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Abstract
The retinal physiology can accrue oxidative damage and inflammatory insults due to age and metabolic irregularities. Two
notable diseases that involve retinal and choroidal neovascularization are proliferative diabetic retinopathy and wet age-related
macular degeneration. Currently, these diseases are mainly treated with anti-VEGF drugs (VEGF = vascular endothelial growth
factor), generally on a monthly dosage scheme. We discuss recent developments for the treatment of these diseases, including
bioactive tissue-engineered materials, which may reduce frequency of dosage and propose a path forward for improving patient
outcomes.
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Introduction

The retina is the only part of the central nervous system (CNS)
that can be non-invasively imaged via simple photography
and hence offers fascinating insight into CNS health. In spite
of the relative ease of detection of retinal features and the
adoption of techniques such as spectral domain optical coher-
ence tomography (SD-OCT) [1] in clinical practice, patients
often seek medical attention only after significant progression
of retinal diseases. There may be several factors to potentially
explain this delay in presentation. As patients use binocular
vision to interpret their surroundings, reduced central vision in
one eye may not be readily noticed unless the normal eye is
covered. In the case of diabetic retinopathy, affected patients

are usually of working age and treatment burden may impact
the decision to seek medical attention. These patients may not
easily be able to take a day off work every month for treat-
ment. Finally, access to care may limit a patient’s ability to
reach a retina specialist. Often these patients must drive long
distances, and for a patient with compromised vision, espe-
cially elderly patients, a caretaker/family member generally
has to accompany the patient. Thus, there is an unmet clinical
need to reduce the frequency of treatment and visit burden for
patients. To understand some of the current clinical options
employed to treat these diseases, it is instructive to explore the
root causes.

Scope

Retinal diseases such as wet age-related macular degeneration
(wAMD) and progressive proliferative diabetic retinopathy
(PDR) are major causes of loss of visual acuity (and ultimate-
ly, blindness) [2, 3]. The retina in the posterior segment of the
eye is the only part of the central nervous system exposed to
direct environmental exposures such as radiation. It contains
an extraordinary concentration of photoreceptive neurons in
the center of the retina called macula. The center of the macula
contains the fovea, which mainly has cone photoreceptors that
enables high-resolution color vision [4].
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Metabolic disorders such as hyperglycemia, dyslipidemia,
and protein misfolding can lead to inflammation, vasculopa-
thy, edema, and neuropathy in the retina [5] and the underly-
ing vascular layer (choroid) [6]—these pathological changes
are most noticeable in the macula. Many resultant posterior
segment diseases of the eye share a few core causes and symp-
toms (Fig. 1) but may differ in the mechanistic details and, of
course, in the location of the affected tissue microenviron-
ment. For example, different aspects of the complement sys-
tem is involved in the progression of diabetic retinopathy and
wet AMD [7]. In this review, we focus on neovascular poste-
rior segment diseases and strategies to treat and manage the
conditions (Fig. 1).

Pathophysiology of wAMD

Blood vessels in the choroid nourish the retinal pigment epi-
thelium (RPE) and the overlying photoreceptors. There are
three distinct layers in the choroid: capillaries under the
Bruch’s membrane (choriocapillaris), arterioles/venules under
choriocapillaris (Sattler’s layer), and arteries/veins underneath
(Haller’s layer). Among these layers, the choriocapillaris is
highly fenestrated and lacks complete pericyte coverage,

perhaps making it most susceptible to age-related metabolic
damage. Over time, extracellular aggregates (drusen) build up
between the Bruch’s membrane and the retinal pigment epi-
thelium (RPE) cells [8]. At a later stage of the disease, severe
oxidative stress and resultant inflammatory cascades in the
RPE layer disrupt cellular homeostasis of photoreceptors and
can lead to their apoptosis [5, 6]. Hypoxia in the RPE micro-
environment may lead to the upregulation of angiogenic
growth factors such as vascular endothelial growth factor
(VEGF) and downregulation of anti-angiogenic factors such
as pigment epithelium–derived factor (PEDF), causing forma-
tion of immature vasculature in the choriocapillaris, which are
prone to leakage and clotting [6]. The fluid build-up and as-
sociated immune reaction may disrupt the basement mem-
brane under RPE layer (Bruch’s membrane) and the extracel-
lular fluid may enter the photoreceptor layer (Fig. 1c).

