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A B S T R A C T

Breast cancer (BC) is the most common malignancy in women worldwide, and one of the deadliest after lung
cancer. Currently, standard methods for cancer therapy including BC are surgery followed by chemotherapy or
radiotherapy. However, both chemotherapy and radiotherapy often fail to treat BC due to the side effects that
these therapies incur in normal tissues and organs. In recent years, various nanoparticles (NPs) have been dis-
covered and synthesized to be able to selectively target tumor cells without causing any harm to the healthy cells
or organs. Therefore, NPs-mediated targeted drug delivery systems (DDS) have become a promising technique to
treat BC. In addition to their selectivity to target tumor cells and reduce side effects, NPs have other unique
properties which make them desirable for cancer treatment such as low toxicity, good compatibility, ease of
preparation, high photoluminescence (PL) for bioimaging in vivo, and high loadability of drugs due to their
tunable surface functionalities. In this study, we summarize with a critical analysis of the most recent therapeutic
studies involving various NPs-mediated DDS as alternatives for the traditional treatment approaches for BC. It
will shed light on the significance of NPs-mediated DDS and serve as a guide to seeking for the ideal metho-
dology for future targeted drug delivery for an efficient BC treatment.

1. Introduction

Cancer is a class of diseases resulting from unregulated cell growth
and these abnormal cells are able to spread or invade other parts of the
body. Based on the presumed origin of the tumor cells, cancers are
classified into carcinoma, sarcoma, lymphoma, leukemia, germ cell
tumor and blastoma. Among them, carcinoma indicates cancer that
derive from the epithelial cells and it includes nearly all cancers in
breast, prostate, lung, pancreas and colon [1]. Considering the damage
various cancers incur, skin and lung cancers are the most common
malignancies worldwide. In addition, breast cancer (BC) is the most
common cancer type among women accounting for nearly 30% of all
cancers [2]. In 2018, about 266,120 new cases of invasive BC have been
diagnosed that will potentially cause 40,920 cases of death according to
the statistics of the American Cancer Society [2]. In contrast, BC in men
accounts only for 1% of all malignant breast neoplasms [3]. Also
compared to women, men tend to be diagnosed for BC at an older age as
67 years [4]. Although it is the most common cancer type in women, it
is considered as treatable if diagnosed at an early stage [5,6]. However,
if metastasis is achieved, it can spread through blood and lymph

systems to distant organs, increasing treatment difficulties and the
fatality rates rapidly.

Similar to other cancers, the traditional treatment approaches for
BC include surgery, chemotherapy and radiotherapy. The primary goal
of these therapies is to eradicate tumors while prolonging the survival
of patients. Nonetheless, these standard methods are challenged by the
advanced and metastatic tumors in terms of tumor recurrence and drug
resistance. For instance, surgery is not effective in case of tumor re-
currence and metastases to distant organs including bone, lung and
liver. In contrast, the goal of chemotherapy is to use cytotoxic che-
motherapeutic drugs either after or without surgery to interfere with
tumor cell division and growth. Radiotherapy involves delivering
powerful waves of energy to disrupt the tumor cell division, which
results in the shrinkage or eradication of tumors. Although che-
motherapy and radiotherapy are powerful cancer treatment techniques
to increase the survival rate, these techniques could lead to acute and
long-term adverse effects on the patients' healthy organs [7,8]. For
instance, the chemotherapeutic agent; trastuzumab, a monoclonal an-
tibody used to treat BC, has shown toxicity assisted with cardiac dys-
function in long-term use [9]. Furthermore, multidrug resistance is also
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a challenging issue caused by over-expression of certain proteins in the
tumor cells. The effect of chemotherapy is often drastically reduced in
this case. Radiation therapy is a local treatment that only affects the
area of the tumor location. But side effects can occur due to the da-
mages caused on the neighboring healthy tissues. Considering these
adverse effects present in the classic cancer treatment approaches,
novel effective alternatives need to be well sought.

Alternatively, the use of nanomaterials as an effective drug delivery
method for the cancer treatment has recently gained specific interest,
and ongoing investigations are aiming to optimize this method to ul-
timately reduce the adverse effects caused by the conventional ap-
proaches. To date, such NPs commonly used in research for drug de-
livery to treat BC include liposomes, mesoporous silica NPs, viral NPs,
polymer-, metal- or carbon-based NPs and different drug loading
techniques are used depending on the NPs such as encapsulation,
covalent or electrostatic binding and adsorption. There are numerous
advantages of using NPs for drug delivery: i) it solves issues related to
the poor solubility and bioavailability of the drug; ii) it enhances tar-
geted drug permeability to cancer cells and administer slow release of
the drug; and iii) NPs are small (1–100 nm), nontoxic, biodegradable
and highly photoluminescent particles on to which the cancer drugs can
be easily loaded. The PL could endow the in vivo drug tracking ability to
determine drug delivery efficacy during treatment. For the studies of
targeted DDS, different types of breast tumor cell lines have been used
in vitro including MDA-MB-231, MDA-MB-453, SkBr3 and MCF-7
[5,7,10–14]. Besides, doxorubicin (Dox) is the most popular che-
motherapeutic agent for NPs mediated delivery for BC and it has also
been used together with siRNAs and miRNAs in co-delivery systems.
Other chemotherapeutic agents, namely paclitaxel (PTX), cisplatin,
trastuzumab, fulvestrant, anastrozole, and carboplatin are also often
used for phase II and III clinical trials [14–17]. Furthermore, several
combinations among these therapeutics have shown synergistic effects
against BC [14].

Administering drugs using a targeted DDS can help reduce the doses
because the pharmacologically effective concentrations can be achieved
at lower concentrations compared to untargeted administering of drugs.
Side effects resulting from toxicity and damages to healthy cells and
tissues could also be significantly reduced through a targeted delivery
method compared to the standard chemotherapy approach. Therefore,
the development of new treatment methods such as NPs-based targeted
DDS as well as combination therapy has the potential to alleviate the
side effects. Usage of a DDS is also of crucial importance in treatments
using drug combinations or oligonucleotides, due to the needs such as
delivery without premature decay and simultaneous drug administra-
tion.

2. Drugs and breast cancer biomarkers

2.1. Chemotherapy drugs and side effects

Chemotherapeutic agent, Dox which is a member of the anthracy-
cline class is heavily used in the clinical treatments for many human
cancers. It is one of the most commonly used chemotherapeutic drugs
for the treatment of BC either alone or in combinations with other
drugs. Various studies have been conducted to understand the side ef-
fects of Dox both in vivo and clinically [18,19]. It is well known for its
high possibility in hematopoiesis and gastrointestinal or cardiac toxicity
[20]. Therefore, targeted delivery can be utterly important in Dox
treatments [21].

Paclitaxel (PTX) has emerged as another important and popular
chemotherapeutic agent in the BC treatments. Unlike other anti-
microtubulin agents, PTX promotes tubulin dimerization and inhibits
microtubule depolymerization to achieve antitumor effect [22]. The
lack of cross-resistance with anthracyclines is one of the major reasons
for the drastic increase of intensive clinical investigation on PTX
worldwide [23]. Commonly known PTX side effects are neutropenia

and peripheral neuropathy [22]. Thus, PTX dose optimization and
evaluation of PTX in combination therapy regimens have become a
central focus in research.

