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Abstract— This paper provides conditions on the observation
probability distribution in Bayesian localization and optimal
filtering so that the conditional mean estimate satisfies convex sto-
chastic dominance. Convex dominance allows us to compare the
unconditional mean square error between two optimal Bayesian
state estimators over arbitrary time horizons instead of using
brute force Monte-Carlo computations. The proof uses two key
ideas from microeconomics, namely, integral precision dominance
and aggregation of single crossing. The convex dominance result
is then used to give sufficient conditions so that the optimal
policy of a controlled sensing two-state partially observed Markov
decision process (POMDP) is lower bounded by a myopic policy.
Numerical examples are presented where the Shannon capacity
of the observation distribution using one sensor dominates that of
another, and convex dominance holds but Blackwell dominance
does not hold. These illustrate the usefulness of the main result
in localization, filtering and controlled sensing applications.

Index Terms— Convex dominance, mean squared error, inte-
gral precision, aggregation of single crossing, Bayesian localiza-
tion, optimal filtering, hidden Markov model filtering, POMDP,
controlled sensing, Blackwell dominance.

I. INTRODUCTION

CONSIDER the following Bayesian localization problem:

an underlying random variable X ∈ IR with prior π0 is

observed via the discrete time noisy observation process {Yk}

where each observation Yk has conditional cumulative distri-

bution function (cdf) F(y|x). (We use upper case for random

variables and lower case for realizations.) Bayesian localiza-

tion is concerned with recursively computing the posterior

distribution πk = p(x |y1:k), k = 1, 2, . . . of the state x

given observation sample path sequence y1:k = (y1, . . . , yk)

and prior π0. The posterior distribution πk is then used to

compute the conditional mean estimate of the state X given k

observations as

m(y1:k, π0) =

Z

IR

xπk(x)dx

Manuscript received March 22, 2019; revised July 20, 2019; accepted
October 14, 2019. Date of publication October 21, 2019; date of current
version April 21, 2020. This work was supported in part by the U.S. Army
Research Office under Grant W911NF-19-1-0365, in part by the U.S. Air
Force Office of Scientific Research under Grant FA9550-18-1-0007, and in
part by the National Science Foundation under Grant 1714180.

The author is with the School of Electrical and Computer Engineering,
Cornell University, Ithaca, NY 14853 USA (e-mail: vikramk@cornell.edu).

Communicated by O. Johnson, Associate Editor for Probability and
Statistics.

Digital Object Identifier 10.1109/TIT.2019.2948598

where we have indicated the explicit dependence on the

prior π0.

Let Y1:k denote the sequence of observation random vari-

ables (Y1, . . . , Yk). A natural question is: how accurate is

the conditional mean state estimate m(Y1:k, π0)? Clearly

m(Y1:k, π0) is the minimum mean square error estimate (more

generally it minimizes a Bregman loss), i.e., for all priors π0,

MSE{m(Y1:k, π0)} = argmin
g

E{
(

X − g(Y1:k, π0)
)2

}

over the class of all Borel functions g. But unfortunately, apart

from the well known linear Gaussian case,1 MSE{m(Y1:k, π0)}

can only be estimated2 via Monte-Carlo simulations. Thus for

general state space models, there is strong motivation to derive

analytical results that compare MSE{m(Y1:k, π0)} for different

observation models. Specifically consider two sensors, where

sensor 1 records observation random variables Y
(1)
k of state X

with conditional distribution F1(y|x), k = 1, 2, . . . and sensor

2 records observation random variables Y
(2)
k of X with condi-

tional distribution F2(y|x), k = 1, 2, . . .. Then which sensor

yields a smaller MSE for the conditional mean estimate at

time k?

In this paper, we give sufficient conditions on the

observation probabilities so that the conditional mean esti-

mate m1(Y
(1)
1:k , π0) of sensor 1 is convex stochastic dominated

by the estimate m2(Y
(2)
1:k , π0) of sensor 2. Informally, our main

result is:

Theorem A. (Informal) Consider two sensor observation

models with the observation process {Y
(1)
k } and {Y

(2)
k }

generated by cdfs F1(y|x) and F2(y|x), respectively. Sup-

pose F1(y|x), F2(y|x) satisfy a single crossing and signed-

ratio monotonicity condition (defined in Sec.II-B). Then

convex stochastic dominance holds for the conditional

mean: m1(Y
(1)
1:k , π0) <cx m2(Y

(2)
1:k , π0), i.e., for any convex

function φ : IR → IR and prior π0,

E1{φ
(
m1(Y

(1)
1:k , π0)

)
} ≤ E2{φ

(
m2(Y

(2)
1:k , π0)

)
},

for all time k (1)

1In the linear Gaussian case, the MSE is computed by the Kalman filter
covariance update (Riccati equation) which is completely determined by the
model parameters.

2Computing the conditional MSE{m(y1:k), π0} based on a specific obser-
vation sample path y1:k is straightforward in terms of the posterior πk but not
useful since it only holds for the specific sample path y1:k . We are interested
in characterizing its expectation, i.e., the unconditional MSE.
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Here Eu denotes expectation wrt the joint distribution of Y
(u)
1:k .

Therefore,3 MSE{m1(Y
(1)
1:k , π0)} ≥ MSE{m2(Y

(2)
1:k , π0)} for all

time k.

Theorem A says that localization using sensor 2 is always

more accurate than using sensor 1 for any prior π0 and this

holds globally for all time k. To the best of our knowl-

edge this result is new. Convex stochastic dominance (1)

in a Bayesian framework has been studied extensively in

economics under the area of integral precision dominance,

see [1], [2]. Theorem A asserts convex dominance of the

conditional mean mu(Y
(u)
1:k , π0) for all k, i.e., a global property.

The proof involves combining two powerful results introduced

recently in economics: integral precision dominance (which

ensures that Theorem A holds for k = 1) and signed ratio

monotonicity [3] (which makes Theorem A hold globally for

all k). The usefulness of Theorem A stems from the fact

that checking (1) numerically is impossible since it involves

checking over a continuum of priors and evaluating intractable

multidimensional integrals for the expected value.

The intuition behind (1) is that of integral precision: if

the observation is noisy, then the posterior is concentrated

around the prior while if the observation is more informative,

then the posterior is more dispersed from the prior (large

variance). This in turn implies that the noisy observation incurs

a larger MSE. In this paper, we show that Theorem A holds

if X ∈ IR (scalar valued) or finite state. Intuitively, if sensor

1 has a higher noise variance than sensor 2, then (1) holds -

we will interpret this in terms of stochastic dispersion domi-

nance in Sec.III-B. But there are many other interesting cases

where (1) holds; the case with finite observation alphabets

is particularly interesting, since there is no noise variance

interpretation in that case (the interpretation is in terms of

Shannon capacity). The single crossing assumption and signed

monotonicity condition in Theorem A are straightforward to

check compared to the well known Blackwell dominance

[4], [5] (see Definition 4) which requires factorization of

probability measures; and they hold in several new examples

where Blackwell dominance does not. For example, Blackwell

dominance does not, in general, hold globally for all k; due

to lack of commutativity of matrix multiplication.

Applications in optimal filtering and controlled sensing.

Since Theorem A applies to any convex function, it has more

applications than just characterizing the mean square error of

Bayesian localization.

As a first application, we will show that convex dominance

applies to the one-step optimal (Bayesian) filtering update in a

two-time scale model. That is, consider a Markov process {Xk}

which evolves over the slow time scale k with transition

kernel Xk+1 ∼ p(xk+1|xk), and is observed in noise via the

observation process {Yk} at a fast time scale. So at each time k,

we obtain multiple fast time scale observations denoted as the

vector Yk = (Yk,1, . . . , Yk,1) for some integer 1 ≥ 1 where

each component Yk,l ∼ Fu(·|xk) is conditionally independent

3Note MSE{m(Y1:k, π0)} = E{X2} − E{m2(Y1:k , π0)}. So clearly (1) with

φ(m) = m2 implies MSE{m1(Y1:k , π0)} ≥ MSE{m2(Y1:k , π0)}.

of Yk,m . Then one step of the optimal filter updates the

posterior distribution πk = p(xk|y1:k) given πk−1. Then the

conditional mean is determined by yk and πk−1 and denoted

as m(yk,1, . . . , yk,1, πk−1).

