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ABSTRACT

Image sensors with programmable region-of-interest (ROI)
readout are a new sensing technology important for energy-
efficient embedded computer vision. In particular, ROIs can
subsample the number of pixels being readout while perform-
ing single object tracking in a video. In this paper, we de-
velop adaptive sampling algorithms which perform joint ob-
ject tracking and predictive video subsampling. We utilize
an object detection consisting of either mean shift tracking
or a neural network, coupled with a Kalman filter for pre-
diction. We show that our algorithms achieve mean aver-
age precision of 0.70 or higher on a dataset of 20 videos in
software. Further, we implement hardware acceleration of
mean shift tracking with Kalman filter adaptive subsampling
on an FPGA. Hardware results show a 23 x improvement in
clock cycles and latency as compared to baseline methods and
achieves 38FPS real-time performance. This research points
to a new domain of hardware-software co-design for adaptive
video subsampling in embedded computer vision.

Index Terms— FPGA acceleration, embedded computer
vision, single object tracking, adaptive subsampling

1. INTRODUCTION

Embedded systems typically trade-off generality in order to
perform specific tasks at high fidelity, often via hardware spe-
cialization and optimization. In particular, embedded com-
puter vision is an emerging field where embedded systems
and image sensors are jointly optimized for image and video
processing. This has tremendous potential for applications
such as autonomous driving, drones, and robotic platforms.
However, the key challenge to realizing embedded com-
puter vision is to enable low-power processing of visual data
such that it can be supported by the battery life of the mo-
bile/embedded platform. While there have been several ef-
forts in reducing the computational load of vision algorithms
through hardware acceleration, there has been less focus on
the costs of image sensing energy as the front end sensor
in the pipeline. For example, the Google Glass runs out of

battery in 45 minutes running continuous face detection, and
consumes 50% of that power on image sensing alone [1].
Thus there is an opportunity to jointly design image sensors
and algorithms for embedded computer vision platforms.

Existing image sensors can reduce power in the analog
domain via reading out smaller regions of interest (ROIs).
Not only does this reduce image quantization and bandwidth
costs, but the other pixels not in the ROI can be switched off
or power-gated for additional savings. In addition, the smaller
ROI image can help speed up digital processing on-board the
embedded platform by decreasing latency and clock cycles.
In this paper, we leverage the ROI capabilities of sensors to
design a new class of adaptive video subsampling algorithms,
which only readout salient pixels to perform an end vision
task. Our main application is single object tracking, where
only a small ROI around a moving object is necessary for
tasks including surveillance and autonomous driving.

Our specific contributions are the design of video adap-
tive subsampling algorithms along with an embedded system
implementation onto an FPGA. We utilize off-the-shelf de-
tectors, both mean shift tracking as well as the TinyYOLO
deep neural network, coupled with a Kalman filter to jointly
track an object while subsampling frames of a video. The
algorithm thus sends a control signal to the image sensor to
intelligently adapt its ROI to the moving object. We validate
our algorithms on a small video dataset, and show that mean-
shift tracking slightly outperforms the tiny-YOLO network in
this task. Further, we accelerate the mean shift tracking +
Kalman filter algorithm onto a Xilinx Zynq FPGA to mea-
sure the performance on real hardware. We show that our
algorithms achieve mean average precision of 0.70 or higher
and hardware acceleration achieves a 23X improvement in
clock cycles and latency as compared to baseline methods and
achieves 38FPS real-time performance.

2. RELATED WORK

Energy-efficient object tracking has been studied extensively
[2-6]. Similar to our paper, other works have also exploited
the Kalman filter for tracking objects [7-10]. State-of-the-art
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Fig. 1: Proposed FPGA-based image subsampling algorithm featuring an object detector coupled with a Kalman filter.

object tracking utilizes deep neural networks [11, 12]. How-
ever, none of these works deal with adaptive image subsam-
pling.

There is growing interest in the notion of region of in-
terest (ROI) and adaptive subsampling. ROI refers to the
part of an image frame which contains the object of inter-
est, and adaptive subsampling refers to the discarding of spa-
tially distributed pixels outside of the ROI. ROIs have been
exploited for image compression [13, 14]. The work most
closely aligned to ours is objectness-based subsampling [15].
The algorithm localizes the object of interest by utilizing a
feature called objectness to compute a heat map of likely ob-
ject locations, and then using Otsu’s threshold to determine
an ROI and subsampling mask. However, this algorithm does
not use tracking or motion information explicitly, and must
sample a full frame when significant motion occurs. In our
paper, we adaptively change the ROI with moving objects us-
ing both mean shift tracking as well as a neural network, and
predictively estimate the next ROI to sample in future frames.

3. METHODS

Our tracking algorithm is comprised of two key components:
a predictor (Kalman filter) which features ROI-ing capabil-
ities, and an object detector (mean shift or neural network)
as the measurement generator for the predictor. We alternate
between detection and prediction with a fixed ratio. In hard-
ware, this ratio is fixed at 1 : 5 and in software we switch
between detection and prediction every other frame.

