


APNet ’19, August 17–18, 2019, Beijing, China Demoulin and Vasilakis, et al.

Domain Example Systems

Key-Value Stores Dynamo, Cassandra, Corfu/Replex, Unispace

Data Processing MapReduce, Spark, Naiad, Stratosphere, TensorFlow

Lambda/Actor Orleans, Xenon, Akka.NET, OpenLambda

Other Acute, J-Orchestra, BreakApp

Tab. 1: TCP-irst distributed systems. The use of TCP is the default

łgo-tož in virtually all distributed systems, coming from both academia and

industry. It comes as no surprise that the vast majority of łcloudž datacenter

traic (more than 99.9% [2]) is TCP (Cf.ğ1).

Towards this goal we introduce libTMC, a prototype of
TMC as a user-space library. The libTMC library lets devel-
opers deine channels with custom features using simple,
high-level conigurations. Under the hood, libTMC realizes
a coniguration by composing channel primitives that im-
plement the features individually. These primitives can be
implemented in user-space (as done in the current prototype)
to support deployment without any changes to application
logic, language runtimes, operating systems, or the underly-
ing network. In future work, specialized primitives could be
implemented to leverage emerging technologies, such as pro-
grammable network fabrics [24], for improved performance.

In summary, this paper motivates communication (re-)con-
igurability as a irst-class concern for distributed systems in
today’s networks. It (i) identiies that the need for specialized
communication channels in distributed systems is real and
pressing (Sec. 2); (ii) sketches a deployable and extensible
solution (Sec. 3); and (iii) discusses its potential beneits and
limitations (Sec. 3.4).

2 MOTIVATION

This section motivates customized network stacks for dat-
acenter applications. We focus on three features that TMC
supports: multicast, message ordering, and replication. We
highlight the mismatch between distributed system needs
and what TCP or UDP provide (summarized in Tab. 2).

State machine synchronization: Many distributed sys-
tems need to maintain consistent replicated state across
many nodes, e.g., for coniguration [15] or routing databases [20].
Assuming their application code is deterministic, nodes can
maintain consistency using algorithms such as Paxos [21].
Those algorithms’ performance is largely dependent on the

Tab. 2: Abstraction mismatch Channel features needed by distributed

systems, compared with those provided by TCP and UDP (Cf.ğ2).

Distributed system task Transport

State Distributed Replicated
synchronization messaging computation TCP UDP

Multicast ✓ ✓ ✓ ✗ ✓

Ordering (partial) ✗ ✓ ✓ ✗

Reliability ✗ ✓ ✓ ✓ ✗

underlying network, and the amount of round trips they
have to make to reach consensus. Lower overheads can be ob-
tained when messages use a replicated communication chan-
nel with total ordering (either guaranteed [24] or likely [22]).

Neither TCP nor UDP provide ordering to a group of des-
tinations. As a result, several recent works have proposed
to make group ordering a network primitive [24, 30], even
porting stronger versionsÐnamely, atomic broadcastÐ in the
network as well [18]. Additionally, TCP adds overhead to
ensure point-to-point reliability. For state synchronization,
this can be a waste because point-to-point reliability is not a
required channel feature.

To demonstrate those points, we study the case of TAPIR [44],
a distributed transaction system that guarantees strong con-
sistency across transactions. TAPIR builds upon an incon-
sistent replication protocol (IR) to provide its guarantees.
To reach consensus, TAPIR requires at least f + 1 match-
ing answers from the storage replicas. A łreliable transac-
tionž, as understood by TAPIR, is one in which sending a
message results in a new entry in the replica’s log. Point-
to-point reliability in itself does not provide such guarantee.
Figure 2 presents the transaction throughput of TAPIR-KV,
a key-value store built on top of TAPIR, when the network
is experiencing packet losses. We conigure the system with
a single shard made of three replicas, and run a workload
made of 50% GET operations, and 50% PUT.

This experiment is telling: for the baseline, removing non
required features such as reliability yields about 50% better
throughput. Adding the right feature, replication (through
IP multicast), adds another 13% to this gain.
We might assume that point-to-point reliability, as pro-

vided by TCP, would beneit us when the network experi-
ences packet loss. However, when we induce packet loss into
the network, TCP’s performance is still worse than its less
featured counterparts. This is due to the tight coupling be-
tween reliability and congestion control in TCP: as packets
get dropped, congestion windows decrease and allow for less
packets to be sent over the wire.

