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ABSTRACT
Memory capacity in GPGPUs is a major challenge for data-intensive
applications with their ever increasing memory requirement. To
fit a workload into the limited GPU memory space, a programmer
needs to manually divide the workload by tiling the working set
and perform user-level data migration. To relieve the programmer
from this burden, Unified Virtual Memory (UVM) was developed
to support on-demand paging and migration, transparent to the
user. It further takes care of the memory over-subscription issue by
automatically performing page replacement in an oversubscribed
GPU memory situation. However, we found that naïve handling
of page faults can cause orders of magnitude slowdown in per-
formance. Moreover, we observed that although prefetching of
data from CPU to GPU can hide the page fault latency, the differ-
ence among various prefetching mechanisms can lead to drastically
different performance results. To this end, we performed exten-
sive experiments on GeForceGTX 1080ti GPUs with PCI-e 3.0
16x to discover that there exists an effective prefetch mechanism
to enhance locality in GPU memory. However, as the GPU mem-
ory is filled to its capacity, such prefetching mechanism quickly
proves to be counterproductive due to locality unaware eviction
policy. This necessitates the design of new eviction policies that are
aware of the hardware prefetcher semantics. We propose two new
programmer-agnostic, locality-aware pre-eviction policies which
leverage the mechanics of existing hardware prefetcher and thus
incur no additional implementation and performance overhead. We
demonstrate that combining the proposed tree-based pre-eviction
policy with the hardware prefetcher provides an average of 93%
and 18.5% performance speed-up compared to LRU based 4KB and
2MB page replacement strategies, respectively. We further examine
the memory access pattern of GPU workloads under consideration
to analyze the achieved performance speed-up.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6669-4/19/06. . . $15.00
https://doi.org/10.1145/3307650.3322224

CCS CONCEPTS
•Computer systems organization→ Single instruction,mul-
tiple data;Heterogeneous (hybrid) systems; •Computingmethod-
ologies → Graphics processors.

KEYWORDS
unified virtual memory, GPU, hardware prefetcher, page eviction
policy

ACM Reference Format:
Debashis Ganguly, Ziyu Zhang, Jun Yang, and Rami Melhem. 2019. Interplay
between Hardware Prefetcher and Page Eviction Policy in CPU-GPUUnified
Virtual Memory. In The 46th Annual International Symposium on Computer
Architecture (ISCA ’19), June 22–26, 2019, Phoenix, AZ, USA. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3307650.3322224

1 INTRODUCTION
Graphics Processing Units (GPUs) rely on massive thread-level par-
allelism (TLP) to hide memory system latency. Steady increase in
GPU compute density and advancement in high-level programming
tools further led to a wider adoption of GPUs by general purpose
applications in high-performance computing. However, the ma-
jor roadblock in the general adaptation of GPUs is the traditional
“copy then execute" programming model as the onus of maintaining
complex data structure, tiled data transfer, explicit data migration
falls on the application developers. To address this, AMD [2] and
NVIDIA [19] have released new discrete GPU architectures with
runtime support for Unified Virtual Memory (UVM). UVM allows
both CPU and GPU to reference data using a shared pointer to the
unified virtual address space. Memory is allocated and migrated
on-demand. Further, older pages in GPUmemory are replaced trans-
parently to make room for new migrations under strict memory
budget.

With demand paging, GPUs face a new type of page-faults (called
far-faults henceforth) which occur when the data is not present in
the device memory. These far-faults are resolved by the software
runtime resident to the host processor and contribute to significant
performance overhead. Page granularity in current NVIDIA GPUs
is 4KB. Stalling kernel execution for every 4KB page migration
over PCI-e interconnect is not a viable option. Prefetching memory
in advance to increase L2 cache hit rate has been extensively stud-
ied [11–13] for GPUs. Whereas, prefetching is little explored for
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GPU physical memory in the context of UVM. Zheng et al [26] first
proposed both user-directed prefetchers and hardware prefetchers
in the context of GPU’s unified memory management. That work
shows that instead of piecemeal migration of pages on-demand,
prefetching larger chunks of memory improves PCI-e utilization
and reduces transfer latency. Further, prefetched pages reduce the
number of far-faults and in turn the overhead to resolve them.
CUDA 8.0 runtime [18] also implements their own proprietary
hardware prefetcher. We created a set of micro-benchmarks to un-
cover the exact mechanics of the locality-aware tree-based neigh-
borhood prefetcher implemented in NVIDIA GeForce GTX 1080ti
GPUs. We show that compared to other common prefetchers and
on-demand paging this tree-based hardware prefetcher provides
a huge performance speed up. This prefetcher can migrate multi-
ples of 64KB basic blocks contiguous in the virtual address space
grouped in a single transfer. All pages being prefetched are local
to the current faulty pages and are within 2MB large page bound-
ary. Prefetching pages within 2MB neighborhood is to leverage
the support for large pages by the page table in modern 64-bit
processors.

However, under strict memory budget, aggressive prefetching
can be counterproductive displacing other heavily referenced pages
from memory. A simple solution is to disable hardware prefetcher
under memory over-subscription. When the GPU memory usage
has reached its capacity and the workload still needs on-demand
page migration to continue further execution, GPU must identify
page(s) for eviction. Least Recently Used (LRU) based 4KB page
eviction does not help the cause of hardware prefetcher. As pages
in the LRU list can be far spaced in the virtual address space, it
breaks the semantics of locality aware prefetcher. Moreover, un-
der over-subscription, resolving far-faults becomes costlier as new
migration stalls for writing back older pages. Researchers have
also explored memory-threshold based pre-eviction policy that
maintains a constant free-page buffer from where memory can
be allocated directly without waiting for writing back dirty pages.
However, in the presence of hardware prefetcher, maintaining a
constant pool of free pages becomes challenging. To work around
4KB page eviction, memory eviction granularity in NVIDIA GPUs
is 2MB. Like aggressive prefetching, aggressive eviction has adverse
effect on performance. 2MBmemory eviction can cause a large page
thrashing for repetitive kernel launches. This necessitates careful
investigation and design of new locality-aware page replacement
strategies compatible with locality-aware hardware prefetcher.

