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AN EQUIVARIANT HILBERT BASIS THEOREM

DANIEL ERMAN, STEVEN V SAM, AND ANDREW SNOWDEN

Abstract. We prove a version of the Hilbert basis theorem in the setting of equivariant
algebraic geometry.

1. Introduction

A topological space X equipped with an action of a group G is G-noetherian if every
descending chain of G-stable closed subsets of X stabilizes. If X is a scheme equipped with
an action of G, one says X is topologically G-noetherian if the topological space |X| is
G-noetherian. The notion of G-noetherianity has received much attention in recent years
due to its connection to representation stability. We recall a few examples:

• Cohen [Coh67, Coh87] proved that the scheme X = lim
←−d

Ad (or even Xn, for any

n ≥ 0) is topologically S∞-noetherian1, and used this to prove certain results in
universal algebra. This result was rediscovered some decades later by Aschenbrenner,
Hillar, and Sullivant [AH07, HS12], with applications to combinatorial algebra and
algebraic statistics.
• Draisma–Eggermont [DE16] considered the scheme X of∞×∞ matrices, and showed
that Xn is topologically G-noetherian for any n ≥ 0, with G = GL∞ ×GL∞. This
result was crucial to their study the equations of so-called Plücker varieties. See
[DK14] for related results and applications.
• Following work of Eggermont [Egg15] and Derksen–Eggermont–Snowden [DES17],
Draisma [Dra19] proved that if V is any polynomial representation of GL∞ then V ∗

is topologically GL∞-noetherian. This result has been applied by the present authors
[ESS] to prove a general finiteness result in commutative algebra.

Unfortunately, there are few general tools for proving that a space is equivariantly noetherian.
The purpose of this paper is to establish one such tool: we view our main theorem as a version
of the classical Hilbert basis theorem in the setting of equivariant noetherianity.

Recall that the classical Hilbert basis theorem states that if A is a noetherian ring then
the polynomial ring A[x] is again noetherian. This can be recast in the language of schemes
as follows: if S is a noetherian scheme and X → S is a finite type map of schemes then X
is noetherian. Our main theorem is the following equivariant version of this statement.

Theorem 1.1. Let X → S be a G-equivariant finite type map of schemes. Suppose S is
topologically G-noetherian. Then X is topologically G-noetherian.
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1In fact, Cohen’s result is stronger and applies at the level of rings.
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2 DANIEL ERMAN, STEVEN V SAM, AND ANDREW SNOWDEN

We emphasize that there are no finiteness assumptions in the above theorem except for
those stated. Indeed, the theorem is most interesting for infinite dimensional schemes like
those mentioned above. We note the following useful corollary:

Corollary 1.2. Let X be a scheme equipped with an action of a group G and a commuting
algebraic action of a finite type algebraic group H. Suppose that X is topologically G × H
noetherian. Then it is also topologically G-noetherian.

Example 1.3. Let X be a scheme that is topologically G-noetherian. Then any finite rank
equivariant vector bundle over X is also G-noetherian. For example, if G is one of O∞,
Sp∞, or GL∞, and V is a finite length algebraic representation of G (in the sense of [SS15])
then X = Grr(V

∗) is G-noetherian by [ES17] (extending the main result of [Dra19]), and so
any finite sum of finite tensor products of the rank r tautological bundle and its dual is also
G-noetherian. �

1.1. Overview of proof. Let notation be as in Theorem 1.1. The idea of the proof is as
follows. First, we can proceed by noetherian induction on S, that is, we can assume that
for every G-stable closed subset S ′ of S such that S ′ 6= S, the space XS′ is topologically
G-noetherian. This allows us to freely pass to open subsets of S. Second, finite type schemes
over an arbitrary base behave similarly (at least in the ways that we care about) to finite
type schemes over a field, assuming we are always allowed to replace the base with an open
subset. Combining these two observations, we can in effect pretend that S is the spectrum
of a field, and then the result is obvious. The technical details of the actual proof are more
complicated, but this is at least the intuition.