Pathophysiology of PDR

The American Diabetes Association estimates that about 10%
of Americans have diabetes [9]. Among American diabetic
patients above 40 years of age, more than 25% suffer from
retinopathy [10]. In these patients, hyperglycemia leads to

Fig. 1 a Retinal anatomy (RPE: retinal pigment epithelium). b The
confluence of pathological factors culminating in neovascular posterior
segment diseases are similar to other neurodegenerative diseases and

cerebrovascular diseases. Pathophysiological features of c wet age-
related macular degeneration and d diabetic retinopathy
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upregulation of vascular endothelial growth factor (VEGF)
[11]. Patients progress through various stages of non-
proliferative retinopathy and some eventually develop prolif-
erative disease characterized by the development of immature
blood vessels on the retina that are prone to leakage, leading to
distortion of the retinal tissue and even tractional retinal de-
tachment (Fig. 1d) [12]. Diabetic retinopathy is characterized
by microaneurysms, blot hemorrhage, aberrant neovasculari-
zation, and the presence of hard exudates in the retina.
Hyperglycemia also results in macular edema and disruption
of the blood-retinal barrier (Fig. 2) [5]. If left untreated, these
retinal changes lead to reduced vision.

Hyperglycemia leads to the activation of several pathways
that cause the accumulation of advanced glycated end (AGE)
products, capillary constriction, and hypoxia in the retinal mi-
croenvironment [5, 13]. These conditions signal the upregula-
tion of VEGF that leads to retinal neovascularization [14, 15].
These anchored fibrotic vessels are also prone to intravitreal
hemorrhage; hence, they are sometimes referred to as leaky
vessels [5]. Moreover, inflammation, pyroptosis of Müller
cells, and apoptosis of retinal neurons also contribute to the
progression of diabaetic retinopathy [16–18]. Pro-
inflammatory molecules and pathways involved in diabetic
retinopathy are topics of ongoing research [19–22]. A crucial
step in the development of PDR involves the loss of pericytes
around the endothelial cells [23] and damaged endothelial
tight junctions, which lead to the breakdown of the blood-
retinal barrier [24–26]. Resulting vascular fluid accumulation
in the interstitial space in the macula (macular edema) can
severely affect central vision [27, 28]. Soft exudates and

retinal leukostasis accompany observable circulatory alter-
ations within the retina [29].

Similarity of wAMD and PDR with other CNS
diseases

PDR, wAMD, and other notable retinal diseases such as reti-
nal vein occlusion [30] share common characteristics, such as
chronic inflammation, oxidative stress, upregulation of vascu-
lar endothelial growth factor, aberrant neovascularization, and
edema [31], although they occur in different tissue microen-
vironments [32]. As these neovascular pathologies share some
common causal pathways, anti-angiogenic drugs can be
broadly effective against these diseases. Age is a predominant
risk factor for wAMD, as is the case for many neurodegener-
ative diseases [33, 34]. Age-related macular degeneration and
Alzheimer’s disease share risk factors (hypertension, hyper-
lipidemia, etc.) and pathological mechanisms (oxidative
stress, inflammation, complement activation, neurodegenera-
tion, amyloid deposition, disruption of blood-brain barrier,
etc.)—although it remains to be determined whether they
share etiologic roots [35–37]. Both diabetic retinopathy and
age-related macular degeneration may also be considered as
sub-types of cerebrovascular diseases, i.e., diseases associated
with microvascular abnormalities in the central nervous sys-
tem (Fig. 1b). Pathologic alterations in the cerebral microvas-
culature also leaves its imprint on the retinal structure; hence,
retinal imaging may be used in the future as a cost-effective
screen for diseases such as Alzheimer’s, frontotemporal

Fig. 2 Pathological disease progression for proliferative diabetic retinopathy. VEGF vascular endothelial growth factor, AGE advanced glycated end-
products, PEDF pigment epithelium-derived factor
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dementia, and amyotrophic lateral sclerosis [37–39]. As the
retina is the only part of the central nervous system directly
exposed to light, photo-induced apoptosis of relevant cells
may also be a prominent source of risk [40].

