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Abstract

Modern discrete GPUs support unified memory and demand
paging. Automatic management of data movement between
CPU memory and GPU memory dramatically reduces devel-
oper effort. However, when application working sets exceed
physical memory capacity, the resulting data movement can
cause great performance loss.

This paper proposes a memory management framework,
called ETC, that transparently improves GPU performance
under memory oversubscription using new techniques to
overlap eviction latency of GPU pages, reduce thrashing cost,
and increase effective memory capacity. Eviction latency can
be hidden by eagerly creating space for demand-paged data
with proactive eviction (E). Thrashing costs can be amelio-
rated with memory-aware throttling (T), which dynamically
reduces the GPU parallelism when page fault frequencies
become high. Capacity compression (C) can enable larger
working sets without increasing physical memory capacity.
No single technique fits all workloads, and, thus, ETC in-
tegrates proactive eviction, memory-aware throttling and
capacity compression into a principled framework that dy-
namically selects the most effective combination of tech-
niques, transparently to the running software. To this end,
ETC categorizes applications into three categories: regular
applications without data sharing across kernels, regular ap-
plications with data sharing across kernels, and irregular
applications. Our evaluation shows that ETC fully mitigates
the oversubscription overhead for regular applications with-
out data sharing and delivers performance similar to the
ideal unlimited GPU memory baseline. We also show that
ETC outperforms the state-of-the-art baseline by 60.4% and
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270% for regular applications with data sharing and irregular
applications, respectively.
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1 Introduction
Increased compute density and improved programmabil-

ity [1, 66] have made Graphics Processing Units (GPUs) a
platform of choice for high performance applications. How-
ever, maximizing application performance still requires ardu-
ous hand tuning of applications [97] to fit GPU architectures
and physical memory capacity. As General Purpose GPU
(GPGPU) application working set sizes increase [36, 50, 59,
78], limited memory capacity becomes a first order design
and performance bottleneck [78, 79, 102].

Improved memory virtualization support has recently
emerged to allow GPGPU applications to easily extend their
working set beyond the limit of a GPU’s physical mem-
ory [7,9, 10, 13, 19, 37, 76, 77, 96]. Modern GPUs [56, 67, 68]
are now equipped with unified memory and demand paging.
These features free developers from manually managing data
movement between the CPU and GPU memory. However,
when a GPU kernel working set exceeds the GPU physical
memory capacity, i.e.,, when the GPU memory is oversub-
scribed, data must be swapped in and out of GPU memory
on demand. Our measurements on a real GPU system (§2.1)
show that real GPGPU applications experience crippling
slowdowns and sometimes crash when a fraction of their
allocated space does not fit in GPU memory.

Some of the performance loss from memory oversubscrip-
tion can be reduced via more programming effort [33, 83-86].
For example, programmers can duplicate read-only data in
both CPU and GPU memory without the need for eviction
from GPU memory to CPU memory when the data is no
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longer used. Programmers can also overlap prefetch requests
with the eviction requests to hide eviction latency. However,
solving the memory oversubscription problem with soft-
ware modifications has significant drawbacks. First, it forces
programmers to distinguish between read and write data ex-
plicitly. Second, programmers must understand and leverage
data locality occurring across thousands of concurrent hard-
ware threads to explicitly map pages to the CPU memory
or the GPU memory. Third, programmers need to manu-
ally manage data migration between the CPU and the GPU.
These limitations are exacerbated in a cloud environment,
where VMs may share a GPU and have no visibility into the
working set sizes of other tenants’ applications. Application-
transparent mechanisms that can maintain a good level of
performance in the presence of memory oversubscription
are urgently needed.

We observe two key properties of contemporary GPGPU
applications that can lead to better management of oversub-
scribed memory. First, performance degradation due to over-
subscription varies across applications due to applications’
different memory access behavior. We broadly categorize
applications into regular and irregular applications, accord-
ing to the predictability of their GPU memory page accesses.
Second, the dominant source of memory oversubscription
overhead differs by application category. Thrashing, which
occurs when pages are demand-migrated between the host
and the GPU memory repeatedly, dominates the performance
overhead for oversubscribed irregular applications, while
long-latency evictions dominate the overhead for regular ap-
plications. We also find that data sharing between different
GPU kernels from the same application further impacts how
the GPU should manage the oversubscribed memory.

Building on our key observations, we propose a memory
oversubscription management framework, called Eviction-
Throttling-Compression (ETC), to reduce GPU memory over-
subscription overheads in an application-transparent man-
ner. ETC first efficiently and automatically classifies applica-
tions into three categories: regular applications with no data
sharing, regular applications with data sharing or irregular
applications. Second, ETC selects an effective combination
of mechanisms for each running application to mitigate the
memory oversubscription overhead based on that classifi-
cation. ETC integrates a number of components that work
harmoniously to hide or reduce performance overheads of
memory oversubscription. ETC comprises (1) a classifier that
detects each application’s type based on the measured mem-
ory coalescing factors; (2) a policy engine that selects and
applies amelioration techniques based on application type;
(3) a proactive eviction technique for regular applications,
which opportunistically creates capacity for demand-fetched
data in advance; (4) a memory-aware throttling technique for
irregular applications which reduces effective working set
sizes by reducing the application’s thread-level parallelism;
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and (5) a main memory compression engine, which trans-
parently increases effective physical memory capacity for
GPGPU applications.

We implement ETC as a hardware/software cooperative
runtime. We evaluate ETC using 15 applications from a vari-
ety of GPGPU benchmark suites. Our evaluations show that
ETC is effective at reducing oversubscription overheads. For
regular applications with no data sharing, ETC eliminates the
overhead of memory oversubscription and delivers perfor-
mance similar to the ideal unlimited memory baseline. For
regular applications with data sharing and irregular applica-
tions, ETC outperforms the state-of-the-art baseline by 60.4%
and 270%, respectively.

This paper makes the following contributions:

e To our knowledge, this is the first paper to 1) provide
an in-depth analysis of the performance overhead due to
memory oversubscription in GPUs and 2) identify sources
of performance loss due to memory oversubscription for
different types of GPGPU applications.

e We propose a new hardware/software cooperative solution
that significantly reduces the impact of memory oversub-
scription in GPUs. Our solution, ETC, requires no pro-
grammer effort and no modifications to application code.

o We develop three memory oversubscription mitigation
techniques as part of ETC. We find that no single miti-
gation technique fits all types of workload. To this end,
ETC classifies applications based on the regularity of their
memory accesses and uses the most effective combination
of techniques for each application category.