1.2. Application. We mention one (now defunct) application of our theorem. In [ESS],
we used Draisma’s theorem mentioned above to prove a vast generalization of Stillman’s
conjecture: we showed that any invariant of ideals satisfying certain natural conditions is
“degreewise bounded” (Stillman’s conjecture being the case where the invariant is projective
dimension). A preliminary version of [ESS], written prior to Draisma’s theorem, proved that
Draisma’s theorem was in fact equivalent to our generalization of Stillman’s conjecture. Our
proof that “generalized Stillman” implies Draisma’s theorem required Corollary 1.2, which
is what propelled us to prove Theorem 1.1 in the first place.

Acknowledgments. We thank Bhargav Bhatt for helpful conversations.

2. Preliminaries from topology

We omit proofs of the following, which are all standard exercises in topology.

Proposition 2.1. Let f : X → S be an open map of topological spaces and let U be a dense
open subset of S. Then f−1(U) is a dense open subset of X.

Proposition 2.2. Let X be a topological space, let Z be a proper closed set, and let U be a
dense open subset of X. Then Z ∩ U is a proper closed subset of U .

Proposition 2.3. Let X be a topological space, and let X1, . . . , Xn be subspaces whose union
is X. Suppose that each Xi is noetherian. Then X is noetherian.

Remark 2.4. Let X be a topological space on which G acts. We can then consider the
quotient space X/G. The G-stable open (or closed, or irreducible) subsets of X correspond
to the open (or closed, or irreducible) subsets of X/G. Thus we can translate G-properties
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of X to usual properties of X/G. For instance, X is G-noetherian if and only if X/G is
noetherian. In this way, the above results can be applied in the G-noetherian setting. �

3. Dimension vectors

Let D be the set of finite sequences δ = (δ1, . . . , δn), of variable length, where δ1 ≥ δ2 ≥ · · ·
and each δi is a non-negative integer. By convention, for δ ∈ D of length n, we put δi = −∞
for i > n. We order D lexicographically, so that δ < δ′ if δ1 < δ′1, or if δ1 = δ′1 and δ2 < δ′2,
and so on. The unique minimal element of D is the sequence δ of length 0; it has δi = −∞
for all i.

Lemma 3.1. (D ,≤) is a well-order.

Proof. It suffices to show that any strictly decreasing chain λ1 > λ2 > · · · must be finite. We
prove this statement by induction on λ1

1. If λ
1
1 = 0, this is clear as the chain can only consist

of 1 element. So suppose λ1
1 > 0 and that there is an infinite decreasing chain. Then the

sequence of non-negative integers λ1
1 ≥ λ2

1 ≥ λ3
1 ≥ · · · is eventually constant, say equal to c;

remove the finitely many λi which do not have this first term and renumber the partitions
λ1 > λ2 > · · · . So there is a value k ≤ ℓ(λ1) so that the sequence (λn

i )n is constant for i < k
and (λn

k)n converges to c′ < c. In that case, remove the finitely many λi such that λi
k 6= c′

and again renumber them λ1 > λ2 > · · · . Define µi by removing the first k − 1 parts from
λi. By induction, µ1 > µ2 > · · · is finite, which is a contradiction. �

The following result allows for induction on elements of D :

Proposition 3.2. For each δ ∈ D, let P(δ) be a boolean value. Suppose that P(δ′) is true
for all δ′ < δ implies P(δ) is true. Then P(δ) is true for all δ ∈ D.

Proof. Let S ⊂ D be the set of δ for which P(δ) is false. Since ≤ is a well-order, if S were
non-empty then there would be a minimal element δ ∈ S. But then P(δ′) is true for all
δ′ < δ, so P(δ) would be true as well, a contradiction. So S is empty. �

Let X be a finite type scheme over a field k, and let X1, . . . , Xn be the irreducible compo-
nents of X , ordered by dimension (with dim(X1) largest). We define the dimension vector

of X , denoted δ(X), to be the sequence (δ1, . . . , δn), where δi = dim(Xi). We regard it as an
element of D . If k is separably closed, δ is invariant under extension to a larger field. For
a finite type morphism of schemes X → S and s ∈ S, we let δs(X) be δ(Xs), where s is a
separably closed point at s. We say that X → S is δ-constant if δs(X) is independent of s,
and then write δ(X) for the common value.