Diagnosis and standard of care

The primary goal of therapies is to increase best correlated
visual acuity (BCVA) in patients, compared with the baseline
before beginning the treatment. For secondary measurements
of improvement, SD-OCT (reduction in sub-retinal thickness
and decrease in the volume of accumulated retinal fluid) and
fluorescein angiography (shrinkage of visible lesion area) can
be useful techniques to document disease progression or re-
gression. Adverse events associated with the treatment (e.g.,
photophobia, intraocular inflammation, endophthalmitis, and
pain) may limit the appeal of a clinical option such as intra-
vitreal injection. Current therapeutic approaches include laser
photocoagulation [41], intraocular injections of steroids (e.g.
dexamethasone and triamcinolone acetonide) [42, 43], anti-
VEGF drugs [44–46], and in extreme cases, vitrectomy
(Table 1). Of these options, anti-VEGF therapies have rapidly
become the front-line therapies used by retina specialists as
they, unlike steroids, are not associated with the risks of in-
creased intraocular pressure and cataract formation [47].

When injected into the vitreous humor, anti-VEGF drugs
attenuate neovascularization and reduce retinal edema [48].
Three FDA approved anti-VEGF drugs are available for intra-
ocular injection: pegaptinib [46, 49], ranibizumab [50], and
aflibercept [51]. Ranibizumab is an antibody fragment whose
active domain is similar to another widely used monoclonal
antibody, bevacizumab. Ophthalmologists often use
bevacizumab as an anti-VEGF intraocular therapeutic [44,
45] since it has a similar activity profile as ranibizumab and
is less expensive per injection [52]. Additionally, anti-
inflammatory agents can be used to mitigate intraocular in-
flammation and edema. Notably, intravitreal administration of

the steroids (such as triamcinolone acetonide) shows efficacy
in reducing edema associated with DR. [53, 54] Semi-
permanent intravitreal implants of steroids (such as
Allergan’s Ozurdex© and Alimera’s Iluvien®) have also been
successful in treating edema associated with PDR [55].
Similar implants for anti-VEGF drugs are not on the mar-
ket—however—Genentech has developed a port-delivery de-
vice for long-term release of ranibizumab, which is currently
in clinical trials [56].

Pitfalls of current treatment options

Laser photocoagulation therapy may cause side effects, such
as the formation of blind spots and scars on the retina [57].
Moreover, it is less effective than intravitreal anti-VEGF ther-
apy in treating macular edema [58]. On the other hand, intra-
vitreal injections carry the risks of endophthalmitis, retinal
detachment, and cataract formation—and these risks increase
with dosing frequency [59]. Lack of convenience is another
major issue for patients. For example, a healthcare profession-
al must administer the intraocular injection of bevacizumab on
a monthly schedule, which requires topical anesthesia [44, 60,
61]. The high frequency of dosage (monthly) is needed due to
the need to maintain a steady level of anti-angiogenic thera-
peutics in the vitreous humor, leading to poor patient comfort.
A major limitation of current technologies is that they manage
the pathological outcome (vascular leakage, neovasculariza-
tion) but not the root causes (hypoxia, oxidative imbalance,
and cellular apoptosis). Even if an anti-VEGF therapy is fully
successful, it does not aim to regenerate RPE cells or damaged
photoreceptors. Thus, the optimal outcome of these therapies
is maintenance of remaining vision, rather than restoring vi-
sion. This is where new stem cell and gene therapy–based
options may be most appealing. FDA has already approved
Spark Therapeutics’ Luxturna (voretigene neparvovec) for
biallelic RPE65 mutation-associated retinal dystrophy, which

Table 1 Selected non-steroidal
intravitreal drugs targeting
neovascular posterior segment
diseases such as wAMD and PDR

Drug Company Target Dose interval Stage

Bevacizumab Genentech VEGF-A 4 weeks On market

Ranibizumab Genentech VEGF-A 4 weeks On market

Aflibercept Regeneron VEGF-A, VEGF-B, PlGF 4 weeks On market

Brolucizumab Novartis VEGF-A 8/12 weeks FDA-approved

Faricimab Genentech VEGF-A & Ang2 8/12 weeks Phase III

Conbercept Chengdu Kanghong VEGF-A, VEGF-B, PlGF 8/12 weeks Phase III

Abicipar Allergan VEGF-A 8/12 weeks Phase III

Risuteganib Allegro Integrins N/A Phase II

Sunitinib Graybug VEGF receptors N/A Phase I/II

AR-13503 Aerie Rho kinase & protein kinase C N/A Pre-clinical
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may help dictate a road map for the development of such
once-and-done therapeutic options.

