∈ KT and κ ′ ∈ KTc , κ uniquely defines the sign condition for the set of polynomials that defines
κ ′ |x̄Tcin and κ ′ |(x̄Tcout ∪ x̄

Tc
in). This reduces to the problem of checking cell refinements when child

tasks are called or return.

The Hierarchical Cell Decomposition is formally defined as follows.

Definition 83. The Hierarchical Cell Decomposition associated to an artifact system H and
property φf is a collection {KT }T ∈H of sets of cells, such that for each T ∈ H , KT = K(P ′T), where
the set of polynomials P ′T is defined as follows. First, let PT consist of the following:

(1) all polynomials mentioned in any condition over x̄T in Γ and the property φf ,

(2) polynomials {e |e ∈ ETR } ∪ {e − e ′ |e, e ′ ∈ ETR }, and

(3) for every Tc ∈ child(T) and subset x̄ ⊆ x̄Tcout, the set of polynomials {PTc→T |P ∈ proj(κ, x̄Tcin ∪
x̄),κ ∈ KTc }.

Next, let Ps
T = PT ∪

⋃
c ∈K(PT) proj(κ, x̄Tin ∪ s̄T). Finally, P ′T = Ps

T ∪
⋃

c ∈K(PsT) proj(κ, x̄
T
in).

Intuitively, whenT is a leaf task, the set of cellsKT is constructed simply from (1) all polynomials
within services of T and the parts of HLTL-FO property φf related T and (2) all possible tests of
equality. When T is a non-leaf task, in addition to (1) and (2), we also need to take into account the
constraints propagated to T from each child task Tc of T , which can be obtained by projecting cells
in KTc onto Tc ’s input/output variables, resulting in the set of polynomials in (3).

The Hierarchical Cell Decomposition satisfies the following property, as desired.

Lemma 84. Let T be a task and P ′T as above. For every pair of cells κ1,κ2 ∈ KT , and x̄ = (x̄Tin ∪ s̄T)
or x̄ = x̄Tin, if κ1 ∈ K(P ′T , E1) and κ2 ∈ K(P ′T , E2) where E1 |x̄ = E2 |x̄ , then κ1 |x̄ and κ2 |x̄ are either
equal or disjoint.

Proof. We prove the lemma for the case when x̄ = x̄Tin. The proof is similar for x̄ = x̄Tin ∪ s̄T .

Let P̃s
T =

⋃
c ∈K(PsT) proj(κ, x̄

T
in). For each cell κ ∈ K(P ′T , E), since P ′T |E = (Ps

T |E) ∪ (P̃s
T |E) as

P ′T = Ps
T ∪ P̃s

T , there exist κ1 ∈ K(Ps
T , E) and κ2 ∈ K(P̃s

T , E) such that κ = κ1 ∩ κ2. Then consider
κ |x̄Tin. Since all polynomials in P̃s

T are over expressions of x̄Tin, we have κ |x̄Tin = (κ1 ∩ κ2)|x̄Tin =
(κ1 |x̄Tin) ∩ κ2. And by definition, proj(κ1, x̄Tin) ⊆ P̃s

T , so κ2 uniquely defines the sign conditions for

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :63

proj(κ1, x̄Tin), which means that either κ2 ∩ κ1 |x̄Tin = ∅ or κ2 ⊆ κ1 |x̄Tin. And as κ2 ∩ κ1 |x̄Tin = κ |x̄Tin is
non-empty, κ |x̄Tin = κ2.

Therefore, for every κ1 ∈ K(P ′T , E1) and κ2 ∈ K(P ′T , E2) where E1 |x̄Tin = E2 |x̄Tin = E, there exist
cells κ̃1, κ̃2 ∈ K(P ′T , E) such that κ1 |x̄Tin = κ̃1 and κ2 |x̄Tin = κ̃2. Since κ̃1 and κ̃2 are either disjoint or
equal, κ1 |x̄Tin and κ2 |x̄Tin are also either disjoint or equal. □

From the above lemma, the following Corollary is obvious:

Corollary 85. For every task T and κ ∈ KT , κ |x̄Tin and κ |(x̄Tin ∪ s̄T) are single cells in KT .

In view of the corollary, we use the notations of single-cell operators (projection, refinement,
etc.) on κ |x̄Tin and κ |(x̄Tin ∪ s̄T) in the rest of our discussion.