To the best of our knowledge, this is the first work that profiles
the semantics of the hardware prefetcher supported by NVIDIA
GPUs and then further analyzes the interplay between hardware
prefetcher and page eviction policy in CPU-GPU unified memory.
We propose two new pre-eviction policies inspired by the hardware
prefetcher. These pre-eviction schemes are aware of the hardware
prefetcher semantics. They pre-evict contiguous pages in multiples
of 64KB basic block around an eviction candidate chosen from the
LRU page list. Pre-evicting contiguous pages in bulk the way they
were brought in by the prefetcher allows further prefetching under
memory constraint. Moreover, the proposed tree-based neighbor-
hood pre-eviction scheme is adaptive where the eviction size varies
between the two extremities of static eviction granularity: 4KB
and 2MB. We show that combining these new pre-eviction policies

with prefetcher provides almost an order of magnitude performance
speedup compared to LRU based 4KB page replacement. We further
analyze the memory access pattern of the GPU workloads to get
more insight into the achieved performance speed-up.

This paper makes the following contributions:

(1) We identify the semantics of tree-based neighborhood prefetcher
implemented by NVIDIA CUDA drivers using a set of de-
tailed experiments. We reinforce the necessity of such hard-
ware prefetcher in the success of UVM by comparing against
on-demand paging and other proposed hardware prefetch-
ers.

(2) We demonstrate how LRU 4KB eviction policy breaks the
semantics of a locality-aware prefetcher and leads to a rapid
performance degradation under memory over-subscription.
We also show that in contrary to the popular belief, tradi-
tional memory threshold-based pre-eviction policies have
adverse effects in the presence of a hardware prefetcher.

(3) We propose two new locality aware pre-eviction policies:
sequential-local and tree-based neighborhood scheme that
are inspired by the hardware prefetcher and respect its se-
mantics.

(4) We show that combining these pre-eviction policies with
hardware prefetcher provides dramatic performance improve-
ment under over-subscription.

(5) After carefully examining memory access patterns of the
used benchmarks, we follow a simple optimization of re-
serving a percentage of pages from eviction from the top of
LRU list and show that this ensures better performance for
workloads with data reuse over multiple kernel launches.

2 BACKGROUND
In this section, we describe the GPU execution model and the base-
line architecture. Our description closely follows NVIDIA/CUDA
terminology in specific cases, however, it is general enough to de-
scribe any vendor agnostic discrete CPU-GPU system. We further
discuss about the CPU-GPU Unified Virtual Memory (UVM).

2.1 GPU Execution Model and Architecture
Despite extensive academic researches and industrial investments
in on-die integrated GPUs, discrete GPUs combined with CPUs
dominate the heterogeneous computing spectrum. GPUs are con-
nected to the host CPU system through the PCI-e interconnect.
A GPU program consists of two parts: host code and device code
or GPU kernel. GPU kernel, written for one thread, is executed
by multiple threads on GPU. On GPU, threads are grouped into
thread blocks (TBs). The number of TBs and the number of threads
per TB is specified by the programmer. These TBs are executed by
Streaming Multiprocessors (SMs) which is the main computation
unit (CU) of a GPU. A GPU has multiple SMs and each SM consists
of a set of simple cores. All SMs share GDDR5 as the device memory
through an interconnect network. GPUs also have a unified L2 data
cache for all SMs. Memory accesses generated by the SMs are first
coalesced by the load/store unit before relaying them to the GPU
memory controller. This reduces processing of redundant memory
accesses per cycle.
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2.2 Unified Memory and On-demand Page
Migration

In the classic “copy then execute" model, GPU programmers have
to allocate memory on both host and device. Before launching the
kernel to the GPU, programmers have to explicitly copy the data
from the host to the device and upon completion copy the data back
to the host from the device. This model of execution comes with
two major challenges. The first is that data migration and kernel
execution are serialized and thus the total runtime is the summation
of the two. Complicated asynchronous user-directed constructs to
overlap data migration and kernel execution are used to address this
issue. The second challenge is memory over-subscription. When
the working set of the GPU kernel cannot fit in the device memory,
the programmers have to painstakingly redefine the data structures
and tile the data to transfer back and forth in chunks. To address
these two major challenges, NVIDIA [19] and AMD [2] have intro-
duced software runtime to provide the illusion of CPU-GPU Unified
Virtual Memory (UVM). Unified Memory provides a single virtual
address space accessible from any processor in the system. In CUDA
8.0 [18], cudaMallocManaged allows applications to allocate data
that can be read or written from code running on either CPUs or
GPUs using a single shared pointer.

In the “copy then execute" model, data is always physically avail-
able in the device memory before the kernel starts executing. A
near-fault can occur upon L2 cachemiss.Whereas, with UVM, a new
type of page fault is introduced which we will refer to as a far-fault
henceforth. Upon allocating data using cudaMallocManaged, no
physical memory space is allocated on either host or device. Rather,
on each access, each processor encounters with a far-fault and the
memory is allocated and migrated on-demand. As the memory is
allocated on-demand, new page table entries (PTEs) are created
in the GPU’s page table and upon completion of migration, these
entries are validated (the valid flags corresponding to these PTEs
are set in the page table).

A far-fault is much costlier than a near-fault in terms of the time
to resolve as it includes two additional major overheads: a far-fault
handling latency (typically 45µs in Pascal GPUs) and data migra-
tion latency over PCI-e interconnect. Figure 1 shows a simplified
control flow demonstrating how the GPU Memory Management
Unit (GMMU) handles a far-fault. This is described as the following
sequence of actions performed within a GPU. This model is inspired
by the replayable far-faults proposed by Zheng et al [26].

1 Scheduled threads generate global memory accesses. 2 Each
SM has its own load/store unit. Every load/store unit has its own
TLB. Load/store unit performs a TLB look up to find whether the
translation for the issued memory access is cached in TLB or not.
A TLB miss is relayed to the GMMU. 3 The GMMU walks through
the page table looking for a PTE corresponding to the requested
page with valid flag set. A far-fault occurs if there is no PTE for
the requested page or the valid flag is not set. Then the far-fault is
registered in the Far-fault Miss Status Handling Registers (MSHRs).
4 The page is scheduled for transfer over CPU-GPU PCI-e inter-
connect. 5 A 4KB page is allocated on demand and data is migrated
from host to device memory. 6 The MSHRs are consulted to no-
tify the corresponding load/store unit and the memory access is
replayed. A new PTE entry is added to the page table with valid
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Figure 1: Simplified control flow for far-fault and on-
demand page migration in CPU-GPU Unified Memory.

flag set or the valid flag of the existing PTE is set. In addition, a
new entry is added to the TLB.