Few other commonly used regimens for chemotherapy are tamox-
ifen, trastuzumab, cisplatin and docetaxel. Also, for adjuvant che-
motherapy treatments which are used to increase the effectiveness and
lower the reoccurrence, cyclophosphamide and fluorouracil are com-
monly administered combined with methotrexate, Dox or mitoxantrone
(MTX) [24]. The mostly reported side effects on patients are fatigue,
weight loss, peripheral neuropathy and nausea [25]. But several severe
after effects that have been identified are heart problems, osteoporosis,
lymphedema and concerns about cognitive functions [24,26].

2.2. Biomarkers

A biomarker can be described as a measurable indicator to under-
stand biological processes or diseases from outside the patient.
Currently, the clinical use of biomarkers has become inevitable in dis-
ease identification and treatments. The key aspect of the targeted na-
nodrug delivery in BC treatment is to target the molecular recognition
markers using nanocarriers. Biomarkers targeted drug delivery im-
proves the target specificity of drugs only towards cancer cells and less
toxic to the healthy cells. Due to the overexpression of various onco-
genes, biomarkers have been associated with the development and
progression of resistant breast tumors. The most common BC bio-
markers include estrogen receptor (ER), progesterone receptor (PR),
and human epidermal growth factor receptor (HER2/ERBB2). The
majority of breast tumors have ER overexpression while only approxi-
mately 25% of breast tumors have HER2 overexpression [2]. About
15% of breast tumors do not express ER, PR or HER2, classified as triple
negative BC (TNBC), and are considered as the most challenging type of
breast tumors [27–29]. Hence, these biomarker proteins have been used
in BC classification as well as target ligands for developing novel
therapeutics. Both monoclonal antibodies and anticancer drugs have
been extensively tested in the treatment of BC, targeting biomarkers.

2.2.1. ER
ERs are located on the BC cell membrane as well as intracellularly.

As is mentioned previously, the majority of the breast tumors are ER+
and both pre- and post-menopausal women can be affected by the ER+
type BC. Tamoxifen is the most popular antagonist for ER+ breast tu-
mors. However, since tamoxifen does not specifically target adipose
tissues, the use of NPs as nanocarrier for targeted drug delivery seems
to be of significant [30]. Li et al. reported a tamoxifen delivery system
based on polymer-based NPs to ER+ BC cells with a remarkably re-
duced cytotoxicity towards healthy cells [31]. In addition, El-Sayed and
coworkers have also successfully delivered tamoxifen-conjugated NPs
to ERs [32]. The system was uptaken into cancer cells mediated by the
receptor, which induced the efficacy of tamoxifen up to 2.7-fold higher
than the free drug.

2.2.2. PR
Similar to ER, PR is also a steroid hormone receptor and it mediates

progesterone in its target tissues. It also exists in two forms, namely PR-
A and PR-B [33]. PR also plays an important role in lobuloalveolar
differentiation [34]. The clinical use of these is to identify the patients
with invasive BC for different categories of endocrine therapy. It is used
as a prediction marker for all stages of treatment such as adjuvant and
neoadjuvant [35].

2.2.3. HER2
HER2 is a type of transmembrane glycogen protein that has three

different regions. It has an N-terminal extracellular domain (ECD), a
single α-helix transmembrane domain (TM) and an intracellular tyr-
osine kinase domain. HER family includes four proteins named as
HER1, HER2, HER3 and HER4. HER2 is the only receptor which does
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not have any identified ligands, but it contributes to dimerization with
the other three proteins in the family during cell growth [28]. The
largest part of HER2 is the ECD which further divides into subdomains
(I-IV). Cysteine rich subdomain II and IV are responsible for homo-
dimerization and heterodimerization [28]. Subdomain II has the di-
merization arm that propagates the dimerization. The monoclonal an-
tibodies pertuzmab and trastuzumab have been identified as
dimerization inhibitors. These bind to the dimerization arm of HER2
and block the signal to inhibit the dimerization with other family
members retarding the cell propagation [36]. Rathinaraj et al. men-
tioned a covalent conjugation of trastuzumab with mercaptosuccinic
acid immobilized‑gold NPs which was tested with SK-BR3 BC cells [13].

2.2.4. TNBC
15% of breast tumors do not express ER, PR or HER2, which makes

the targeted drug delivery more challenging. Also TNBC grow fast and
aggressively making it more lethal [27]. Only 85% of TNBC are basal
type but not all basal type tumors are triple negative. Basal-type tumors
are similar to TNBC and they do not have ER, PR or HER2 expressions
either [37]. However, some protein changes may happen to basal-type
tumors, which is not common to TNBC. In many solid basal-type tumors
such as BC, receptors including transferrin, folic acid, arginylglycylas-
partic acid (RGD) and the epidermal growth factor receptors (EGFR) are
expressed. Wu et al. introduced a NPs-mediated drug delivery system
(DDS) conjugated with RGD ligand, which shows a higher cellular up-
take in MDA-MB-231 BCE cells than the non-targeted system [38]. Also,
the simultaneous delivery of a combination of therapeutic agents has
shown higher success in the treatment of TNBC. The system has shown
efficacy in reducing cell proliferation both in vitro and in vivo [39,40].

2.3. Nanoparticles for targeted drug delivery

Nanoparticles (NPs) are defined as particles (1–100 nm) with a
surrounding outer layer of various organic or inorganic coatings that
determine the properties of NPs. Although not frequently used in clin-
ical treatments yet, numerous research studies are currently conducted
to leverage the potential benefits of NPs in DDS for cancer therapy. NPs
have been popular as nanocarriers mainly due to their characteristics
such as water dispersity, biocompatibility and biodegradability. Use of
NPs in cancer treatment increases the solubility and half-life of drugs
thus, increasing the bioavailability of many chemotherapeutic drugs
[41–43]. Also, NPs can increase the drug accumulation in the cancer
tissues via the enhanced permeability and retention (EPR) [44]. Ulti-
mately, NPs-anti-cancer drug combination can improve the efficiency of
the therapy by reducing the side effects through targeting specific
cancer sites using target ligands [45–47]. There are various types of NPs
that have been used for BC targeted DDS. These NPs can be categorized
into liposomal, polymer-, metal-, carbon-, protein-based and meso-
porous silica NPs as shown in Fig. 1. In addition, Table 1 summarizes
some properties of these NPs in BC treatment.

2.4. Liposomal NPs

Liposomal NPs (LNPs) are spherical vesicles which are formulated
through incorporating one or more phospholipid bilayers and their size

can reach up to a few hundred nanometers. The LNPs contain a hy-
drophilic inner core which is surrounded by the hydrophobic lipid bi-
layer. Because of this unique morphology, usually hydrophobic ther-
apeutic agents are encapsulated in the phospholipid bilayer for
delivery. LNPs are also popular therapeutic carriers for hydrophilic
agents by encapsulating in the inner core. Drug encapsulation also helps
to drastically reduce the toxicity of drugs due to non-target distribution.
Furthermore, amphiphilic agents can also be encapsulated into the
aqueous inner core of the LNPs, such as vincristine and Dox [48], which
specifically has been found to lower the cardio-cytotoxicity of Dox than
its unencapsulated form [49]. In a study of PTX encapsulation and
biological response using LNPs, Marcial et al. demonstrated that PTX
encapsulated in nanostructured lipid carriers (size-75 nm) were sig-
nificantly effective against MCF-7 (half maximal inhibitory concentra-
tion, IC50, −25.33 ± 3.17 nm) and MDA-MB-231 (IC50–2.13 ±
0.21 nM) BC cells whereas the IC50 of free drug exceeded 500 nM [50].