This small experiment supports our motivation to design
a new abstraction for distributed systems, where the right
network properties can be combined in a way that beneits
the application.

Distributed messaging: Publishśsubscribe (pub/sub) mes-
saging systems are a core component of distributed sys-
tems, including stream/batch processors, load balancers, and
more [9]. Nodes subscribe and publish messages to topics.
Each published message is transmitted to every subscribed
node. In many systems that use pub/sub, nodes are loosely

16





APNet ’19, August 17–18, 2019, Beijing, China Demoulin and Vasilakis, et al.

1. from libTMC import Channel

2.

3. c = Channel({

4. 'id': '2PC',

5. 'group': '239.0.0.2',

6. 'group ordering': True,

7. })

8.

9. c.send(handshake_msg, {'reliability' : True})

10. c.update({'error checking': True})

11. c.send(beacon_msg)

Listing 1: libTMC Example. The developer imports (1), conigures (3ś7),

and uses (9ś11) libTMC to send messages of varying requirements (Cf.ğ3.1).

not, as is the case for host B, the runtime conigures the chan-
nel to perform this stage in software. Likewise, libTMC also
integrates the semantic knobs from more complex primitives
ofered by the network, such as OUM [24].

TMC allows the integration of several specialized conges-
tion control mechanisms [2, 19]. Congestion and low control
are components of all the channels, but theirmodus operandi

is dependent on the other features with which they are collo-
cated. In our example (ig 3), the application is set to run on a
private cluster whose competing traic is known and under
control. For this reason, the runtime sets up a lightweight
low control scheduling policy that operates before messages
are dispatched to the NIC.

3.1 libTMC API

Channels allow sending and receiving messages, with a
simple, POSIX-inluenced interfaceÐessentially, send and
receive methods. They are conigured programmatically
via manifests, declarative runtime coniguration objects ex-
pressed using a domain-speciic language embedded in the
source language. Manifests can apply to a single message
or the entire communication. By controlling automated gen-
eration of channel parameters, manifests allow developers
to tune several communication trade-ofs without requiring
manual development.

Internally, the libTMC runtime maintains state associated
with each channel. When a node joins a channel, libTMC
associates the node with that channel. Other information
includes acknowledgment and ordering metadata, as well
as various statistics related to its usageÐsuch as latency
information and loss ratios.

We illustrate libTMC’s API with the example code snippet
in listing 1. The snippet is written using Python bindings.
The developer irst imports the libTMC library (line 1) which
exposes a Channel constructor in the current scope. It then
calls the constructor by passing a manifest that declares the
channel properties (lines 3ś7) which returns the object used
to send and receive messages. The channel is required to pro-
vide group ordering tomessages (line 6). For the irst message

(line 9), the semantics of which is application-speciic, the
developer conigures reliable delivery. For the rest of the mes-
sages, the desired semantics is ensuring payload checksum
veriication, expressed by permanently updating the channel
manifest (line 10).

3.2 Channel Coniguration

Table 3 lists preliminary network features supported by
libTMC. These (and other) features are available as plug-
gable modules (Sec. 3.3). We provide more details for a select
subset below.

Multicast: At a minimum, a TMC channel can target mul-
tiple nodes. Every node in the group efectively targets all
other nodes in the group when sending messages. TMC im-
plements naming and iltering mechanisms for lexible group
management at the application-layer. Speciically, message
properties can target a named subset or a fraction of end-
points in a group, such that an application can treat individ-
ual endpoints as they would with point-to-point connections,
while still reasoning about a group of nodes in general.

Point-to-point ordering: TMC channels are ordered if all
messages sent by one node are read by receivers in the same
order as they were sent. When a node joins a channel, a local
base sequence number (epoch) is randomly generated, and
is then used to identify messages sent by the node through
the channel. The process is enforced by the libTMC runtime,
which stamps sent messages and drops those received with
a sequence number smaller than the latest received.