Theorem B. (Optimal Filtering). Under the conditions of

Theorem A, convex dominance holds for the conditional mean

for one step of the optimal filter. That is, for any convex

function π : IR → IR and any prior πk−1,

E1{φ
(
m1(Yk,1, . . . , Yk,1, πk−1)

)
}

≤ E{φ
(
m2(Yk,1, . . . , Yk,1, πk−1)

)
} for all 1. (2)

Therefore MSE{m1(Y
(1)
1:k , πk−1)} ≥ MSE{m2(Y

(2)
1:k , πk−1)}.

Thus the optimal filter with sensor 2 is always more accurate

than sensor 1. Similar to the discussion for Theorem A,

Theorem B is useful since in general, exact computation

of the expectations is impossible (apart from the linear

Gaussian case involving the Kalman filter). The classical

way of establishing (2) is Blackwell dominance. The main

point is that Theorem B covers several cases where Black-

well dominance does not hold (even for 1 = 1). More-

over, for 1 ≥ 2, in general Blackwell dominance will not

hold.

As a second application, we will show that Theorem B is

a crucial step in constructing myopic bounds for the optimal

policy of controlled sensing partially observed Markov deci-

sion processes (POMDPs). In controlled sensing POMDPs,

the observation probabilities (which model an adaptive sen-

sor) are controlled whereas the transition probabilities (which

model the Markov signal being observed by the sensor) are not

controlled. Controlled sensing arises in reconfigurable sensing

resource allocation problems (how can a sensor reconfigure its

behavior in real time), cognitive radio, adaptive radars and

optimal search problems. For such problems, the value func-

tion arising from stochastic dynamic programming is convex

but not known in closed form; nevertheless Theorem B applies.

By using Theorem B, the following useful structural result will

be established

Theorem C. (Controlled Sensing POMDP) For a 2-state

Markov chain {Xk}, under suitable conditions on the obser-

vation distributions, the optimal controlled sensing policy is

lower bounded by a myopic policy.

The motivation for Theorem C is two-fold. First, since in

general solving a POMDP for the optimal policy is compu-

tationally intractable, there is substantial motivation to derive

structural results that bound the optimal policy; see [6]–[10]

for an extensive discussion of POMDP structural results and

construction of myopic bounds. Second, the myopic bounds

we propose are straightforward to compute and implement and

can be used as an initialization for more sophisticated sub-

optimal algorithms. Existing works [7], [10] in constructing

myopic lower bounds to the optimal policy use Blackwell

dominance of probability measures. Theorem C includes sev-

eral classes of POMDPs where Blackwell dominance does not

hold.
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Limitations. Our results have two limitations. First, for

continuous-state problems, we require a scalar state (x ∈ IR).

This is essential for convex dominance; multivariate con-

vex dominance is an open area. Actually, for finite states

(Hidden Markov Model localization and filter) this is not a

limitation since a multivariate finite state is straightforwardly

mapped to a scalar finite state. Second, while we show

global convex dominance for localization (Theorem A), for

optimal filtering we can only show one-step convex dominance

(Theorem B). Note however, Theorem B does hold for the

two-time scale problem where the state remains fixed for

multiple observations. We emphasize that for the POMDP

controlled sensing application, neither of these are limita-

tions, since stochastic dynamic programming relies only on

the one-step filtering update. Also, despite these limitations,

the sufficient conditions given cover numerous new examples

where the only competing methodology (Blackwell domi-

nance) does not hold. Finally, using the ingenious proof

of [11], it is possible to give global convex dominance

results for the optimal filter; but the corresponding sufficient

conditions involve strong conditions and are complicated to

check (albeit still finite dimensional); see Sec.III-D for a

discussion.

Related Works. As mentioned above, Integral Precision

dominance which refers to convex dominance of conditional

expectations, has been studied in [1]. The single crossing

condition proposed in [12] is a sufficient condition for integral

precision dominance (for continuous-valued random variables

observed in noise). Our main result, namely Theorem 1, gen-

eralizes this to hold for an arbitrary sequence of observations

- this requires generalizing the single crossing condition of

the observation probabilities in [12] to aggregating the single

crossing condition [3] and dealing with boundary conditions

when the observation distribution has finite support. For a

textbook treatment of convex dominance and stochastic orders

in general, see [13], [14].

Regarding controlled sensing POMDPs, [4], [5], [7], [10]

used convexity of the value function together with Blackwell

dominance to construct a myopic lower bound. Reference [15]

considers controlled sensing with hypothesis testing.

As mentioned earlier, Blackwell dominance [4], [5], [16]

requires factorization of probability measures; and does not,

in general, hold globally for all k; due to lack of commutativity

of matrix multiplication. We refer the reader to [17], [18]

for an excellent recent discussion on Blackwell dominance

in an information theoretic setting. Finally, there are other

approaches for quantifying the MSE in estimation; [19] uses

an interesting approach involving finite time anticipative rate

distortion.

Organization. Sec.II formulates the localization and filtering

models, key assumptions, and main theorem (Theorem 1) on

convex dominance of the conditional mean. Sec.III discusses

important examples where Theorem 1 applies including dis-

crete memoryless channels, additive noise with log-concave

density and power law density. Sec.IV shows how local convex

dominance of the optimal filter can be used to construct a

myopic lower bound for the optimal policy of a controlled

sensing POMDP.

II. CONVEX DOMINANCE FOR BAYESIAN

LOCALIZATION AND FILTERING

In this section we formulate the Bayesian estimation (local-

ization and filtering problems), and then present our main

result on convex dominance of the conditional mean estimate,

namely, Theorem 1. The various assumptions required for

Theorem 1 to hold are then discussed. Regarding notation,

we use uppercase for random variables and lower case for

realizations. The superscript 0 denotes transpose.

A. Bayesian Localization and Filtering Models

For notational simplicity, we first formulate the filtering

problem with finite underlying state space X. Then we for-

mulate the continuous state filtering with state space on IR.

In either case, choosing the transition probability (density)

as identity (Dirac mass) for the underlying Markov process

results in the Bayesian localization problem.

Model 1. Finite State Estimation. Consider a discrete time

Markov chain {Xk} with finite state space X = {1, 2, . . . ,X },

initial probability vector π0 = [P(X0 = 1), . . . , P(X0 = X )]0

and transition matrix P =
�
Pi j

�

X×X
, Pi j = P(Xk+1 =

j |Xk = i). The Markov chain is observed in noise by

sensor u. We consider two sensors u ∈ {1, 2} which generate

the corresponding observation process {Y
(u)
k }, k = 1, 2, . . ..

Here Y
(u)
k lies in observation space Yu and has conditional

distribution Fu(·|xk), i.e., Y
(u)
k is conditionally independent

of Y
(u)
n , n < k. We consider three types of observation

spaces Yu : either Yu is a finite set of action dependent

alphabets, Yu = {1, 2, . . . ,Yu}, u ∈ U ; or Yu = IR;

or Yu = [au, bu], i.e., finite support for u ∈ {1, 2}. Let

5(X ) =
n

π : π(i) ∈ [0, 1],
PX

i=1 π(i) = 1
o

denote the unit

simplex of X -dimensional probability vectors.

Definition 1.A (Finite State Filtering and Localization).

Assume P, Fu (·|x), π0 are known. Given an observation

sequence y1:k = (y1, . . . , yk) from sensor u, the aim of

filtering is to estimate the Markov state Xk , k = 1, 2, . . .,

by computing the posterior probability mass function πk =

[P(Xk = 1|y1:k, u), . . . , P(Xk = X |y1:k, u)]0 ∈ 5(X ) recur-

sively over time k. Localization refers to the special case with

transition matrix P = I (identity matrix), and the aim is to

estimate the random variable X0 by computing the posterior

πk = [P(X0 = 1|y1:k, u), . . . , P(X0 = X |y1:k, u)]0 ∈ 5(X )

recursively over time k.

