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Domain Example Systems

Key-Value Stores Dynamo, Cassandra, Corfu/Replex, Unispace

Data Processing MapReduce, Spark, Naiad, Stratosphere, TensorFlow

Lambda/Actor Orleans, Xenon, Akka.NET, OpenLambda

Other Acute, J-Orchestra, BreakApp

Tab. 1: TCP-irst distributed systems. The use of TCP is the default

łgo-tož in virtually all distributed systems, coming from both academia and

industry. It comes as no surprise that the vast majority of łcloudž datacenter

traic (more than 99.9% [2]) is TCP (Cf.ğ1).

Towards this goal we introduce libTMC, a prototype of
TMC as a user-space library. The libTMC library lets devel-
opers deine channels with custom features using simple,
high-level conigurations. Under the hood, libTMC realizes
a coniguration by composing channel primitives that im-
plement the features individually. These primitives can be
implemented in user-space (as done in the current prototype)
to support deployment without any changes to application
logic, language runtimes, operating systems, or the underly-
ing network. In future work, specialized primitives could be
implemented to leverage emerging technologies, such as pro-
grammable network fabrics [24], for improved performance.

In summary, this paper motivates communication (re-)con-
igurability as a irst-class concern for distributed systems in
today’s networks. It (i) identiies that the need for specialized
communication channels in distributed systems is real and
pressing (Sec. 2); (ii) sketches a deployable and extensible
solution (Sec. 3); and (iii) discusses its potential beneits and
limitations (Sec. 3.4).

2 MOTIVATION

This section motivates customized network stacks for dat-
acenter applications. We focus on three features that TMC
supports: multicast, message ordering, and replication. We
highlight the mismatch between distributed system needs
and what TCP or UDP provide (summarized in Tab. 2).

State machine synchronization: Many distributed sys-
tems need to maintain consistent replicated state across
many nodes, e.g., for coniguration [15] or routing databases [20].
Assuming their application code is deterministic, nodes can
maintain consistency using algorithms such as Paxos [21].
Those algorithms’ performance is largely dependent on the

Tab. 2: Abstraction mismatch Channel features needed by distributed

systems, compared with those provided by TCP and UDP (Cf.ğ2).

Distributed system task Transport

State Distributed Replicated
synchronization messaging computation TCP UDP

Multicast ✓ ✓ ✓ ✗ ✓

Ordering (partial) ✗ ✓ ✓ ✗

Reliability ✗ ✓ ✓ ✓ ✗

underlying network, and the amount of round trips they
have to make to reach consensus. Lower overheads can be ob-
tained when messages use a replicated communication chan-
nel with total ordering (either guaranteed [24] or likely [22]).

Neither TCP nor UDP provide ordering to a group of des-
tinations. As a result, several recent works have proposed
to make group ordering a network primitive [24, 30], even
porting stronger versionsÐnamely, atomic broadcastÐ in the
network as well [18]. Additionally, TCP adds overhead to
ensure point-to-point reliability. For state synchronization,
this can be a waste because point-to-point reliability is not a
required channel feature.

To demonstrate those points, we study the case of TAPIR [44],
a distributed transaction system that guarantees strong con-
sistency across transactions. TAPIR builds upon an incon-
sistent replication protocol (IR) to provide its guarantees.
To reach consensus, TAPIR requires at least f + 1 match-
ing answers from the storage replicas. A łreliable transac-
tionž, as understood by TAPIR, is one in which sending a
message results in a new entry in the replica’s log. Point-
to-point reliability in itself does not provide such guarantee.
Figure 2 presents the transaction throughput of TAPIR-KV,
a key-value store built on top of TAPIR, when the network
is experiencing packet losses. We conigure the system with
a single shard made of three replicas, and run a workload
made of 50% GET operations, and 50% PUT.

This experiment is telling: for the baseline, removing non
required features such as reliability yields about 50% better
throughput. Adding the right feature, replication (through
IP multicast), adds another 13% to this gain.
We might assume that point-to-point reliability, as pro-

vided by TCP, would beneit us when the network experi-
ences packet loss. However, when we induce packet loss into
the network, TCP’s performance is still worse than its less
featured counterparts. This is due to the tight coupling be-
tween reliability and congestion control in TCP: as packets
get dropped, congestion windows decrease and allow for less
packets to be sent over the wire.

This small experiment supports our motivation to design
a new abstraction for distributed systems, where the right
network properties can be combined in a way that beneits
the application.

Distributed messaging: Publishśsubscribe (pub/sub) mes-
saging systems are a core component of distributed sys-
tems, including stream/batch processors, load balancers, and
more [9]. Nodes subscribe and publish messages to topics.
Each published message is transmitted to every subscribed
node. In many systems that use pub/sub, nodes are loosely
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1. from libTMC import Channel

2.

3. c = Channel({

4. 'id': '2PC',

5. 'group': '239.0.0.2',

6. 'group ordering': True,

7. })

8.