Technologies in the pipeline

Anti-VEGF drugs smaller than monoclonal antibodies
(mAbs), such as Novartis’s brolucizumab (a humanized
single-chain variable fragment recently approved by the
FDA) [62] and Allergan’s abicipar (a designed ankyrin repeat
protein), have shown potential in the clinical trials in treating
neovascular ocular diseases over extended periods compared
with current anti-VEGF drugs (Fig. 3; Table 2) [63–66]. Such
next-generation anti-VEGFmolecules have a much lower mo-
lecular weight compared with monoclonal antibodies (e.g.,
26 kDa for brolucizumab, compared with 150 kDa for
mAbs) and high affinity for the target growth factors, which
may facilitate tissue penetration and enhanced intraocular re-
tention (Table 1). Bispecific antibodies (such as Genentech’s
faricimab) that can bind to more than one biological target
may be useful for blocking multiple pathologic pathways at
once.

However, recent failures of high-profile candidates against
wet AMD (e.g., Ophthotech’s Fovista [67]) and other retinal
diseases (Genentech’s lampalizumab [68]) have somewhat
tempered investor confidence in the drug candidates using
newer approaches such as complement inhibition [69].
Notably, Rosenfeld and Feuer have called for limiting the
use of retrospective subgroup analyses from phase II trials
for the design of expensive phase III clinical trials [70] as
the biases involved in the data selection may suggest a rosier
view of the chances of success in the phase III [71].

Topical eye drops have so far not been a clinical option due
to the difficulty of targeting the aberrant vessels in the poste-
rior segments. However, currently, eye-drop drugs such as
PAN-90806 and pazopanib have demonstrated potential for
treatment of neovascular posterior segment diseases [72, 73].

Gene therapies, such as Luxturna, can potentially be trans-
formative for the retinal disease landscape [74, 75]. Immune
reaction to the viral vectors in this context may not be a major
problem as the vitreous humor and the retina are relatively
immuno-privileged. However, the chance of off-site

immunogenicity cannot be completely ruled out as the
blood-retinal barrier can be compromised in diseases such as
wAMD and PDR. Another complication is that wAMD and
PDR can be polygenic in nature and can potentially be tricky
to target with gene therapy.

Embryonic stem cells (ESCs) [76–78] or induced pluripo-
tent stem cells (iPSCs) [79, 80] can be used to create suspen-
sions or patches of RPE cells that can be implanted sub-
retinally for improving physiologic healing responses [81,
82]. The surgical procedure for the implantation can be risky,
and there is some risk of retinal detachment and adverse im-
munologic reaction—but a major advantage of the treatment
is that it can potentially be used to treat both dry and wet
phenotypes of retinal diseases. The therapy targets a causal
factor of retinal diseases: oxidative damage to and apoptosis
of RPE cells. The cellular reprogramming of autologous so-
matic cells into iPSCs involves risk of introducing oncologic
mutations, which can be overcome [83]. Allogeneic iPSCs,
unlike autologous iPSCs, have an additional route of graft
failure: through immune rejection mediated by microglia, T
cells, and B cells [84].

Tissue-engineered scaffold–based
alternatives

There is a clinical need for developing functionalized peptide-,
protein-, or polymer-based scaffolds to create injectable (or
otherwise easily implantable in the vitreous humor) biomate-
rial matrices to attenuate neovascularization in vivo. These
matrices need to be anti-angiogenic themselves [85] or should
be able to release sequestered anti-angiogenic therapeutics in a
temporally controlled fashion (Fig. 3) [86]. If a material can be
easily syringe-aspirated, injected, and reassembled in the vit-
reous humor, a sustained and site-specific response for disease
management can be engineered. The matrix can have multi-
modal efficacy if it contains therapeutics that have different
mechanisms of action. Even for delivering stem-cells into the
subretinal space, a biodegradable scaffold may afford im-
proved cellular integration with host cell microenvironment
[83].