The solution to the filtering problem is as follows: Starting

with initial distribution π0 = [P(X0 = 1), . . . , P(X0 = X )]0 ∈

5(X ), the posterior using sensor u is computed recursively

using the classical hidden Markov model (HMM) state filter

as

πk = T (πk−1, yk, u), where T (π, y, u) =
By(u) P 0 π

σ (π, y, u)
,

σ (π, y, u) = 10
X By(u)P 0 π,

By(u) = diag{B1,y(u), · · · , BX ,y(u)}. (3)

Here 1X represents a X -dimensional vector of ones. When

the observation space Yu of sensor u is a finite set,
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Bxy(u) = P(Yk+1 = y|Xk+1 = x, uk = u), y ∈ Yu

denotes the observation probabilities for sensor u. When Yu

is continuum, we assume that the conditional distribution

Fu(y|x) is absolutely continuous wrt the Lebesgue measure

and so the controlled conditional probability density function

Bxy(u) = p(Yk+1 = y|Xk+1 = x, uk = u) exists. We

assume for each y, Biy(u) 6= 0 for at least one state i ;

otherwise σ(π, y, u) = 0 and T (π, y, u) are not well defined.

The notation in (3) specifies the filtering/localization update

for a single observation yk . Given a sequence of observa-

tions y1:k = (y1, . . . , yk) and prior π0, we denote the resulting

computation of the posterior πk as T (π0, y1:k, u) with normal-

ization term σ(π0, y1:k, u). Let g = [g(1), . . . , g(X )]0 denote

the physical state levels associated with the states 1, . . . ,X ,

respectively. Then, for sensor u, the conditional mean estimate

of the state is defined as the Y
(u)
1:k measurable random variable

mu(Y
(u)
1:k , π0)

defn
= Eu{g(Xk)|Y

(u)
1:k , π0} = g0 T (π0, Y

(u)
1:k , u).

(4)

Finally, for sensors u ∈ {1, 2}, the mean square error (MSE)

of the conditional mean given prior π0 is

MSE{mu(Y
(u)
1:k , π0)} = E{

(
g(Xk) − mu(Y

(u)
1:k , π0)

)2
}

= E{g2(Xk)} −

Z

Yk
u

(
mu(y1:k, π0)

)2
σ(π0, y1:k, u) dy1:k

(5)

where
R

Yk
u

denotes the k-dimensional integral over

Yu × · · · × Yu .

Given the complicated nature of (4) and (5), evaluat-

ing the MSE analytically for all priors π0 is impossible,

even when the observation space Yu is finite. The MSE

is computed by Monte-Carlo simulation by averaging over

a large number of sample paths y1:k . Our main result

below gives an analytical characterization for any convex

function: given two sensors u ∈ {1, 2}, with observation

processes {Y
(1)
k }, {Y

(2)
k }, where observation Y (1) ∼ F1(·|x)

and Y (2) ∼ F2(·|x) respectively, we give sufficient conditions

so that MSE{m1(Y
(1)
1:k , π0)} ≥ MSE{m2(Y

(2)
1:k , π0)} for all

priors π0.

Model 2. Continuous State Estimation: Here we assume a

continuous state Markov process {Xk} with space X = IR,

initial distribution P(X0 ∈ S), and transition distribu-

tion P(Xk+1 ∈ S|xk) for any Borel set S ⊂ IR. We assume

absolute continuity wrt Lebesgue measure so that the initial

density π0(x) = p(X0 = x) and transition densityp(xk+1|xk)

exists. The Markov process is observed by noise sensor u.

For each sensor u ∈ {1, 2}, we assume the observation space

is Yu = IR. The observations are generated with conditional

cdf Fu(y|x) with support on IR. We assume Fu(y|x) is

absolutely continuous wrt the Lebesgue measure and so the

controlled conditional pdf Bxy(u) = p(Yk+1 = y|Xk+1 =

x, uk = u) exists.

Definition 1.B (Continuous State Filtering and Localization).

Assume p(xk+1|xk), Fu(y|x), π0 are known. Identical to Def-

inition 1.A except that posterior πk = p(Xk = x |y1:k, u) is

now a probability density function. In the localization problem,

the transition density p(x |x̄) = δ(x − x̄) is a Dirac mass.

The solution of the filtering problem is as follows: Starting

with initial density π0(x), the posterior state density for

sensor u is computed recursively using the optimal filter

(Bayesian recursion)

πk(x) = T (πk−1, yk, u)(x),

where T (π, y, u)(x) =
Bxy(u)

R

IR p(x |x̄)π(x̄)dx̄

σ(π, y, u)
,

σ (π, y, u) =

Z

IR

Z

IR

Bζ y(u) p(ζ |x̄)π(x̄)dx̄dζ. (6)

The conditional mean estimate mu(Y
(u)
1:k , π0) of the state Xk

and associated MSE for sensor u ∈ {1, 2} are given by

mu(Y
(u)
1:k , π0) = Eu{Xk|Y

(u)
1:k , π0} =

Z

IR

xπk(x)dx,

MSE{mu(Y
(u)
1:k , π0)} = E{

(
X − mu(Y

(u)
1:k , π0)

)2
} (7)

Apart from the case where the densities p(xk+1|xk), Fu(y|x)

and π0 are Gaussian,4 πk in (6) does not have a finite

dimensional statistic and can only be computed approximately

(using, for example, sequential Markov-chain Monte-Carlo

methods). It is impossible to evaluate the MSE analytically

over the continuum of priors π0; thus there is strong motivation

to give sufficient conditions that yield convex dominance

and therefore an ordering of the MSE between two sensor

models u = 1 and u = 2.

Remark. Two time scale filtering: In Sec.I we discussed a

two time scale system where the state process {Xk} evolved

on a slow time scale k and observations {Yk} are recorded

on a fast time scale. That is, at each time k corresponding to

state Xk , we obtain 1 fast time scale observations represented

by the vector Yk = (Yk,1, . . . , Yk,1) for some integer 1 where

each component Yk,l ∼ Fu(·|xk) is conditionally independent

of Y
j

k . Then the filtering recursions (3) and (6) apply with

Biy(u) =
Q1

l=1 Biyl (u).

B. Assumptions and Main Result

We are now ready to state our main results. The key

condition we will use is that of single crossing.

Definition 2 (Single Crossing [20]). A function φ : X → IR

is single crossing, denoted as φ(x) ∈ SC in x ∈ X, if

φ(x) ≥ 0 H⇒ φ(x 0) ≥ 0 when x 0 > x, and φ(x 0) ≤ 0

H⇒ φ(x) ≤ 0 when x 0 > x (8)

In words, φ(x) crosses zero at most once from negative to

positive as x increases. (Note that in our case X is a totally

ordered set; actually the single crossing definition applies more

generally to partially ordered sets.)

4In the Gaussian case, posterior πk is Gaussian and its mean and variance
are computed via the Kalman filter.
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1) Assumptions: The following are our main assumptions;

recall Bxy(u) is the conditional observation pdf, Fu(y|x) is the

conditional observation cdf and F̄u(y|x) is the complementary

conditional cdf for sensor u ∈ {1, 2}:

(A1) [TP2 observation probabilities] The observation proba-

bility kernel (matrix) B(u) is totally positive of order 2

(TP2). 5

(A2) [Single Crossing Condition] For any ȳ ∈ Y1, y ∈ Y2,

F1(ȳ|x)−F2(y|x) ∈ SC in x ∈ X. Equivalently, in terms

of complementary cdfs, F̄2(y|x) − F̄1(ȳ|x) ∈ SC.

(A3) [Boundary conditions] If Yu = {1, . . . ,Yu}, u ∈ {1, 2},

then for the boundary values 1 and Yu :

Bx1(1) Bx̄1(2) ≤ Bx1(2) Bx̄1(1),

BxY1
(1) Bx̄Y2

(2) ≥ BxY2
(2) Bx̄Y1

(1), x̄ ≥ x .

If Yu = [au, bu] then the above equation holds with 1

and Yu replaced by au and bu . (A3) is not required

if Yu = IR.