To be able to connect with child tasks, we show the following property of KT :

Lemma 86. For all tasksT andTc whereTc ∈ child(T), and every cell κ1 ∈ KT and κ2 ∈ KTc where
κ1 ∈ K(P ′T , E1) and κ2 ∈ K(P ′Tc , E2), for each set of variables x̄ = x̄TTc ↑ ∪ ȳ where ȳ is some subset of
x̄TTc ↓, if E1 |x̄ = (E2)

Tc→T |x̄ , then either (1) κ1 ⊑x̄ (κ2)Tc→T or (2) κ1 |x̄ is disjoint from (κ2)Tc→T |x̄ .

Proof. Denote by P x̄
Tc

the set of polynomials {PTc→T |P ∈ proj(κ, x̄),κ ∈ KTc }. For each cell
κ1 ∈ K(P ′T , E1), there exists κ̃1 ∈ K(P x̄

Tc
, E1) such that κ1 ⊆ κ̃1. For each cell κ2 ∈ K(P ′Tc , E2), as

E1 |x̄ = (E2)Tc→T |x̄ , (κ2)Tc→T |x̄ is a union of cells in K(P x̄
Tc
, E1). So either κ̃1 is disjoint with or

contained in (κ2)Tc→T |x̄ . If κ̃1 and (κ2)Tc→T |x̄ are disjoint, then (κ2)Tc→T |x̄ and κ1 |x̄ are disjoint. If
κ̃1 ⊆ (κ2)Tc→T |x̄ , then we have κ1 ⊑ κ̃1 ⊆ (κ2)Tc→T |x̄ so κ1 ⊑x̄ (κ2)Tc→T . □

D.5 Extended Isomorphism Types

Given the Hierarchical Cell Decomposition {KT }T ∈H , we can extend our notion of isomorphism
type to support arithmetic.

Definition 87. For navigation set ET , equality type ∼τ over E+T and κ ∈ KT , the triple τ = (ET ,∼τ
,κ) is an extended T -isomorphism type if

• (ET ,∼τ) is a T -isomorphism type, and

• κ = κ(σ ,P ′T |(ETR ∩E+T)) for some sign condition σ of P ′T |(ETR ∩E+T) such that for every numeric
expression e, e ′ ∈ E+T , e ∼τ e ′ iff σ (e − e ′) = 0 and e ∼τ 0 iff σ (e) = 0.

For each condition π over x̄T and extended T -isomorphism type τ , τ |= π is defined as follows.
For each polynomial inequality “P ◦ 0” in π where ◦ ∈ {<, >,=}, P ◦ 0 is true iff σ (P) ◦ 0 where σ
is the sign condition of κ. The rest of the semantics is the same as in normal T -isomorphism type.

The projection of an extendedT -isomorphism type τ on x̄Tin and x̄
T
in ∪ s̄T is defined in the obvious

way. For τ = (ET ,∼τ ,κ), we define that τ |x̄ = (ET |x̄ ,∼τ |x̄ ,κ |x̄) for x̄ = x̄Tin or x̄ = x̄Tin ∪ s̄T . The
projection of τ on x̄Tin and x̄

T
in ∪ s̄T up to length k is defined analogously. The projection of every

extended T -isomorphism type on x̄Tin ∪ s̄T is an extended TS-isomorphism type.

To extend the definitions of local symbolic run and symbolic tree of runs, we first replace T -
isomorphism type with extended T -isomorphism type and TS-isomorphism type with extended

, Vol. 1, No. 1, Article . Publication date: May 2018.

:64

TS-isomorphism type in the original definitions. The semantics is extended with the following
rules.

For two symbolic instances I and I ′ where the cell of I is κ and the cell of I ′ is κ ′, I ′ is a valid
successor of I by applying service σ ′ if the following conditions hold in addition to the original
requirements:

• if σ ′ is an internal service, then κ |x̄Tin = κ ′ |x̄Tin.
• if σ ′ is an opening service of Tc ∈ child(T) or closing service of T , then κ = κ ′.
• if σ ′ is a closing service of Tc ∈ child(T), then κ ′ ⊑ κ.

The counters c̄ are updated as in transitions between symbolic instances without arithmetic. Each
dimension of c̄ corresponds to an extended TS-isomorphism type.

For each local symbolic run ρ̃T = (τin ,τout , {(Ii ,σi)}0≤i<γ), the following are additionally satis-
fied:

• κin = κ0 |x̄Tin, where κin is the cell of τin and κ0 is the cell of τ0;
• if τout , ⊥, then κout ⊑x̄Tin∪x̄Tout κγ−1, where κout is the cell of τout and κγ−1 is the cell of τγ−1.