2 Background

This section provides background and motivation for
application-transparent support for memory oversubscrip-
tion in GPUs. §2.1 provides background on the GPU execu-
tion model and unified memory; §2.2 analyzes oversubscrip-
tion overheads in a real GPU system; §2.3 describes previous
methods to avoid oversubscription and motivates the need
for a new, application-transparent framework.

2.1 GPU Execution Model

GPUs achieve high throughput via the single instruction
multiple thread (SIMT) execution model [66, 93]. In each
clock cycle, a GPU core (sometimes referred to as streaming
multiprocessor or SM), executes a group of threads, called a
warp or a wavefront. All threads in a warp execute in lockstep.
A GPU tolerates long-latency stalls using fine-grained multi-
threading: each cycle, a different warp is fetched such that
no two instructions from the same warp are in the pipeline
concurrently. A GPU core stalls when there is no available
warp to be executed. Each executing thread can access a dif-
ferent memory location, potentially creating a large number
of in-flight, concurrent memory accesses.

Unified Virtual Addressing. Modern GPUs support uni-
fied virtual address spaces between the host CPU and the
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GPU, which allows the CPU to manage data inside GPU phys-
ical memory using the same pointers as the ones used by the
GPU program [89]. This functionality greatly improves GPU
programmability because developers can manage data in
both GPU and CPU spaces using the same virtual addresses.
Unified Memory. Even with Unified Virtual Addressing,
data in GPU memory and data in CPU memory are still
considered to be in separate memory spaces. Developers
must programmatically allocate memory on the GPU and
copy data from the CPU to the GPU memory before a GPU
kernel can access that data. Unified memory supports the
abstraction of a single virtual address space accessible by
both CPU programs and GPU kernels [33]. Supporting this
abstraction requires automatic demand-driven movement
of data between host and GPU memory, and is typically
supported by fault-driven transfers at the page or the multi-
page (up to 2MB) granularity [102].

2.2 Oversubscription Overheads in GPUs

While unified memory can vastly improve programmabil-
ity, it is not a panacea. First, the address translation hard-
ware induces performance overheads and can lower GPU
throughput. Second, paging of data between the CPU and
GPU memories can require frequent high-latency transfers.

While multiple proposals [9, 10, 77, 91] improve the perfor-
mance of address translation in the GPU (e.g., with parallel
page table walks [77], large TLB reach [9] and lower page
table walk latency [10]), none of these address the high over-
head of demand paging directly. Previous works explore
prefetching to hide overheads [102], but they do not con-
sider optimizing performance specifically for cases when
GPU memory is oversubscribed.
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Figure 1. Application runtime sensitivity to GPU memory
oversubscription, measured using an NVIDIA GTX 1060.

Figure 1 shows the performance degradation due to mem-
ory oversubscription we observe for 5 GPGPU applica-
tions from the CUDA SDK [62] and Polybench benchmarks
suites [32] when they are run on an NVIDIA GTX 1060 GPU
with 2GB available memory [24]. To introduce oversubscrip-
tion, we manually modify the amount of available memory
space assigned to each GPU kernel such that only 50% and
75% of the total memory footprint fit in the GPU’s physical
memory. We make three observations. First, all applications
suffer from significant performance loss due to memory over-
subscription: the more the memory is oversubscribed, the
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larger the performance cost. Second, 2DCONV, 3DCONV and
RED suffer from an average 17% performance loss: we find
that waiting for eviction of GPU physical pages to create
space for newly fetched data is the dominant source of over-
head in these workloads. Third, the slowdowns of ATAX and
MVT are larger than 1000x when the GPU memory can hold
only 75% of their memory footprint, and both applications
crash the entire system when the GPU memory can hold only
50% of their footprint. System crash happens due to thrash-
ing, which moves pages back and forth between CPU and
GPU memory repeatedly, dominating the oversubscription
overhead in these two workloads.

2.3 An Application-Transparent Framework

Prior Methods to Avoid Oversubscription. Multiple tech-
niques can be used to manage oversubscription. Increas-
ing memory capacity is an efficient way to avoid the over-
subscription altogether. On-package 3D-stacked memory
(like High-Bandwidth Memory [39, 52] and Hybrid Memory
Cube [34, 35]) is widely used in NVIDIA’s P100 [67] and
V100 GPU [68], AMD Radeon R9 series GPU [8] and Google
TPUv2 [31, 43]. However, increasing the memory capacity of
on-package 3D stacked memory faces three major challenges.
First, the number of stacks is limited by the manufacturing
technology. Second, adding more stacks horizontally on the
silicon interposer is limited by the wiring complexity of the
silicon interposer and the number of pins of chips [57]. Third,
as GPGPU application working sets continue to become
larger [50, 51], application developers will still need to take
the size of GPU memory into account despite the increased
capacity. Alternatively, dividing tasks across multiple GPUs
or smaller kernels with smaller memory footprint [30, 53]
requires non-trivial programming effort to break a complex
GPU kernel into multiple GPUs or kernels. Moreover, launch-
ing more kernels to a multi-GPU system introduces extra
communication complexity among the host CPU and GPU
devices.
Naive Designs. To reduce the oversubscription overhead,
we perform a design space exploration by employing various
mechanisms that aim to reduce the page fault overhead. We
evaluate different warp scheduling policies: faulting and non-
faulting warps are given different priorities, such that non-
faulting warps are prioritized and can still proceed with their
data in-memory. However, a warp scheduler that prioritizes
the non-faulting warps does not reduce the page faults, it
only distributes them differently across time. Eventually, all
threads are stalled waiting for the page faults to complete.
We conclude that while warp-level scheduling can be an
effective method to hide memory access latency, it is far
from enough to hide page fault handling latency, which is
orders of magnitude longer than memory latency.