3 HARDWARE PREFETCHERS
With UVM, kernel execution stalls at every far-fault for page al-
location and data migration from host to device. The total kernel
execution time increases dramatically as it includes far-fault han-
dling latency and memory copy time. cudaMemPrefetchAsync, is
an asynchronous construct in CUDA 8.0, that allows programmers
to specify an address range to migrate in parallel to the kernel
execution. Prefetching later referenced pages helps reduce the num-
ber of page faults and also ensures overlap between data migra-
tion and kernel execution. However, the responsibility of what to
prefetch and when to prefetch still belongs to the programmer.
Zheng et al [26] are the first to propose programmer-agnostic hard-
ware prefetchers to overlap kernel execution and data migration.
They introduced (i) random, (ii) sequential, and (iii) locality-aware
hardware prefetchers. Hardware prefetchers take away the burden
from the programmer by automatically deciding what and when to
prefetch. Following their lead, we have incorporated the following
hardware prefetchers in our simulation framework described in
Section 6.1.

3.1 Random (Rp) Prefetcher
A random prefetcher prefetches a random 4KB page along with the
4KB page for which the far-fault occurred in the current cycle. The
prefetch candidate is selected randomly from the 2MB large page
boundary to which the faulty page belongs. This not only helps
CUDA workloads with random access pattern, but also selecting
from 2MB large page boundary instead of the whole virtual address
space helps in cases of locality of memory accesses.

3.2 Sequential-local (SLp) Prefetcher
Zheng et al [26] describe their sequential prefetcher as the pro-
cess of bringing a sequence of 4KB pages from the lowest to the
highest order of virtual address irrespective of page access pattern

226



ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA D. Ganguly et al.

or far-faults. Their locality aware prefetcher migrates consecutive
128 4KB pages (or total 512KB memory chunk) starting from the
faulty-page. We propose a different variation called sequential-local
hardware prefetcher. Each cudaMallocManaged allocation is logi-
cally split into multiple 64KB basic blocks. GMMUupon discovering
the pages corresponding to the coalesced memory requests are in-
valid in the GPU page table, first calculates the base addresses of the
64KB logical chunks to which these faulty 4KB pages belong. Thus,
GMMU identifies these 64KB basic blocks as prefetch candidates.
Further, it divides these candidate basic blocks into prefetch groups
and page fault groups based on the position of the faulty page in the
current basic block and then schedules them for sequential transfers
by the PCI-e interconnect. Prefetching 64KB basic blocks ensures
contiguous 16 4KB pages local to the current faulty pages. Note
that this is different from the locality-aware prefetcher proposed
in [26]. The position of a faulty page can be anywhere within the
corresponding 64KB basic block. Further, multiple faulty pages are
taken in consideration while choosing a basic block for prefetching
and can be grouped within the same 64KB boundary. Although,
512KB prefetch granularity may yield better performance com-
pared to 64KB sequential local, we put forth our proposed version
as it requires no additional coordination across multiple 2MB large
pages.

3.3 Tree-based Neighborhood (TBNp)
Prefetcher

GPU Technology Conference 2018 [24] briefly mentioned a tree-
based hardware prefetcher implemented by NVIDIA CUDA 8.0
driver. Knowledge of the exact semantics of this prefetcher is pro-
prietary to NVIDIA and was never made public. To discover the
exact semantics of this hardware prefetcher, we ran a series of
micro-benchmarks on GeForceGTX 1080ti and profiled the mem-
ory accesses using nvprof. We name it as tree-based neighborhood
prefetcher. We have published these micro-benchmarks for verifi-
cation [8].

The semantics of TBNp demands that every cudaMallocManaged
allocation is first logically divided into 2MB large pages. Then, these
2MB large pages are further divided into logical 64KB basic blocks
to create a full binary tree (or a proper binary tree or a 2 tree) per
large page boundary. By the definition of a full binary tree, every
node has exactly 2 children nodes. The root node of each binary tree
corresponds to the virtual address of a 2MB large page and the leaf-
level nodes correspond to the virtual addresses of the 64KB basic
blocks. If the user-specified size of an allocation is not a perfect
multiple of 2MB, then the remainder size of the allocation breaks
the principle of a full binary tree. To address this, the remainder
allocation is rounded up to the next 2i ∗ 64KB and another full
binary tree is created. For example, if the programmer specifies
4MB and 192KB size for a cudaMallocManaged allocation, at the
time of allocation, GMMU rounds this size up to 4MB and 256KB.
Then two full binary trees for 2MB large pages and one full tree for
256KB are created and maintained by the GMMU transparent to
the programmer’s knowledge. This behavior can also be verified
by running the micro-benchmarks we have published.

The maximum memory capacity of a node in the full binary tree
can be calculated as 2h ∗ 64KB, where h is the height of a node

and h = 0 at the leaf level. On every far-fault, the GMMU first
identifies the 64KB basic block corresponding to the faulty page
being requested. With the understanding that upon migrating, 16
pages in the basic block will be validated in the GPU page table,
GMMU then recalculates the to-be valid size of its parent and grand-
parent up to the root node of the tree. Here and henceforth, by valid
size we mean the size of all valid pages corresponding to the leaf-
nodes belonging to a given node. At any point, if GMMU discovers
the to-be valid size of a node is strictly greater than 50% of the
maximummemory capacity at this level, it tries to balance the valid
sizes between the two children of that node. This balancing process
is recursively pushed down to the children which have not reached
the maximum valid size quota. This balancing act identifies basic
blocks for prefetching. This process continues till no more basic
blocks at leaf level can be identified as prefetch candidates and the
to-be valid size of any non-leaf node including root is not more
than 50% of maximum size capacity at its level.