In a symbolic tree of runs Sym, for every two local symbolic runs ρ̃T = (τin ,τout , {(Ii ,σi)}0≤i<γ)
and ρ̃Tc = (τ ′in ,τ ′out , {(I ′i ,σ ′i)}0≤i<γ ′) where Tc ∈ child(T), if ρ̃Tc is connected to ρ̃T by an edge
labeled with index i , then the following conditions must be satisfied in addition to the original
requirements:

• for the cell κi of symbolic instance Ii and the cell κin of τ ′in , κi ⊑ κ
Tc→T
in .

• if ρ̃Tc is a returning local symbolic run, then for the cells κout of τ ′out and κj of Ij where
j is the smallest index such that σj = σ cTc and j > i , we have that κj ⊑x̄null κ

Tc→T
out , where

x̄null = {x |x ∈ x̄TTc ↑,x ∼τj−1 null}.

D.6 Connecting Actual Runs with Symbolic Runs

We next show that the connection between actual runs and symbolic runs established in Theorem
37 still holds for the extended local and symbolic runs. The structure of the proof is the same, so
we only state the necessary modifications needed to handle arithmetic.

D.6.1 From Trees of Local Runs to Symbolic Trees of Runs. Given a tree of local runs Tree, the
construction of a corresponding symbolic tree of runs Sym can be done as follows.We first construct
Sym from Tree without the cells following the construction described in the proof of the only-if
part of Theorem 37. Then for each taskT and symbolic instance I with extended isomorphism type
τ in some local symbolic run of T , let E be the set of numeric expressions in τ and v : E 7→ R the
valuation of E at I . Then the cell κ of I is chosen to be the unique cell in K(P ′T , E) that contains v .
For cells κ and κ ′ of two consecutive symbolic instances I and I ′ where the service that leads to I ′
is σ ′,

• if σ ′ is an internal service, by Lemma 84, as κ |x̄Tin and κ ′ |x̄Tin overlaps, we have κ |x̄Tin = κ ′ |x̄Tin,
• if σ ′ is an opening service, κ = κ ′ is obvious, and
• if σ ′ is a closing service, let E be the numeric expressions of κ and E ′ be the numeric
expressions of κ ′. We have E ⊆ E ′ so P ′T |E ⊆ P ′T |E ′. So κ ′ can be written as κ1 ∩ κ2 where

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :65

κ1 ∈ K(P ′T , E) and κ2 ∈ K(P ′T , E ′ − E). As the values of the preserved numeric expressions
are equal in the two consecutive instances, we have κ1 = c so κ ⊑ κ ′.

Thus, each local symbolic run in Sym is valid. Following a similar analysis, one can verify that
for every two connected local symbolic runs ρ̃T and ρ̃Tc , the conditions for symbolic tree of runs
stated in Appendix D.5 are satisfied due to Lemma 86.

D.6.2 From Symbolic Trees of Runs to Trees of Local Runs. Given a symbolic tree of runs Sym,
we construct the tree of local runs Tree as follows. Recall that in the original proof, for each local
symbolic run ρ̃T , we construct the global isomorphism type Λ of ρ̃T and use Λ to construct the
local run ρT and database instance DT . With arithmetic, the construction of Λ remains unchanged
but we use a different construction for ρT and DT .

To construct ρT and DT , we first define a sequence of mappings {pi }0≤i<γ from the sequence
of cells {κi }0≤i<γ of ρ̃T where each pi is a mapping from E+T ∩ ETR to R and E+T is the extended
navigation set of τi . Note that each pi can be also viewed as a point in κi . The sequence of mappings
{pi }0≤i<γ determines the values of numeric expressions, as we shall see next. For each mapping
p whose domain is the set of numeric expressions E, we denote by p |x̄ the projection of p to
E ∩ (x̄ ∪ {xR .w |x ∈ x̄}). Then {pi }0≤i<γ is constructed as follows:

• First, we pick an arbitrary point (mapping) pin from κin where κin is the cell of the input
isomorphism type of ρ̃T .
• Then, for each equivalence class L of life cycles in ρ̃T , let κL be the cell of the last symbolic
instances in the last dynamic segments of life cycles in L. Pick a mapping pL ∈ κL such
that pL |x̄Tin = pin . Such a mapping always exists because, by Lemma 84, for each 0 ≤ i < γ ,
κi |x̄Tin = κin .
• Next, for each equivalence class S of segments in L, let κS be the cell of the last symbolic
instance in segments in S. Pick a mapping pS from κS such that pS |(x̄Tin∪ s̄T) = pL |(x̄Tin∪ s̄T).
Such a mapping always exists because for each life cycle L ∈ L and Ii in L, κL |(x̄Tin ∪ s̄T) ⊑
κi |(x̄Tin ∪ s̄T).
• Finally, for each segment S = {(Ii ,σi)}a≤i≤b ∈ S, let pb = pS , and for a ≤ i < b, let
pi = pi+1 |x̄ where x̄ = {x |x /τi null} are the preserved variables from Ii to Ii+1. Such
mappings always exist because for each a ≤ i < b, κi+1 ⊑ κi .