(A4) [Signed Ratio Monotonicity] If F̄1(y|x) < F̄2(z|x)

and F̄1(ȳ|x) > F̄2(z̄|x) then for all y, ȳ ∈ Y1 and z,

z̄ ∈ Y2,

log F̄1(y|x) − log F̄2(z|x)

log F̄1(ȳ|x) − log F̄2(z̄|x)
≤

log F̄1(y|x̄) − log F̄2(z|x̄)

log F̄1(ȳ|x̄) − log F̄2(z̄|x̄)

for x̄ > x .

If F̄1(y|x) > F̄2(z|x) and F̄1(ȳ|x) < F̄2(z̄|x) then for

all y, ȳ ∈ Y1 and z, z̄ ∈ Y2,

log F̄1(ȳ|x)−log F̄2(z̄|x)

log F̄1(y|x)−log F̄2(z|x)
≤

log F̄1(ȳ|x̄)−log F̄2(z̄|x̄)

log F̄1(y|x̄)−log F̄2(z|x̄)
,

for x̄ > x .

The assumptions are discussed below in Sec.II-C. However,

we note at this stage that (A4) is equivalent to the following

single crossing condition (proof in Theorem 14 in the appen-

dix): for any y1:k ∈ Y
k
2, ȳ1:k ∈ Y

k
1

kY

l=1

F̄2(yl |x) −

kY

l=1

F̄1(ȳl |x) ∈ SC, x ∈ X. (9)

The main point is that (9) globalizes (A2), namely

F̄2(y|x)− F̄1(ȳ|x) ∈ SC, to a product from time 1 to arbitrary

time k. (A4) is a tractable condition for (9) in terms of the

model parameters (observation probabilities); see discussion

below.

2) Main Result: Our main result involves convex dominance

of the conditional mean. Let us define this formally.

Definition 3 (Convex dominance of conditional mean).

Consider two sensor models u ∈ {1, 2} with observa-

tion process {Y
(1)
k } and {Y

(2)
k } generated by cdfs F1(y|x)

and F2(y|x), respectively. Let
R

Yk
u

denote the k-dimensional

integral over Yu × · · · × Yu . Consider the Bayesian localiza-

tion/filtering problem of Definition 1.

5That is, Bx (u) ≤r Bx̄ (u) where the monotone likelihood ratio (MLR)
order ≤r is defined in Appendix A. Equivalently, for X finite, the i-th row
of B is MLR dominated by the (i + 1)-th row, i.e., the rows of the matrix are
totally monotone wrt the MLR order. When Yu is finite, TP2 is equivalent to
all second-order minors of matrix B(u) being nonnegative.

1) Global convex stochastic dominance of the conditional

mean estimates (4) or (7) denoted as m1(Y
(1)
1:k , π0) <cx

m2(Y
(2)
1:k , π0) holds if for all time k,

E1{φ
(
m1(Y

(1)
1:k , π0)

)
} ≤ E2{φ

(
m2(Y

(2)
1:k , π0)

)
} for

any6 convex function φ : IR → IR and prior π0.

Equivalently, for all time k,
Z

Y
k
1

φ
(
m1(y1:k, π0)

)
σ(π0, y1:k, 1) dy1:k

≤

Z

Y
k
2

φ
(
m2(y1:k, π0)

)
σ(π0, y1:k, 2) dy1:k (10)

2) Local (one step) convex dominance of the con-

ditional mean estimates (4) or (7) denoted as

m1(Y
(1)
k , πk−1) <cx m2(Y

(2)
k , πk−1) holds at each time k

if E1{φ
(
m1(Y

(1)
k , πk−1)

)
} ≤ E2{φ

(
m2(Y

(2)
k , πk−1)

)
} for

any convex function φ : IR → IR and prior πk−1.

Equivalently, at each time k,
Z

Y1

φ(m1(yk, πk−1)) σ (πk, yk, 1) dyk

≤

Z

Y2

φ(m2(yk, πk−1)) σ (πk, yk, 2) dyk (11)

We are now ready to state our main results for Bayesian

localization and filtering.

Theorem 1 (Global Convex Dominance for Bayesian

Localization). Consider the Bayesian localization problem of

Definition 1:

1) For the finite state model (3), under (A1), (A2), (A3),

(A4) (or (9)), global convex stochastic dominance of

the conditional mean estimates (4) holds for all time k,

i.e., m1(Y
(1)
1:k , π0) <cx m2(Y

(2)
1:k , π0).

2) For the continuous state model (6), under (A1), (A2),

(A4) (or (9)), global convex stochastic dominance of the

conditional mean estimates (7) holds for all time k.

Therefore, in both cases,

MSE{m1(Y
(1)
1:k , π0)} ≥ MSE{m2(Y

(2)
1:k , π0)}

holds globally for all time k.

The proof of Theorem 1 is in Appendix A.

Corollary 2 (Local Convex Dominance for Optimal Filtering).

Consider the optimal filtering problem of Definition 1:

1) For the finite state model under (A1), (A2), (A3), local

convex dominance of the conditional mean estimates (4)

of the Hidden Markov Model (HMM) filter (3) holds at

each time k, i.e., m1(Y
(1)
k , πk−1) <cx m2(Y

(2)
k , πk−1).

2) For the continuous state model under (A1), (A2), local

convex dominance of the conditional mean estimates (7)

for the optimal filter (6) holds at each time k.

Therefore, for both cases, MSE{m1(Y
(1)
k , πk−1)} ≥

MSE{m2(Y
(2)
k , πk−1) holds at each time k.

Corollary 3 (Two time-scale filtering). For the two-time scale

filtering problem discussed in Sec.II-A,

6Providing the integral exists.
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1) For the HMM filter, local convex dominance (11) holds

under (A1), (A2), (A3), (A4)

2) For the continuous state filter, local convex dominance

(11) holds under (A1), (A2), (A3), (A4).

In either case,
R

Yu
in (11) denotes the 1-dimensional

integral.

Proof. The one step filtering update (3) is identical to local-

ization with P 0π replaced by π . Since Theorem 1 holds for

all π ∈ 5(X ), Corollary 2 and 3 follow.

Let us reiterate the main point: It is clear from (4), (5) that

evaluating the MSE analytically for all priors π0 is impossible,

even when the observation space Yu is finite. Theorem 1

and its corollaries are useful since they give sufficient con-

ditions that ensure one sensor observation model yields a

MSE that dominates another sensor observation model; indeed

they guarantee dominance for any convex function. Also for

continuous state optimal filtering, in general there is no finite

dimensional statistic for πk thereby making it impossible to

compute exactly; yet Corollary 2 and 3 give useful insight into

how the observation probabilities affect the mean square error

of the conditional mean.

3) Why Can’t We Establish Global Convex Dominance of

the Optimal Filter?: The above results establish global convex

dominance for Bayesian localization and local convex domi-

nance for optimal filtering. The key step in the proof of global

convex dominance is (20) in the appendix: in simpler notation

the task is to prove that (g −λ1)0 A π ≥ 0 for λ ∈ IR where g

is the vector of state levels of the Markov chain, A is a square

matrix, and π is the prior. In the localization problem, A

is a diagonal matrix involving the observation distributions.

Because of this diagonal structure, useful sufficient conditions

can be given in terms of the model parameters B(1), B(2).

In the filtering case A is no longer a diagonal matrix - it

is the non-commutative product of transition matrices and

observation matrices. Then there is no obvious way of giving

useful sufficient conditions for (g − λ1)A π ≥ 0 in terms of

the model parameters.

In Sec.III-D we will give an alternative set of sufficient con-

ditions for global convex dominance that apply to the optimal

filter when the observation spaces Yu , u ∈ {1, 2} are finite.

However, checking these sufficient conditions for length k

observation sequences requires a computational cost that is

exponential in k and so intractable for large k. Nevertheless,

the sufficient conditions of Sec.III-D guarantee global convex

dominance for all (continuum of) priors π and so are useful

for small k.

C. Discussion of Assumptions (A1)-(A4)

This subsection discusses the main assumptions of

Theorem 1. Section III below discusses several examples.