Prefetching contiguous pages within 2MB boundary tries to en-
sure allocation of larger contiguous memory and can also help
bypass traversing the nested page tables. This helps reduce the
time to access memory. For this same reason, in their work [3],
researchers introduced the concept of memory defragmentation to
swap and coalesce fragmented memory chunks to ensure contigu-
ous physical memory worth of 2MB large page. However, migrating
4KB pages on-demand and then defragmenting the memory space
in the runtime has a substantial overhead. Whereas, TBNp is an
adaptive scheme where the prefetch size can vary from 64KB to
1MB based on the access pattern and opportunity of prefetching.
Thus, it can get close to 2MB large page locality without causing
any additional performance overhead.

TBNp can be demonstrated with the help of two examples in
Figure 2. Both of these examples explain the semantics on 512KB
memory chunk for simplicity. These examples use N i

h to denote
a node in the full binary tree, where h is the height of the node
and i is the numeric position of the node in that particular level.
We further assume initially all pages in this 512KB allocation are
invalid with valid bit not set in the GPU’s page table and thus every
first access to a page causes a far-fault.

In the first example, for the first four far-faults, GMMU identifies
the corresponding basic blocks N 1

0 , N
3
0 , N

5
0 , and N 7

0 for migration.
In our example, as the first byte of every basic block is accessed,
the basic blocks are split into 4KB page-fault groups and 60KB
prefetch groups. All memory transfers are serialized in time. After
these first four accesses, each of nodes N 1

0 , N
3
0 , N

5
0 , and N 7

0 has
64KB valid pages. Then, GMMU traverses the full tree to update
the valid page size for all the parent nodes and thus each node at
h = 1 (N 0

1 , N
1
1 , N

2
1 , and N 3

1 ) has 64KB valid pages. When the fifth
access occurs, GMMU discovers that N 0

1 and N 0
2 will have 128KB

and 192KB valid pages respectively. For N 0
2 , the to-be valid size

is greater than 50% of the maximum valid size of 256KB. Hence,
the right child N 1

1 is identified for prefetching. This decision is
then pushed down to the children. This process identifies the basic
block N 2

0 as a prefetch candidate. Further, GMMU discovers that
after prefetching N 2

0 , N
0
3 will have 320KB of valid pages which is

more than 50% of the maximum valid size of 512KB. Then, node
N 0
3 pushes prefetch request to the node N 1

2 which in turn pushes it
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Figure 2: Demonstration of TBNp on 512 KBmemory chunk
for two different page access patterns.

to its children. This process identifies basic blocks N 4
0 and N 6

0 for
further prefetching.

In the second example, the first two far-faults cause migration
of basic blocks N 1

0 and N 3
0 . GMMU traverses the tree to update the

valid size of nodes N 0
1 and N 1

1 as 64KB each. At the third far-fault,
as basic block N 0

0 is migrated, the estimated valid sizes for nodes
N 0
1 , and N 0

2 are updated as 128KB and 192KB respectively. As the
valid size of N 0

2 is more than 50% of the maximum valid size of
256KB, N 2

0 is identified for prefetching. After this point, the N 0
2 is

fully balanced and both N 0
2 and N 0

3 have exactly 256KB of valid
pages. On fourth access, GMMU discovers that the valid size of N 0

3
will be 320KB which is more than 50% of the maximum memory
size it can hold. This imbalance causes prefetching of nodes N 5

0 ,
N 6
0 , and N 7

0 . Note at this point as GMMU finds four consecutive
basic blocks, it groups them together to take advantage of higher
bandwidth. Then, based on the page fault, it splits this 256KB into
two transfers: 4KB and 252KB. An interesting point to observe here
is that for a full binary tree of 2MB size, TBNp can prefetch at most
1020KB at once in a scenario similar to the second example.

4 EFFECTIVENESS OF HARDWARE
PREFETCHERS

In this section, we first show the necessity of a hardware prefetcher
in CPU-GPU unified memory. Then, we illustrate the criticality
of memory over-subscription issue in the presence of a hardware
prefetcher. Both the simulation framework and benchmarks used
for the experiments in this section are described later in Section
6.1.

4.1 No Over-subscription
In Figure 3, we compare the kernel execution time of the bench-
marks using different hardware prefecthing schemes against no
hardware prefetching. All hardware prefetchers improve perfor-
mance significantly compared to just 4KB on-demand page migra-
tion. This proves the necessity of a hardware prefetcher in CPU-
GPU unified memory. The tree-based neighborhood prefetcher
provides the best performance compared to the others. This vali-
dates the adoption of such scheme in NVIDIA GPU drivers. Note
that in this particular experiment, we consider the working sets of
the benchmarks to perfectly fit in the available device memory, i.e.,
there is no over-subscription of memory.

Figure 3: Comparing kernel execution time with differ-
ent hardware prefetching schemes against no hardware
prefetching.

Figure 4: Comparing the average PCI-e read bandwidth
for different hardware prefetchers against no hardware
prefetching.

To reason behind the performance improvement observed in
Figure 3, we plot the average bandwidth of PCI-e read channels in
Figure 4.We see that the improvement in kernel performance can be
attributed to better PCI-e bandwidth achieved by the corresponding
hardware prefetcher.

We ran experiments on GeForceGTX 1080tiwith PCI-e 3.0 16x
to find out the maximum attainable PCI-e bandwidth for a given
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Table 1: PCI-e read bandwidth measured for different trans-
fer sizes.

Transfer Size (KB) PCI-e Bandwidth (GB/s)
4 3.2219
16 6.4437
64 8.4771
256 10.508
1024 11.223

transfer size [8]. The findings are enumerated in the Table 1. Irre-
spective of the transfer size, every PCI-e transaction has a constant
activation overhead and cost of setting up the address bus. Thus,
scheduling larger transfers amortizes activation overhead and thus
reduces transfer latency to guarantee better PCI-e bandwidth. Both
on-demand page migration and random prefetcher transfers mem-
ory in multiples of 4KB. Whereas, SLp can transfer up to (4+60)KB
memory chunks and as discussed above TBNp can migrate max-
imum 1020KB of memory in a single transfer. This is the reason
behind the highest PCI-e bandwidth and the best kernel perfor-
mance achieved by the tree-based neighborhood prefetcher as seen
in Figure 4 and 3, respectively.

Figure 5: Comparing the total number of far-faults occurred
for different hardware prefetchers against no hardware
prefetching.