LNPs tend to accumulate in tumor cells by incorporating the bilayer
through the cell membrane. It has been reported that by surface mod-
ification of LNPs using PEG, longer half-lives could be achieved, and the
targeting efficacy also increases [51]. PEGylated LNPs showed effective
targeting through passive strategies both in vitro and in vivo. LNPs have
also been used to deliver combinations of drugs to achieve synergic
effects by encapsulating more than one therapeutic agent in the LNPs.
Wong and Chiu introduced a co-encapsulation method of both vin-
cristine and quercetin in a PEGlyated liposome for the treatment of
hormone- and trastuzumab-insensitive BC. This study showed that the
co-encapsulation achieved higher synergism, prolonged drug circula-
tion in plasma and controlled release in vivo for JIMT-1 cells. Moreover,
the liposomal encapsulation has proved to be the most effective ap-
proach for the growth inhibition of JIMT-1 cells in comparison to the
two individual drugs [52]. A non-PEGlyated LNPs system has also been
fabricated to deliver a combination of Dox and cyclophosphamide for
the treatment of metastatic BC [53].

LNPs have been identified as an effective delivery model for oligo-
nucleotides, peptides and siRNA-based gene therapy for BC. The use of
LNPs to encapsulate these peptides and nucleotides prevents their de-
gradation in vasculature environment and allow targeted delivery by
using target ligands [54,55]. Cao et al. showed a design of surface
modified LNPs with A7R-cystein peptide for PTX delivery to MDA-MB-
231 cells in vitro and in vivo [56]. The study showed that A7R-cystein
peptide enhanced the vesicle uptake thus increasing the cytotoxicity
and accumulation in the BC xenografts, which confirmed the im-
portance of peptide as targeting ligand in the PTX targeted delivery.
Another study introduced a co-delivery system of siRNA in vitro using
chitosan-coated LNPs. In this study siHIF1-α (hypoxia inducible factors)
and siVEGF (vascular endothelial growth factors) were co-delivered to
achieve lower cytotoxicity and higher silencing efficiency. The ex-
pressions of respective mRNAs significantly suppressed the growth of
MCF-7 and MDA-MB-435 BC cells. They also explained that the chit-
osan-coated LNPs enhanced the stability of siRNAs by protecting them
from serum degradation even after 24 h of incubation [57]. A carrier
combination of bio-nanocapsule that derived from the antigen on the
surface of hepatitis B virus and liposomes has also been reported for the
delivery of siRNA to HER2-expressing BC. The gene silencing and
protein knockdown were achieved through this system [58]. Chen et al.

Fig. 1. A diagram of different types of NPs used in BC research for targeted DDS.
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reported a cationic and anionic liposomal technique to overcome
multidrug resistance (MDR) of BC by using Dox along with siRNA [59].
This study exhibited the fabrication of liposome-polycation-DNA (LPD)
NPs using a guanidinium-containing cationic lipid which induces re-
active oxygen species (ROS) and downregulates the MDR expression.
Increased Dox cell uptake was observed when combined with siVEGF
and targeted passive metastatic BC. Higher entrapment efficiency of
Dox was observed in anionic-LPD NPs, which was modified to overcome
Pgp-mediated drug efflux. Therefore, LNPs have been very popular as a
nanocarrier for easily biodegradable therapeutic agents since these
therapeutics can be encapsulated and protected until they reach the
target cells, which is especially important for peptides and siRNAs.
Although amphiphilic therapeutics can be encapsulated in LNPs the size
of the LNPs is considerably larger (< 50 nm), which could pose a dis-
advantage for nanodelivery. Moreover, to achieve better biocompat-
ibility LNPs are often coated with polymers which increases the size
further. The drug release process by opening the phospholipid bilayer
could also be further discussed.

2.5. Polymer-based NPs

Polymer-based NPs (PNPs) are colloidal particles in the size order of
a few hundred nanometers. These NPs are usually formulated by
binding a copolymer to another polymer matrix. Polymers used in this
regard can be natural products such as cellulose and chitosan [60]. On
the other hand, synthetic polymers can also be used to prepare PNPs to
achieve specific chemical and biological functions which make these
PNPs highly demanding for biomedical applications [61]. Nanopreci-
pitation, emulsification and salting-out are common methodologies for
chemical synthesis of PNPs [62]. These chemical syntheses of PNPs can
be designed to have the required lipophilicity, charge and biocompat-
ibility to suit a certain drug to be carried to the specific target [63]. The
anti-cancer drug can be loaded onto the surface of PNPs by surface
adsorption, chemical conjugation or by encapsulating into the PNPs-
based DDS to be delivered to the target site [64]. Most PNPs have high
solubility and permeability enabling them to be stable with slow drug
release over a long period of time making these PNPs efficient nano-
carriers for less hydrophilic anti-cancer agents. Moreover, it has been
found that PNPs have high drug loadability and low toxicity especially
when they were coated with a PEG-phospholipid copolymer [65]. Nu-
merous clinically used chemotherapeutic agents such as Dox, PTX,
trastuzumab and cis-platin have been tested for PNPs-drug conjugation.
Various PNPs including polyhydroxyalkanoates, PLGA, cyclodextrins-
derived PNPs have been studied as nanocarriers for various cancer
treatments [63]. PEG-modified poly(ɛ-caprolactone) PNPs were re-
ported for targeted delivery of tamoxifen in BC [66]. This study showed
significant increase of drug accumulation in target BC cells by using the
PEG-modified NPs than the unmodified NPs. A combination of N-(2-
hydroxypropyl) methacrylamide with a tyrosine kinase inhibitor was
also studied as a HER2-targeted DDS for HER2-overexpressing meta-
static BC [67].

