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ABSTRACT
Visual simultaneous localization and mapping (SLAM) is an
emerging technology that enables low-power devices with
a single camera to perform robotic navigation. However,
most visual SLAM algorithms are tuned for images produced
through the image sensor processing (ISP) pipeline optimized
for highly aesthetic photography. In this paper, we investi-
gate the feasibility of varying sensor quantization on RAW
images directly from the sensor to save energy for visual
SLAM. In particular, we compare linear and logarithmic im-
age quantization and show visual SLAM is robust to the latter.
Further, we introduce a new gradient-based image quanti-
zation scheme that outperforms logarithmic quantization’s
energy savings while preserving accuracy for feature-based
visual SLAM algorithms. This work opens a new direction in
energy-efficient image sensing for SLAM in the future.

Index Terms— Visual SLAM, image sensor quantiza-
tion, RAW images, embedded computer vision

1. INTRODUCTION

Simultaneous localization and mapping (SLAM) is one of the
most critical algorithms for robotic and embedded platforms
performing navigation in the real world. SLAM, using a com-
bination of visual, inertial, and depth sensors, determines a
map of the robot’s environment while localizing or identi-
fying the position/pose of the robot within that map. How-
ever, the energy costs of running SLAM on real-time, mobile
platforms can be expensive, limiting battery life for these de-
vices in the wild. Thus, it is important to find energy-efficient
pipelines for SLAM that can still obtain good accuracy and
performance to enable ubiquitous robotic navigation.

Previous research for energy-efficient SLAM has utilized
techniques such as motion planning and dynamic power man-
agement [1]. Real-time SLAM systems leverage efficient fea-
ture detection and description, local tracking and mapping,
and parallel thread computing for fast performance [2]. Most
of these approaches have concentrated on increasing compu-
tational efficiency after receiving sensor data.

Monocular visual SLAM is an emerging algorithm which
has reduced the number and types of sensors necessary to a
single visual camera, and has shown good localization re-
sults [2, 3]. Advantages include being lightweight in the hard-

ware, applicable for mobile cameras and embedded platforms
with low size, weight and power (SWaP). However, not much
research has looked at the energy costs of image sensing itself
for visual SLAM. In particular, image sensor processing (ISP)
pipelines which convert RAW images to JPG/PNG images
are normally tuned for creating highly aesthetic and visually
pleasing images. It is unknown if this processing is needed
for machine vision algorithms such as SLAM, and what op-
timizations can improve energy-efficiency without sacrificing
accuracy.

In this paper, we investigate the effectiveness of visual
SLAM on RAW images, without ISP processing, at vary-
ing types and levels of quantization. Image sensor quanti-
zation accounts for 50% of image sensing energy in modern
CMOS image sensors [4], yielding significant opportunities
for energy-efficiency in the pipeline. Our specific contribu-
tions include: (1) comparing linear and logarithmic quanti-
zation of RAW images with respect to localization accuracy
for visual SLAM, and (2) introducing a new gradient-based
quantization algorithm which quantizes the image spatially at
various bit levels that outperforms both linear and logarith-
mic quantization for feature-based visual SLAM algorithms.
We validate these contributions by testing two state-of-the-art
visual SLAM algorithms on seven video datasets. This, to
the best of our knowledge, is the first study to explore visual
SLAM performance on RAW and varying quantized images.

2. RELATED WORK

Simultaneous localization and mapping (SLAM) has been an
active area of research for over 30 years [5, 6], with recent ad-
vances in monocular visual SLAM algorithms [2, 3, 7, 8, 9].
For energy-efficient SLAM, eSLAM achieves real-time per-
formance on low-power platforms by optimizing feature ex-
traction and matching, yielding 41 − 71× energy improve-
ments and 1.7 − 3× frame rate speed up [10]. Further, hard-
ware acceleration such as a FPGA-based ORB feature extrac-
tor for SLAM reduced the energy consumption by 83% and
reduced the latency by 41% compared to an Intel i5 CPU [11].
We are primarily concerned with optimizing the image sens-
ing energy prior to the visual SLAM algorithm, and our meth-
ods are complementary with these systems.