We also experimented with different page replacement
policies to enhance locality and minimize thrashing. Con-
ventional wisdom suggests the ideal LRU policy [15] as an
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upper bound for achievable performance with page replace-
ment, but this policy is too expensive to implement for large
GPU memories. Age-based LRU is easier to implement with
a list that can store time when a page is migrated from the
CPU memory to the GPU memory [85, 86]. Our measure-
ments show that this age-based LRU policy performs well for
applications with streaming access patterns, which we de-
fine as regular applications, due to strong sequential locality.
However, applications with random access patterns, which
we define as irregular applications, do not benefit from the
age-based LRU policy. In fact, we observed severe thrashing
as the working set of these irregular applications becomes
larger than the size of GPU physical memory. Hence, no page
replacement policy can effectively minimize thrashing.

Objectives. Our goal is threefold. First, our design aims
to maximally recover application performance to the non-
oversubscribed level, i.e., a system with sufficient memory
capacity. Second, the framework should be transparent to
the application since we do not want users to manually man-
age physical memory. Third, our design should be able to
address the main performance overhead based on different
applications’ characteristics.

3 Characterizing Memory Accesses for
GPGPU Workloads

An effective memory management framework requires un-
derstanding of the application memory access behavior,
which is dependent on application characteristics. To this
end, we first examine the memory access traces of various
workloads and extract each workload’s most distinctive ac-
cess patterns. We find that workloads can generally be clas-
sified into those with regular or irregular memory access
patterns. Figure 2(a)-(b) show the access pattern of two repre-
sentative applications (3DCONV and ATAX). 3DCONV exhibits a
fairly streaming page access pattern across all thread blocks’
memory accesses. ATAX exhibits rather a random page ac-
cess pattern across all thread blocks” memory accesses. At
any point in time, 3DCONV accesses only a small number of
memory pages. As shown in Figure 3(a), most of its thread
blocks access all of the small number of accessed memory
pages. In contrast, ATAX accesses many memory pages at any
point in time. As shown in Figure 3(b), ATAX’s thread blocks
touch different pages. We observe that many other workloads
present a regular memory access pattern similar to 3DCONV.
Such workloads tend to have a relatively small active page
working set, which is defined as the number of pages that are
accessed within a short period of time. In contrast, irregular
applications like ATAX have much larger active page working
sets because each individual thread accesses different pages.
This pattern leads to a large number of unique pages to be
accessed at a given time. Moreover, we observe that regular
applications tend to have more predictable access behavior
of their working sets, as indicated by their streaming pattern
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in Figure 2(a), but irregular applications’ access patterns are
unpredictable.
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(a) Regular Application (b) Irregular Application
Figure 2. Example page access patterns of (a) a regular
(streaming) application, and (b) an irregular (random access)
application.
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Figure 3. Pages accessed by each thread block in example

GPGPU applications: (a) regular, (b) irregular.

We observe that for regular kernels, the memory access
pattern is fairly predicable (e.g., streaming). The evicted
pages are usually not requested again in the near future,
which naturally avoids thrashing. However, it is much harder
to predict the access patterns of irregular applications. Once
the working set exceeds the memory capacity, any page that
is evicted may be requested again, causing thrashing.
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Figure 4. Page access pattern of LUD, which is a regular
application with data sharing (multiple kernels access the
same data; dashed lines represent the end of each kernel).

Data Sharing across Kernels. It is possible that multiple
kernels access the same data in some regular applications,
as shown in Figure 4. In LUD, the memory access pattern
of each kernel is streaming with a small number of active
pages. However, several kernels in the application share the
same data, leading to repeated access by different kernels to
the same pages. When the footprint of each kernel is larger
than the physical memory size, data migration is required to
bring in new pages from the CPU memory, leading to low
performance.
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We form three conclusions based on our observations.
First, the oversubscription overhead for regular applications
is mostly eviction overhead. Second, thrashing among differ-
ent pages dominates the performance overhead in irregular
applications. Third, data sharing can incur additional data
migration, leading to lower performance. These conclusions
guide the design of our proposed framework.

4 The ETC Framework

The key principle of ETC is to use appropriate memory man-
agement techniques for different types of applications: 1) reg-
ular applications without data sharing, 2) regular applications
with data sharing and 3) irregular applications. To this end,
the design of ETC comprises four major techniques: Appli-
cation Classification (AC), Proactive Eviction (PE), Memory-
aware Throttling (MT), and memory Capacity Compression
(CC).

Upon detecting memory oversubscription, ETC first clas-
sifies applications (§4.1). Based on 1) the application type
and 2) data sharing behavior across multiple kernels, ETC
uses a selection of the PE, MT and CC techniques to reduce
the performance overhead of oversubscription. For regular
applications with no data sharing, ETC employs proactive
eviction (§4.2). For regular applications without data shar-
ing, ETC employs both proactive eviction (§4.2) and capacity
compression (§4.4). For irregular applications, ETC employs
an appropriate amount of SM throttling (§4.3) as well as
capacity compression (§4.4).

4.1 Application Classification

Before ETC can select which techniques to employ for which
application, it detects 1) the type of application running on
each SM and 2) the amount of data sharing between kernels.
To detect the type of application running on each SM, ETC
uses memory coalescing statistics, widely used for profiling
applications in SIMT and GPU architectures [20, 38]. When
memory requests from the same warp access the same cache
line, the memory coalescing unit combines the requests to
avoid redundant accesses and thus reduces memory band-
width consumption. Memory coalescing is prevalent in regu-
lar applications [62] due to their high memory access locality.
However, it rarely happens in irregular applications due to
their poor locality [32, 94]. Based on this observation, ETC
employs a counter in each SM’s load/store unit to sample
the number of coalesced memory accesses. If that number is
above a threshold, ETC categorizes the application executing
on the SM as a regular application. Otherwise, ETC catego-
rizes the application executing on the SM as an irregular
application.

To detect data sharing between kernels, ETC relies on
compile-time information. ETC classifies an application as
data sharing if the compiler detects similar pointer accesses
coming from multiple kernels.!

IETC utilizes the compiler by marking kernels that contain the same pointer
as shared. While this would be prone to aliasing in CPU workloads, GPU
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4.2 Proactive Eviction

The key idea of the proactive eviction technique is to pre-
emptively evict pages before the GPU runs out of physical
memory. Doing so allows data migration due to page eviction
to happen at the same time as data migration due to page
faults. Figure 5 provides an example of how our proactive
eviction technique works. A failed address translation due
to a missing page in physical memory causes a page fault to
fetch the page from the host memory as shown in Figure 5(a).
If the application exhausts all available physical GPU mem-
ory, data access to a new page cannot proceed until another
page in GPU memory is evicted back to the host memory
first. In current production systems, eviction is triggered
only by page faults [33, 67]. Page migration from the CPU
to the GPU (host-to-device) cannot start until eviction from
the GPU to the CPU (device-to-host) is completed, as shown
in Figure 5(a). We observe that there is an opportunity to
reduce oversubscription eviction overheads by overlapping
eviction with page fault handling, as shown in Figure 5(b).