Fig. 3 Desirable features for
intra-vitreally injected drugs/
bioactive materials. Efficacy
aside, longer durability of drugs
or materials (blue dotted line, as
compared with burst release in
case of solid black line) in the
vitreous humor enables improved
patient comfort and reduces
patient compliance issues
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Specific to ophthalmologic applications, a multi-modal re-
lease platform can decrease the frequency of injection while
targeting multiple mechanisms of disease progression.
Decreased frequency of in-patient visits would improve pa-
tient compliance and long-term efficacy, and lower the
chances of deleterious side effects (e.g. endophthalmitis and
retinal detachment). There are distinct burdens associated with
intraocular drug delivery: solubility, pH, viscosity, buffer ca-
pacity, ocular toxicity, and proper CMC (chemistry,
manufacturing, and control). To mitigate risk and increase
the likelihood of success, researchers need to of course dem-
onstrate efficacy of the implants in vitro and in vivo in the
preclinical phase before beginning clinical trials. These exper-
iments may inform the iterative design and optimization of the
therapeutic approach.

Broadly, the anti-angiogenic tissue-engineered scaffolds
may impact other areas of disease management where the
sequential release of agents can potentiate tailorable wound
healing, drug delivery, and hemostasis.

The primary topics we aim to address in the following
sections are: (a) modular scaffold design, (b) anti-angiogenic
scaffolds, (c) scaffolds for tailorable multi-modal release of
anti-angiogenic molecules, (d) anti-inflammatory scaffolds,
and (e) challenges for clinical translation of tissue-
engineered solutions. Our goal is to establish a blueprint for
combinatorial therapies for drug-device combinations useful
for improving the clinical outcome and comfort of patients
suffering from neovascular retinal diseases.

Modular scaffold design

A tissue-engineered scaffold is a fibrous material architecture
that resembles extracellular matrix and can affect the tissue
environment when implanted in vivo. Such scaffolds can ei-
ther be prepared from biological sources (e.g., decellularized
tissue scaffolds) or be prepared synthetically (e.g., polymer-
and peptide-based scaffolds). Such scaffolds can be modular
or multi-component, where different components determine
aspects of the material and biochemical properties of the scaf-
fold (Table 3). Such components can often be divided into
structural (medium) and functional (message). Examples of

functional components include sequestered small molecules
or biomolecules, as well as cells supported in the scaffold.

An interesting class of multicomponent scaffolds is the
group of self-assembled peptide-based scaffolds containing
biofunctional domains [89, 93, 95]. The functional moiety is
directly built into the primary structure of the building block
of the scaffold. As the building blocks self-assemble into
biofunctional three-dimensional scaffolds, the message car-
ried by the functional domain becomes immobilized onto the
medium, resulting in sustained display of functional epitopes
attenuated only by the biodegradation or disassembly of the
scaffold [100]. Such functionalized scaffolds have been used
for angiogenesis promotion [89, 93, 101] and inhibition [85],
chondrogenesis [102], and dentinogenesis [95].

The self-assembling peptide platform is suitable for a vari-
ety of biological applications through attachment of functional
moieties at the termini, which preserves the nanofibrous self-
assembly of the conserved core fibrillizing domain.
Functional moieties mimicking the active sites of a relevant
protein can attach to either terminus of the peptide in the
design process. This platform model ensures that one can
make hydrogels with excellent material properties and desir-
able signals embedded in the peptide. Not only can cells attach
to the nanofibrous hydrogel but they can also receive specif-
ically designed cues from the signaling domain of the peptide.
Thus, the attachment of an anti-angiogenic sequence [103] to
the base peptide sequence yields an anti-angiogenic peptide
hydrogel that can persist for months in the host tissue [85].
The anti-angiogenic sequence may be chosen from natural
proteins and peptides such as Kringle (domain 5) [104–107],
laminin-1 [108], and histidine-proline-rich glycoprotein [109].

Potential of combinatorial therapy

In addition to the covalently attached functionality, one can
aim to exploit the interaction of non-covalent sequestration of
ant-angiogenic and the anti-inflammatory molecules within
the amphiphilic nanofibrous hydrogel. Such combinatorial ap-
proach may complement the slow dissociation/release of the
anti-angiogenic peptides from the nanofibers with a more rap-
idly delivered anti-angiogenic or anti-inflammatory therapy

Table 2 Selected active patents
on wAMD and PDR targeting
VEGF or VEGF receptors

Patent Drug Technology platform Inventor

WO2000075319A1 Aflibercept Modified chimeric polypeptides Papadopoulos et al.

WO1998045331A2 Ranibizumab Humanized monoclonal antibody fragment Baca et al.

WO1998018480A1 Pegaptanib PEGylated RNA aptamer Janjic et al.

WO2007112675A8 Conbercept VEGF receptor fusion protein Yu et al.