The image sensor processing (ISP) pipeline utilizes de-
mosaicing, denoising, color transforms, white balancing, and



(a)

(b)

Fig. 1: (a) Experimental pipeline for analyzing quantization for Visual SLAM. The original dataset is run through CRIP to get
RAW quantized images that are used for both SLAM methods. (b) ORB-SLAM2: Left - Scene mapping and camera trajectory.
Center - Feature detection for a single video frame. Right - Output camera trajectory compared to the ground truth.

tone mapping to achieve high quality aesthetic images. How-
ever, for energy-efficiency, some smartphone cameras can by-
pass the ISP to produce RAW images. Liu et al. proposed an
ISP that selectively disables stages depending on application
needs [12]. The work most aligned with ours concerns re-
configurable ISP pipelines for energy-efficient computer vi-
sion [13]. This work shows how reduced ISP pipelines lead
to vision accuracy-energy tradeoffs and save 75% of sensing
energy with a minimalistic pipeline using logarithmic quan-
tization. In our work, we leverage these insights and apply
them to the particular case of visual SLAM. We introduce
a new spatially-varying quantization method to improve the
performance of visual SLAM over logarithmic quantization.

3. METHOD

Simulating RAW Data: The main challenge to evaluating
the effectiveness of Visual SLAM on RAW data is the avail-
ability of suitably labeled datasets at varying quantization.
We leverage the Configurable & Reversible Imaging Pipeline
(CRIP) from [13] which can reverse JPEG/PNG images back
to RAW format. CRIP was shown to have average pixel er-
ror of 1.064% and the PSNR was 28.81 dB as compared to
real RAW images [13], lending confidence to the validation
of our algorithms on this data. Using CRIP, we can convert
visual SLAM data available online. For energy-efficiency,
we turn off the ISP, including demosaicing, denoising, white
balancing, color transforms, and tone mapping. This allows
the sensor hardware to go straight from image sensor ADC
to the SLAM algorithm, eliminating the ISP chip. Since vi-
sual SLAM, especially real-time systems, commonly work in
grayscale intensity, most ISP optimizations are not critical.

Linear and Logarithmic Quantization. The image sen-
sor analog-to-digital (ADC) converters operate on each pixel,
and the typical linear ADC’s energy cost is exponential in
the number of bits in its output. Thus, image capture energy
can be reduced via lower bit depths in sensor quantization,
which can be achieved via successive-approximation (SAR)
ADCs [14]. Quantization can be either linear or nonlinear.

The nonlinear distribution of quantization levels can better
represent images as the non-uniform probability distribution
function for intensities in natural images is log-normal [15].
A central insight of Buckler et al. [13] was that log quan-
tization uniformly mapped this distribution to equal bit val-
ues, thus performing approximate tone mapping of the im-
ages without the ISP. This yields beneficial accuracy/energy
trade-offs across several computer vision benchmarks.

Gradient-based Quantization. In addition to linear and
logarithmic quantization, we introduce a new form of quanti-
zation based on image gradients to help improve the accuracy-
energy tradeoff. Our algorithm encodes regions with high-
intensity gradient with higher bit values and lower gradient
regions with lower values. Since most visual features contain
gradient energy, this method preserves these features while
downgrading non-salient regions at low bits. This yields sig-
nificant energy savings in average bit depth across an image.

Gradient-based quantization relies on sensing the image
gradient for pixels locally, and could theoretically be imple-
mented in image sensor hardware. Focal-plane processing
can compute basic functions such as edge detection and gra-
dients in analog on the sensor [16], as well as optical pixels
including Angle Sensitive Pixels [17] and event-based sen-
sors [18]. While there is potential to implement this in hard-
ware, for this study, this method is simulated using the pre-
processed images for each quantization level.

Our algorithm is the following:

IGQ[m,n] = Ib[m,n][m,n], (1)

b[m,n] = min(d W [m,n]

max(W [m,n])
∗ 7e+ bmin, bmax). (2)

where W [m,n] =
∑

(i,j)∈N(m,n)∇IRAW is the total
gradient energy of a neighborhood N(m,n) around pixel
(m,n), ∇IRAW is the image gradient magnitude, b[m,n] is
the bitmap which maps a pixel to a quantization bit depth,
and Ib[m,n] is the corresponding logarithmic quantized pixel
at that bit depth. We use the gradient of the image using a
5×5 kernel. We use a 3× 3 neighborhood, and shift all pixels



between 3 and 8 bits precision using bmin = 3, bmax = 8. In
Figure 3, we show an example frame which has been quan-
tized using our method. The red inlet shows an area where
high gradient intensity is mapped to higher bit quantization,
the green inlet surrounding the dice shows edge information,
which is a mix of high and low quantization, and the blue inlet
surrounding the floor with low gradient intensity is mapped
to lower bit quantization.