Reliable Delivery: libTMC’s reliable channels allow appli-
cations to ensure delivery of messages through acknowledg-
ments to either all or a subset of the channel’s members.
The channel can be conigured such that acknowledgments
are expected from a subset of hosts designated by name,
or a fraction of the channel’s members. The base reliability
mechanism is composable with low and congestion con-
trol to pace messages retransmission. The library supports
sending windows for channels, similarly to TCP, so that mul-
tiple non-acknowledged packets can be in-light at the same
time. In addition, it drops all duplicate packets and handles
lost ACK messages by re-acknowledging duplicate packets
retransmitted by the sender.

3.3 Ongoing Work

Currently, there are several features of libTMC that areworks
in progress. libTMC needs to facilitate extensibility beyond
the łbuilt-inž presets, acceleration based on features provided
by the underlying network, integration of application con-
textual knowledge, and easy retroit into existing codebases.

Extensibility: libTMC should have the ability to be extended
with capabilities that were not anticipated by its designers. To

18



TMC: Pay-as-you-Go Distributed Communication APNet ’19, August 17–18, 2019, Beijing, China

Tab. 3: libTMC channel features. Network features each come with a fundamental trade-of between guarantees and speed (Cf.ğ3.2).

Feature Fundamental trade-of Examples use cases

Multicast Trade ine grained control over one-to-one traic for scalable one-to-many properties Consensus, Gossip

Point-to-point ordering Trade latency for providing a guarantee to the application Zookeeper Atomic broadcast

Group ordering Trade latency for providing a guarantee to the application Distr. transactions

Reliability Trade bandwidth usage and inter-message delay for tolerance to network losses TLS handshake, Distr. locks

Pacing Trade latency for throughput, bandwidth, and reduced network and CPU usage Playout delay bufers

Flow control Trade latency and availability for less packet drops Message scheduling

Congestion control Trade latency for intermediate devices availability Message scheduling

Synchronicity Trade simplicity in application logic for liveliness Event driven APIs

Duplexity Simplex, half and full duplex ofer varying degrees of channel complexity Publish/subscribe systems

solve this, libTMC provides a module manager, libTMC_MM,
that enables the integration of new primitive implementa-
tions. Such implementations are provided through a veriied
repository and, at times, expose a handful of high-level pa-
rameters with their default values. Examples include difer-
ent congestion control algorithms and ordering guarantees.

Hardware Acceleration: libTMC’s prototype comes with
portable user-space implementations of its features, but should
leverage hardware acceleration in the network when avail-
able. We envision a solution where programmable hardware
elements, e.g., smartNICs [33] or switches [37], run line-rate
implementations of most channel primitives [11, 24]. Au-
thorized servers will pre-reserve capacity on these elements
via an extended control-plane interface along the lines of
participatory networking [10]. At runtime, libTMC will tag
packets that need to be processed by the line-rate primitives
and the network will route them through the appropriate
elements.

Application-guided decisions: an important design goal
for TMC is to let applications hint the network stack about
how certain decisions should be done. For instance, the appli-
cation knows how important the delivery of certainmessages
really is: informing the network stack that a set of non ac-
knowledged messages can be forgotten allows for optimized
resource management. Similarly, an application can share
load related information with the network stack, such as the
occupancy of a local event queue, to inluence low control
decisions (a principle whose beneits have been exploited in
recent work [28]). As this paper and several of the works
we build upon have shown, the data center is an ideal envi-
ronment for such co-design, which can yield thousand-fold
performance improvements [18, 24].

Retroit: To simplify deployment, libTMC should require
minimal-to-zero changes to the code of legacy applications.
Using a combination of automated source rewriting, name re-
binding, and runtime relection, a transformation subsystem

can rewire connections to their TMC equivalentsÐrequiring
only the manifest that speciies desired channel properties. 1

3.4 Discussion

This paper introduces TMC early in the project life-cycle,
and is intended to sparkle discussion with the community.
From our experience, the most controversial aspect of

this work is the decision to supply developers with more
knobs. There are two possible criticisms here: (i) develop-
ers do not need more knobs, as they increase the risk of
getting things wrong; (ii) whoever needs true specializa-
tion can build it from scratch. The former misses the point:
distributed-system trade-ofs dwarf the ones of centralized
systems, and thus developers are forced to implement spe-
cialization from scratch, a process that is more error-prone
than expressing high-level annotations. But this concern is
precisely the reason why we went for understandable high-
level properties (e.g., łorderingž) rather than bare protocol
building blocks (e.g., łACKSž). As for the latter, the few com-
panies with unlimited engineering resources will still beneit
from TMC, but long-term theymay be better of handcrafting
specialized protocol stacks from scratch. This work targets
everyone else, from the vast majority of developers not work-
ing for these select few companies, to researchers in the ield
of distributed systems (like us), to designers of novel network
protocols (who can expose their work as a TMC module).