(A1). The TP2 condition (A1) is widely used to characterize

the structural properties of Bayesian estimation. (A1) is nec-

essary and sufficient for the Bayesian filter update T (π, y, u)

to be monotone likelihood ratio increasing wrt y; see [10]

for proof. This implies mu(y, π) is increasing in y. This

monotonicity wrt y is a crucial step in proving Theorem 1.

Reference [10] gives several examples of continuous and dis-

crete distributions that satisfy (A1) in the context of controlled

sensing. We refer to the classic work [21] for details and

examples of TP2 dominance, see also [10].

(A2). (A2) is the key condition required for integral pre-

cision dominance. First a few words about integral precision

dominance. For random variable x ∈ IR with prior π and

posterior T (π, y, u)(x), Definition 2(ii), pp.1011 in [1] says

that integral precision dominance holds if the conditional

expectations exhibit convex dominance:

m1(Y ) =

Z

IR

xT (π,Y, 1)(x)dx

≤cx m2(Y ) =

Z

IR

xT (π, Y, 2)(x)dx

Equivalently
Z

Y

φ
(
m1(y)

)
σ(π, y, 1)dy ≤

Z

Y

φ
(
m2(y)

)
σ(π, y, 2)dy

for any convex function φ, providing the integrals exist.

For x ∈ IR, [12] gives a single crossing condition similar

to (A2) for integral precision dominance; see also footnote 9,

pp.1016 in [1]. Our setting is different since we consider a

Markov process {Xk} observed in noise and we are considering

convex dominance wrt the process {Yk}. However, our main

proof is similar in spirit to [12], but in addition to (A2),

we also need the boundary condition (A3) for finite support

and finite set observations; also we need (A4) for global

convex dominance. Finally, note that [22] examines integral

precision dominance as a special case of Lehmann precision

(see Corollary 4.6 of [22]) after the seminal paper by [23].

Returning to the single crossing condition (A2), it can

also be viewed as signed-submodularity of the observation

probability distributions. A function φ(x, u) is submodular

if 1(x, u)
defn
= φ(x, u) − φ(x, u + 1) is increasing in x .

In comparison, (A2) says7 sgn
(
1(x, u)

)
is increasing in x

where 1(x, u) =
P

y≤ j Bxy(u) −
P

y≤l Bxy(u + 1). Requir-

ing 1(x, u) to be increasing in x is impossibly restrictive,

whereas requiring sgn
(
1(x, u)

)
to be increasing in x leads

to numerous examples as discussed below. We will use

this signed-submodularity assumption in the FKG inequality

(Theorem 12) to prove integral precision dominance.

(A3). The boundary condition (A3) is not required if the

observation space Yu = IR for u ∈ {1, 2}. (A3) is only

required when Yu has finite support or Yu is finite. (A3)

is not restrictive since it only imposes conditions on the

observation probabilities at the boundary values of Yu . (A3)

is a sufficient condition for the range of the posterior for

sensor 1 to be a subset of that for sensor 2, i.e., {g0T (π, y, 1),

y ∈ Y1} ⊆ {g0T (π, y, 2), y ∈ Y2}. Several examples that

satisfy (A3) are given below. Also to give further insight,

the end of Appendix A-B gives numerical examples where

integral precision dominance does not hold when (A3) is not

satisfied.

(A4). Signed ratio monotonicity (A4) is a key condition

from the paper [3, Proposition 1]; it is a necessary and

7For z ∈ IR, define the signum function sgn(z) ∈ {−1, 0, 1} for z < 0,
z = 0, z > 0, respectively. Note that sgn(φ(x)) increasing in x (ignoring
excursions to zero) is equivalent to φ(x) ∈ SC in Definition 2.
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sufficient for any non-negative linear combination of sin-

gle crossing functions to be single crossing. Translated to

our problem, (A4) is required for establishing Theorem 1

for k > 1 (global convex dominance), i.e., when multiple

observations y1:k are used to compute the posterior. (A4) is

not required for the case k = 1 (local convex dominance).

In simple terms (A4) extends the single crossing condition

(A2) to the sum of single crossing functions. Note that (A2)

involves each individual sensor u, whereas (A4) involves both

sensors’ observation probabilities.

To motivate (A4), start with (9). The ordinal prop-

erty of single crossing [20] implies that (9) is equiva-

lent to the difference in logs being single crossing, i.e.,
Pk

t=1[log F̄2(yt |x) − log F̄1(yt |x)] ∈ SC. Note (A2) implies

that each term [log F̄2(yt |x) − log F̄1(yt |x)] ∈ SC; but this

does not imply that the sum over t is single crossing. (In

general the sum of single crossing functions is not single

crossing.) The main point is that signed ratio monotonicity

condition (A4) is necessary and sufficient for any non-negative

linear combination of single crossing functions to be single

crossing [3, Proposition 1]. This allows us to express (9)

as the tractable condition (A4) which directly involves the

observation density. Finally, in the special case of additive

log-concave noise densities, (A4) automatically holds if (A2)

holds; this is discussed below in Sec.III-B.

Another intuitive way of viewing (9) is: a sufficient condi-

tion for local convex dominance is that F̄2(y|x) − F̄1(ȳ|x) is

increasing in x (this is stronger than (A2) which only needs

sgn(F̄2(y|x)− F̄1(ȳ|x)) to increase in x); a sufficient condition

for global convex dominance requires that F̄2(y|x)/F̄1(ȳ|x)

is increasing in x (this is stronger than (9)).

III. EXAMPLES OF CONVEX DOMINANCE IN

LOCALIZATION AND FILTERING

To illustrate Theorem 1 and its corollaries, we discus 3

important examples of convex dominance in Bayesian esti-

mation. Then we briefly discuss conditions for global convex

dominance of the optimal filter.

A. Example 1. Blackwell Dominance, Integral Precision

Dominance and Channel Capacity

Here we discuss our first main example; namely how

Theorem 1 and its corollaries apply to finite set observation

models and HMMs. As mentioned in Section I, Blackwell

dominance is a widely used condition for convex dominance.

Since Theorem 1 uses integral precision dominance to give

a new set of conditions for convex dominance compared

to Blackwell dominance, we compare them using several

numerical examples below.

Definition 4 (Blackwell dominance B(2) >B B(1)). Sup-

pose Biy(1) =
P

ȳ∈Y2
Bi ȳ(2) L ȳ,y for y ∈ Y1 where L is

a stochastic kernel, i.e.,
P

y∈Y1
L ȳ,y = 1 and L ȳ,y ≥ 0.

Then B(2) Blackwell dominates B(1); denoted as B(2) >B

B(1). So when Y1, Y2 are finite, B(2) >B B(1) if B(1) =

B(2) × L where L is a stochastic (not necessarily square)

matrix.

Intuitively B(1) is noisier than B(2). Using a straightfor-

ward Jensen’s inequality argument, the following result holds:

Theorem 4 (Blackwell dominance [7]). B(2) >B B(1)

is a sufficient condition for the one step (local) stochastic

dominance conclusion of Theorem 1 to hold.

Insight. Both integral precision dominance (Theorem 1)

and Blackwell dominance (Theorem 4) exploit convexity.

But there is an important difference: Blackwell dominance

implies that for any convex function φ : IRX → IR,
P

Yu
φ
(
T (π, y, u)

)
σ(π, y, u) is increasing in u for all

π ∈ 5(X ). In comparison, integral precision dominance

(Theorem 1) implies convex dominance in one dimension,

namely, for any scalar convex function φ : IR → IR,
P

Yu
φ
(
g0T (π, y, u)

)
σ(π, y, u) is increasing in u for all

π ∈ 5(X ). As will be shown below there any many impor-

tant examples where integral precision dominance holds but

Blackwell dominance does not hold.

Note that Blackwell dominance (Theorem 4) does not hold

globally for all k unlike integral precision (Theorem 1). This

is because B(2) >B B(1) does not imply that the k-th powers

satisfy Bk(2) >B Bk(1), apart from the pathological case

B(2)L = L B(2) where matrix multiplication commutes (i.e.,

the pathological case when L and B(2) are simultaneously

diagonalizable). Thus global convex dominance in Theorem 1

is a useful and substantial generalization.8

Examples: Example (i): Here are examples of observation

matrices that satisfy assumptions (A1), (A2), (A3), (A4)

implying that integral precision dominance and global convex

dominance in Theorem 1 holds. But Blackwell dominance

does not hold.