Current GPUs support dual-DMA engines [5, 6, 66, 85],
which allows data migration for the page fault and the data
migration from the eviction to happen concurrently. Appli-
cation developers can optimize their programs to overlap the
user prefetch and the eviction manually [86]. However, this
is still a heavy burden for programmers and directly conflicts
with a key goal of on-demand paging: ease of programming.
To automatically overlap the eviction with page fault han-
dling, we modify the GPU driver to automatically force pages
in GPU memory to be evicted before the application runs
out of all available physical memory in the GPU. This allows
the page fault handling process and the eviction process to
occur at the same time.

However, determining the correct timing for proactive
eviction is a design challenge for two reasons. First, evicting
apage from the GPU too early can cause pages that are still in
use to be evicted out of the GPU memory. On the other hand,
evicting a page from the GPU memory too late reduces the
latency hiding benefit of proactive eviction. Second, the GPU
driver must determine how many pages should be evicted
at a time. Proactively evicting more pages out of the GPU
memory allows the GPU to remove more cold pages and
thus make space available for new page faults. However,
proactively evicting too many pages can remove hot pages
from the GPU memory. We develop a mechanism to achieve
a good balance between these tradeoffs.

Avoiding Early Eviction. To determine the correct timing
for proactive eviction, we profile various GPGPU applica-
tions on a real NVIDIA GTX 1060 and observe how the
memory footprint of each application, defined as the number
of pages migrated to the GPU, increases over time. Figure 6
shows the number of pages that are migrated from the CPU

workloads are typically written in a way that makes this heuristic accurate
the vast majority of the time.
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Figure 5. Proactive eviction technique.

memory to the GPU memory for five GPGPU applications.
Based on this data, we make four observations. First, the
memory footprint increases linearly over time. Second, it
is possible that there are multiple phases (observed in the
memory footprint of ATAX (blue dot-line shown in Figure 6)),
but the trend of the footprint increase rate in each phase is
still linear. Third, the nature of GPU’s SIMT execution model
implies that different warps executing the same instructions
can access different data. As all these warps execute in par-
allel and share the global memory bandwidth, their memory
footprint increases until all data is fetched in each phase,
which explains the linear increase in memory footprint over
time. Fourth, the time interval between page faults is almost
constant in each phase. Based on these observations, the
GPU can anticipate a series of page faults that are likely to
occur within a constant time frame and perform multiple
page evictions as soon as the first page fault is detected,
in order to create physical memory space for the pages in
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Figure 6. Applications’ memory footprint over time.
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Avoiding Late Eviction. It is not always the case that the
data transfer speed from the CPU to GPU (host-to-device)
is similar to that from the GPU to CPU (device-to-host). Via
empirical measurements on the NVIDIA GTX 1060 GPU, we
found that the data transfer speed from the device to the host
is significantly faster than that from the host to the device.
Hence, moving the same number of pages from the device
(GPU) back to the host (CPU) during eviction can be faster
than paging in data from the host (CPU) to the device (GPU).
Based on this observation, it is possible for the GPU to avoid
late eviction by starting the eviction process at the same time
as the occurrence of the page fault.?

Irregular applications access a large number of pages
within the same time frame (§3). Because of this, proactive
eviction becomes ineffective, and we find that the potential

2Note that ETC allows the GPU driver to determine when proactive eviction
happens based on the observed data transfer latencies between the CPU
and the GPU, and vice versa.
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downside of thrashing outweighs the potential speed up
from the proactive eviction for such applications.
Implementation. To employ proactive eviction, ETC mod-
ifies the virtual memory manager inside the GPU runtime
to include a new proactive eviction unit (PEU). When a page
fault occurs, PEU interrupts the GPU driver so that the GPU
driver can move the faulting page into GPU memory. When
the GPU driver successfully allocates a new page on the
GPU memory, PEU starts checking information from the
Application Classification logic (§4.1), Then, PEU checks the
memory allocation size and compares it with the available
memory size to predict if it will be oversubscribed. PEU per-
forms proactive eviction only if 1) the memory allocation
size is larger than the available GPU memory size, 2) the
GPU memory is oversubscribed and 3) the available memory
size is smaller than a threshold (empirically set to 2MB on
our evaluation).

4.3 Memory-aware Throttling

As discussed in §2.2, page-level thrashing can significantly
degrade the performance of irregular GPGPU applications.
As shown in Figures 2(b) and 3(b), a page in an irregular
application is accessed only by a few thread blocks. When
many thread blocks from irregular applications are executed
concurrently on the GPU, the working set size rapidly in-
creases, causing severe thrashing, for which traditional page
replacement policies do not provide a solution. To avoid such
thrashing, our idea is to limit the number of pages that are
accessed simultaneously. To this end, ETC employs Memory-
aware Throttling that aims to reduce the working set size of
an irregular application by limiting its number of concurrent
threads via throttling. GPU throttling can be implemented in
two ways: thread block (TB) throttling or SM throttling. TB
throttling throttles a fraction of thread blocks within each
SM. SM throttling throttles a fraction of SMs in the GPU. We
experimented with both and found that TB throttling intro-
duces an overly long adjustment period to reach the level
with minimum thrashing. Compared to TB throttling, SM
throttling can quickly converge to a state with appropriate
working data set size. Hence, ETC utilizes SM throttling to
reduce the amount of memory thrashing in GPUs.
Implementation. When an irregular application is detected
and the memory is oversubscribed, ETC triggers our epoch-
based SM throttling. When throttling is triggered, ETC first
throttles half of the SMs by stopping the fetch unit from
fetching new instructions (instructions in the pipeline can
still be drained). During this initial phase, it is possible that
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ETC throttles too many SMs, leading to underutilization,
or throttles too few SMs, leading to thrashing. Hence, ETC
adjusts the number of throttled SMs dynamically after the ini-
tial phase based on observed memory utilization. As shown
in Figure 7, the memory-aware throttling technique divides
GPU execution into two epochs: the detection epoch and the
execution epoch. During the detection epoch, ETC checks
if there is an eviction request or a page fault request to
determine the aggressiveness of ETC’s SM throttling. The
detection epoch ends if a page fault is detected (@) or the
time period for detection expires (@). Once the detection
epoch ends, the memory-aware throttling scheme adjusts
the number of active SMs based on the page fault and the
page eviction behavior gathered during the detection epoch.