Prefetching pages based on tree-based neighborhood locality
reduces the number of far-faults and in turn total far-fault handling
latency significantly. Figure 5 shows the total number of far-faults
encountered during kernel execution in presence of just on-demand
4KB page migration and different hardware prefetchers. Locality-
aware prefetching within 2MB boundary ensures that prefetched
pages are accessed in the immediate future without encountering
any far-fault.

4.2 Memory Over-subscription and
Pre-eviction

One of the major benefits of Unified Virtual Memory is that the
GMMU automatically evicts older pages to make room for the
newer page migrations taking care of the over-subscription issue.
Aggressive prefetching under memory constraint can be counter-
productive as the induced evictions may cause displacement of

heavily referenced pages. Thus a natural choice to deal with over-
subscription is to disable further prefetching. Further, it is important
to select a page for replacement which will not be referenced in
the immediate future. LRU and Random (Re) are the two most
common page eviction policies [26]. LRU maintains an ordered list
of pages based on their last access. Upon reaching GPU memory
capacity, LRU chooses the oldest accessed page. Unlike LRU, Re
chooses a random page irrespective of when it is last accessed. GPU
Technology Conference 2017 [23] specified that the CUDA drivers
implement LRU page replacement policy. In NVIDIA GPUs, the
page size is 4KB. We chose 4KB pages as the eviction granularity
for this experiment. Moreover, evicting 4KB pages based on LRU
renders hardware prefetcher ineffective. This is because the SLp
and TBNp rely on contiguous invalid pages of 64KB basic block
size which may not be guaranteed after LRU 4KB eviction.

Figure 6: Sensitivity of kernel execution time to the var-
ied percentage of over-subscription and free-page buffer.
TBNp is active before reaching device memory capacity.
Upon over-subscription, hardware prefetcher is disabled
and pages are migrated at 4KB granularity on-demand. LRU
4KB is used for eviction.

Figure 7: Comparing the total number of 4KB page transfers
for varied percentage of over-subscription and free-page
buffer.
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In this section, we vary the percentage by which the working
set is larger than the size of the device memory to demonstrate the
sensitivity of kernel execution to the memory over-subscription.
Figure 6 shows that in comparison with no over-subscription, the
kernel execution degrades drastically even with a small percentage
of over-subscription. Note that upon reaching the on-chip memory
capacity, the penalty of far-fault is much higher than before. This is
because now the threads need to be stalled for writing-back pages
along with the latency to migrate new pages. To avoid waiting for
write back, in the past, researchers have proposed pre-eviction of
pages. A free-page buffer [17] is maintained by causing pre-eviction
when the memory occupancy reaches a certain threshold. The
kernel execution is not stalled for writing back pages anymore as
pages can be allocated from the constant pool of free pages directly.
However, Figure 6 shows that it actually hurts the performance.
This is because the hardware prefetcher is disabled even before
reaching the device memory size capacity to maintain the buffer of
free pages.

Upon disabling hardware prefetcher, we lose on the opportu-
nity to benefit from higher interconnection bandwidth as pages
are migrated in multiples of 4KB on-demand. Figure 7 shows dras-
tic increase in the number of 4KB page transfers in case of over-
subscription and pre-eviction as the hardware prefetcher is disabled
when compared against no over-subscription. This explains the per-
formance degradation in Figure 6.

5 PRE-EVICTION POLICIES COMPATIBLE
WITH PREFETCHERS

In the previous section, we have showed that a good hardware
prefetcher is the key to the success of CPU-GPU Unified Virtual
Memory. Both SLp and TBNp migrate memory in the multiples of
64KB basic block local to the current faulty pages. This is with the
hope that the thread blocks will eventually access these pages in
the immediate future. However, in reality, some of these pages may
not be referenced before eviction procedure starts replacing pages.
These unused prefetched pages are never chosen for eviction by
LRU. Instead when GPU memory capacity has been reached and
kernel execution stalls for new page migration, a heavily referenced
page could be chosen for displacement. Thus, an eviction policy,
unaware of prefetchers, meets with the challenge how to deal with
memory over-subscription issue. A logical choice would be evict-
ing pages in the same way they were brought in by the hardware
prefetchers. This means pre-evicting pages in multiples of 64KB ba-
sic blocks based on sequential or tree-based neighborhood locality.
Locality-based pre-eviction has two benefits. Firstly, evicting pages
in larger chunks increases PCI-e write-back bandwidth and lowers
the write-back latency. Secondly, hardware prefetchers can work
in tandem with the pre-eviction scheme. This also means that it
overcomes the drawbacks of memory threshold-based pre-eviction
policy. To this end, we propose the following two new pre-eviction
schemes which we have incorporated in our simulation platform.

5.1 Sequential-local (SLe) Pre-eviction
Sequential-local eviction consults the LRU page list to select an
eviction candidate. GMMU then determines the 64KB basic block
to which the current eviction candidate belongs and then schedules

the whole basic block for eviction and eventual write-back. Note
that there can be pages in the basic block which were not accessed
and just brought in by the prefetcher. All the 16 pages in the 64KB
are written back as a single unit irrespective of the pages within
are clean or dirty. This is because transferring memory in larger
chunks improves PCI-e bandwidth and reduces latency instead of
writing back multiple 4KB pages.

5.2 Tree-based Neighborhood (TBNe)
Pre-eviction

Our proposed tree-based neighborhood hardware eviction strategy
is inspired by the TBNp. It leverages the full-binary tree structures
created andmaintained for hardware prefetching at the time of man-
aged allocation. Thus, it accounts for no additional implementation
overhead. As discussed in Section 3.3, all nodes in these full-binary
trees correspond to 64KB basic blocks and the root node of each
tree corresponds to a maximum contiguous virtual space of 2MB
large page or a size equivalent to 2i ∗ 64KB. Like SLe, an eviction
candidate is chosen from the LRU list. Then a 64KB basic block, to
which this eviction candidate belongs, is identified for pre-eviction.
After selection of every pre-eviction candidate, GMMU traverses
the whole tree updating the valid page size of all its parent nodes in-
cluding root node by subtracting the size of the evicted basic block.
At any point if the total valid size of any node is strictly less than
50% of the maximum valid size of that node, further pre-eviction
decision is made by the GMMU which is in turn pushed down to
the children till the leaf level. This process continues recursively
till no more basic blocks can be identified for pre-eviction or no
node higher than leaf level including root node has valid size less
than 50% of the maximum capacity at the corresponding tree level.
The eviction granularity in this scheme varies between 64KB to
1MB and thus it adapts between the two extremities of 4KB and
2MB eviction granularity for LRU.