Moreover, different approaches of cancer inhibition have been re-
searched apart from the use of traditional chemotherapeutic agents. Jin

et al. recently reported a photodynamic therapy based on conjugated
PNPs for TNBC treatment [68]. Their study showed that the lumines-
cent conjugated PNPs could produce ROS upon light irradiation. Their
synthesis of a cyclic arginine-glycine-aspartic acid peptide-decorated
conjugated PNPs with poly [2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phe-
nylenevinylene] as photosensitizer had negligible cytotoxicity and
could selectively kill the αvβ3 integrin-overexpressing MDA-MB-231
cells, a subtype of TNBC cells. Another study exhibited an enhanced
cleavage of DNA of tumor cells, which was achieved through a ta-
moxifen-embedded PLGA-derived PNPs system [69]. The PLGA-ta-
moxifen NPs were synthesized using an emulsified nanoprecipitation
technique. These PLGA-tamoxifen NPs showed higher nuclear frag-
mentation, cytotoxicity and greater bioavailability compared to pure
tamoxifen via receptor-mediated endocytosis in both Dalton's lym-
phoma ascites and MDA-MB-231 BC cells. Another different synthesis
approach, a controlled layer-by-layer NPs fabrication process was de-
veloped by Deng et al. for the co-delivery of siRNA and Dox for a TNBC
treatment [15] (Fig. 2). They have synthesized the PNPs using poly-L-
arginine (PLA) and have noticed the size of PNPs increased up to
140 nm with the increment of layers. They concluded that the layer-by-
layer technique could have high loading capability of chemotherapeutic
agents. And the combination of siRNA and Dox, which targeted the
multidrug resistance protein 1 (MRP1) drug efflux pump and TNBC in
animal models, respectively, has shown a significantly high drug effi-
cacy. Thus, PNPs-based DDS is another approach besides the use of
LNPs. Although, the different synthetic approaches allow the PNPs to
achieve certain desired characteristics, the sizes of these PNPs still are
in range of about few hundred nanometers, which renders particles
larger than even the LNPs, thus affecting the biodistribution [70].
Furthermore, the enhanced stability of PNPs could be disadvantages in
terms of biodegradability and accumulation in the reticular-endothelial
system.

In addition, nanofibers are another group of polymeric NPs as po-
tential candidate for drug delivery applications as well as numerous
others such as cosmetics, filtration, sensors, nanoelectronics.
Nanofibers manifest excellent surface area to volume ratio (approxi-
mately 100 times larger than that of microfibers), flexibility and me-
chanical properties such as tensile strength. As for the starting mate-
rials, polymers including polyvinylalanine (PVA), PLA, PEG and
chitosan have all been used for the production of nanofibers for drug
delivery applications [71]. Regarding synthetic approaches, such ma-
terials can be fabricated through drawing, template synthesis, self-as-
sembly, phase separation and electrospinning [72]. For instance,
Jayakumar et al. utilized electrospinning, which was based on the de-
position of a polymer compound onto a collector under the presence of
an electric field, to fabricate chitin and chitosan nanofibers [73]. On the
other hand, Marty et al. fabricated nanofiber DDS to assess the cell
movement in patients with metastatic BC cells [74]. Although nanofi-
bers could provide a new approach for DDS, the toxicity and the drug
loadability are concerns for major drawbacks [75].

Fig. 2. The schematic illustration of the layer-by-layer drug delivery platform of poly-L-arginine NPs. The figure is adapted with permission from ref. [15].

P.Y. Liyanage, et al. BBA - Reviews on Cancer 1871 (2019) 419–433

423



2.6. Metal-based NPs

The metal-based NPs can be categorized also as inorganic NPs. The
capabilities of these inorganic NPs have also been extensively in-
vestigated over the past decade owing to their therapeutic and imaging
properties. Most of these NPs share the same type of structure con-
taining a core which is responsible for the electronic, magnetic and
optical properties and a shell which is mainly an organic surface
coating. Among them, most widely used metal-based NPs for BC
treatment are gold NPs, superparamagnetic iron oxide NPs (SPIONs)
and quantum dots (QDs).

2.6.1. Gold NPs
Gold NPs (AuNPs) have been synthesized during the past few dec-

ades for various applications by tailoring their size [76], shape [77] and
surface functionalities [78]. The most common synthesis of AuNPs in-
volves the Au3+ reduction by citrate in aqueous media. These AuNPs
have been used extensively in DDS due to the controllable unique
properties and significantly low cytotoxicity as reported [79–83]. The
organic surface coating is important for the DDS for targeting specific
receptors/biomarkers. Thiolates and disulfides are widely used for
these surface coatings mainly due to their affinity to bind onto the
surface of Au. Afterwards, the drugs or therapeutic agents can be loaded
on AuNPs by binding onto the surface through covalent or non-covalent
bonds. The drug release could be administered at the target site de-
pending on the loading method [79,84]. Fig. 3 is a graphic illustration
of the potential Dox release triggered by pH considering the Dox con-
jugation with AuNPs via a pH-sensitive hydrazine band. Jafarizad et al.
introduced the use of reduced graphene oxide-gold NPs for the drug
delivery of covalently bonded drugs to the BC cells [85]. In this study,
anticancer drug, MTX was used. The MTX was first covalently linked to

3-mercaptopropionic acid to synthesize MTX terminated thiol mole-
cules, which were then used to functionalize the AuNPs. The formation
of nanocomposite was achieved by mixing the functionalized AuNPs in
a reduced graphene oxide (RGO) dispersion. It showed a DLS hydro-
dynamic size of the AuNPs before thiol group functionalization was
with a mean diameter of 7.1 nm while, on the other hand, the hydro-
dynamic size after the thiol MTX (SMTX) functionalization onto the
AuNPs increased up to a mean diameter of 14.9 nm confirming the
functionalization. A comparison of drug release ability triggered by pH
changes between the SMTX-AuNPs and SMTX-AuNPs/RGO shows that
the drug release from the nanocomposite of AuNPs/RGO is significantly
lower than the AuNPs. This effect could be from the slow hydrolysis of
the amide bond or due to the π-stacking barrier of the reduced graphene
oxide sheets. The in vitro studies have been conducted on MCF-7 BCE
cells.

Receptor targeting using transferrin has been used in several dif-
ferent cancer studies owing to the fact that cancer cell membranes
contain high amount of transferrin receptors compared to that of
healthy cells. Simultaneously, several studies on BC have also been
performed to target transferrin receptors on BC cells. By conjugating
transferrin to AuNPs, the cellular uptake of AuNPs by BC cells can be
increased for the targeted therapy [86]. Another study showed a sig-
nificant inhibition of BC cells by targeting EGFR/VEGFR-2 that plays a
major role in metastasis BC by increasing cell proliferation and angio-
genesis. This study reported that AuNPs loaded with quercetin could
inhibit the epithelial-mesenchymal transition which contributes to BC
malignancies in both MCF-7 and MDA-MB-231 cells. It has shown sig-
nificant decreases in several protein expressions in response to this DDS
such as vimentin, N-cadherin, MMP-9, p-EGFR, VEGFR-2, p-PI3K, Akt
and p-GSK3β while the DDS helped in the enhancement of E-cadherin
protein expression [87]. The functionalization of AuNPs with various

Fig. 3. Schematic illustration of the Au-Poly(L-aspartate-DOX)-b-PEG-OH/*FA NP and its pH-triggered drug release (*FA – Folic acid). The figure is adapted with
permission from ref. [84].
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ligands or functional molecules helps stabilize the AuNPs significantly
compared to the naked AuNPs and also enhances the cancer killing or
protein expression inhibitions. In another study, AuNPs have been used
to enhance the radiotherapy activity to kill BC cells. This study involved
both MCF-7 and non-malignant MCF-10A cell lines. AuNPs decorated
with two different functionalization molecules, cysteamine and thio-
glucose, have been used for the treatment. And they illustrated that
although the cytoplasm distribution of these two functionalized AuNPs
differed from each other, both molecules enhanced the effectiveness of
the radiotherapy treatment in cancer killing compared to the non-
AuNPs treated cells [88]. Another investigation showed that the Dox
loaded AuNPs were able to overcome the MDR in MCF-7/ADR cancer
cells [89]. AuNPs have been used in drug carrier studies extensively due
to their unique characteristics especially including easy imaging
through microscopic techniques such as transition electron microscopy
(TEM) and controllable functionalization. One major drawback of the
AuNPs could be their increased stability against the biodegradability in
a biological system despite the reported low cytotoxicity.