9. c.send(handshake_msg, {'reliability' : True})

10. c.update({'error checking': True})

11. c.send(beacon_msg)

Listing 1: libTMC Example. The developer imports (1), conigures (3ś7),

and uses (9ś11) libTMC to send messages of varying requirements (Cf.ğ3.1).

not, as is the case for host B, the runtime conigures the chan-
nel to perform this stage in software. Likewise, libTMC also
integrates the semantic knobs from more complex primitives
ofered by the network, such as OUM [24].

TMC allows the integration of several specialized conges-
tion control mechanisms [2, 19]. Congestion and low control
are components of all the channels, but theirmodus operandi

is dependent on the other features with which they are collo-
cated. In our example (ig 3), the application is set to run on a
private cluster whose competing traic is known and under
control. For this reason, the runtime sets up a lightweight
low control scheduling policy that operates before messages
are dispatched to the NIC.

3.1 libTMC API

Channels allow sending and receiving messages, with a
simple, POSIX-inluenced interfaceÐessentially, send and
receive methods. They are conigured programmatically
via manifests, declarative runtime coniguration objects ex-
pressed using a domain-speciic language embedded in the
source language. Manifests can apply to a single message
or the entire communication. By controlling automated gen-
eration of channel parameters, manifests allow developers
to tune several communication trade-ofs without requiring
manual development.

Internally, the libTMC runtime maintains state associated
with each channel. When a node joins a channel, libTMC
associates the node with that channel. Other information
includes acknowledgment and ordering metadata, as well
as various statistics related to its usageÐsuch as latency
information and loss ratios.

We illustrate libTMC’s API with the example code snippet
in listing 1. The snippet is written using Python bindings.
The developer irst imports the libTMC library (line 1) which
exposes a Channel constructor in the current scope. It then
calls the constructor by passing a manifest that declares the
channel properties (lines 3ś7) which returns the object used
to send and receive messages. The channel is required to pro-
vide group ordering tomessages (line 6). For the irst message

(line 9), the semantics of which is application-speciic, the
developer conigures reliable delivery. For the rest of the mes-
sages, the desired semantics is ensuring payload checksum
veriication, expressed by permanently updating the channel
manifest (line 10).

3.2 Channel Coniguration

Table 3 lists preliminary network features supported by
libTMC. These (and other) features are available as plug-
gable modules (Sec. 3.3). We provide more details for a select
subset below.

Multicast: At a minimum, a TMC channel can target mul-
tiple nodes. Every node in the group efectively targets all
other nodes in the group when sending messages. TMC im-
plements naming and iltering mechanisms for lexible group
management at the application-layer. Speciically, message
properties can target a named subset or a fraction of end-
points in a group, such that an application can treat individ-
ual endpoints as they would with point-to-point connections,
while still reasoning about a group of nodes in general.

Point-to-point ordering: TMC channels are ordered if all
messages sent by one node are read by receivers in the same
order as they were sent. When a node joins a channel, a local
base sequence number (epoch) is randomly generated, and
is then used to identify messages sent by the node through
the channel. The process is enforced by the libTMC runtime,
which stamps sent messages and drops those received with
a sequence number smaller than the latest received.

Reliable Delivery: libTMC’s reliable channels allow appli-
cations to ensure delivery of messages through acknowledg-
ments to either all or a subset of the channel’s members.
The channel can be conigured such that acknowledgments
are expected from a subset of hosts designated by name,
or a fraction of the channel’s members. The base reliability
mechanism is composable with low and congestion con-
trol to pace messages retransmission. The library supports
sending windows for channels, similarly to TCP, so that mul-
tiple non-acknowledged packets can be in-light at the same
time. In addition, it drops all duplicate packets and handles
lost ACK messages by re-acknowledging duplicate packets
retransmitted by the sender.

3.3 Ongoing Work

Currently, there are several features of libTMC that areworks
in progress. libTMC needs to facilitate extensibility beyond
the łbuilt-inž presets, acceleration based on features provided
by the underlying network, integration of application con-
textual knowledge, and easy retroit into existing codebases.

Extensibility: libTMC should have the ability to be extended
with capabilities that were not anticipated by its designers. To
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Tab. 3: libTMC channel features. Network features each come with a fundamental trade-of between guarantees and speed (Cf.ğ3.2).

Feature Fundamental trade-of Examples use cases

Multicast Trade ine grained control over one-to-one traic for scalable one-to-many properties Consensus, Gossip

Point-to-point ordering Trade latency for providing a guarantee to the application Zookeeper Atomic broadcast

Group ordering Trade latency for providing a guarantee to the application Distr. transactions

Reliability Trade bandwidth usage and inter-message delay for tolerance to network losses TLS handshake, Distr. locks

Pacing Trade latency for throughput, bandwidth, and reduced network and CPU usage Playout delay bufers

Flow control Trade latency and availability for less packet drops Message scheduling

Congestion control Trade latency for intermediate devices availability Message scheduling

Synchronicity Trade simplicity in application logic for liveliness Event driven APIs

Duplexity Simplex, half and full duplex ofer varying degrees of channel complexity Publish/subscribe systems

solve this, libTMC provides a module manager, libTMC_MM,
that enables the integration of new primitive implementa-
tions. Such implementations are provided through a veriied
repository and, at times, expose a handful of high-level pa-
rameters with their default values. Examples include difer-
ent congestion control algorithms and ordering guarantees.