Visual SLAM benchmarks. We deploy two benchmarks
for Visual SLAM: ORB-SLAM2 [3], and LSD-SLAM [7],
both of which are open-source real-time monocular SLAM
systems. ORB-SLAM2 is a feature-based algorithm which
detects features with ORB features, and then estimates the
location and sparse depth map based on these features. ORB-
SLAM2 performs four main tasks in parallel: tracking, map-
ping, re-localization, and loop closing. It is highly robust
and compact via careful selection of only certain features and
keyframes for reconstruction [3]. LSD-SLAM is a direct-
based algorithm which utilizes the image intensities to esti-
mate the location and semi-dense depth map. It is composed
of three main parts: tracking, depth map estimation, and map
optimization. The depth map is only created for pixels around
large image intensity gradients [7].

4. EXPERIMENTAL RESULTS

Dataset and Metrics. The TUM RGB-D benchmark dataset
[19] was used to evaluate the accuracy of camera localization
while running our imaging pipelines. This dataset provides
sequences along with ground truth trajectory obtained with
an external motion capture system. We utilize 7 videos from
this dataset for our experiments, which although is smaller
in scale, is on roughly the same order of videos evaluated as
compared to the original ORB-SLAM [2].

Our error metric is absolute trajectory error (ATE) defined
as the difference between points of the true and the estimated
trajectory [19]. The true and estimated poses are matched via
timestamps and then aligned using a similarity transform [20],
as the scale of monocular SLAM is unknown. Then ATE is
calculated as a root mean squared error.

While computational speed is another important metric,
we do not report latency as we found that the per-frame pro-
cessing time for all pipelines were roughly the same at 21-
33ms on average. To quantify the expected energy savings of
our imaging pipeline, we follow the model of [13] to compute
the expected value of the ADC energy readout.

Initialization, Tracking and Features. Visual SLAM al-
gorithms can suffer from issues with initializing at the begin-
ning of the video, as well as maintaining tracking over the en-
tire video. We observed that the number of features extracted
while performing ORB-SLAM2 affects the performance of
our quantization pipeline. As the bit level decreased in our
quantization pipelines, the features were increased in order to
preserve fast initialization and accurate tracking. We found
that 4 bit linear and logarithmic quantization required an in-
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(a) Linear quantization
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(b) Logarithmic quantization

Fig. 2: Relative average ADC energy savings normalized to
8 bits and average ATE for ORB-SLAM2 over seven datasets
with: (a) 4-8 bit linear quantization; (b) 3-8 bit logarithmic
quantization.

crease of four-hundred features, and logarithmic quantization
lower than four bits required an increase of two-hundred fea-
tures per bit level.

Fig. 3: Gradient-based quantization frame. The three inlets
show differences in bit range with red (high gradient), green
(mix of high and low), and blue (low gradient).

4.1. Analysis

Resolution. For ORB-SLAM2, we simulated resolutions
(640× 480, 533× 400, 427× 320, 320× 240) with ATE er-
rors (0.29 cm, 3.48 cm, 6.46 cm, 10.9 cm) respectively for the
fr2-xyz video. For the same video with the same resolutions,
LSD-SLAM reported ATE errors (3.44 cm, 3.89 cm, 3.87
cm, 7.95 cm). We found similar trends for other datasets, but
both SLAM algorithms failed to initialize and track below a
resolution of 320× 240. These experiments demonstrate that
as the resolution decreases, visual SLAM accuracy degrades
until it does not track for low resolutions. This means that im-
age sensor subsampling such as windowing, ROIs, or binning
would not be effective for these visual SLAM algorithms.

Frame Rate. We simulated frame rates of 30 FPS, 15
FPS, and 7.5 FPS by subsampling frames. For ORB-SLAM2
on two example videos, the ATE was constant down to 7.5
FPS. Below 7.5 FPS, however, it either failed to track or the
error increased significantly. LSD-SLAM was sensitive to
lower frame rates, with failure to initialize and track after 15



FPS. We observed similar trends in other videos. We hypoth-
esize that low FPS causes feature matches to be more distant
in time due to the frame subsampling, causing tracking issues.