4. Preliminaries from algebraic geometry

Proposition 4.1. Let S = Spec(A) be an affine scheme, and write A =
⋃

i∈I Ai (directed
union) where each Ai is finitely generated as a Z-algebra. Put Si = Spec(Ai).

(a) Let X → S be a morphism of finite presentation. Then there exists i ∈ I and a
morphism of finite type Xi → Si such that X = (Xi)S.

(b) Let Xi and Yi be schemes of finite type over Si, and let ϕ : (Xi)S → (Yi)S be a
morphism of schemes over S. Then there exists j ≥ i and a morphism ϕj : (Xi)Sj

→
(Yi)Sj

such that ϕ is the base change of ϕj to S.
(c) Let Xi → Si be a finite type morphism such that (Xi)S → S is flat. Then there exists

some j ≥ i in I such that (Xi)Sj
→ Sj is flat.
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(d) Let X be a scheme of finite presentation over S and let Y be a closed subscheme of X
that is also of finite presentation over S. Then there exists i ∈ I, a finite type scheme
Xi over Si, and a closed subscheme Yi of Xi such that Y ⊂ X is the base change of
Yi ⊂ Xi.

Proof. Parts (a) and (b) are parts of [Stacks, Tag 01ZM]. Part (c) is a special case of [Stacks,
Tag 05LY]. Part (d) follows from [Stacks, Tag 0B8W]. �

Proposition 4.2. Let X → S be a finite type morphism, with S reduced. Then there is a
dense open subset U of S such that XU → X is flat of finite presentation.

Proof. This follows from a general version of generic flatness [Stacks, Tag 052B]. �

Proposition 4.3. Let X → S be a finite type morphism of noetherian schemes. Then there
are open sets U1, . . . , Un of S with dense union such that XUi

→ Ui is δ-constant.

Proof. This proof follows [Stacks, Tag 055A] closely (this proposition is really just a refine-
ment of loc. cit.). Since S is noetherian, we can replace it with an open dense subscheme in
which no two irreducible components intersect. Thus S is the disjoint union of its irreducible
components, so we may just assume S is irreducible. By [Stacks, Tag 0551], after replacing
S with a non-empty open subset, we can find a surjective finite étale morphism S ′ → S
with S ′ irreducible such that all irreducible components of X ′

η are geometrically irreducible,
where η is the generic point of S ′ and X ′ = X ×S S ′. Since S ′ → S is open, we may as well
replace S with S ′. We may further assume S is integral, as δ is insensitive to nilpotents.

Let X1,η, . . . , Xn,η be the irreducible components of Xη. These are all geometrically irre-
ducible by our reductions. Let Xi be the closure of the image of Xi,η in X . After replacing S
with a non-empty open subset, we can assume X is the union of the Xi [Stacks, Tag 054Y].
After shrinking S again, we can assume that Xi,s is geometrically irreducible for all s ∈ S
[Stacks, Tag 0559]. After shrinking S yet again, we can assume that each fiber of X → S
has at least n irreducible components [Stacks, Tag 0554]. Since Xs = X1,s ∪ · · · ∪ Xn,s, it
follows that for every s ∈ S, the fiber Xs has exactly n irreducible components, namely the
Xi,s, and they are each geometrically irreducible. Finally, by [Stacks, Tag 05F6], we can find
an open subset of S such that the fibers of Xi → S have constant dimension for each i. �

Proposition 4.4. Let X → S be a finite type morphism of non-empty reduced schemes.
Then there is a non-empty open subset U ⊆ S such that XU → U is flat of finite presentation
and δ-constant.