For the sequence of mappings {pi }0≤i<γ constructed above, the following is easily shown:

Lemma 88. For all local expressions (i, e) and (i ′, e ′) in the global isomorphism type Λ, where e and
e ′ are numeric, (i, e) ∼ (i ′, e ′) implies that pi (e) = pi′(e ′).

Given the above property, we can construct ρT and DT as follows. We first construct ρT and
DT as in the case without arithmetic. Then for each equivalence class [(i, e)], we replace the value
[(i, e)] in ρT and DT with the value pi (e). It is clear that Lemmas 42 and 51 still hold since the global
equality type in Λ remains unchanged.

To construct the full tree of local runs Tree from the symbolic tree of runs, we perform the above
construction in a top-down manner. For each local symbolic run ρ̃T , we first construct {pi }0≤i<γ
for the root ρ̃T1 of Sym using the above construction. Then recursively for each ρ̃T ∈ Sym and
child ρ̃Tc connected to ρ̃T by an edge labeled with index i , we pick a mapping pin from κin of ρ̃Tc
such that pTc→T

in = pi |x̄TTc ↓. And if ρ̃Tc is a returning run, we pick pout from κout of ρ̃Tc such that

, Vol. 1, No. 1, Article . Publication date: May 2018.

:66

pTc→T
out |x̄null = pj |x̄null where j is index of the corresponding closing service σ cTc at ρ̃T , and x̄null is
defined as above.

We next construct {pi }0≤i<γ of ρ̃Tc similarly to above, except that (1) pin is given, and (2) if ρ̃Tc
is a returning run, then for the equivalence class L of life cycles where Iγ−1 is contained in some
life cycle L ∈ L, we pick pL such that pL |x̄Tcin ∪ x̄Tcout = pout . Then ρTc and DTc are constructed
following the above approach. The tree of local runs Tree is constructed as described in the proof
of Theorem 37. Following the same approach, we can show:

Theorem 89. For every HAS Γ and HLTL-FO property φf with arithmetic, there exists a symbolic
tree of runs Sym accepted by Bφ iff there exists a tree of local runs Tree and database D such that
Tree is accepted by Bφ on D.

D.7 Complexity of Verification with Arithmetic

Similarly to the analysis in Appendix C, it is sufficient to upper-bound the number of T -and TS-
isomorphism types. To do so, we need to bound the size of {KT }T ∈H . By the construction of each
KT and by Theorem 78, it is sufficient to bound the size of each P ′T .

We denote by l the number of numeric expressions, s the number of polynomials in Γ and φf , d
the maximum degree of these polynomials, t the maximum bitsize of the coefficients, and h the
height of the task hierarchyH . For each task T , we denote by s(T) the number of polynomials in
P ′T and d(T) the maximum degree of polynomials in P ′T .

If T is a leaf task, then |PT | ≤ s + l2. The number of polynomials in Ps
T is no more than the

product of (1) the number of subsets of ETR , (2) the maximum number of non-empty cells over
(E,PT |E) and (3) the maximum number of polynomials in each proj(κ, x̄Tin ∪ s̄T). By Theorem 75,
the number of polynomials is no more than the running time, which is bounded by ((s + l2) ·d)O (l 2).
Then by Theorem 78, the number of non-empty cells over (E,PT |E) is at most ((s +l2) ·d)O (l). Thus,
|Ps

T | ≤ ((s + l2) ·d)O (l
2). By the same analysis, we obtain that for P ′T , s(T) = |P ′T | ≤ ((s + l2) ·d)O (l

4).
Similarly, d(T) can be upper-bounded by ((s + l2) · d)O (l 4).
Next, if T is a non-leaf task, we denote by s ′ the size of PT and by d ′ the maximum degree of

polynomials in PT . We have that s ′ ≤ (s +l2)+∑Tc ∈child (T) 2
l (s(Tc) ·d(Tc))O (l

2) · (s(Tc) ·d(Tc))O (l) ≤
(s + l2) + (s(Tc) · d(Tc))O (l

2), and d ′ ≤ maxTc ∈child (T)(s(Tc) · d(Tc))O (l
2).