Ex1. B(1) =





0.8 0.2 0

0.1 0.8 0.1
0 0.2 0.8



 , B(2) =





0.9 0.1 0

0.1 0.8 0.1
0 0.15 0.85





Ex2. B(1) =





0.44847 0.30706 0.24447

0.33443 0.28762 0.37795

0.32463 0.28971 0.38565



 ,

B(2) =





0.170021 0.410485 0.419494

0.106500 0.433559 0.459941

0.020739 0.263223 0.716038





Ex 3. B(1) =

�
0.8 0.2
0.2 0.8

�

, B(2) =

�
0.7 0.3 0

0.1 0.2 0.7

�

,

Y1 = {1, 2}, Y2 = {1, 2, 3}.

Note the third example has different observation spaces for the

two actions. Interestingly, in all three examples above, B(2)

does not Blackwell dominate B(1); i.e., B(1) 6= B(2) × L for

stochastic matrix L.

Example (ii). A consequence of [24] is that for symmet-

ric 2 × 2 matrices B(1), B(2), if B11(1) ≤ B11(2), then

Blackwell dominance is equivalent to integral precision dom-

inance (A2). Then (A3) automatically holds. This is easy to

show, see [1]: B(2) >B B(1) since L = B−1(2)B(1) is a valid

8Le Cam deficiency is a useful way of finding the closest Blackwell
dominant matrix to B(2) given B(1); it also yields the loss (deficiency) in
choosing this closest matrix, see [17] for a nice discussion. However, this
loss is impossible to compute for an arbitrary convex function such as the
value function of a controlled sensing POMDP which is apriori unknown and
intractable to compute.
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stochastic matrix as can be verified by explicit symbolic

computation.

Example (iii). Channel Capacity. Shannon [25] establishes

the following result in terms of channel capacity; see [26] for

a detailed exposition.

Theorem 5 ( [25]). If B(1) = M B(2) L where L and M are

stochastic matrices, then discrete memoryless channel B(1)

has a smaller Shannon capacity (conveys less information)

than B(2).

Blackwell dominance B(1) = B(2) L is a special case

of Theorem 5 when M = I . However, if the multiplication

order is reversed, i.e., suppose B(1) = M B(2) where M is a

stochastic matrix, then even though B(1) is still more “noisy”

(conveys less information according to Theorem 5) than B(2),

Blackwell dominance does not hold.

Motivated by Theorem 5, a natural question is: Does integral

precision dominance and hence Theorem 1 hold for examples

where B(1) = M B(2) where M is a stochastic matrix? As an

example consider

X = 3,Y = 3, U = 2, B(1) =





0.3229 0.4703 0.2068

0.2237 0.4902 0.2861

0.1587 0.4620 0.3793



 ,

B(2) =





0.4387 0.5190 0.0423

0.2455 0.6625 0.0920

0.0615 0.2829 0.6556





Then there exists a stochastic matrix M such that

B(1) = M B(2) but Blackwell dominance does not hold

since B(1) 6= B(2) L for stochastic matrix L. But (A1),

single crossing condition (A2), boundary condition (A3), and

signed ratio monotonicity (A4) hold for this example; therefore

Theorem 1 holds.

Further examples involving hierarchical sensing and word-

of-mouth social learning are discussed in Section IV.

Summary: This subsection discussed several examples

where integral precision dominance and global convex domi-

nance of the conditional mean holds but Blackwell dominance

does not hold. The two specific cases we discussed are:

1) B(1) = M B(2) L where L and M are stochastic

matrices,

2) Blackwell dominance B(2) >B B(1) does not imply

global Blackwell dominance Bk(2) >B Bk(1). In com-

parison, Theorem 1 gives conditions for which global

convex dominance holds.

B. Example 2. Sensing in Additive Noise With

Log-Concave Density

We now discuss how Theorem 1 and its corollaries apply to

sensing in additive noise, where the additive noise has a log-

concave density. The main point is that for additive noise with

log-concave density, higher differential entropy or variance of

the additive noise is a necessary condition for the MSE of

the Bayesian localization and filtered estimate to be higher.

(Sec.III-C below shows that if the noise does not have a log-

concave density, then higher differential entropy or variance

is not a necessary condition).

In the additive noise setting, the sensor observation models

are Y
(u)
k = Xk + W

(u)
k , u ∈ {1, 2}. The additive noise W

(u)
k

is independent and identically distributed with a log-concave

pdf pW (·|u). Recall [27] that a log-concave density has the

form pW (w) = exp(φ(w)) where φ is a concave function

of w. There are numerous examples of log-concave densities:

normal exponential, uniform, Gamma (with shape parame-

ter α > 1), Laplace, logistic, Chi, Chi-squared, etc.

We assume for u ∈ {1, 2} that the density pW (·|u) has

either support on IR (then (A3) is not required) in which

case Bxy(u)(u) = pW (y(u) − x |u) ; or pW (·|u) has support

on IR+ in which case Bxy(u)(u) = pW (y(u) − x |u) I (y(u) ≥ x)

(then (A3) holds straightforwardly; e.g. if x ∈ IR+, then

au = 0 in (A3) and both sides of the first inequality in (A3)

are zero.)

The following result characterizes the assumptions of

Theorem 1 for additive noise models with a log-concave

density.

Theorem 6. Consider the additive noise sensing model

Y
(u)
k = Xk +W

(u)
k , u ∈ {1, 2} where the additive noise W

(u)
k is

independent and identically distributed with pdf pW (·|u) and

cdf FW (·|u). Then:

1) (A1) holds iff pW (·|1) and pW (·|2) are log-concave

densities.

2) (A2) holds iff FW (·|1) >D FW (·|2) holds where >D

denotes the dispersive stochastic order.9

3) (9) or equivalently (A4) holds if pW (·|1) and pW (·|2)

are log-concave densities and FW (·|1) >D FW (·|2) ,

i.e., (A2) holds.

4) pW (·|2) having smaller differential entropy than pW (·|1)

is a necessary condition for (A2) to hold. Also pW (·|2)

having smaller variance than pW (·|1) is a necessary

condition for (A2) to hold.

Therefore for log-concave additive noise pW (·|1) and pW (·|2),

if FW (·|1) >D FW (·|2) , then Theorem 1 and Corollaries 2, 3

hold.

Proof. Statement 1 is proved in [14, Theorem 1.C.52 (iii)].

Statement 2 is proved in [12, Remark 3]. Statement 4 follows

from [13, Theorems 1.5.42 and 1.7.8].

Statement 3: Since the pdfs are log-concave, their

complementary cdfs F̄W (w|1) and F̄W (w|2) are log-concave;

see [27, Theorem 2(i)]. Next from [14, Theorem B 20.

pp156], FW (·|1) >D FW (·|2) and the complementary

cdfs being log-concave implies that hazard rate

dominance FW (·|1) >H FW (·|2) holds, i.e.,

F̄W (w|2)/F̄W (w|1) is decreasing in w. This implies F̄W (ȳ −

x |2)/F̄W (y − x |1) is increasing in x for all ȳ ∈ Y2

and y ∈ Y1. Therefore, log F̄W (ȳ − x |2) − log F̄W (y −

x |1) is increasing in x which in turn implies

that
Pk

t=1 log F̄W (ȳt − x |2) − log F̄W (yt − x |1) is

increasing x . Therefore log
Qk

t=1 F̄2(ȳt |x)−log
Qk

t=1 F̄1(ȳt |x)

is increasing in x which implies log
Qk

t=1 F̄2(ȳt |x) −

log
Qk

t=1 F̄1(ȳt |x) ∈ SC. Finally, φ1(x) − φ2(x) ∈ SC

9Cdf G dominates cdf F wrt dispersive order, denoted G >D F ,

if F−1(β) − F−1(α) ≤ G−1(β) − G−1(α) for 0 < α < β < 1.
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implies that φ1( f (x)) − φ2( f (x)) ∈ SC for any monotone

function10 f . Thus (9) holds.