4 RELATED WORK

Prior work on communication specialization can be grouped
into network stack (re)conigurability, protocol specializa-
tion, and kernel bypassing.

Conigurability: Our work can be viewed as revisiting the
need for modular, conigurable stacks [6, 16, 38]. For example,
x-Kernel [16] exposed network services as coarsely compos-
able protocol objects. Horus [38] extended the idea into the
distributed setting, and P2 [6] introduced reconiguration
patterns (e.g., network function reordering and replacement).

1Here we leverage prior work on runtime transformations [39, 40].

19



APNet ’19, August 17–18, 2019, Beijing, China Demoulin and Vasilakis, et al.

These works modularize network stacks into ine-grained
building blocks and expose them for synthesis from within
the application.With TMC, developers specify intuitive, high-
level properties which the system translates into end-to-end
guarantees. Moreover, TMC properties can be speciied at
the level of individual messages within applications, rather
than entire network stacks.

Protocol Specialization: Several proposals change the se-
mantics or implementation of transport protocols according
to application needs [1, 3, 13, 17, 19, 23]. Examples include
group reliability [3, 32], adaptive changes to TCP’s send
bufer size [13], and congestion window sharing [17]. These
recognize the mismatch between a couple of transport con-
igurations and the space of possible application needs, but
ofer more łpointž solutions. TMC’s goal is a fundamentally
diferent framing of the problemÐthe need for an application-
tunable abstraction that eases the testing, integration and
adoption of novel łpointž solutions as pluggable components.

Kernel Bypassing: Operating system kernel bypassing and
user-space network processing shares our goal of improving
application control [7, 31, 34, 43]Ðin the limit, the entire
network stack can be specialized for the application [25,
26]. Those techniques are fundamentally orthogonal (and
complementary) to TMC and can be used to further reduce
the performance costs for distributed applications (Sec. 3.3).

5 CONCLUSION

Distributed systems are inherently communicating systems.
Developers pay too much by not being able to specialize
communication in distributed applicationsÐmost notably,
in terms of development and performance costs. This paper
proposes a new abstraction, Tunable Multicast Communi-
cation (TMC), that allows developers to easily specify the
channel features that best match their needs. Using TMC,
they can compose features at the granularity of messages
by providing high-level, semantic guidelines. The design al-
lows extensibility beyond the łbuilt-inž presets and further
acceleration based on network capabilities. Our prototype
implementation, libTMC, is in progress.

ACKNOWLEDGMENTS
We would like to thank André DeHon, Ben Karel, and the anonymous

reviewers for their helpful feedback. This research was funded in part

by NSF grants CNS-1703936, CNS-1750158, CNS-1513687, CNS-1845749

and CNS-1513679; DARPA contracts HR0011-16-C-0056 and HR0011-17-C-

0047; and ONR N00014-18-1-2557. Any opinions, indings, conclusions, or

recommendations expressed in this material are those of the authors and

do not necessarily relect the views of NSF, DARPA or ONR.

REFERENCES
[1] [n.d.]. SPDY: An Experimental Protocol for a Faster Web. http://www.

chromium.org/spdy/spdy-whitepaper.

[2] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra

Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari

Sridharan. 2010. Data Center TCP (DCTCP). In Proceedings of the ACM

SIGCOMM 2010 Conference (SIGCOMM ’10). ACM, New York, NY, USA,

63ś74. https://doi.org/10.1145/1851182.1851192

[3] T. Bova and T. Krivoruchka. [n.d.]. RELIABLE UDP PROTOCOL.

https://tools.ietf.org/html/draft-ietf-sigtran-reliable-udp-00/.