Following the same analysis as above, we have that both s(T) andd(T) are at most ((s ′+l2)·d ′)O (l 4).
By solving the recursion, we obtain that s(T),d(T) ≤ ((s + l2) · d)(c ·l 6)h for some constant c . Then
by Theorem 78, |KT | is at most (s(T) · d(T))O (k). So we have

Lemma 90. For each taskT , the number of cells inKT is at most ((s + l2) ·d)(c ·l 6)h for some constant
c .

The space used by the verification algorithm with arithmetic is no more than the space needed
to pre-compute {KT }T ∈H plus the space for the VASS (repeated) reachability for each task T . By
Theorem 79, for each task T , the set KT can be computed in space O

(
((s + l2) · d)(c ·l 6)h

)
.

For VASS (repeated) reachability, according to the analysis in Appendix C, state (repeated)
reachability can be computed in O(h2 · N 2 log2M · 2c ·D logD) space (O(h2 · N 2 log2M) w/o. artifact

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :67

relation), where h is the height of H , N is the size of (Γ,φf), M is the number of extended T -
isomorphism types and D is the number of extended TS-isomorphism types. With arithmetic,M
and D are the products of number of normal T -and TS-isomorphism types multiplied by |KT |
respectively. As l is less than the number of expressions whose upper bounds are obtained in
Appendix C, by applying Lemma 90, we obtain upper bounds forM and D for the different types of
schema.

By substituting the bounds forM and D, we have the following results. Note that for Γ without
artifact relations, the complexity is dominated by the space for pre-computing {KT }T ∈H .

Theorem 91. Let Γ be a HAS with acyclic schema and φf an HLTL-FO property over Γ, where
arithmetic is allowed in Γ and φf . Γ |= φf can be verified in 2- exp(NO (h+r)) deterministic space. If Γ
does not contain artifact relation, then Γ |= φf can be verified in exp(NO (h+r)) deterministic space.

Theorem 92. Let Γ be a HAS with linearly-cyclic schema and φf an HLTL-FO property over Γ,
where arithmetic is allowed in Γ andφf . Γ |= φf can be verified inO(2- exp(N c1 ·h2)) deterministic space,
where c1 = O(r). If Γ does not contain artifact relation, then Γ |= φf can be verified in O(exp(N c2 ·h2))
deterministic space, where c2 = O(r).

Theorem 93. Let Γ be a HAS with cyclic schema and φf an HLTL-FO property over Γ, where
arithmetic is allowed in Γ and φf . Γ |= φf can be verified in (h + 2)- exp(O(N)) deterministic space. If
Γ does not contain artifact relation, then Γ |= φf can be verified in (h + 1)- exp(O(N)) deterministic
space.

, Vol. 1, No. 1, Article . Publication date: May 2018.

:68

Table 3. Symbols for HAS and HLTL-FO.

DB database schema of a HAS
x̄T artifact variables of task T

x̄Tin / x̄
T
out input/output variables of task T

x̄TTc ↑ / x̄
T
Tc ↓ variables of task T passed to Tc / returned from Tc

x̄Tid / x̄TR ID/numeric variables of task T

ST artifact relations of task T
sT variables of task T for updating ST
H task hierarchy
child(T) set of children of task T
desc(T) set of descendants of task T (excluding T)
desc∗(T) set of descendants of task T (including T)
SH artifact relations of all tasks inH
stg stage mapping from tasks to {init, active, closed}
π pre-condition of an internal task
ψ post-condition of an internal task
δ update of an internal task
σoT opening service of task T
σ cT closing service of task T
ΣT set of internal services of task T
ΣocT ΣT ∪ {σoT ,σ cT }
Σobs
T ΣocT ∪ {σoTc ,σ

c
Tc
| Tc ∈ child(T)}

A artifact schema
C the infinite set of arithmetic relation symbols
Γ HAS
Π global pre-condition of a HAS Γ
I = (ν , S) instance of a task
ρT = (νin ,νout , {(Ii ,σi)}i≥0) local run of task T
Tree tree of local runs
ρ = {(Ii ,σi)}i≥0 global run of a HAS
L(Tree) set of all global runs obtained by linearizing Tree
RunsD (Γ) set of global runs of Γ on a database D
Runs(Γ) set of all global runs of Γ
Bφ Büchi automaton for the LTL formula φ
ω ordinal omega
FO first-order logic
∃FO existential FO
φf HLTL-FO formula over task T1
ΦT the set of all HLTL-FO subformulas of φf over task T
B(T ,η) the Büchi automaton constructed from ΦT with adornment η
Bφ the collection of all B(T ,η)

, Vol. 1, No. 1, Article . Publication date: May 2018.