Theorem 6 gives a complete characterization of global

convex dominance in additive noise models. It confirms the

intuition that additive noise with higher differential entropy (or

variance) results in larger MSE for Bayesian localization and

optimal filtering. More precisely, higher differential entropy

(or variance) is a necessary condition for (A2); indeed (A2)

(dispersion dominance) is a stronger condition than dominance

of differential entropy.

Examples of log-concave densities that satisfy (A1), disper-

sive dominance (A2) and therefore (A4) include:

1) Normal cdf: FW (w|u) = N(0, σ 2
u ) with σ 2

1 ≥ σ 2
2 ,

w ∈ IR.

2) Exponential cdf: FW (w|u) = 1 − exp(−λuw) , with rate

parameter λ2 ≥ λ1, w ∈ IR+.

3) Gamma distribution [28]: FW (w|u) = 1
0(αu)

wαu−1e−w ,

w ∈ IR+ with shape parameter α1 > α2 ≥ 1.

For these examples Theorem 1 and Corollaries 2, 3 hold.

Also for these examples, (A2) is equivalent to pW (·|2) having

smaller differential entropy (or variance) than pW (·|1); that is

Statement 4 of Theorem 6 is necessary and sufficient.

C. Example 3. Additive Sensing. Power Law vs Exponential

Noise in Social Networks

Motivated by sampling social networks, we now discuss an

example where instead of the TP2 condition (A1), a reverse

TP2 condition holds (due to log convex density additive noise).

The main point below is that regardless of whether the power

law noise has a smaller variance than exponential noise,

the MSE is always larger due to convex dominance.

Suppose we wish to compare the MSE of the conditional

mean estimates when the additive noise pW (w|1) is a

log convex density that decays according to a power law

while pW (w|2) is an exponential density (log-concave).

That is:

pW (w|1) = (α − 1) (1 + w)−α,

FW (w|1) = 1 − (w + 1)1−α, α > 1, w ∈ IR+

pW (w|2) = λ exp(−λw),

FW (w|2) = 1 − exp(−λw), λ > 0, w ∈ IR+

For example, the empirical degree distribution (number of

neighbors of per node normalized by the total number of

nodes) of several social media networks such as Twitter [29]

have a power law with exponent α ∈ [2, 3]; while social

health networks in epidemiology have an exponential degree

distribution. Based on observations obtained by sampling

individuals in the network and asking each such individual

how many friends it has (degree), a natural question is: how

accurate is the Bayesian conditional mean estimate for the

average degree of the network?

Theorem 7. Consider the additive noise model Y
(u)
k =

Xk + W
(u)
k , u ∈ {1, 2} where the additive noise W

(u)
k is

10This is the well known ordinal property of single crossing [20].

independent and identically distributed with pdf pW (·|u). Then

the conclusions of Theorem 1 hold for the following cases:

1) Power law density pW (w|1) and exponential

density pW (w|2)

2) Power law densities pW (w|1) and pW (w|2) with power

law coefficients α2 > α1.

Theorem 7(1) is interesting because it asserts convex dom-

inance between two different types of noise densities. It says

that the conditional mean estimate in additive exponential

noise is always more accurate than that in power law noise.

Interestingly, the variance for a power law density can be

smaller than that of an exponential density; for power law

exponent α = 3.1, the variance is 17.35 which is smaller than

the variance of an exponential for λ < 0.24; yet the MSE

of the conditional mean is larger in power law noise. (Note

for α ≤ 3, the power law variance is not finite). Theorem 7(2)

is intuitive; a larger power law implies the density decays faster

to zero; and therefore the MSE is smaller.

Proof. Statement (1): (A1) holds for the observation likeli-

hood B(2), but (A1) does not hold for B(1). Instead B(1)

satisfies a reverse TP2 ordering: Bx(1) ≥r Bx̄(1), x < x̄ .

Indeed, Bxy(1)/Bx̄,y = (1+ y − x̄)α/(1+ y −x)α is increasing

in y for x < x̄ . Then using a similar proof to Theorem 1,

global convex dominance holds if (recall SC is defined in (8)):

F̄2(y1|x) · · · F̄2(yk|x) − F1(ȳ1|x) · · · F1(ȳk |x) ∈ SC, x ∈ X.

A similar proof to Theorem 6 shows that the above condition

holds because

F̄2(ȳ|x)

F1(y|x)
=

F̄W (ȳ − x |2)

FW (y − x |1)
=

exp(λ(x − ȳ))

1 − (y − x − 1)1−α
, α > 1

is increasing in x for all ȳ > x and y > x .

Statement (2): Since B(1) an B(2) are reverse TP2, the global

convex dominance condition becomes F2(y1|x) · · · F2(yk|x)−

F1(ȳ1|x) · · · F1(ȳk |x) ∈ SC. This holds because (1 − (ȳ − x +

1)1−α2)/(1−(y−x+1)1−α1) is increasing in x for y, ȳ > x .

D. Single Crossing in Conditional Mean and Global Convex

Dominance of HMM Filter

So far we used the single crossing of the conditional

distributions (A2), (A4), to establish convex dominance. We

conclude this section by discussing an alternative condition

based on an ingenious result from [11]; it uses single crossing

of the conditional mean to establish global convex dominance

of the conditional mean; but the conditions are computation-

ally expensive to verify.

Proposition 8 ( [11, Proposition 2.1]). Suppose mu(y, π), u ∈

{1, 2} is increasing in y and m2(y, π) − m1(y, π) ∈ SC

in y. Then convex dominance holds for the conditional means.

(Recall SC is defined in (8)).

We now use Proposition 8 to establish global convex dom-

inance for the HMM filter (3); but the sufficient conditions

given below are expensive to check and only tractable for

finite observation spaces Y1 and Y2.

Note that y1:k ∈ Y
k with Yk elements. Label the Yk

elements lexicographically and denote them as z ∈ {1,
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2, . . . ,Yk}. For u ∈ {1, 2} and each i, j ∈ X, define the X ×X

matrices

Lu(y1:k) =

kY

t=1

P Byt (u),

Hu(i, j, z, z̄) = Lu(z̄) (e j e
0
i − ei e

0
j ) L 0

u(z)

+ Lu(z) (eie
0
j − e j e

0
i ) L 0

u(z̄),

H (i, j, z) = L2(z) (e j e
0
i − ei e

0
j ) L 0

1(z)

+ L1(z) (ei e
0
j − e j e

0
i ) L 0

2(z) (12)

We introduce the following assumptions for global convex

dominance:

(A5) The matrices Hu(i, j, z, z̄) are elementwise positive for

all z̄ > z, j > i , i, j ∈ X.

(A6) The matrices H (i, j, z) are elementwise negative

for z < z∗ and positive for z ≥ z∗, for all j > i ,

i, j ∈ X, for some z∗ ∈ {1, . . . ,Yk}.

Theorem 9. Under (A5) and (A6), global convex dominance

m1(Y
(1)
1:k , π0) <cx m2(Y

(2)
1:k , π0) holds for all priors π0 for the

HMM filter (3) with finite observation space Yu , u ∈ {1, 2}.

Proof. (A5) is sufficient for T (π, z, u) ≤r T (π, z̄, u) for

z < z̄; this can be verified from the definition of likelihood

ratio dominance, namely

e0
i Lu(z)π

e0
i Lu(z̄)π

≥
e0

j Lu(z)π

e0
j Lu(z̄)π

, j ≥ i, z̄ ≥ z

This in turn is sufficient for the first condition of Proposi-

tion 8, namely, mu(z, π) is increasing in z.

Similarly it can be shown that (A6) is sufficient for

T (π, z, 1) ≤r T (π, z, 2) for z ≥ z∗ and T (π, z, 1) ≥r

T (π, z, 2) for z < z∗. This implies the second condition of

Proposition 8 is satisfied, namely m2(z, π) ≤ m1(z, π), z < z∗

and m2(z, π) ≥ m1(z, π), z ≥ z∗.