Hardware Acceleration: libTMC’s prototype comes with
portable user-space implementations of its features, but should
leverage hardware acceleration in the network when avail-
able. We envision a solution where programmable hardware
elements, e.g., smartNICs [33] or switches [37], run line-rate
implementations of most channel primitives [11, 24]. Au-
thorized servers will pre-reserve capacity on these elements
via an extended control-plane interface along the lines of
participatory networking [10]. At runtime, libTMC will tag
packets that need to be processed by the line-rate primitives
and the network will route them through the appropriate
elements.

Application-guided decisions: an important design goal
for TMC is to let applications hint the network stack about
how certain decisions should be done. For instance, the appli-
cation knows how important the delivery of certainmessages
really is: informing the network stack that a set of non ac-
knowledged messages can be forgotten allows for optimized
resource management. Similarly, an application can share
load related information with the network stack, such as the
occupancy of a local event queue, to inluence low control
decisions (a principle whose beneits have been exploited in
recent work [28]). As this paper and several of the works
we build upon have shown, the data center is an ideal envi-
ronment for such co-design, which can yield thousand-fold
performance improvements [18, 24].

Retroit: To simplify deployment, libTMC should require
minimal-to-zero changes to the code of legacy applications.
Using a combination of automated source rewriting, name re-
binding, and runtime relection, a transformation subsystem

can rewire connections to their TMC equivalentsÐrequiring
only the manifest that speciies desired channel properties. 1

3.4 Discussion

This paper introduces TMC early in the project life-cycle,
and is intended to sparkle discussion with the community.
From our experience, the most controversial aspect of

this work is the decision to supply developers with more
knobs. There are two possible criticisms here: (i) develop-
ers do not need more knobs, as they increase the risk of
getting things wrong; (ii) whoever needs true specializa-
tion can build it from scratch. The former misses the point:
distributed-system trade-ofs dwarf the ones of centralized
systems, and thus developers are forced to implement spe-
cialization from scratch, a process that is more error-prone
than expressing high-level annotations. But this concern is
precisely the reason why we went for understandable high-
level properties (e.g., łorderingž) rather than bare protocol
building blocks (e.g., łACKSž). As for the latter, the few com-
panies with unlimited engineering resources will still beneit
from TMC, but long-term theymay be better of handcrafting
specialized protocol stacks from scratch. This work targets
everyone else, from the vast majority of developers not work-
ing for these select few companies, to researchers in the ield
of distributed systems (like us), to designers of novel network
protocols (who can expose their work as a TMC module).

4 RELATED WORK

Prior work on communication specialization can be grouped
into network stack (re)conigurability, protocol specializa-
tion, and kernel bypassing.

Conigurability: Our work can be viewed as revisiting the
need for modular, conigurable stacks [6, 16, 38]. For example,
x-Kernel [16] exposed network services as coarsely compos-
able protocol objects. Horus [38] extended the idea into the
distributed setting, and P2 [6] introduced reconiguration
patterns (e.g., network function reordering and replacement).

1Here we leverage prior work on runtime transformations [39, 40].
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These works modularize network stacks into ine-grained
building blocks and expose them for synthesis from within
the application.With TMC, developers specify intuitive, high-
level properties which the system translates into end-to-end
guarantees. Moreover, TMC properties can be speciied at
the level of individual messages within applications, rather
than entire network stacks.

Protocol Specialization: Several proposals change the se-
mantics or implementation of transport protocols according
to application needs [1, 3, 13, 17, 19, 23]. Examples include
group reliability [3, 32], adaptive changes to TCP’s send
bufer size [13], and congestion window sharing [17]. These
recognize the mismatch between a couple of transport con-
igurations and the space of possible application needs, but
ofer more łpointž solutions. TMC’s goal is a fundamentally
diferent framing of the problemÐthe need for an application-
tunable abstraction that eases the testing, integration and
adoption of novel łpointž solutions as pluggable components.

Kernel Bypassing: Operating system kernel bypassing and
user-space network processing shares our goal of improving
application control [7, 31, 34, 43]Ðin the limit, the entire
network stack can be specialized for the application [25,
26]. Those techniques are fundamentally orthogonal (and
complementary) to TMC and can be used to further reduce
the performance costs for distributed applications (Sec. 3.3).

5 CONCLUSION

Distributed systems are inherently communicating systems.
Developers pay too much by not being able to specialize
communication in distributed applicationsÐmost notably,
in terms of development and performance costs. This paper
proposes a new abstraction, Tunable Multicast Communi-
cation (TMC), that allows developers to easily specify the
channel features that best match their needs. Using TMC,
they can compose features at the granularity of messages
by providing high-level, semantic guidelines. The design al-
lows extensibility beyond the łbuilt-inž presets and further
acceleration based on network capabilities. Our prototype
implementation, libTMC, is in progress.
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