[4] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,

Seif Haridi, and Kostas Tzoumas. 2015. Apache Flink: Stream and

Batch Processing in a Single Engine. Bulletin of the IEEE Computer

Society Technical Committee on Data Engineering 36, 4 (2015).

[5] Mosharaf Chowdhury and Ion Stoica. 2012. Colow: a networking

abstraction for cluster applications.. In HotNets. 31ś36.

[6] Tyson Condie, Joseph M Hellerstein, Petros Maniatis, and Sean

Rheaand Timothy Roscoe. 2005. Finally, a use for componentized

transport protocols. In HotNets IV, Vol. 13.

[7] RDMA Consortium. October 2002. An RDMA Protocol Speciication.

http://rdmaconsortium.org/.

[8] Jefrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun.

ACM 56, 2 (Feb. 2013), 74ś80. https://doi.org/10.1145/2408776.2408794

[9] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-

Marie Kermarrec. 2003. The Many Faces of Publish/Subscribe. ACM

Comput. Surv. 35, 2 (June 2003), 114ś131. https://doi.org/10.1145/

857076.857078

[10] Andrew D. Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and

Shriram Krishnamurthi. 2013. Participatory Networking: An API for

Application Control of SDNs. SIGCOMM Comput. Commun. Rev. 43, 4

(Aug. 2013), 327ś338. https://doi.org/10.1145/2534169.2486003

[11] Hans Giesen, Lei Shi, John Sonchack, Anirudh Chelluri, Nishanth

Prabhu, Nik Sultana, Latha Kant, Anthony J McAuley, Alexander

Poylisher, André DeHon, and Boon Thau Loo. 2018. In-network Com-

puting to the Rescue of Faulty Links. In Proceedings of the 2018 Morning

Workshop on In-Network Computing (NetCompute ’18). ACM, New York,

NY, USA, 1ś6. https://doi.org/10.1145/3229591.3229595

[12] Glenn Fiedler. 2014. Deterministic Lockstep. https://gaferongames.

com/post/deterministic_lockstep/.

[13] Ashvin Goel, Charles Krasic, and Jonathan Walpole. 2008. Low-

latency Adaptive Streaming over TCP. ACM Trans. Multimedia Com-

put. Commun. Appl. 4, 3, Article 20 (Sept. 2008), 20 pages. https:

//doi.org/10.1145/1386109.1386113

[14] Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi.

2016. Incremental Consistency Guarantees for Replicated Objects.

In Proceedings of the 12th USENIX Conference on Operating Systems

Design and Implementation (OSDI’16). USENIX Association, Berkeley,

CA, USA, 169ś184. http://dl.acm.org/citation.cfm?id=3026877.3026891

[15] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.

2010. ZooKeeper:Wait-free Coordination for Internet-scale Systems. In

Proceedings of the 2010 USENIX Conference on USENIX Annual Technical

Conference (USENIXATC’10). USENIX Association, Berkeley, CA, USA,

11ś11. http://dl.acm.org/citation.cfm?id=1855840.1855851

[16] Norman C Hutchinson and Larry L Peterson. 1991. The x-kernel: An

architecture for implementing network protocols. IEEE Transactions

on Software engineering 17, 1 (1991), 64ś76.

[17] Saiqul Islam and Michael Welzl. 2016. Start Me Up: Determining and

Sharing TCP’s Initial Congestion Window. In Proceedings of the 2016

Applied Networking Research Workshop (ANRW ’16). ACM, New York,

NY, USA, 52ś54. https://doi.org/10.1145/2959424.2959440

[18] Zsolt István, David Sidler, Gustavo Alonso, and Marko Vukolic. 2016.

Consensus in a Box: Inexpensive Coordination in Hardware. In Pro-

ceedings of the 13th Usenix Conference on Networked Systems Design and

Implementation (NSDI’16). USENIX Association, Berkeley, CA, USA,

425ś438. http://dl.acm.org/citation.cfm?id=2930611.2930639

20



TMC: Pay-as-you-Go Distributed Communication APNet ’19, August 17–18, 2019, Beijing, China

[19] Eddie Kohler, Mark Handley, and Sally Floyd. 2006. Designing DCCP:

Congestion control without reliability. In ACM SIGCOMM Computer

Communication Review, Vol. 36. ACM, 27ś38.