2.6.2. Superparamagnetic iron oxide NPs
Superparamagnetic Iron Oxide NPs (SPIONs) are NPs of size in be-

tween 1 and 100 nm. These NPs have a magnetic inner core which is
comprised of magnetite, Fe3O4, or maghemite, γ-Fe2O3. Maghemite is
considered as one of the most suitable inner core materials for SPIONs
due to its least likely toxicity from Fe(III) in the body unlike Fe(II) re-
leased from magnetite [90–93]. Direct use of SPIONs in therapeutic and
biomedical applications can result in biofouling and agglomeration of
these NPs in blood plasma, which is a huge drawback of direct use [94].
Thus, this magnetic core is covered by a hydrophilic coating for stabi-
lization such as polymers which allow targeted delivery of biomolecules

to specific sites. Most commonly used stabilization biopolymers include
polysaccharides, PEG, dextran, alginate and polyacrylic acid [95,96].
SPIONs have received increased popularity for immunoassays, tissue
repairs, chemotherapy and magnetic resonance imaging (MRI) as con-
trast agents due to the inherent properties such as great biocompat-
ibility and magnetism through which therapeutics can be guided to
target site using external magnetic fields and magnetic visualization can
be achieved. Marcu et al. reported a SPIONs synthesis through laser
pyrolysis with uniform size of about 8–10 nm in diameter [97]. They
observed an effective antitumor activity of SPIONs on MCF-7 cells after
further coating the NPs with antracyclinic antibiotic violamycine B1.
Poller et al. also compared the impact on BC cells of three different
types of SPIONs that varied in size, shape, zeta potential and surface
coating. Their effects on cellular uptake, magnetic properties and cy-
totoxicity of SPIONs were studied in comparison [98]. From the three
types of SPIONs that were used for BC treatment including dextran-
coated (SPIONDEX), lauric acid coated (SPIONLA) and SPIONLA with the
addition of human serum albumin (SPIONLA-HSA), SPIONLA showed the
highest cellular uptake and the cell cytotoxicity towards the BC cells.

MRI is one of the frontier noninvasive visualization methods to
identify tumors and other relevant targets in biomedical imaging and
clinical diagnosis. An MRI measurement of tyrosine kinase HER2/neu
receptor in BC cells using SPIONs was reported. Streptavidin-con-
jugated SPIONs were used as the targeted MRI contrast agent in this
study. These NPs were directed to a panel of MCF-7 BC cells containing
different amounts of the receptors which were pre-labeled with a bio-
tinylated monoclonal antibody. The contrast of the observed imaging
was illustrated to be proportional to the expression level of HER2/neu
receptors. Also, an interesting observation was that the SPIONs were
able to only attach to the surface of the BC cells without entering

Fig. 4. Individual temperature dosages over tumor areas. (a). By using tumor surface temperature during hyperthermia treatment, median temperature dosages were
calculated as cumulative equivalent minutes (CEM43T90) and displayed as box plots. (b). Example of a treatment sequence within the alternating magnetic field
(AMF), the corresponding temperature distribution over the tumor surface and the effect on tumor volume. (c). Intratumoral distribution of SPIONs (MF66-N6LDOX)
was determined using micro computed tomography 24 h prior to the first hyperthermia treatment. The figure is adapted with permission from ref. [102].
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intracellularly, which is an advantage in the in vivo imaging [99]. Thus,
SPIONs are capable of potentially enhancing the contrast in imaging
compared to the conventional techniques [100].

Another interesting technique of reducing the size of cancers is by
involving heat. Tumor cells are susceptible to heat and can be killed via
treatments such as magnetic hyperthermia. But hypothermia alone is
not an effective method of tumor reduction. It is often used in combi-
nation with other techniques as radiotherapy or chemotherapy for
clinical use [101]. However, SPIONs functionalized electrostatically
with either Nucant multivalent pseudopeptide (N6L) (MF66-N6L), Dox
(MF66-DOX) or both (MF66-N6L-DOX) act as potential antitumor
therapeutics on MDA-MB-231 BC bearing female athymic nude mice
exposed to an altered magnetic field. The therapeutic cytotoxicity effect
of magnetic hypothermia has been reported to increase while the tumor
volume decreased in the combination functionalization of both N6L and
DOX [102] (Fig. 4). Thus, SPIONs can be synthesized with control in
size, shape and mainly surface functionalization to suit different ap-
plications.

2.6.3. Quantum dots
Imaging of cancer cells is essential to track cancer progression and

drug efficacy during treatment. Thus, quantum dots (QDs) play an
important role owing to its excellent optical properties in the long-run
of tumors imaging [103,104]. QDs are semiconductor nanocrystals with
particle size ranging between 2 and 10 nm. These NPs usually are
comprised of a metal inner core which exhibits a narrow emission
spectrum with a size-dependent emission ranging from visible to in-
frared (IR) light. The shell could comprise of doped metals or semi-
conductor layers varying according to the applications. Conjugation of
QDs with surface modifing ligands and peptides allows them to be used
in target-specific cancer studies. Compared with most NPs mentioned
previously, significantly, QDs enabled in vivo cellular imaging due to
their excellent tunable optical properties, large surface to volume ratio,
high brightness and resistance towards photobleaching. However, one
drawback of these QDs is their high hydrophobicity. Thus, they require
surface coating with polymers or by multilayer ligand shells to gain
certain water solubility [105]. Conjugation with PEG reduces the po-
tential toxic deposition of QDs in the reticular-endothelial system and
allows better surface decoration [106–108]. QDs-based multiplexed
imaging has been performed for in situ better than conventional
methods which obtain biomarker information at a time such as im-
munofluorescence and western blot [109] (Fig. 5).

In a study of MCF-7 and BT-474 cell lines, QDs that could emit at
multiple wavelengths were introduced. These two cell lines were found
to express different levels of the following five biomarkers, ER, PR,
EGFR, mTOR and HER2. Thus, the QDs were conjugated with the pri-
mary antibodies of these protein biomarkers and used for simultaneous
quantitative and multicolor detection of those biomarkers [110]. Sun
et al. mentioned a type of CuInS2/ZnS QDs-based water-soluble imaging
agent for the detection of BC cells after conjugating with anti-Ki-67
monoclonal antibody, a nuclear protein associated with the cell cycle,
Ki-67 [111]. The hydrophobic QDs were coated with octadecylamine
and then encapsulated in an amphiphilic polymer before conjugating
with the monoclonal antibody. They revealed that the optical properties
of the naked QDs remained unchanged in the decorated probe and no
distinct toxicity was observed in vitro in MDA-MB-231 BC cells. But
slight changes were observed in the cell shapes and the overall viability
of the cells. The major drawback of QDs is that its inner core is com-
monly comprised of heavy metals which could be toxic to human body
in the long-run through accumulation in organs as liver. And the ex-
cellent stability of QDs makes them less biodegradable and thus less
biocompatible. Therefore, recently, more researches have been focused
on non-metal NPs as alternatives to these conventional metal-based
QDs.