Proof. By Proposition 4.2, after replacing S with a dense open subscheme, we can assume
X → S is flat of finite presentation. Replacing S with some affine open, we can assume S is
affine. By Proposition 4.1, we can find a finite type morphism X ′ → S ′ with S ′ noetherian
such that X is the base change of X ′ along a morphism f : S → S ′. We may as well replace
S ′ with the scheme-theoretic image of f , which is just the reduced subscheme structure on
f(S) [Stacks, Tag 056B]. In particular, f has dense image. By Proposition 4.3, there is a
non-empty open subset U ′ of S ′ such that X ′

U ′ → U ′ is δ-constant. Since f(S) is dense in S ′

it must meet U ′. Therefore U = f−1(U ′) is a non-empty open subset of S such that XU → U
is δ-constant (and still flat of finite presentation). �

Proposition 4.5. Let f : X → S be a flat morphism of finite presentation, let U be an open
dense subset of S, and let Y be a proper closed subset of X. Then YU is a proper closed
subset of XU .
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Proof. Since f is flat of finite presentation, it is open [Stacks, Tag 01UA]. Thus f−1(U) is
a dense open subset of X (Proposition 2.1). It follows that YU = f−1(U) ∩ Y is a proper
closed subset of XU = f−1(U) (Proposition 2.2). �

Proposition 4.6. Let X → S be a flat finite type morphism of noetherian schemes. Assume
there is a dense subset A of S such that s 7→ δs(X) is constant for s ∈ A. Then there is an
open dense subset U of S such that XU → U is δ-constant.

Proof. Applying Proposition 4.3, there are open subsets U1, . . . , Un of S such that U =
U1 ∪ · · · ∪ Un is dense and XUi

→ Ui is δ-constant. Since A is dense, it meets each Ui, and
so δ(XUi

) is independent of i. It follows that XU → U is δ-constant. �

Proposition 4.7. Let f : X → S be a finite type morphism of reduced noetherian schemes
that is flat and δ-constant. Let Y be a proper closed subscheme of X. Then there exists a
non-empty open subset U of S such that YU → U is δ-constant and δ(YU) < δ(XU).

Proof. By Proposition 4.3, there are open subsets V1, . . . , Vn of S such that YVi
→ Vi is

δ-constant and V = V1 ∪ · · · ∪ Vn is dense in S. By Proposition 4.5, YV is a proper closed
subset of XV . Thus YVi

is a proper subset of XVi
for some i. Put U = Vi for this i. Thus

YU is a proper closed subset of XU and YU → U is δ-constant. It remains to show that
δ(YU) < δ(XU). Since both are δ-constant, we can verify this over a generic point of U .

So assume that X is a reduced finite type scheme over a field and Y is a closed subscheme.
Let X1, . . . , Xd be the irreducible components of X which have largest possible dimension n.
Suppose one of them is not an irreducible component of Y . Then δ(X) = (n, n, . . . , n, . . . )
with n repeated d times, but δ(Y ) has < d instances of n, so δ(Y ) < δ(X). In the other
case, all of the Xi are irreducible components of Y . Then both δ(Y ) and δ(X) begin with d
instances of n, and we replace X and Y with the union X ′ and Y ′ of their components not
equal to one of X1, . . . , Xd. In particular, X ′ 6= Y ′, and by induction on dimension, we have
δ(X ′) > δ(Y ′) which implies δ(X) > δ(Y ). �

Proposition 4.8. Let f : X → S be a flat morphism of finite presentation between reduced
schemes that is δ-constant. Let Y be a proper closed subscheme of X. Then there is a non-
empty open subset U of S such that YU → U is flat of finite presentation and δ-constant with
δ(YU) < δ(XU).

Furthermore, if X,S are G-schemes such that f is G-equivariant and Y and U are G-
stable, then we can take U to be G-stable.

Proof. Since Y is a closed subscheme of X and X is finite type over S, it follows that Y is
finite type over S. Thus, by Proposition 4.2, we can find an open dense subset U of S such
that YU → U is flat of finite presentation. By Proposition 4.5, YU is a proper closed subset
of XU . Thus we may as well replace S with U , and just assume that Y is flat and of finite
presentation over S.