Kalman Filter Tracking. The Kalman filter is used to
keep track of the moving objects and predict their locations
in subsequent frames [16]. In the update phase, the object
detector algorithm outputs the bounding box of the moving
object and this is fed as input to the Kalman filter. The filter
accepts this input as a new measurement and it self-updates its
internal state estimate vector based on the incoming bounding
box. In the prediction phase, the filter’s state space matrix
is used to predict the position of the moving object in the ad-
jacent frame. The predicted position gives the new bounding
box dimensions and this new box is used to generate a mask
that turns pixels off outside the area containing the object of
interest.

Tiny-YOLO CNN. We utilize the pre-trained tiny-YOLO
convolutional neural network (CNN) object tracker for the
measurement phase of the Kalman filter for predicting future
regions of interest. The YOLO neural network architecture
proposed by Redmon et al. [12] is a state-of-the-art real-time
object detector and is a good candidate for tracking applica-
tions. Redom et al. have modeled the object detection task
as a regression problem, and outputs the bounding box along
with the class probability. Tiny-YOLO can optimize the size
of its ROI by changing the width and height of the bounding
box frame to frame. Additionally, its lightweight architecture
and its end-to-end optimization framework make it an attrac-
tive object detector for mobile and real-time applications.

Mean Shift Tracking. The mean shift tracking algorithm
estimates how the color histogram values of the ROI move as
a cluster over time in the image using non-parametric meth-
ods [17]. We note that previous research has also proposed
coupling mean shift tracking with Kalman filtering [18].
However, they do not consider explicitly the case of adaptive
subsampling, and they do not explore hardware acceleration
of this algorithm as we do.

One limitation of mean shift includes requiring an object
detector for the first iteration to select the initial ROI. How-
ever, once it receives the initial bounding box it computes the
color histogram for every frame and uses that to find the cen-
troid of the ROI. Note that that the width and height do not
change iteratively which means constant energy savings.

4. FPGA IMPLEMENTATION

We choose field programmable gate array (FPGAs) as our
hardware platform due to a host of attractive qualities includ-
ing reprogammability, low latency, high bandwidth, and on-
board memory for hardware acceleration. In addition to this,
one particular application of interest for object tracking and
adaptive subsampling is identifying targets on space imaging
platforms where radiation is a concern. Rad-hard FPGAs is
a growing market for space-bound applications where flexi-
bility and dataflow-intensive processing is desired. Consid-
ering latency as our metric for evaluation, FPGAs have been
known to come out ahead of both CPUs and GPUs for imag-
ing applications [19]. While ASICs can potentially alleviate
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Fig. 2: Visualization of the three algorithms tracking objects with image subsampling.

these issues, the hardware benefits come at the cost of pro-
grammability and flexibility of use. Further, there is a lack of
fully developed, user friendly high level synthesis toolflows
for ASICs to accelerate vision algorithms.

For the hardware implementation of our algorithm, we
use Xilinx’s Zynq Ultrascale+ MPSoC ZCU102 board. The
toolkit used to program the board is Xilinx’s SDSoC (Soft-
ware Defined System on Chip Platform). The SDSoC en-
vironment includes a full-system optimizing C/C++ com-
piler that provides automated software acceleration in pro-
grammable logic combined with automated system connec-
tivity generation. As such, simply writing out our code in
C++ sufficed. Verilog code for the input/output port connec-
tivity is auto-generated when we synthesize our C++ code in
the SDSoC environment. Verilog code generation, placing,
routing and bitstream generation all happen in the SDSoC
environment. In order to communicate with the FPGA, we
set up the SD card boot mode and use an SD card to load our
program and input videos onto the board.

5. RESULTS

Dataset. In order to evaluate our algorithm, we used 20 single
object tracking videos from the ILSVRC2015 dataset [20].
We picked only single object videos for our experiments and
we avoided videos with excessive clutter and blur. This is a
limitation of our method, and remains future work to handle
these cases effectively. The set of videos we picked included
simple test cases as well difficult ones. A few examples of
the videos we used are - a turtle walking slowly (easy), a boat
speeding away in water (medium), a small animal running fast
(difficult).

Baseline. We compare against the baseline objectness-

Metrics MS+KF | NN+KF | OB

mAP Mean 0.7677 0.7385 0.4598

mAP Std. 0.1960 0.3437 0.3194

Mean Pixel Off Ratio | 0.8412 0.6930 0.9467
Table 1: Performance Evaluation on ILSVRC2015 (20
Videos).

based adaptive video subsampling technique [15]. The inher-
ent limitations of the algorithm are reflected quite clearly in
Table 1. Even when the algorithm narrows in on the object
of interest, it shrinks the enclosing bounding box to capture
just parts of the object. Both our algorithms outperformed the
baseline and motivated hardware acceleration for MS+KF.