[20] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon

Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue,

Takayuki Hama, and Scott Shenker. 2010. Onix: A Distributed Control

Platform for Large-scale Production Networks. In Proceedings of the 9th

USENIX Conference on Operating Systems Design and Implementation

(OSDI’10). USENIX Association, Berkeley, CA, USA, 351ś364. http:

//dl.acm.org/citation.cfm?id=1924943.1924968

[21] Leslie Lamport. 1998. The Part-time Parliament. ACM Trans. Comput.

Syst. 16, 2 (May 1998), 133ś169. https://doi.org/10.1145/279227.279229

[22] Leslie Lamport. 2006. Fast Paxos. Distrib. Comput. 19, 2 (Oct. 2006),

79ś103. https://doi.org/10.1007/s00446-006-0005-x

[23] AdamLangley, Alistair Riddoch, AlyssaWilk, Antonio Vicente, Charles

Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan

Iyengar, Jef Bailey, Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik

Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton, Victor Vasiliev,

Wan-Teh Chang, and Zhongyi Shi. 2017. The QUIC Transport Protocol:

Design and Internet-Scale Deployment. In Proceedings of the Conference

of the ACM Special Interest Group on Data Communication (SIGCOMM

’17). ACM, New York, NY, USA, 183ś196. https://doi.org/10.1145/

3098822.3098842

[24] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan

R. K. Ports. 2016. Just Say No to Paxos Overhead: Replacing Consensus

with Network Ordering. In Proceedings of the 12th USENIX Conference

on Operating Systems Design and Implementation (OSDI’16). USENIX

Association, Berkeley, CA, USA, 467ś483. http://dl.acm.org/citation.

cfm?id=3026877.3026914

[25] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David

Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,

and Jon Crowcroft. 2007. Unikernels: Library Operating Systems for

the Cloud. In Proceedings of the Eighteenth International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS ’13). ACM, New York, NY, USA, 461ś472. https:

//doi.org/10.1145/2451116.2451167

[26] Ilias Marinos, Robert N.M. Watson, and Mark Handley. 2014. Network

Stack Specialization for Performance. In Proceedings of the 2014 ACM

Conference on SIGCOMM (SIGCOMM ’14). ACM, New York, NY, USA,

175ś186. https://doi.org/10.1145/2619239.2626311

[27] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh

Goyal, Venkat Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar,

and Changhoon Kim. 2017. Language-Directed Hardware Design for

Network Performance Monitoring. In Proceedings of the Conference of

the ACM Special Interest Group on Data Communication (SIGCOMM ’17).

ACM, New York, NY, USA, 85ś98. https://doi.org/10.1145/3098822.

3098829

[28] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and

Hari Balakrishnan. 2019. Shenango: Achieving High CPU Eiciency

for Latency-sensitive Datacenter Workloads. In Proceedings of the 16th

USENIX Conference on Networked Systems Design and Implementation

(NSDI’19). USENIX Association, Berkeley, CA, USA, 361ś377. http:

//dl.acm.org/citation.cfm?id=3323234.3323265

[29] Stefan Poledna. 1996. Fault-Tolerant Real-Time Systems: The Problem

of Replica Determinism. Kluwer Academic Publishers, Norwell, MA,

USA.

[30] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind

Krishnamurthy. 2015. Designing Distributed Systems Using Approx-

imate Synchrony in Data Center Networks. In Proceedings of the

12th USENIX Conference on Networked Systems Design and Imple-

mentation (NSDI’15). USENIX Association, Berkeley, CA, USA, 43ś57.

http://dl.acm.org/citation.cfm?id=2789770.2789774

[31] Ian Pratt and Keir Fraser. 2001. Arsenic: A user-accessible gigabit

ethernet interface. In Proceedings IEEE INFOCOM 2001. Conference

on Computer Communications. Twentieth Annual Joint Conference of

the IEEE Computer and Communications Society (Cat. No. 01CH37213),

Vol. 1. IEEE, 67ś76.

[32] Dave Presotto and Phil Winterbottom. 1995. The IL protocol. AT&T

ell Laboratories, Murray Hill, NJ (1995), 277ś282.