2.7. Mesoporous silica NPs

Mesoporous silica NPs (MSNs) have attracted much attention as
another inorganic nanomaterial in targeted therapeutic delivery and
imaging due to their unique properties such as large surface area, pore
volume (shown in Fig. 6) and the capability to vary the pore size other
than having an easily modifiable surface [112–117]. MSNs have a high
and controllable drug loading capacity due to the characteristic porous
surface and are also able to deliver drugs without premature release
before reaching the target site, which makes MSNs a good carrier for
the easily degradable molecules such as genes and proteins. Tsai et al.
have reported a NPs-based DDS of anti-HER2/neu monoclonal antibody
using green fluorescent MSNs as drug carrier for the selective targeting
of BC cells [118]. To facilitate imaging, the MSNs had been first loaded
with a green fluorescent dye using a PEG spacer. They examined the
targeting ability of the MSNs using both HER2-overexpressing cells
(BT474 BC cells) and HER2 negative cells (MCF7 BC cells and NIH3T3
mouse fibroblast cells) and the green fluorescence was exhibited evi-
dently in BT474 cells. Furthermore, they were also able to show that an
MSN conjugate with the lowest Trastuzumab content nonspecifically
bounded with all the three types of cells. Also, some MSNs have been
observed to escape the endosomal vesicles in the intracellular en-
vironment and were able to image in the cytosol, which is an important
discovery for drug delivery.

In another report, Meng et al. have developed an MSNs DDS to
deliver siRNA to overcome Dox resistance in MDR BC cells in nude mice
[119]. They have selected the Pgp drug exporter siRNA through a
screening of the MCF-7/MDR cell line. Polyethyleneimine (PEI) and
PEG copolymer functionalized MSNs have been applied for the stability
and protection purposes for the Dox and Pgp siRNA system. They have
observed an increasing retention and permeability at the tumor sites as
well as the reduced reticuloendothelial aggregation from this nano-
carrier synthesis. They also observed a synergistic inhibition of tumor
growth which resulted from the co-delivery system, significant knock-
down of Pgp and apoptosis induced by Dox intracellularly in the xe-
nografts (Fig. 7). The study also revealed that much lower Dox limits
can be administered through this system, and an encapsulation would
open possibilities of lower risks to cardiovascular toxicity, resulting
from Dox. Furthermore, the combined DDS exhibited higher drug effi-
cacy compared to either single treatment administered. The research on
MSNs possibly can be more reliable compared to metal-based NPs in
terms of toxicity and biocompatibility whereas the latter mostly contain
heavy metal elements that are harmful for human's health. Moreover,
the facts that these porous NPs can deliver a cocktail of drugs to a target
site simultaneously and silica being an abundant material could be
advantages. Nonetheless, one major limitation of MSNs is that their
poor penetration ability in to a tumor mass [120]. Therefore, vast
surface modifications need to be conducted for in vivo use.

2.8. Carbon-based NPs

Carbon-based NPs including fullerene, graphene, carbon nanotubes
and dots are all promising tools for the treatment of BC due to their
unique physicochemical, optical and biological properties [121]. Spe-
cifically, carbon-based NPs research were developed in hope to replace
the toxic, heavy-metal containing QDs and other metal NPs with a non-
metallic NPs system. These carbon-based NPs own numerous favorable
characteristics such as small size, high specific surface area, versatile
surface functional groups, benign biocompatibility, low-toxicity, unique
optical and thermal properties [122]. Thus, carbon-based NPs can be
considered as a better and promising DDS to be applied in cancer
theranostics compared to the metal-based NPs. Based on the discovery
and application history, carbon nanotubes (CNTs) will be introduced
followed by carbon dots (CDs) regarding their application in BC treat-
ment.
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2.8.1. Carbon nanotubes
CNTs are allotropes of fullerene with a cylindrical shape of long,

hollow structures with a wall composed of graphene sheet rolled at a
specific angle. According to single or multiple graphene sheet, CNTs are
categorized as single-walled (SWNTs) or multi-walled nanotubes
(MWNTs). The ongoing development of CNTs exhibits many extra-
ordinary properties including thermal conductivity, optical and elec-
trical properties [123]. In addition, CNTs have become a versatile tool
for nanomedicine application, particularly in the cancer targeting
[124]. Due to the tunable surface and unique thermal properties, CNTs
can serve as excellent optical absorber in near IR (NIR) light where
biological systems prove to be highly transparent [125]. And the pro-
cess to treat cancer cells by laser-irradiation mediated with bio-
functionalized CNTs is called nanophotothermolysis [126].

He and coworkers observed that SWNTs showed two unique optical
properties. They reported on a cancer cell detecting strong Raman
signal and NIR absorbance for selective photothermal ablation of tu-
mors [127]. After conjugation with HER2 IgY, the composite demon-
strated dual functionality for both functions of detection and selective
destruction of cancer cells in an in vitro model with HER2-expressing
SK-BR-3 cells and HER2-negative MCF-7 cells. Another similar case was
reported by Neves et al. [128]. As is known that the human protein
annexin V (AV) binds specifically to anionic phospholipids expressed
externally on the surface of tumor and endothelial cells that line the
tumor vasculature [128,129], Harrison et al. adopted the conjugate of
SWNTs and AV to realize the targeting treatment of BC by the photo-
thermal therapy with the help of a laser of 980 nm wavelength.

Since CNTs are pre-formed supramolecular nanotubes, the drug
loading to CNTs could be very challenging. There are two drug-loading
patterns including the filament and direct loading to the surface. CNTs
can be filled with both organic and inorganic chemotherapeutic drugs
through simple capillarity-induced filling [130–132]. However, the
loadable amount is as low as 5% (w/w) of drugs [132]. On the other
hand, pre-functionalized CNTs allow some small hydrophobic drugs to
directly attach on the coating-polymers, which can greatly improve the
loading capacity. For example, one investigation demonstrated that the

loading capacity of Dox can reach 400% (w/w) by using the coating-
polymer technique [133]. However, for drugs with bulky structures, the
lack of space on the surface of polymer will limit further conjugation of
other ligands, which results in difficulties in the multifunctional DDS
[134]. To solve this problem, Shao et al. first conjugated PTX with a
long chain lipid docosanol molecules, and the lipid chain was bonded to
the surface of CNTs via hydrophobic interactions [135]. Then with the
aid of folic acid, the new conjugate of SWNTs-lipid-PTX achieved high
cell penetration and much improved drug efficacy in vitro (78.5 vs. 31.6
and 59.1% in cytotoxicity respectively, p < 0.01) and in vivo using a
human BC xenograft mice model compared to free drug and non-tar-
geted SWNTs-lipid-PTX.

Faraj et al. provided a novel DDS consisting of antibody conjugated-
SWNTs, Dox as well as SPIONs [136]. By the specific antibody-antigen
interaction and magnetic force from an externally applied magnet to
the SPIONs, the conjugate composite showed efficient drug delivery.
Further, the superiority of apparent diffusion coefficient measurements
using diffusion-weighted MRI was found to be a sensitive imaging
biomarker for assessment of treatment-induced changes.