Throttle SM

Page eviction
detected

o Page fault 9 6
Execution Epoch
No page

K detected
Detection Epoch
eviction

Rel
Time expires with . sm

no page fault

Figure 7. ETC’s memory-aware throttling scheme.

If the detection epoch ends because the time period expires
(i.e., there is no page fault, @), it implies that the working set
is likely to fit in the GPU memory. The GPU should be able to
execute more threads concurrently without page thrashing.
In this case, ETC unthrottles an SM. To do this, ETC gradually
enables the fetch units in the last throttled SM to increase
memory utilization.

If the detection epoch ends because of a page fault but
no page eviction occurs during the detection epoch (@), it
implies that the GPU still has free memory space left.

If the detection epoch ends because of a page fault and
there is at least one page eviction (@), it suggests that the
application’s working set size does not fit in the GPU memory
and ETC should throttle more SMs to reduce the working
set size. In this case, as soon as the page fault is resolved,
ETC throttles the SM that triggers the page fault, since active
warps from this SM are likely to access data that is not present
in the GPU memory again.

After each adjustment, the GPU begins the execution
epoch, which executes all active SMs until the time period
for the execution epoch expires and the GPU goes back to
the detection epoch again (@).

With memory-aware throttling, the concurrency of irreg-
ular applications can be adjusted so that the working set fits
in the available memory. Although the throttling reduces
the thread-level parallelism (TLP), we find that it can avoid a
lot of memory migrations and recover a significant fraction
of the lost performance caused by memory oversubscription.
The loss in TLP due to throttling can be recovered by com-
bining ETC’s memory-aware throttling with the Capacity
Compression technique described in §4.4.
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4.4 Capacity Compression

While the proactive eviction technique improves the per-
formance of regular applications and the memory-aware
throttling technique improves the performance of irregular
applications, there can be cases beyond the two techniques
we already discussed, where these techniques alone are insuf-
ficient for two reasons. First, ETC’s proactive eviction tech-
nique can only hide the eviction latency, but it cannot reduce
the number of page migrations when pages are shared be-
tween multiple kernels.Second, ETC’s memory-aware throt-
tling technique is effective at avoiding thrashing in irregular
applications, but it comes at the cost of lower thread-level
parallelism.

To reduce the impact of memory oversubscription, our
goal is to improve the effective capacity of main memory.
To this end, we develop a memory compression technique.
The key idea behind ETC’s capacity compression technique
is to selectively apply memory compression when it can
lead to performance improvement. Several main memory
compression techniques have been proposed [25, 49, 72, 79,
99], and they can be used to increase the effective memory
capacity. In this paper, we utilize the Linearly Compressed
Pages (LCP) [72] as the framework to compress data in GPU
main memory.

LCP is a low-latency main memory compression frame-
work that has been shown to effectively increase memory
capacity in a CPU system. We find that LCP can have se-
rious performance impact on a GPU system as it requires
additional memory accesses to fetch compression-related
metadata that is stored inside the main memory. As shown
in Figure 8, the additional accesses to LCP metadata can lead
to additional bandwidth demand and can reduce the perfor-
mance of the GPU applications by 13% on average, running
on unlimited memory.

Performance Normalized
to No Compression
oo0o000O0 -~
rOON®OS

Figure 8. Performance overhead of LCP under unlimited
memory.

Hence, it is crucial for ETC to be able to determine when
the LCP framework is useful, which happens on two spe-
cific classes of applications: regular applications with data
sharing and irregular applications. As thread blocks from
both application categories access very large amounts of
data, capacity compression allows more data to be stored on
the GPU memory. Moreover, the memory-aware throttling
technique can be less aggressive when employed together
with capacity compression, which leads to a higher TLP than
when throttling is used alone.



Session: Data Movement |

All Regular Applications

Proactive Eviction

All Irregular Applications and
Regular Applications with Data Sharing

Data sharing information

Application

GPU application starts o N
o Classification

oversubscribing memory

Coalescing information

Memory Coalescer |

Memory-aware
Throttling

All Irregular Applications
Capacity
Compression

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

Proactively evict pages
from GPU memory

'

—’I Virtual Memory Manager |

Page fault and page eviction
information

GPU Runtime
GPU Hardware

L GPU’s Fetch Unit |

Throttling decision

GPU’s Compression Logic |

Figure 9. High level overview of ETC showing its four components: Application Classification (AC), Proactive Eviction (PE),

Memory-aware Throttle (MT) and Capacity Compression (CC).

Implementation. Since modern GPUs already perform
memory bandwidth compression within the memory con-
troller and over the PCle bus [23, 49, 50, 79, 87], both the
memory controller and the DMA unit are already equipped
with the compression/decompression hardware [23]. To en-
able LCP, ETC employs an additional 512-entry metadata
cache inside the memory controller to accelerate compres-
sion metadata lookup and thus reduce the performance over-
head of the LCP framework. Once the application classifi-
cation logic determines that the executing application is 1)
a regular application with data sharing or 2) an irregular
application, ETC begins the capacity compression process
by storing all data written to the GPU memory using the
base-delta-immediate compression algorithm [73], which is
simple to implement and effective [70-73, 98].

4.5 Design Summary of ETC
Figure 9 shows the design overview of ETC, which consists
of Application Classification, Proactive Eviction, Memory-
aware Throttling, and memory Capacity Compression.
When the total allocated memory becomes larger than the
GPU’s physical memory, ETC becomes active and the applica-
tion classification starts tracking both hardware information
on the GPU and gathers the compile-time information. If
application classification detects a regular application, ETC
enables proactive eviction in the GPU driver’s virtual mem-
ory manager. ETC also applies the capacity compression to a
regular application when data sharing is detected. If the ap-
plication classification detects an irregular application, ETC
performs both memory-aware throttling in order to reduce
thrashing and capacity compression to further increase the
effective memory capacity.