Verification of Hierarchical Artifact Systems :69

Table 4. Symbols for verification without arithmetic.

xR .w navigation expression starting from x with a pathw
ET set of navigation expressions via foreign keys of task T
E+T extended navigation set (i.e. ET ∪ x̄T {0, null})
∼τ equality type over E+T
τ T -isomorphism type
I = (τ , c̄) symbolic instance with counters c̄
ρ̃T = (τin ,τout , {(Ii ,σi)}0≤i<γ) local symbolic run of task T
τ̂ TS-isomorphism type
TSib set of input-bound TS-isomorphism type
x̄Tconst subsequence of x̄T that stay unchanged within a transition
Sym symbolic tree of runs
ν∗(e) value of expression e in valuation ν of x̄T
I+ / I− sets of inserting/retrieving symbolic instances
S = {(Ii ,σi)}a≤i≤b segment
L = {(Ii ,σi)}i ∈J life-cycle
(i, e) local expression
Ei / ∼i local navigation set / local equality type
Λ = (E,∼) global-isomorphism type over local expressions (i.e. (i, e)’s)
[(i, e)]i the equivalence class of (i, e) wrt ∼i
G(∼i) navigation graph of the local equality type ∼i
Reachi (x ,w) the unique node of G(∼i) reachable from [(i,x)]i with pathw
S1 ≡ S2 equivalence of two segments S1 and S2
L1 ≡ L2 equivalence of two life cycles L1 and L2
dyn(L) the sequence of dynamic segments of life cycle L
sp(L) the timespan of a life cycle L
VASS vector addition system with states
RT reachability relation with input/output of task T
V(T , β) VASS constructed from task T and truth assignment β to ΦT

(τi ,σi ,qi , ōi , c̄iib)
state ofV(T , β) consisting of a T -isomorphism type,
a service, a Büchi automaton state, stages of child tasks,
and counters for input-bound TS-isomorphism types

, Vol. 1, No. 1, Article . Publication date: May 2018.

:70

Table 5. Symbols for verification with arithmetic.

Z[ETR] polynomial ring over the set of numeric expressions of T
P polynomial
P set of polynomials
σ sign condition
κ cell
κ(σ ,P) cell defined by sign condition σ over the set of polynomials P
K(P, E) set of cells over (E,P|E)
proj(κ, x̄) the set of polynomials in the projection of κ onto x̄
κ ⊑ κ ′ refinement of cells
κ ⊑x̄ κ ′ refinement of cells wrt the projection onto variables x̄

(·)Tc→T renaming of expressions / variables / polynomials
/ cells from a child task to its parent

{KT }T ∈H Hierarchical Cell Decomposition (HCD)
τ = (ET ,∼τ ,κ) extended isomorphism type

, Vol. 1, No. 1, Article . Publication date: May 2018.

	Abstract
	1 Introduction
	2 Framework
	2.1 Syntax of HAS
	2.2 Semantics of HAS

	3 Hierarchical LTL-FO
	4 Restrictions and Undecidability
	5 Verification Without Arithmetic
	5.1 Symbolic Representation
	5.2 Only-if: from actual runs to symbolic runs
	5.3 If part: from symbolic runs to actual runs
	5.4 Handling finite local symbolic runs
	5.5 Handling infinite local symbolic runs
	5.6 Handling symbolic trees of runs
	5.7 Symbolic Verification

	6 Verification with Arithmetic
	7 Related Work
	8 Conclusion
	References
	A Framework and HLTL-FO
	A.1 Review of LTL
	A.2 Proof of Theorem 20
	A.3 Simplifications
	A.4 Proof of Theorem 27

	B Restrictions and Undecidability
	C Complexity of Verification without Arithmetic
	D Verification with Arithmetic
	D.1 Review of Quantifier Elimination
	D.2 Review of General Real Algebraic Geometry
	D.3 Cells for Verification
	D.4 Hierarchical Cell Decomposition
	D.5 Extended Isomorphism Types
	D.6 Connecting Actual Runs with Symbolic Runs
	D.7 Complexity of Verification with Arithmetic