Based on the challenges of the treatment and effectiveness of PTX,
Wang et al. found CNTs with abundant oxygen-containing functional
groups on surface could enhance the inhibitory effect of PTX on the
proliferation of BC cells by downregulation of HIF-1α under hypoxia
[137]. This study did not mention any side effects of PTX. Hypoxia is an
important factor that downregulates the efficacy of the treatment of BC.
It will stimulate the tumor resistance to the chemotherapy or radio-
therapy. In addition, it can improve the invasiveness of tumor [138].
Hypoxia-inducible factor 1 alpha (HIF-1α) plays a key role in the effects
of hypoxia on cancer cells. Indeed, HIF-1α expression is associated with
the survival of BC patients after surgery. Therefore, overcoming the
effects of hypoxia might improve the efficiency of BC treatments.

Another type of CNTs widely investigated for the treatment of BC is
MWNTs. In 2005, Jia and coworkers compared the cytotoxicity of
SWCNTs and MWCNTs in the alveolar macrophages and observed an
impaired phagocytosis at a low dose of SWCNT, while MWCNT resulted
in the identical outcomes at a higher dose, which reveals a higher

Fig. 5. Optical properties and potential applications of QDs in BC research studies. Commonly used QDs are core–shell structure encapsulated with amphiphilic
polymers carrying chemically active groups. Compared with traditional organic dyes, QDs show excellent optical properties (A). After being coupled with active
molecules, QDs can be adapted for tissues imaging, such as studying biomarker interactions (B) and evaluating prognostic biomarkers (C), and for in vivo imaging
such as mapping auxiliary lymphatic system (D), showing BC (BC) xenograft (E) and detecting BC metastasis (F) in BC research studies. The figure is adapted with
permission from ref. [109].
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toxicity of SWCNT than MWCNT [139]. Therefore, in recent years,
more MWCNTs have been studied for the BC treatments [140]. For
example, Risi et al. performed a series of studies including the cyto-
toxicity, internalization and loading of MTX in MDA-MB-231 [141].
The internalization of MWCNTs was evidenced by TEM. MTX release
from MWCNTs showed linear kinetics over a 24 h period and
MWCNT–MTX cytotoxic effects were time- and dose-dependent. How-
ever, the MWCNT–MTX DDS lacked the specific targeting effect
showing no distinction between cancer and non-neoplastic cells.

Thus, functionalization of MWCNTs could enhance the drug loading
and targeted drug delivery. Singh and coworkers functionalized
MWCNTs with glucosamine in two patterns as covalently linked glu-
cosamine and non-covalent phospholipid-glucosamine coated MWCNTs
[142]. The binding of MWCNTs was mediated by the specific interac-
tion with the glucose transporters. Glyco-MWCNTs prepared by non-
covalent coating of MWCNTs with phospholipid-glucosamine displayed
an extended blood circulation time, delayed urinary clearance, low
tissue retention and increased BC tumor accumulation in vivo.

Therefore, CNTs are a good drug delivery carrier. However, the
preparation of CNTs cannot be easily achieved. CNTs are also known to
have certain limitations in terms of solubility and biodegradability
[143]. In addition, the loading of drugs could be challenging in several
different ways.

2.8.2. Carbon dots
As a new family member of carbon-based NPs, CDs were discovered

in 2004 [144]. In the early beginning of their discovery, the primary
research was mainly related to the photoluminescence (PL) using var-
ious synthetic approaches, starting materials and surface modifications
[145]. As a measurement of PL, fluorescence quantum yield (QY) has
been improved up to 93.3% by surface doping [146]. Besides the en-
hancement of QY, the PL mechanism of CDs draws wide investigation in
different viewpoints [147,148] to obtain optimizable PL properties
especially in regard to imaging in vivo. Due to the unique properties
including water-dispersion, ease of produce, high PL and bio-compat-
ibility, large surface area and abundance of functional groups on the
surface, CDs have been widely used in printing [149,150], sensing
[151], imaging [152], photocatalysis [153,154], thermoelectricity
[155], and are considered to be excellent drug nanocarriers for in vitro
and in vivo studies [156,157]. Despite of these attractive properties, the
application of CDs in the treatments of BC was first introduced in 2013.

In 2013, Hsu et al. reported a type of CDs prepared from green tea,
which exhibited inhibition activity of cancer cells [158]. Three cancer
cell lines have been employed including MCF-7, MDA-MB-231, and
HeLa (human cervical carcinoma) cells. The cell viability decreased
with the increasing concentration of CDs. The cell viability percentages
for MCF-7, MDA-MB-231, and HeLa cells for CDs were 20, 18, and 68%,
respectively, which demonstrated their great inhibition effect on BC cell
lines. As for the mechanism of the reduced viability, they ascribed it to
the generation of H2O2 and ROS. Li and coworkers illustrated a green
emitting CDs synthesized from urea and citric acid via a microwave-
mediated method as a trackable nanocarrier for Dox [159]. It is note-
worthy that the as-prepared CDs showed low or even no toxicity by
comparing human liver carcinoma HepG2 cells, and human normal
liver HL-7702 cells. The viability of both cell lines remained constant
100% even when the incubation time was extended up to 96 h and the
CDs concentration increased from 1.5625 to 100mg·ml−1. This was a
remarkable achievement which was hardly achieved by any other re-
ported CDs [160,161]. Then CDs were conjugated with Dox through
basic electrostatic force or hydrogen bonds, which established a foun-
dation for the pH-dependent release of Dox in the cancer cells. To test
the universality of the conjugate composite to cancer cells, two other
cancer cell lines, namely HeLa, MCF-7 and two other healthy cell lines,
namely H9C2 (cardiomyocytes) and HUVEC cells (human umbilical
vascular endothelial) were also employed for the same set of evalua-
tions. As a result, the CDs-Dox conjugate showed a selective therapeutic
effect on the cancer cells, which was clearly revealed by the decline of
cell viability. In addition, Zhao and coworkers have investigated MCF-7
in contrast to MDA-MB-231 cells to explore the tumor extracellular
acidic condition triggered targeting ability of CDs [11]. In their work,
owing to the interaction between RGD and overexpressed integrin αvβ3,
higher cellular uptake of CDs conjugate (CDs-RGD-Pt(IV)-PEG) was
achieved by MDA-MB-231 compared to MCF-7 cells due to the exposure
of RGD peptide after the hydrolysis of the benzoic-imine bond at pH 6.8
rather than 7.4. The result was confirmed by confocal laser scanning
microscopy, flow cytometry, and cytotoxicity studies. In general, BC
cell lines in many ongoing cancer research are only used as a cancer
model to study the cytotoxicity and internalization of CDs alone or CD-
drug conjugate, which suggests the lack of the systematic study of BC
treatments using CDs.

Later in 2018, another study was reported on the BC treatment using
CDs as the nanocarrier where Kong et al. conjugated CDs with Dox
through electrostatic interaction and the conjugate achieved a higher
cellular uptake and anti-tumor efficacy on MCF-7 cells in contrast to
free Dox [162] (Fig. 8). In this pioneering study, however, the con-
firmation of successful conjugation was not convincing by the fluores-
cence spectroscopy. To be specific, even though there was no obvious
shift of the fluorescence emission after conjugation with Dox, the PL
emission spectra of both CDs and Dox are not apparently different.