5 Methodology

We modify the Mosaic simulator [9, 10, 82], which is based
on GPGPU-Sim 3.2.2 [11, 40], to evaluate ETC. The configu-
ration of the GPU cores and the memory system are shown
in Table 1.

Demand paging and oversubscription. We faithfully
model the demand paging of data between the CPU memory
and the GPU memory as described in CUDA 8.0 [85, 86].
When a kernel first accesses a page, a TLB miss triggers a
page table walk. If the page is not present in GPU mem-
ory, the page table walk fails, creating a page fault. The
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GPU Core Configurations
30 cores, 64 execution units per core
8 memory partitions
1020 MHz, 9-stage pipeline,
64 threads per warp, GTO scheduler [81]
16KB, 4-way associative, LRU, L1 misses are
coalesced before accessing L2
64 entries per core, fully associative, LRU
2MB total, 16-way associative, LRU
2 cache banks
2 interconnect ports per memory partition

System Overview
Shader Core Config
Private L1 Cache

Private L1 TLB
Shared L2 Cache

Shared L2 TLB 512 entries total, 16-way associative, LRU
2 ports
Page Walk Cache 16-way 8KB
Memory Configurations
DRAM GDDR5 1674 MHz, 8 channels
8 banks per rank
FR-FCFS scheduler [80, 103], burst length 8
Page Table Walker 64 threads share the page table walker, traversing
a 4-level page table
Unified Memory Setup  64KB page size, 2MB maximum eviction size

20us page fault handler, 16GB/s PCle bandwidth
Table 1. Configuration of the simulated system.

IOMMU interrupts the CPU to handle page faults. We model
an optimistic 20us page fault latency [102] and employ a
state-of-the-art hardware page prefetcher [102] to reduce
the page fault overhead. When GPU memory is full, any new
page faults must evict old pages using the age-based LRU
page replacement policy via the GPU driver [85, 86]. We
configure GPU memory capacity to fractions (75% and 50%)
of each individual workload’s memory footprint on all our
experiments except in the ideal unlimited memory baseline.
Workloads. We randomly select 15 applications from the
CUDA SDK [62], Rodinia [21], Parboil [94] and Poly-
bench [32] benchmarks. We categorized these workloads into
three categories: regular applications with no data sharing
(2DCONV, 3DCONV, SAD, CORR, COVAR, FDTD and LPS), regular
applications with data sharing (LUD, SRAD, CONS and SCAN),
and irregular applications (ATAX, BICG, GESUMMV and MVT).
The footprint of these applications vary from 7.28MB to
70MB with an average of 22.5MB. Impractically long simula-
tion times prevent us from emulating a larger footprint.
Design Parameters. ETC exposes several design param-
eters. We set the coalescing factors threshold for regular
applications to 10 cache lines for our application classifica-
tion technique. We set 2MB of remaining GPU memory space
as the threshold to trigger the proactive eviction techniques.
We set both throttling degree and releasing degree to 1 SM
at a time as we empirically find that this value yields the
highest performance.
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6 Evaluation

We evaluate ETC by comparing it against 1) a state-of-the-art
realistic baseline (BL) that uses page prefetching [102], and
2) an ideal baseline with unlimited amount of DRAM.

6.1 Performance

Figure 10 shows the performance of ETC across different
workload categories normalized to the baseline where the
GPU has unlimited memory. We make three conclusions.
First, ETC is effective at reducing the performance overhead
of oversubscription and performs similarly to the unlimited
memory baseline for regular applications with no data shar-
ing because page eviction latency, which is fully hidden by
our proactive eviction technique, is the major performance
overhead for these applications. Second, we find that page mi-
gration due to the synchronization between different kernels
cannot be avoided for regular applications with data sharing.
However, ETC still improves performance by an average of
60.4% for such applications compared to the state-of-the-art
design. Third, ETC improves the performance of irregular
applications by 2.7X compared to the state-of-the-art BL. We
conclude that our ETC framework is effective at reducing
the performance impact of oversubscription.

| B75%BL @75% ETC m50% BL m50% ETC |

N

3.1% 6.1%

to Unlimited Memory
© o o o :
O N B OO ©® =~ N

Performance Normalized

Regular apps  Regular apps
(no data sharing) (data sharing)

Irregular apps

Figure 10. Performance normalized to a GPU with unlimited
memory.

6.2 Analysis of Techniques and Workloads

We provide an in-depth analysis of how each technique of
ETC affects the performance of each workload type.
Regular Applications with no Data Sharing. Figure 11
shows the impact of proactive eviction (PE) and capacity com-
pression (CC) on regular applications with no data sharing.
We make three observations. First, when proactive eviction
becomes active, the eviction latency can almost always be
completely overlapped with the page fault latency. Among
all the regular applications with no data sharing that we
evaluated, eviction latency cannot be completely overlapped
in only one application (LPS) where we find ETC evicts pages
too aggressively.

Second, while not shown in Figure 11 due to space con-
straints, regular applications with no data sharing do not
benefit from SM throttling because SM throttling does not
hide eviction latency. In fact, SM throttling decreases TLP,
and thus the latency hiding capability.

57

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

|II75% BLB75% PE®@75% CC m50% BL 850% PE m50% COI

°
8 > 1.04
55 3.1% 6.1%
£§ I N ishi
S =096 HVIL- e Nl N vy
22 NI M N " M
© 9 u \ M ] N \
. N : N "
£ 2 oss (VAR IV (VR (VLR N
=l : I N i i (]
23 0.8 V- AL AR - i
o= N N N N N N
I AV (N AN [V B N
0.8
S A
9 9 X O
O o &P
DU

Figure 11. Performance of regular applications with no data
sharing.

Third, regular applications with no data sharing perform

worse than the state-of-the-art baseline when capacity com-
pression (CC) is applied, due to the additional accesses to
compression metadata, as discussed in §4.4.
Regular Applications with Data Sharing. Figure 12
shows the performance of regular applications with data
sharing across kernels when proactive eviction (PE), capacity
compression (CC) and both (PE+CC) are applied. We make
four observations. First, compared to the unlimited memory
baseline, the state-of-the-art BL suffers 52.2% (74.1%) per-
formance loss when GPU memory can fit only 75% (50%)
of the applications’ memory footprint. Second, the average
performance of the proactive eviction technique alone (PE)
is only 9.3% better than that of the state-of-the-art baseline
(BL) because additional data migration, due to data sharing,
dominates the oversubscription overhead for this type of
applications. Third, the capacity compression mechanism
alone (CC) yields 52.8% average performance improvement
over the state-of-the-art baseline, due to the increased effec-
tive memory capacity. Fourth, combined proactive eviction
and capacity compression (PE+CC) results in 60.4% average
performance improvement.