Linear quantization: Linear quantization resulted in an
increasing error trend with ORB-SLAM2, see Figure 2. The
results show an average ATE of 7.52 cm at eight bits, 11.2 cm
at seven and six bits, 4.23 cm at four bits, and 23.51 cm at the
lowest working bit level of four bits. The average ATE was
taken over four videos as two videos failed to initialize and
track and one video resulted in very high error. None of the
LSD-SLAM videos that were linearly quantized were able to
initialize and track. To analyze this, it is helpful to look at
the logarithmic quantization results for LSD-SLAM to draw
comparisons.

Logarithmic quantization: In Figure 4, we show the av-
erage ATE results over all datasets for our logarithmic quan-
tization pipelines. ORB-SLAM2 was generally more robust
to logarithmic quantization and shows an expected trend of
increasing ATE as the bit value decreases, with a low ATE of
1.70 at 8 bits that increases to 4.23 at 4 bits, then jumps to
14.22 at 3 bits. Logarithmic quantization outperformed linear
quantization because of the approximate tone mapping effect
that occurs due to the statistics of pixel values in natural im-
ages (which was also observed in [13]).

The results for LSD-SLAM, shown in Figure 4b, are less
consistent and in general, show poor performance for any
RAW image pipeline. The minimum ATE achieved was 47.37
at 4 bits while the maximum ATE of 82.08 occurred at 3 bits.
These averages are much higher for each pipeline than those
measured for ORB-SLAM2. However, we note that log quan-
tization still outperforms linear quantization, which failed to
initialize.

We believe there are two mechanisms at play for the per-
formance of LSD-SLAM. First, the approximate tone map-
ping of log quantization affects image intensities and con-
trast, and thus enables an intensity-based method like LSD-
SLAM [7] to perform better with log quantization than linear
quantization. However, even in the log quantized RAW im-
ages, the Bayer pattern likely causes false textures to appear
in flat regions, and causes LSD-SLAM errors. We note that
although we are operating with no ISP in this paper, we did
try demosaicing on log quantized images and were able to
achieve a more consistent performance for LSD-SLAM.

Gradient-based quantization: For ORB-SLAM2, our
gradient-based quantization algorithm leads to further gains
in energy efficiency. As shown in Table 1, the average bit
value of each video is consistently between 4 and 5 bits with
an overall average of 4.41 bits. Even with this relatively lower
bit average of the images, visual SLAM achieves an average
ATE of 1.81. This ATE is comparable to 7 and 8 bit logarith-
mic quantization pipelines with ATEs 1.93 and 1.70 respec-
tively, saving effectively 3-4 bits in energy.

We note that the average bit level is low because a major-
ity of pixels contain flat gradient information. Edges or high
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Fig. 4: Average ATE for logarithmic quantization for ORB-
SLAM2 and LSD-SLAM.

gradient pixels are a much sparser set of the total. Keeping
only these high gradient pixels at higher bit ranges allows for
features to still be detected easily while saving energy.

For LSD-SLAM, we do not see similar benefits for
gradient-based quantization, like our previous quantization
experiments. Since LSD-SLAM does not use features but
rather intensity differences, including high bit regions in
an otherwise low bit quantized image does not improve the
performance as well as it does for feature-based methods.

fr1
xyz

fr2
xyz

fr1
floor

fr1
desk

fr2
desk

fr3
long
office

fr2
desk
person

Avg.

Avg.
bit

4.55 4.42 4.31 4.55 4.38 4.23 4.42 4.41

ATE
(ORB)

1.04 0.28 2.9 1.8 0.82 4.9 0.94 1.81

ATE
(LSD)

4.06 3.72 71.1 69.9 88.7 159.4 45.1 63.1

Table 1: Gradient-based Quantization Results

5. DISCUSSION

In this paper, we investigate visual SLAM on RAW images
without ISP processing and varying sensor quantization. Our
results indicate that for feature-based visual SLAM algo-
rithms, namely ORB-SLAM2, using RAW images with loga-
rithmic quantization at low bit levels can be energy-efficient
and high performing. In particular, our novel gradient-based
quantization algorithm achieved effectively 3-4 bits in energy
savings without sacrificing performance. However, we note
that our results on LSD-SLAM are not as conclusive since
the intensity-based SLAM method does not rely on feature
mapping. It remains as future work to try and adapt sensor
quantization schemes that can benefit these direct-mapping
methods. It would also be of interest to test our methods on a
deep learning SLAM algorithm like DeepSLAM [21]. Also,
there is an opportunity to optimize the SLAM algorithm itself
for RAW data to extract the maximum performance while
maximizing energy-efficiency.
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