LRU Candidate LRU Eviction Pre-eviction
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Figure 8: Demonstration of TBNe on 512 KBmemory chunk.

Figure 8 demonstrates the TBNe on a 512KB memory allocation
for simplicity. Initially, let us assume that all pages in this 512KB
allocation are valid in the page table. Let us further assume that
the first three entries in the LRU list correspond to the basic blocks
N 1
0 , N

3
0 , and N 4

0 . Upon over-subscription, when page replacement
routine kicks in, these three basic blocks are identified for eviction
one after another. After evicting the first three basic blocks, the
valid size for each of the nodes N 0

1 , N
1
1 , and N

2
1 is updated to 64KB
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by GMMU. Further the valid sizes for nodes N 0
2 , N

1
2 , and N

0
3 are up-

dated as 128KB, 192KB, and 320KB respectively. Let us now assume
that the current least recently used page corresponds to the basic
block N 0

0 . After the fourth pre-eviction, the valid sizes of N 0
1 , and

N 0
2 are updated as 0KB and 64KB respectively. As the current valid

size for N 0
2 is 64KB and is less than 50% of its maximum capacity,

further pre-eviction decision is made for N 1
1 and is pushed to its

children. This ultimately chooses N 2
0 as a pre-eviction candidate.

At this point, GMMU traverses the tree and updates the valid sizes
of all nodes in the tree. It then discovers the valid size of N 0

3 to be
192KB which is less than 50% of its maximum capacity. This pushes
pre-eviction decision to N 1

2 and in turn to its children. This process
identifies basic blocks N 5

0 , N
6
0 , and N 7

0 as pre-eviction candidates.
As these blocks are contiguous GMMU groups them together into
a single transfer.

5.3 Specific Design Choices
Both SLe and TBNe first select an eviction candidate from the LRU
list and then identify the corresponding 64KB basic block for evic-
tion. These basic blocks, up for eviction, can have some pages with
dirty and/or access flags set in the page table along with some pages
for which these flags are not set and only valid bits are set in the
page table. We make a distinct design choice for how LRU page list
is to be maintained in case of these pre-eviction policies. We place
all the pages in the LRU when the valid flags of the corresponding
page table entries are set in the GPU page table. This means LRU
list contains all pages with valid flag set in the GPU page table in
contrast to the traditional LRU list which only maintains pages
with the access flags set in the page table. Further, a page is pushed
to the back of the LRU list upon any read or write access in the
course of execution. Upon evicting a basic block, all pages including
the eviction candidate are removed from the LRU list. Hence, this
design choice ensures all pages local to the eviction candidate are
evicted irrespective of whether they are accessed or not. This is
how SLe and TBNe deal with the unused prefetched pages migrated
by the SLp and TBNp and free up contiguous virtual address space.
We sort the pages first at large page level based on the access times-
tamp of the 2MB chunk they belong to. Then, within the 2MB large
page, 64KB basic blocks are sorted based on their respective access
timestamps. This hierarchical sorting ensures a global order at 2MB
large page level and a local order of 64KB basic blocks at leaf-level
of 2MB tree.

A known issue with LRU is that the performance degrades for a
repetitive linear access pattern. For example, if there are N pages in
the LRU page list, a CUDA kernel executing a loop over an array of
N+1 pages will face a far-fault on each and every access. There have
been a lot of research efforts invested in the past in modifying LRU
to work with repetitive sequential access pattern as iterating over
large arrays are common. One of such proposal is to switch to Most
Recently Used (MRU) page replacement policy upon detecting such
memory access pattern. However, detecting or predicting memory
access pattern in runtime is itself a challenging problem and incurs
large implementation and performance overheads. In this paper,
we follow a simple solution to address this problem by reserving
certain pages from the top of LRU page list such that they are not
chosen as eviction candidates. Thus, reserving the top percentage of

LRU page list reduces thrashing since the top percentage of pages in
LRU list, which are chosen for immediate eviction, are also accessed
first in the next iteration.

6 EVALUATION METHODOLOGY
In this section, we describe how we provide functional and timing
simulation support for UVM and also the benchmarks to character-
ize and evaluate the design choices in UVM.

6.1 Simulation Framework
We extended GPGPU-Sim 3.x [4] to incorporate the control flow
to resolve far-faults described in the Section 2.2. This enables mod-
elling of on-demand paging and datamigration. Asmentioned in the
Section 2.2, there are two components: far-fault handling latency
and page migration to be considered while modelling turn around
time to resolve a far-fault. GPU Technology Conference 2017 [23]
mentions that page fault handling latency to be 30µs . However,
upon experimenting on real hardware with GeForceGTX 1080 ti,
we found it to be 45µs on average. We mainly focus on the mod-
elling of far-fault handling latency and PCI-e transfer latency in our
simulator. Based on the Table 1, we deduce a function to express
PCI-e bandwidth as a function of transfer size. In our simulator,
we calculate PCI-e transfer latency based on this expression. We
also consider an additional 100 core cycles for page table walk. The
simulator makes simplified assumptions to model TLB and page
table. Our TLB is roughly modeled after [22] proposed by Pichai et
al. However, our TLB look up is performed in a single core cycle
based on the assumption of fully-associative TLB. We use a multi-
threaded model for page table walk as described in [3]. Along with
on-demand paging, we incorporated the hardware prefetchers and
eviction policies described in Sections 3 and 5 respectively in our
simulator.