Replace S with an affine open so that Y is still a proper closed subscheme of X . By
Proposition 4.1(d), there is a noetherian scheme S ′, a finite type morphism X ′ → S ′, a
closed subscheme Y ′ of X ′, and a morphism g : S → S ′ such that Y ⊂ X is the pullback of
Y ′ ⊂ X ′. By Proposition 4.1(c), we can assume that X ′ → S ′ is flat. We may as well replace

S ′ with the scheme-theoretic image of g, which is just g(S) with the reduced subscheme
structure, so we can assume that g(S) is dense in S ′. Since δg(s)(X

′) = δs(X) is constant for
s ∈ S and g(S) is dense, it follows from Proposition 4.6 that there is a dense open subset V ′

of S ′ such that X ′
V ′ → V ′ is δ-constant. By Proposition 4.5, Y ′

V ′ is a proper closed subset of
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X ′
V ′. By Proposition 4.7, there is a non-empty open subset U ′ of V ′ such that Y ′

U ′ → U ′ is
δ-constant with δ(Y ′

U ′) < δ(X ′
U ′). Since g(S) is dense in S ′, it meets U ′, and so U = g−1(U ′)

is a non-empty open subset of S. Clearly, YU → U is δ-constant with δ(Y ) < δ(X).
For the last statement, we use the above proof to get an open set V and then take

U =
⋃

g∈G gV . �

5. Proof of main results

Consider the following statement, for δ ∈ D .

Statement P(δ). LetX → S be a G-equivariant map of reduced schemes that
is flat of finite presentation and δ-constant with δ(X) = δ. Suppose that S is
topologically G-noetherian, and that for every proper G-stable closed subset
S ′ of S the scheme XS′ is topologically G-noetherian. Then X is topologically
G-noetherian.

Lemma 5.1. Statement P(δ) is true for all δ.

Proof. We proceed by induction on δ (Proposition 3.2). Thus let δ ∈ D and X → S as
in Statement P(δ) be given, and assume P(δ′) holds for all δ′ < δ. It suffices to show that
every proper G-stable closed subset of X is topologically G-noetherian. Thus let such a Y
be given, and endow Y with the reduced subscheme structure. By Proposition 4.2, there
is a non-empty open subset (which we may assume G-stable) V so that YV → V is flat of
finite presentation. By Proposition 4.8 there is a non-empty G-stable open subset U of V
such that YU → U is flat of finite presentation and δ-constant with δ′ = δ(YU) < δ = δ(XU).
Thus by P(δ′), we have that YU is G-noetherian. Since XS\U is topologically G-noetherian,
by the hypothesis of P(δ), the space YS\U is also topologically G-noetherian. It follows that
Y is topologically G-noetherian (Proposition 2.3), which completes the proof. �

Proof of Theorem 1.1. Let X → S be the given G-equivariant map of schemes. Since the
statement is topological, we may assume that X and S are reduced. We proceed by noe-
therian induction on S: that is, we assume that for every proper closed subset S ′ of S the
space XS′ is topologically G-noetherian. By Proposition 4.2, Proposition 4.6, and Proposi-
tion 4.8 there is a non-empty G-stable open subset U of S such that XU → U is flat of finite
presentation and δ-constant. Put δ = δ(X). By P(δ), it follows that XU is topologically
G-noetherian. By the inductive hypothesis, XS\U is topologically G-noetherian. Thus X is
topologically G-noetherian (Proposition 2.3). �

Proof of Corollary 1.2. Suppose that X is topologically G × H noetherian, where G is an
arbitrary group and H is a finite type algebraic group acting algebraically on X . Consider
the action map f : H ×X → X . Let H act on H ×X by h · (h′, x) = (hh′, x), and let G act
on H×X by g · (h, x) = (h, gx). Then f is G×H equivariant. Since H is finite type, so is f .
The theorem therefore implies that H ×X is topologically G×H noetherian. If Z• ⊂ X is
a descending chain of G-stable closed subsets then H×Z• ⊂ H×X is a descending chain of
G×H stable closed subsets, and thus stabilizes. Thus Z• stabilizes, and so X is topologically
G-noetherian. �
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