B75% BL
m50% BL

875% PE
m50% PE

B75% CC
@50% CC

@75% PE+CC
m50% PE+CC

Performance Normalized
to Unlimited Memory

o o o o
oN N O ® -
—_

CONS

SRAD SCAN  AVERAGE

Figure 12. Performance of regular applications with proac-
tive eviction and capacity compression.

We conclude that ETC improves the performance of regu-
lar GPU applications regardless of whether or not the data
is shared across kernels.

Irregular Applications. Figures 13 and 14 show the per-
formance and total eviction counts of each individual com-
ponent of ETC on irregular applications.

To evaluate ETC’s throttling scheme (MT), we compare it
against a naive throttling scheme that statically throttles half
of the SMs at the beginning of execution (denoted as NT in
Figures 13 and 14). We make three observations. First, the
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naive scheme (NT) outperforms the state-of-the-art baseline
design (BL) by 57.7% when 75% of the footprint fits in mem-
ory. Second, when GPU memory is more limited at 50% of the
footprint, the naive scheme (NT) is ineffective and degrades
performance by 10.5% compared to the BL. In contrast, our
memory-aware throttling scheme (MT), which dynamically
adjusts how many SMs to throttle, provides 436% perfor-
mance improvement over BL. Third, our adaptive throttling
scheme (MT) performs worse than naive throttling (NT) on
two workloads (BICG and GESUMMV) in the scenario when
75% of the memory footprint fits in the memory capacity,
because of the adjustment latency to reach the appropriate
number of active SMs to be throttled.
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Figure 13. Performance of irregular applications (75% of

applications’ memory footprint fits in memory).
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Figure 14. Performance of irregular applications (50% of
applications’ memory footprint fits in memory).

Figure 15 shows the page fault rate of an irregular appli-
cation (ATAX) over 10 million cycles. When the memory is
oversubscribed and only 75% of the footprint fits in memory,
thrashing ensues and frequent page faults occur. In contrast,
when the memory-aware throttling mechanism (MT) is active,
page faults are infrequent, indicating that MT is effective at
decreasing the working set. Moreover, fewer evictions occur
with MT, as shown in Figures 13 and 14.
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Figure 15. Page fault rate of ATAX.

The performance benefit of capacity compression in ir-
regular applications is determined by both the compression
ratio and the size of GPU’s physical memory relative to the
application’s memory footprint. When the entire memory
footprint of an application fits in GPU memory after compres-
sion, page faults no longer occur. The significant reduction

800
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in the number of page evictions for BICG and MVT, shown
in Figure 13, suggests that the compression ratios of these
two applications are high enough to fit almost all of their
working sets in main memory, leading to 51.8% and 203.6%
performance improvement over BL, respectively. The perfor-
mance of BICG and MVT recovers to 85.7% and 88.7% of their
ideal unlimited memory performance, respectively. Figure 14
shows a scenario where the GPU’s physical memory is much
more limited (50% of applications’ memory footprint). All
applications suffer from thrashing even after capacity com-
pression (CC) is employed alone. MT reduces thrashing and,
together with CC, improves performance by 436% compared
to the state-of-the-art BL. We conclude that while capacity
compression can improve the performance of oversubscribed
irregular GPGPU applications, page faults can still remain
and hinder performance. Thus, the combination of capac-
ity compression and memory-aware throttling is especially
desirable at high levels of memory oversubscription.

We observe that the proactive eviction scheme (PE) causes
an average performance loss of 29.7% over reactive eviction
(BL) as pages are prematurely evicted from the GPU’s physi-
cal memory. Thus, PE is not a good technique for irregular
applications, as we discussed earlier.

In summary, irregular applications significantly benefit
from memory-aware throttling (MT) and capacity compres-
sion (CC). Thus, the ETC framework uses both schemes to
achieve good performance. As shown in Figures 13 and 14,
ETC (CC+MT) increases performance by 270%, on average, for
irregular applications. Although throttling decreases TLP, it
is able to effectively reduce oversubscription overheads and

thrashing.

6.3 Classification Accuracy

As discussed in §6.2, ETC relies on correct classification of the
type of application executing on the GPU to select the best
scheme (See §4.1). Figure 16 compares the average sampled
coalescing factor over 50k cycles and the actual coalescing
factor of each application. We can observe a large gap be-
tween coalescing factors of regular applications and irregular
applications. We find that any threshold value between 5 and
10 enables the accuracy of ETC’s application classification
to be 100%. We set the coalescing factor threshold to 10.
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Figure 16. Measured coalescing factors (at the cache-line
level) for different applications.
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Figure 17 shows the average number of pages accessed by
instructions from each warp. A warp from irregular applica-
tions typically accesses multiple pages at once while almost
all warps from regular applications access only one page at
a time. Hence, using the coalescing factor at the page level
is as effective as using the coalescing factor at the cache-line
level to distinguish between different types of applications.
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Figure 17. Measured coalescing factors (at the page level)
for different applications

6.4 Sensitivity Analysis

In this section, we measure the sensitivity of ETC’s perfor-
mance to the aggressiveness of the memory-aware throt-
tling scheme, the page fault handling latency and the size of
DRAM on the GPU.

SM Throttling Aggressiveness. The number of SMs that
are throttled and released per epoch can affect application
performance. Figure 18 shows normalized performance when
we vary the number of SMs that are throttled (fewer active
GPU cores) or released (more active GPU cores) per epoch.
Based on Figure 18, we make two observations. First, our
memory-aware throttling scheme achieves the highest per-
formance when both the throttle degree and the release
degree are 1, suggesting that fine-grained adjustment works
well. Second, we observe that performance is more sensitive
to SM throttling aggressiveness than release aggressiveness
because page-faults have a larger negative effect on perfor-
mance than the reduction of TLP does.
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Figure 18. Performance vs. SM throttling aggressiveness.