Thus, provided the favorable properties of CDs such as non-toxicity,
excellent water dispersity, good biocompatibility and the excellent PL
that allow the imaging and tracking to be possible, it will be a very

Fig. 6. Various pore geometrics of mesoporous structure (a) 2D hexagonal p6
mm, (b) bicontinuous cubic Ia3d, (c) bicontinuous cubic pn3 m, (d) cage type
pm3n, (e) cage type Im3 m. The figure is adapted with permission from ref.
[117].
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promising nanocarrier in BC drug delivery. Nonetheless, only few stu-
dies have been conducted. Therefore, elaborate studies are needed on
CDs capability to be used in DDS for BC to enlighten these new possi-
bilities.

2.9. Protein-based NPs (viral NPs)

Viral NPs are a group of NPs resembling the protein envelopes or
capsids of viruses, which determines the targeting of viral NPs.
However, in absence of genome of viruses, these viral NPs are not in-
fectious. The synthesis of viral NPs undergoes the expression and re-
combination of viral envelope and capsid proteins, and the process can
take a short period especially in plant. For example, since transient
transformation of plant tissues is very rapid, it can produce re-
combinant proteins or the products within days of their activity and can
then be scaled up to commercially relevant production levels [163].
Also, the highly ordered repetitive structures on the surface of viral NPs
provide a good platform for the conjugation with various drugs [164].
Therefore, viral NPs are emerging as a versatile tool for targeted drug
delivery.

In terms of drugs species that have been delivered by viral NPs to
treat BC, trastuzumab is currently in use as a targeted therapy for
HER2+ BC patients. It was carried by potato virus X (PVX), which was
reported by Esfandiari et al. in 2015 to cause the increasing death of BC
cells [165]. Based on this work, Esfandiari and his team furthermore
conjugated PVX with trastuzumab monoclonal antibody, which can
prevent the proliferation of BC cells and inhibit transducing the signals

[166], as a new option in specific targeting of BC. Later, as was pre-
sented by Le el al. in 2017, Dox was also conjugated and delivered by
PVX to athymic mice bearing human MDA-MB-231 BC xenografts and
PVX-Dox treatment resulted in reduced tumor growth [167]. Therefore,
PVX, as one type of plant-derived viral NPs, opens the door of viral NPs
for the cancer therapy applications.

In addition to PVX, influenza viral NPs modified via protein transfer
by anchoring glycophosphatidylinositol (GPI) and HER2 antigen led to
enhanced protection against HER2-expressing tumor growth in a
murine BC model. And GPI-HER2 modified influenza viral NPs led to
HER2-specific IgG production and enhanced HER2-specific Th1-type
immunity compared to vaccination with GPI-HER2 alone [168].

Viral NPs are biocompatible and biodegradable, which is the best
advantage of such DDS. Moreover, those viral NPs that originated from
plant viruses and bacteriophages are particularly advantageous since
they are less likely to be pathogenic in human body, and thus less likely
to cause unwanted side effects [169]. To the best of our knowledge, no
studies have been reported regarding the potential shortcoming of this
method. It seems viral NPs come of age and it is predicted not too long
before viral NPs play a prominent role in the clinic [170]. However, the
synthesis of viral NPs that resemble certain virus is still more compli-
cated and costly than other NPs preparation [171], which needs to be
simplified and accessible for a wider application.

3. Conclusion

BC is one of the deadliest cancers in contemporary. Alongside this,

Fig. 7. Tumor growth inhibition of xenografts established from MCF-7/MDR cells in nude mice. (A) MCF-7/MDR cancer cells were subcutaneously injected into mice
7 days before treatment with MSNs (gray boxes). These animals received six i.v. injections (red boxes) every 3–6 days (green boxes) for 30 days as shown. (B)
Comparison of the tumor inhibition effect of Dox-loaded MSNs containing Pgp siRNA versus other treatment groups: saline, empty MSNs, free Dox, free siRNA, Dox-
loaded MSNs without siRNA, and Dox-loaded MSNs containing scrambled siRNA. Following sacrifice of the animals, tumor tissues were collected and weighed to
determine the tumor inhibition rate. (/) p < .05, compared to saline; (#) p < .05, compared to Dox-loaded MSNs without siRNA; ($) p < .05, compared to Dox-
loaded MSNs with scramble (X) siRNA. (C) Photograph of the collected tumor tissues for each treatment group. The figure is adapted with permission from ref. [119].
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studies focusing on cancer treatments are increasing prominently. To
this aspect nanoparticles could serve as a powerful tool in cancer
therapy. Also given the fact that the traditional techniques of surgery,
radiotherapy and chemotherapy have found to bear numerous side ef-
fects and shortcomings in the long-run of the treatment, NPs-mediated
DDS is a promising candidate for replacement as a recently emerging
methodology. Several different types of NPs have been investigated as
possible nanocarrier candidates. These NPs can be modified through
controlled syntheses, functionalization or decorating by polymers such
as PEG to enhance the carrier requirements to suit certain DDS.

In terms of synthesis, CNTs, viral, and several metal-based NPs
turned out to be difficult. Ease of production can be advantages in
possible new NPs. CDs alongside other carbon-based NPs have proved
to be non-toxic unlike several heavy metal-based NPs. Liposomal NPs
show better drug loadability towards hydrophobic/lipophilic ther-
apeutics due to the phospholipid bilayer structure. However, CDs also
display interesting characteristics such as good water dispersity, ease of
production and biocompatibility apart from the excellent PL properties,
which allow the easy imaging and also allow administration of the
drugs without incurring any toxic effects as QDs. CDs can also be easily
functionalized for specific targeting through the abundantly available
functional groups on the particle surface. Nevertheless, to this date, the
ability of CDs in specific targeting for BC has not been extensively
studied. Thus, the understanding on this aspect is very lacking unlike
the other NPs such as liposomal and polymer-based NPs. Continuous
research on these new emerging NPs could open fruitful pathways in
efficient DDS development.

The most common chemotherapeutic agent used in BC studies in
conjunction with NPs is Dox, which was approved for medicinal use in
1974 [172]. Considering the high possible toxicity of Dox, it is most
likely to be replaced by new chemotherapeutics. Further studies have
proved drug combinations to be more effective for cancer inhibition
compared to single drug treatment in terms of MDR and synergism.
Thus, with new information on BC, possibility for novel therapeutics
can still increase. Researches on novel anti-cancer agents such as siRNA
and miRNA have also proved to be effective in BC treatment and are
being investigated for the possibility for use as dual systems in

combination with other drugs. These combined systems although still
not very popular, will possibly lead to increasing needs of NPs as drug
carriers. By incorporating target-specific DDS, the pharmacologically
effective drug dosage can be lowered and drug efficacy on target site is
improved, which reduces the harmful side effects incurred through non-
specific drug administration. Although not all these NPs have shown
excellent activity in clinical trials, continues development of DDS
especially using carbon-based NPs in conjunction with novel combined
therapeutics can be promising and will be of great importance for BC
research.
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