Metrics. Our metrics for evaluation were the mean aver-
age precision (mAP) and the ratio of pixels switched off. The
mAP was determined by counting the number of frames in a
video for which the intersection over union (IoU) of the pre-
dicted bounding box and ground truth bounding box is greater
than 0.5. The mAP gives a measure of how accurately an
object in motion is being tracked. For adaptive subsampling
performance, we also compute and report the ratio of pixels
switched off. This metric is determined by dividing the num-
ber of pixels outside of the predicted ROI by the total num-
ber of frame pixels. We note that image sensor energy corre-
sponds to number of pixels turned off (see a useful breakdown
of image sensing energy here [21]).

Software Results. In Table 1, we report the perfor-
mance for the mean shift plus Kalman filter (MS+KF), the
tiny-YOLO tracking method (NN+KF) and the objectness
algorithm (OB). For the subset of videos that we have used
for running our experiments, the MK+KF algorithm out-
performed the other two in terms of precision (0.7677 ver-
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Fig. 3: Hardware implementation of our object tracking algo-
rithms on (a) Xilinx Zynq ZCU102 board, with the resulting
output displayed in (b).

sus 0.7385, 0.4598). The energy savings associated with
switching pixels off for the MS+KF technique is also high
(0.8412). While there is not too much gap between the mAP
for MS+KF and NN+KF, we note that the neural network has
a larger standard deviation in precision than the MS+KF.

Even if an algorithm identifies the object, the tracking pre-
cision could end up being poor if the algorithm picks an ROI
smaller than the object. Such an instance of poor ROI selec-
tion by the algorithm has been illustrated in Figure 2. For the
easy case, we see that the MS+KF algorithm achieves higher
IoU for both frames than the NN+KF algorithm. The neu-
ral network appears to be emphasizing on the writing on the
plane wing as the object of interest whereas the MS+KF is
capturing more accurate ROIs for both the cases. Analysing
the hard case in Figure 2,we see that MS+KF identifies the
small target, while NN+KF and objectness progressively do
worse (respectively).

Overall, the performance of the mean shift based algo-
rithm is comparable to the neural network based tracker and
superior to the objectness method. To estimate the speed of
each method, we evaluated the algorithm execution time in
software. Running mean shift on a single frame takes ap-
proximately 0.5389 seconds. On the other hand, tiny-YOLO
and objectness take 1.7813 and 6.2506 seconds respectively.
In our hardware acceleration, we thus chose the mean shift
plus Kalman filter algorithm due to its performance, execu-
tion time in software, and availability of computer vision li-
braries for Xilinx FPGAs which can easily be adapted to im-
plement this algorithm. We note that it is very difficult to
accelerate neural networks on FPGAs because of associated
resource constraints, although it remains future work to ex-
plore the DNNDK library for achieving neural network ac-
celeration.

Hardware Results. Figure 3a and Figure 3b demonstrate
our hardware setup and an FPGA generated image respec-
tively. Figure 4 demonstrates the resource utilization for the
MS+KF algorithm and that resource constraints of the board
were satisfied.

We have also found that the image resolution affects the
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Fig. 4: FPGA resource utilization

speed of the FPGA. With a resolution of 250 x 150, the algo-
rithm runs at 6.24 x 10° clock cycles and with a resolution of
1920 x 1080, the clock frequency goes up to 1.5 x 106. This
is a promising result in the context of adaptive subsampling.
Truncating images on the basis of ROIs implies fewer pixels
for the tracking algorithm to process.

The mean shift run in software requires 1.4 x 10% clock
cycles whereas in hardware it requires just 1.5 x 107 cycles.
The Kalman filter on hardware requires 6.24 x 10° clock cy-
cles. Coupling the two, the requirement is 34.99 x 10° cycles
on average, which corresponds to an effective latency of 26
ms and real-time frame rate of 38 FPS with a clock frequency
of 75 MHz on the FPGA. This corresponds to a 23x speedup
in hardware clock cycles.

6. DISCUSSION

In this paper, we introduced an adaptive subsampling algo-
rithm coupling object detectors with a predictive Kalman fil-
ter for single object tracking. For mean shift and tiny-YOLO,
we show mean average precision of 0.7677 and 0.7385 on a
selection of 20 videos from the ILSVRC2015 dataset. We ac-
celerated the mean shift with Kalman filter algorithm on an
FPGA, and achieved 23 x speedup compared to object track-
ing alone, with real-time performance of 38 FPS. Our method
is advantageous in that it allows high object tracking preci-
sion while saving large amounts of pixels (84% turned off)
and achieving real-time performance. One limitation of our
technique is the inability to handle multi-object tracking, clut-
ter, and blur. Future work includes developing neural network
solutions such as deep reinforcement learning to improve per-
formance for these challenging cases. In addition, we plan to
use emerging FPGA libraries to accelerate these networks on
devices. We hope that this research opens up new capabilities
for embedded object tracking systems in the future.
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