Fault Latency. Figure 19 shows the performance of GPGPU
applications when page fault latency is varied from 20us
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to 50us normalized to when the page fault latency is 20us.
We observe that average performance drops 31.2% when the
fault latency increases from 20us to 50us. This data shows
that hiding the eviction latency becomes important for recov-
ering the performance loss due to oversubscription as page
faults become a more dominant source of the performance
bottleneck.
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Figure 19. Performance of ETC vs. page fault latency.

Compression Ratio. The compression ratio of each appli-
cation’s memory footprint affects the number of pages that
fits in the GPU main memory. Figure 20 shows the aver-
age performance of all workloads using various synthetic
compression ratios®, normalized to the performance of each
application with no compression when the GPU physical
memory capacity is set to 50% of each application’s working
set size. The data shows that GPU performance increases
almost linearly as more compressed data fits in the GPU
memory, and performance significantly improves when all
application data fits in the GPU memory (at the compression
ratio of 2).
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Figure 20. Sensitivity of performance to compression ratio.

6.5 Hardware Overhead

We analyze the hardware overhead to support each compo-
nent of ETC. Proactive eviction does not require any hard-
ware overhead and is implemented in the GPU driver. We
modify the driver to detect the available memory size and
trigger eviction proactively. To implement memory-aware
throttling, the IOMMU must be extended to implement our
throttling adjustment scheme. Two 32-bit counters are added
to track epochs. Control logic is added to disable fetch units.
To implement capacity compression, we add similar hard-
ware extensions to those required by the LCP framework for
CPUs, which consists of a 512-entry metadata cache. No ad-
ditional hardware is needed for compression as it is already

3We include the compression and decompression overheads in performance
simulations.
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available on current GPUs and the (de)compression units al-
ready exist in the memory controller as well [49, 79, 98].
We extend the page table entry, using 9 bits to include
page compression information. Finally, the application clas-
sifier requires: (1) a 32-bit coalescing factor counter in each
load/store unit; (2) signals to fetch units, compression units
and the IOMMU.

Overall, hardware overheads for our design are modest.
In addition to the logic overhead, the storage overhead is the
32KB metadata cache and 482 32-bit counters (16 counters
in each of 30 SMs and 2 counters in the IOMMU), which is
less than 2KB of storage cost.

7 Related Work

To our knowledge, this paper is the first to propose an
application-transparent hardware/software cooperative so-
lution that uses the most effective combination of techniques
for each application category. We survey previous techniques
that aim to (1) provide unified virtual memory support on
GPUs, (2) reduce the overhead of memory oversubscription,
(3) achieve good thread-level parallelism, and (4) increase
the effective memory capacity.

GPU Virtual Memory. Address translation overheads are
well-studied for CPUs [3, 4, 12, 14, 16-18, 27-29, 44, 45, 58, 60,
69, 74,75, 88,92,95]. For GPUs, Pichai et al. [76] and Power et
al. [77] explore IOMMU designs to improve the throughput
of address translation based on GPU memory access patterns.
Cong et al. [22] propose TLB support for a unified virtual
address space between the host CPU and customized accel-
erators. MASK [10] is a TLB-aware GPU memory hierarchy
design that prioritizes memory metadata accesses (e.g., page
walks) over data accesses, to accelerate address translation.
Mosaic [9] provides application-transparent multiple page
size support in GPUs to increase TLB reach. Shin et al. [91]
propose a SIMT-aware mechanism to improve address trans-
lation performance in irregular GPU workloads.
On-demand Paging. Traditionally, GPGPU memory foot-
print has been limited by physical memory capacity [63-65],
with kernel launch delayed until all required CPU-GPU data
transfer completes. Modern GPUs automate GPU memory
management [8, 67]: pages are moved to/from GPU mem-
ory on-demand, and kernel execution overlaps data transfer,
reducing programmer effort and enabling workloads with
large memory footprint. Zheng et al. [102] explore migration
overheads and propose programmer-directed memory man-
agement to hide overheads. Their technique is orthogonal
to our work and we apply it as the baseline technique in all
our configurations, including ETC.

GPU Memory Oversubscription. GPUswap [48] enables
GPU memory oversubscription by relocating GPU appli-
cation data to CPU memory, keeping data accessible from
the GPU. GPUswap provides basic oversubscription support
but does not reduce oversubscription overheads. The VAST
runtime [53] partitions data-parallel workloads based on
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available GPU physical memory but requires programmer-
driven code transformations. The BW-AWARE [2] page place-
ment policy uses heterogeneous memory system character-
istics and annotations to guide data placement, focusing on
a globally-addressable heterogeneous memory system. Our
work reduces oversubscription overheads transparently.
GPU TLP Management. Previous designs [26, 41, 42, 46,
47,54, 55, 61, 81, 90, 100, 101] control the parallelism of GPU
cores to achieve high TLP and high performance. Rogers et
al. [81] propose an adaptive HW mechanism to limit TLP to
avoid L1 thrashing. Kayiran et al. [47] propose a dynamic
CTA scheduling mechanism to modulate the core-level TLP,
which reduces memory resource contention. Mascar [90]
detects memory saturation and prioritizes memory requests
among warps. Wang et al. [100] propose pattern-based TLP
management that modulates TLP of concurrent applications.
Our work reduces the effective memory working set under
oversubscription, which none of these works does.
Memory Compression in GPUs. Several works study
memory and cache compression in GPUs [49, 70, 71, 79, 87,
99]. These works show benefits due to on-chip and off-chip
memory bandwidth savings. We demonstrate that capac-
ity compression in GPUs is beneficial in certain cases, and
develop a mechanism that decides when to use compression.

8 Conclusion

We introduce ETC, an application-transparent framework
for reducing memory oversubscription overheads in GPUs.
Regular and irregular applications exhibit different types
of behavior when memory is oversubscribed. Regular ap-
plications are most affected by page eviction latency, while
irregular ones are prone to memory thrashing. ETC classifies
applications as regular and irregular, and uses 1) proactive
eviction to hide the page eviction latency, 2) memory-aware
throttling to ameliorate thrashing, and 3) capacity compres-
sion to increase the effective memory capacity. For regular
applications with no data sharing, ETC eliminates the over-
head of memory oversubscription and performs similar to the
ideal unlimited memory baseline. For regular applications
with data sharing and irregular applications, ETC improves
the performance by 60.4% and 270% compared with the state-
of-the-art baseline. We conclude that ETC is an effective
low-cost framework to minimize memory oversubscription
overheads in modern GPU systems.
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