WO2016073918A1 Brolucizumab Single chain antibody fragment (scFv) Sallstig et al.

WO2015069668A1 Abicipar Designed ankyrin repeat protein (DARPin) Hohman et al.
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that synergistically counteracts neovascularization and edema
in the retina. Self-assembling peptide platforms has been used
for the controlled release of small molecule drugs, growth
factors, and cytokines [96–99]. The delivered compound can
be varied in regard to charge, amphiphilicity, and size [96–99].

The combinatorial formulations may yield valuable in-
sights into treatment paradigms that focus not just on control
of neovascularization but also on the modulation of inflam-
mation. Such a bi- or multi-modal therapeutic strategy may
reduce the need for frequent intraocular injections, and enable
targeting of disease population non-responsive to current
standard-of-care treatment protocols.

Choice of animal models

The choice of an appropriate animal model to evaluate the
efficacy of the therapeutic strategies is crucial. While
hypoxia-induced models result in rapid development of reti-
nopathy [110, 111], they lack the reproducibility of chemical
or laser-induced pathology. Pancreatectomy or treatment with
streptozotocin/alloxan can cause marked induction of a dia-
betic phenotype with the manifestation of DR-like pathologies
in genetic mouse or rat models; however, lack of animal wel-
fare may be a potential issue with this model. For mimicking
generic retinal degeneration, Royal College of Surgeons
(RCS) rat model has been used with some success. The RCS
rat has a defective Mertk gene [112] that limits the ability of
ability of RPE cells to phagocytose and recycle segments of
photoreceptors that are degraded normo-physiologically [76].
Arguably, one of the most refined models is laser-induced
photocoagulation (LIPC) of the central retinal vein. This mod-
el inmice, rats, pigs, andmonkeys has gained favor in creating
defined and repeatable lesions on the retina. LIPC in the retina
of multiple species has proved to be a reproducible model. If
the model is used in genetically obese and hyperglycemic
animal models (such as Otsuka Long-Evans Tokushima
Fatty, OLETF, rats), the relatively lower cost involved may
allow researchers to test more combinations of scaffolds and
drugs delivery vehicles prior to tests in large animals. PDR-
like pathological phenotypes (e.g. aberrant angiogenesis,

retinal edema, inflammation, and vascular leakage) has been
observed in the LIPC retinal vein occlusion model [113].
Porcine laser-induced RPE injury model recapitulates AMD-
like pathological phenotype but involves significantly higher
cost and complexity [83]. Potentially, the optimal model for
mimicking retinal pathologies are non-human primate models
(such as rhesus monkeys) as they have a similar macular and
foveal physiology compared with humans (similar thickness
of retinal layers, for example) [84]. However, there are very
few centers equipped to carry out the experiments in a humane
manner, and this scarcity limits the application of the model.
For the interest of space, we have described only the LIPC rat
model in detail below (for broader discussions on animal
models of wAMD and PDR, readers are referred to prior re-
views on the topic [110, 111, 114–116]).

LIPC rat model The model is useful for the evaluation of a
variety of ocular therapeutics [117–125]. Notably, the laser-
induced retinal disease model shares the following similarities
to the pathologic burden in humans: (a) rapid neovasculariza-
tion of the retina and (b) development of inflammation and
retinal edema. Following laser treatment, the rats can receive
an intravitreal injection of a therapeutic into the vitreous hu-
mor via the pars plana immediately following confirmation of
retinal neovascularization and retinal edema by confocal scan-
ning laser ophthalmoscopy (cSLO) and SD-OCT. [121, 126]
Prior to starting anti-angiogenic treatment with the injectable
formulations, it is important to monitor the onset and progres-
sion of clinical symptoms of disease progression.
Fundoscopy, fluorescein angiography, and SD-OCT may be
used to image neovascularization induced in the posterior seg-
ment [121, 122, 126–138]. Imaging is performed on anesthe-
tized rats prior to laser treatment and post-injection. The total
area of nonperfusion (dark) and leakage (bright) on wide-field
angiography can be valuable indicators of vascular permeabil-
ity. Total retinal volume centered on the optic nerve (measured
from the internal limiting membrane [ILM] to the retinal
pigmented epithelium [RPE]) and maximal retinal thickness
(ILM to RPE) also provides measurable clinical outcomes.
Finally, the animals are sacrificed for histological staining of
enucleated eyes to determine cellular infiltration, matrix