Table 2: Configuration parameters for GPGPU Simulator
supporting Unified Virtual Memory

Simulator GPGPU-Sim Unified Virtual Memory Smart
GPU Architecture NVIDIA Pascal architecture
GPU Cores 28 SM, 128 cores each @ 1481 MHz
Page Size 4KB
Page Fault Handling Latency 45 µs

Page Table Walk Latency 100 core cycle
CPU-GPU Interconnect PCIe 3.0 16x, 8 GTPS per channel per direction

We have also added functional simulation support for CUDA
8.0 UVMAPIs- cudaMallocManaged, cudaMemPrefetchAsync, and
cudaDeviceSynchronize to the simulator. This enables our simu-
lator to run benchmarks written using the UVM APIs in addition
to the timing modelling for CPU-GPU UVM. In addition to the
functional and timing modelling of UVM, we have added an ar-
ray of statistical counters to profile different aspects of UVM and
analyze multiple design decisions involved. Our simulator models
NVIDIA Pascal [19] like GPU architecture with the support for
CUDA 8.0 APIs. Table 2 shows the additional configuration parame-
ters that primarily enables timing simulation of UVM APIs on such
architecture.
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6.2 Application Suite
To evaluate different design decisions crucial to the success of UVM,
we chose seven benchmarks from Rodinia [6], and PolyBench [10]
benchmark suites. We have modified the benchmarks by replac-
ing cudaMalloc API calls by calls to cudaMallocManaged and by
removing all instances of cudaMemcpy. These chosen benchmarks
exhibit diverse behavior: (i) intensive computation with iterative
kernel launches, (ii) migrating pages once over the interconnect
but repeatedly access them per iteration, (iii) access pages once
but transfer multiple distinct pages over PCI-e, (iv) random page
access pattern, (v) sequential, and dense page accesses over a small
set of pages, (vi) sparse memory accesses over a large set of pages,
(vii) streaming access pattern and etc. Due to impractically long
simulation time for larger memory footprint, we have limited the
working set size of these benchmarks ranging from 4MB to 38.5MB
with an average memory footprint of 15.5MB. We have published
these modified benchmarks along with the simulator [8].

7 EVALUATION AND DISCUSSION
7.1 Pre-eviction Policies in Isolation
We have shown that the TBNp has the best performance when
device memory can accommodate the whole working set. So, for
experiments in this section, we only consider TBNp before over-
subscription. Under over-subscription, the simulator disables hard-
ware prefetcher and only migrates 4KB pages on-demand. This is
because we want to investigate the sole impact of different eviction
policies on the kernel execution time. Also for this experiment, we
only consider working sets for the benchmarks being 110% of the
device memory size. Figure 9 shows the result of our experiment.

Figure 9: Comparing the effect of different eviction poli-
cies on kernel execution time. TBNp is active before reach-
ing device memory capacity. Upon over-subscription, hard-
ware prefetcher is disabled and 4KB pages are migrated on-
demand. Working set is 110% of the device memory size.

We see the following major behaviors exhibited by the bench-
marks. backprop and pathfinder show no sensitivity to the choice
of eviction policy. This is because both of these benchmarks exhibit
streaming memory access pattern. Both of them scan a large vector
in parts sequentially and do not reuse data across different itera-
tions. However, for all other benchmarks, random eviction policy
provides the best performance contrary to the popular belief that

Figure 10: Comparing total number of pages evicted for dif-
ferent eviction schemes.

LRU and random page replacement policies have no performance
difference [26]. Randomly picking a 4KB eviction candidate from
the entire virtual address space reduces the chance of thrashing. In
contrast, following LRU list increases thrashing for iterative ker-
nels with data reuse. In Figure 10, we have plotted the total number
of 4KB pages evicted by the different schemes. We can see that
the kernel performance is highly correlated to the total number of
pages being evicted by the corresponding page replacement policy
as expected.

7.2 Combinations of Pre-eviction Policy and
Hardware Prefetcher

To this end, we take UVM to the logical next step by pairing eviction
policies and hardware prefetchers under over-subscription. The
simulator enables the TBNp before over-subscription. Also for the
experiments in this section, we only consider working sets for
the benchmarks being 110% of the device memory size. We chose
4 different combinations of eviction policies and page migration
schemes such that they do not violate and rather respect each
other’s semantics.

Figure 11: Comparing the effect of different combinations
of eviction policies and hardware prefetcher after oversub-
scription on kernel execution time. TBNp is active before
reaching devicememory capacity.Working set is 110% of the
device memory size.
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In Figure 11, we run the benchmarks to compare their kernel
execution time for 4 settings under over-subscription: (i) LRU 4KB
eviction and no hardware prefetching, (ii) Re policy and Rp, (iii)
SLe and SLp, and (iv) TBNe and TBNp. We see that the third and
fourth combinations drastically outperform the first two. In par-
ticular, the combination of TBNe and TBNp provides an average
93% performance improvement compared to the combination of
LRU 4KB eviction policy and 4KB on-demand page migration. This
can be attributed to the improved PCI-e read and write bandwidth
achieved by these combinations as they evict and prefetch memory
in larger granularity other than 4KB which is the case for the first
two combinations. Further, pre-eviction reduces the page access
time by not waiting for pages to be written back and allowing
prefetchers to prefetch pages reduces the number of page faults.

(a) Iteration 60

(b) Iteration 70

Figure 12: Page access pattern of nw benchmark without
eviction.

One exception is nw. The combination of SLe and SLp yields better
performance compared to the combination of TBNe and TBNp. To
gain more insight in this behavior, we further analyze the memory
access pattern of nw. In our example, nw runs for 127 iterations.
Figure 12 shows the pages being accessed in iterations 60 and 70
(chosen randomly) respectively. The horizontal axis corresponds to
the core cycle and the vertical axis shows the virtual page number.
We can see that for nw, in every cycle, a set of pages, which are
spaced far apart in the virtual address space, are accessed repeatedly
over time. As thememory access is sparse yet localized and repeated
over time, smaller granularity of eviction yields better performance
than larger granularity. This is because evicting pages in larger
chunk by TBNe causes more thrashing than evicting 64KB basic
blocks by SLe.

7.3 Memory Over-subscription Sensitivity
In this experiment, we vary the percentage of memory oversub-
scription to study the scalability of combination of the proposed
pre-veiction policy and hardware prefetcher. We use the combina-
tion of TBNe and TBNp after over-subscription for this experimental
setup as this combination outperforms other combinations in gen-
eral as seen in the previous section. Figure 13 shows that backprop,
and pathfinder shows no sensitivity to memory over-subscription
percentage as they exhibit streaming memory pattern. Other than
nw, all other benchmarks scales up linearly. The order of magnitude
performance degradation with higher percentage of memory over-
subscription for nw can be attributed to its localized sparse memory
access and large thrashing caused by the same.