[33] Andrew Putnam, Adrian M Caulield, Eric S Chung, Derek Chiou,

Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fow-

ers, Gopi Prashanth Gopal, Jan Gray, et al. 2014. A reconigurable

fabric for accelerating large-scale datacenter services. ACM SIGARCH

Computer Architecture News 42, 3 (2014), 13ś24.

[34] Luigi Rizzo. 2012. Netmap: A Novel Framework for Fast Packet I/O.

In Proceedings of the 2012 USENIX Conference on Annual Technical

Conference (USENIX ATC’12). USENIX Association, Berkeley, CA, USA,

9ś9. http://dl.acm.org/citation.cfm?id=2342821.2342830

[35] Luigi Rizzo. 2012. Revisiting Network I/O APIs: The Netmap Frame-

work. Queue 10, 1, Article 30 (Jan. 2012), 10 pages. https://doi.org/10.

1145/2090147.2103536

[36] Fred B. Schneider. 1993. Distributed Systems (2Nd Ed.). ACM

Press/Addison-Wesley Publishing Co., New York, NY, USA, Chapter

Replication Management Using the State-machine Approach, 169ś197.

http://dl.acm.org/citation.cfm?id=302430.302437

[37] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim,

Mohammad Alizadeh, Hari Balakrishnan, George Varghese, Nick McK-

eown, and Steve Licking. 2016. Packet Transactions: High-Level Pro-

gramming for Line-Rate Switches. In Proceedings of the 2016 ACM

SIGCOMM Conference (SIGCOMM ’16). ACM, New York, NY, USA,

15ś28. https://doi.org/10.1145/2934872.2934900

[38] Robbert van Renesse, Kenneth P. Birman, and Silvano Mafeis. 1996.

Horus: A Flexible Group Communication System. Commun. ACM 39,

4 (April 1996), 76ś83. https://doi.org/10.1145/227210.227229

[39] Nikos Vasilakis, Ben Karel, Yash Palkhiwala, John Sonchack, André

DeHon, and Jonathan M. Smith. 2019. Ignis: Scaling Distribution-

Oblivious Systems with Light-Touch Distribution. In Proceedings of

the 40th ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI 2019). ACM, New York, NY, USA, 1010ś1026.

https://doi.org/10.1145/3314221.3314586

[40] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, André

DeHon, and Jonathan M. Smith. 2018. BreakApp: Automated, Flexi-

ble Application Compartmentalization. In Networked and Distributed

Systems Security (NDSS’18). https://doi.org/10.14722/ndss.2018.23131

[41] Nikos Vasilakis, Yash Palkhiwala, and Jonathan M. Smith. 2017. Query-

eicient Partitions for Dynamic Data. In Proceedings of the 8th Asia-

Paciic Workshop on Systems (APSys ’17). ACM, New York, NY, USA,

Article 23, 8 pages. https://doi.org/10.1145/3124680.3124744

[42] Dimitrios Vasilas, Marc Shapiro, and Bradley King. 2018. A Modular

Design for Geo-distributed Querying: Work in Progress Report. In

Proceedings of the 5th Workshop on the Principles and Practice of Con-

sistency for Distributed Data (PaPoC ’18). ACM, New York, NY, USA,

Article 4, 4 pages. https://doi.org/10.1145/3194261.3194265

[43] T. von Eicken, A. Basu, V. Buch, and W. Vogels. 1995. U-Net: A User-

level Network Interface for Parallel and Distributed Computing. In

Proceedings of the Fifteenth ACM Symposium on Operating Systems

Principles (SOSP ’95). ACM, New York, NY, USA, 40ś53. https://doi.

org/10.1145/224056.224061

[44] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishna-

murthy, and Dan R. K. Ports. 2015. Building Consistent Transactions

with Inconsistent Replication. In Proceedings of the 25th Symposium

on Operating Systems Principles (SOSP ’15). ACM, New York, NY, USA,

263ś278. https://doi.org/10.1145/2815400.2815404

21


	Abstract
	1 Introduction
	2 Motivation
	3 TMC Design
	3.1 libTMC API
	3.2 Channel Configuration
	3.3 Ongoing Work
	3.4 Discussion

	4 Related Work
	5 Conclusion
	References