Table 3 The toolkit for rational
design of self-assembling
peptides

Desired trait Feature of primary sequence References

Self-assembly Central β-sheet forming domain (CFD) ref. [87–92]

Functionality Flanking epitope domains (FED) ref. [85, 89, 93–95]

Biodegradability Domains cleavable by matrix proteases ref. [89, 93]

Biocompatibility Peptide sequence, low immunogenicity ref. [85, 89, 94–96]

Material property Ratio of the lengths of CFD and FED ref [87, 90]

Drug delivery Charged amphiphilic nanofibrous matrix ref [96–99]
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deposition, the overall volume of implants, and their intraoc-
ular degradation [96].

Challenges for clinical translation

The choice of investing in an early-stage biotech company in
the ophthalmology space is riddled with risks. In the intraoc-
ular diseases area, failure of multiple biologics in the last few
years has raised questions about due diligence in the preclin-
ical stage and the design of clinical trials. However, even in
the best of circumstances, there is an inherent chance of un-
foreseen outcomes after a drug is approved, perhaps best il-
lustrated by the post-approval failure of Affymax [139].
Hence, it is perhaps essential for biotech entrepreneurs to in-
vest time in formulating the optimal series of experiments and
market analyses for de-risking a technology (Fig. 4).

In retinal diseases, such strategies are further complicated
by lack of gold-standard animal models and the existence of
variable phenotypes and causal pathways for each disease. At
the same time, intraocular therapy has a few distinct advan-
tages as well: ease of access to the tissue through simple in-
jection, reliable technical capabilities for detecting and
cataloging disease progression/regression, and relatively low-
er chance of immune reaction and systemic side-effects asso-
ciated with intravitreal injection due to immune privilege, low
tissue flow, and the presence of blood-retinal barrier.

A real improvement in the administration of effective drugs
and resultant patient comfort may come from modalities that
can be used in a pharmacy (intravenous) or even at home (oral,
eye drops), which may somewhat negate the aforementioned
advantages. A major challenge for new entrants to the market
who want to prolong administration intervals or pursue alter-
native routes of medication is maintaining relevant therapeutic
concentration in the affected niche.

Another challenge is selection of non-promiscuous molec-
ular targets. Targeting VEGF, VEGF-receptors, or VEGF-
producing cells may have undesirable effects elsewhere in
the body. Therapeutics that induce apoptosis of cells need to
be confined within the diseased microenvironment. And per-
haps one of the trickiest problems to solve is restoring the
disrupted barriers among the distinct retinal microenviron-
ments. Solving these problems, while maintaining safety and
efficacy in a relevant disease model, then allows a startup to
start navigating the tricky regulatory landscape for potential
approvals that differ among the target markets. A final doublet
of challenges the startup then needs to solve are deciding the
price of the drug that the market can bear and convincing
ophthalmologists to take up a new drug over existing “good
enough” cheaper alternatives. The delay between attracting
investments and the eventual recoupment of the investment
may be over 5 years and hence thus to many investors they
may be undesirable. We have a policy recommendation that
may help attract more investments in this space: a unified
regulatory landscape in developed countries so that an approv-
al in one of the major (US/Canada/EU/Japan) markets would
resul t in condit ional approvals in other markets
simultaneously.

Conclusions

Retinal diseases such as wet macular degeneration and prolif-
erative diabetic retinopathy are multi-factorial conditions,
where the patients have to comply with a strict regimen of
monthly intraocular injections. Current standard-of-care drugs
such as anti-VEGF antibodies are effective but suboptimal
therapeutics, suffering from a high burden of compliance
needed from suffering patients. Recent progress in the devel-
opment of next-generation biologic drugs and implantable/

Fig. 4 A systematic appreciation
of the variety of risks involved in
the development of a biologic
drug is crucial for increasing the
chance of success and delivering
the best return on investment to
investors. The graphic was partly
inspired by a blog by Dr. Michael
Gilman
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injectable biomaterial scaffolds may lead to a less frequent
visits for the patients, increasing the quality of life for millions.
We cover a few promising developments in “once-and-done”
treatments such as stem-cell therapy and compare them
against other biologics. Injectable self-assembled peptide
hydrogels are noted for their potential to act as intrinsic anti-
angiogenic scaffolds, as well as for their ability to sequester
and deliver biologics over longer time periods—acting as a
facile active delivery medium.
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