Figure 13: Sensitivity of combinations of TBNe and TBNp to
the percentage ofmemory over-subscription by theworking
sets.

Note that, to simulate over-subscription, working sets of the
benchmarks are not scaled, rather is controlled by a configuration
parameter that specifies the device memory size in the simulation
setup.

7.4 Reserving Percentage of LRU Page List
from Eviction

To address the issue of page thrashing for benchmarks with data
reuse over multiple iterations, we reserve a certain percentage of
pages from the top of LRU page list from eviction as discussed in
Section 5.3.

In Figure 14, we compare the kernel execution time of the bench-
marks with the 10% and 20% reservation of LRU page list along
with the combination of TBNe and TBNp against the same with no
reservation. We see that streaming applications like backprop and
pathfinder has no performance variation with LRU page reserva-
tion. The kernel performance improves with 10% reservation from
the top of LRU list for all other benchmarks. However, with higher
percentage of reservation, it hurts for certain benchmarks.

7.5 2MB Large Page Eviction
Based on the experimental results presented in the previous sec-
tions, we can conclude that pre-evicting pages in larger granularity
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Figure 14: Effect of reserving a certain percentage of pages
of LRU list from eviction on kernel runtime. Working set is
110% of the device memory size. TBNp is active before reach-
ing device memory capacity.

based on the spatio-temporal locality within 2MB large page en-
ables further hardware prefetching under oversubscription and in
turn provides better performance. We have also seen that 4KB LRU
eviction renders hardware prefetching ineffective. So, a question
can be asked then “Why not replacing pages in 2MB granularity?".
Evicting 2MB large pages means invalidating the entire tree. This
ultimately guarantees contiguous invalid pages required for the
hardware prefetcher to work. Experiments on real hardware re-
veals that eviction granularity is indeed 2MB for NVIDIA GPUs.
However, like aggressive prefetching, aggressive eviction is detri-
mental as it can cause serious page thrashing upon evicting highly
referenced pages in case of repetitive kernel launch.

Figure 15: Comparing the performance of TBNe against 2MB
large page eviction.

In this experiment, we compare the TBNe against the static 2MB
LRU. Figure 15 shows that the TBNe ensures an average 18.5% and
up to 52% performance improvement compared to 2MB LRU under
110% memory over-subscription. By opportunistically determining
a dynamic replacement granularity based on the current state of

Figure 16: Comparing the effect of TBNe and 2MB large page
eviction on the total number of pages thrashed.

the 2MB full-tree, TBNe navigates between the spectrum of 4KB
and 2MB LRU eviction and overcome the limitations with both of
these two extremes.

In the Figure 16, we show the average page thrashing caused
by 2MB large-page eviction and TBNe under 110% and 125% mem-
ory over-subscription. We can see that backprop and pathfinder
shows no thrashing as they do not have any data reuse. For bench-
marks like bfs, hotspot, nw, and srad the performance improve-
ment by TBNe compared to 2MB eviction can be attributed to the
significant reduction in the number of page thrashing.

8 RELATEDWORK
Unified Virtual Memory (UVM) support in modern discrete CPU-
GPU systems [2, 19] has overcome many limitations present in
the traditional “copy then execute" programming model [20, 21]
by automating GPU memory management. Zheng et al [26] have
first explored GPU’s unified memory. Our simulation framework
uses their replayable far-fault model to simulate on-demand pag-
ing. Researchers have investigated different techniques to reduce
the overhead of address translation: TLB management [5, 7], and
page table walk [9, 25]. However, far-fault handing latency and
latency of data migration over PCI-e are the two major overheads
incurred in UVM. Zheng et al [26] have proposed both user-directed
prefetcher and user-agnostic hardware prefetchers to overlap data
migration and kernel execution to hide these overheads. Latest
NVIDIA GPUs [19] implement hardware prefetcher to ensure bet-
ter performance.

Memory footprint of CUDA workloads has always been the
limiting factor in GPU programming. Working sets are constrained
by the size of GPU physical memory. Developers are forced to write
smart programs to work around the memory over-subscription
issue like in the VAST [15] runtime. VAST partitions data-parallel
workloads based on available GPU physical memory. GPUswap [14]
transparently relocates data from the GPU to system RAM under
over-subscription. Agarwal et al [1] have proposed bandwidth-
aware (BW-AWARE) page-placement policies for heterogeneous
systems by programmer annotation after profiling data-structure
accesses. All these techniques are plagued by huge performance
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overhead. Li et al [16] has proposed a framework which requires
hardware modification to characterize workloads before selecting
a suitable strategy to address memory oversubscription. In this
work, we propose new locality-aware pre-eviction policies. Our
proposed pre-eviction policies are inspired by and thus compatible
with the existing hardware prefetchers. Hence, they do not incur
any additional implementation and performance overhead.

9 CONCLUSIONS
In this paper, we have reinforced the importance of hardware
prefetchers in the success of Unified Memory when working set
fits within GPU memory. On-demand paging enables computation
over dataset larger than the physical memory capacity. In an over-
subscribed memory situation, however, hardware prefetcher proves
to be counterproductive. Our experiments show that naïve eviction
policy can further contribute to the over-subscription issue. This
necessitates the design of locality-aware eviction policies that are
aware of the semantics of hardware prefetchers. To the best of our
knowledge, this is the first work that introduces locality-aware
pre-eviction policies that are compatible with hardware prefetcher.
We analyzed memory access patterns of the workloads to gain
more insight into the interplay of such pre-eviction policies and
hardware prefetcher in UVM. Experimental results demonstrate
that the proposed tree-based pre-eviction policy provides an aver-
age 93% and 18.5% performance speed-up compared to LRU based
4KB and 2MB page replacement strategies, respectively. The pro-
posed scheme moves between two extremes of 4KB and 2MB. By
opportunistically determining a dynamic eviction size based on
spatio-temporal locality within 2MB large page, it overcomes the
limitations with page replacement strategies with fixed granular-
ity. Moreover, as these pre-eviction schemes leverage the existing
tree-based implementation of hardware prefetcher, they do not cost
any additional implementation overhead. This makes this solution
simple, pragmatic, and adaptable on real hardware irrespective of
vendor-specific architectures.
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