Example. It can be verified numerically that P =�
0.9 0.1

0.1 0.9

�

, B(1) =

�
0.7 0.3

0.3 0.7

�

, B(2) =

�
0.8 0.2

0.2 0.8

�

satisfies

(A5) and (A6) for k = 1, 2.

Summary: In contrast to previous subsections, this subsec-

tion used the single crossing property of conditional means to

propose sufficient conditions (A5) and (A6) for global convex

dominance of the HMM filter. Verifying (A5) and (A6) involve

checking negative/positive elements for O(Y2kX 2) matrices is

computationally intractable for large k. However, the condi-

tions guarantee global convex dominance for all (continuum)

of priors π0 and are useful for small k.

IV. EXAMPLE. CONTROLLED SENSING PARTIALLY

OBSERVED MARKOV DECISION PROCESS (POMDP)

Thus far we have discussed convex dominance of the

conditional mean (in filtering and localization) between two

fixed sensors. This section considers a POMDP controlled

sensing problem where we optimize the dynamic switching

between multiple sensors. The main result of this section is an

important application of Corollary 2 (local convex dominance

for the HMM filter): we construct a myopic lower bound

to the optimal policy of a 2-state (but arbitrary observation

space Yu) controlled sensing POMDP. Thus far, the only

known way of constructing such lower bounds involved Black-

well dominance [4], [7], [10]. The plethora of examples

in Sec. III where integral precision dominance holds (but

Blackwell dominance does not), demonstrates the usefulness

of Theorem 1 in controlled sensing.

In controlled sensing, the aim is to dynamically decide

which sensor (or sensing mode) uk to choose at each time k

to optimize the objective defined in (13) below. In general,

POMDPs are computationally intractable to solve (PSPACE

complete). Therefore, from a practical point of view, construct-

ing a myopic lower bound is useful since myopic policies

are trivial to compute/implement in large scale POMDPs and

provide a useful initialization for more sophisticated sub-

optimal solutions.

A. Controlled Sensing POMDP

We consider an infinite horizon discounted reward con-

trolled sensing POMDP. It is customary to call the posterior πk

as the “belief”. A discrete time two-state Markov chain evolves

with transition matrix P on the state space X = {1, 2}.

So the belief space 5(2) is a two-dimensional simplex,

namely π(1) + π(2) = 1, π(1), π(2) ≥ 0. Denote the

action space as U = {1, 2, . . . , U}. For each action u ∈ U

denote the observation space as Yu . We assume either Yu =

{1, 2, . . . ,Yu}, i.e., finite set of action dependent alphabets

for all u ∈ U , or Yu = IR, or Yu = [au, bu], i.e., finite

support for all u ∈ U . For stationary policy µ : 5(2) → U ,

initial belief π0 ∈ 5(2), discount factor ρ ∈ [0, 1), define the

discounted cumulative reward:

Jµ(π0) = Eµ

� ∞X

k=0

ρk r 0
µ(πk ) πk

�

. (13)

Here ru = [r(1, u), r(2, u)]0 is the reward vector for each

sensing action u ∈ U , and the belief state evolves accord-

ing to hidden Markov model filter defined in (3) where

Bxy(u) = P(yk+1 = y|xk+1 = x, uk = u), y ∈ Yu denotes the

controlled observation probabilities.

The aim is to compute the optimal stationary policy µ∗ :

5(2) → U such that Jµ∗(π0) ≥ Jµ(π0) for all π0 ∈ 5(2).

Obtaining the optimal stationary policy µ∗ is equivalent to

solving Bellman’s stochastic dynamic programming equation:

µ∗(π) = argmax
u∈U

Q(π, u), Jµ∗(π0) = V (π0), where

V (π) = max
u∈U

Q(π, u),

Q(π, u) = r 0
uπ + ρ

Z

Yu

V
(
T (π, y, u)

)
σ(π, y, u) dy. (14)

The value function V (π) is the fixed point of the following

value iteration algorithm: Initialize V0(π) = 0 for π ∈ 5(2).

Then for k = 0, 1, . . .

Vk+1(π) = max
u∈U

Qk+1(π, u), µ∗
k = argmax

u∈U

Qk(π, u),

Qk+1(π, u) = r 0
uπ + ρ

Z

Yu

Vk

(
T (π, y, u)

)
σ(π, y, u) dy.

(15)
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The sequence {Vk(π), k = 0, 1, . . .} of value functions

converges uniformly to V (π) on 5(2) geometrically fast.

Since 5(2) is continuum, Bellman’s equation (14) and the

value iteration algorithm (15) do not directly translate into

practical solution methodologies since they need to be eval-

uated at each π ∈ 5(2). Almost 50 years ago, [30] showed

that when Yu is finite, then for any k, Vk(π) has a finite

dimensional piecewise linear and convex characterization.

Unfortunately, the number of piecewise linear segments can

increase exponentially with the action space dimension U

and double exponentially with time k. Thus there is strong

motivation for structural results to construct useful myopic

lower bounds µ(π) for the optimal policy µ∗(π).

Remark 1. For controlled sensing POMDPs, the transition

matrix P , which characterizes the dynamics of the signal

being sensed, does not depend on action u. Only ru , which

models the information acquisition reward of the sensor,

and observation probabilities B(u), which model the sensor’s

accuracy when it operates in mode u, are action dependent.

Remark 2. A POMDP with finite horizon N has objec-

tive Jµ(π0) = Eµ

n
PN−1

k=0 r 0
µN−k (πk)

πk + r 0
sπN

o

where µ =

(µ1, . . . , µN ) and rs is the terminal reward vector. Then (15)

initialized as V0(π) = r 0
sπ for iterations k = 0, . . . , N − 1

yields the optimal policy sequence µ∗ = (µ∗
1, . . . , µ

∗
N ).

B. Main Result – Myopic Lower Bound

Theorem 10 (Controlled sensing POMDP). Assume (A1),

(A2), (A3) hold. Then Q(π, u) − r 0
uπ is increasing11 in u .

Therefore, the myopic policy µ(π) = argmaxu r 0
uπ forms a

lower bound to the optimal policy in the sense that µ∗(π) ≥

µ(π) for all π ∈ 5(2). Hence, for beliefs π where µ(π) = U,

the optimal policy µ∗(π) coincides with the myopic pol-

icy µ(π). An identical result holds in the finite horizon case

for the policy sequence µk(π), k = 1, . . . , N.

Proof. The value function V (π) is convex in π [10].

Since X = 2, π is completely specified by π(2) = g0π

where g = [0, 1]0. So V (π(2)) = V (g0π) is convex. Assuming

(A1), (A2), (A3), it follows from Theorem 1 that for all

π ∈ 5(2),
X

Yu+1

V (T (π, y, u + 1)) σ (π, y, u + 1)

≥
X

Yu

V (T (π, y, u)) σ (π, y, u) (16)

Equivalently, see (15), Q(π, u +1)− Q(π, u) ≥ r 0
u+1π −r 0

uπ .

Then Lemma 2 in [6] implies12 µ∗(π) ≥ µ(π) for all

π ∈ 5(2). The same argument applies to Vk(π) and µ∗
k(π)

for the finite horizon case with terminal reward.

From a practical point of view, Theorem 10 is useful since

the myopic policy µ is trivial to compute and implement and

gives a guaranteed lower bound to the optimal policy of the

POMDP which is intractable to compute.

11By increasing, we mean non-decreasing.
12Proof: If u∗ = argmaxu r 0

uπ , then (16) implies Q(π, u∗) ≥ Q(π, u)
for u < u∗. This implies µ∗(π) ∈ {u∗, u∗ + 1, . . . , U}. So µ(π) = u∗ H⇒

µ∗(π) ∈ {u∗, u∗ + 1, . . . , U}. If u∗ is not unique, the proof needs more care,
see Lemma 2, [6].

Fig. 1. Controlled Hierarchical Sensing where Blackwell dominance does
not necessarily hold. Level l of the backbone network receives the Markovian

signal xk distorted by the confusion matrix Ml . Polling any specific level has
observation probabilities B; so the conditional probabilities of y at level l

given x is specified by stochastic matrix Ml B .

The main point is that Theorem 10 provides an alternative

to Blackwell dominance for POMDPs which has been widely

studied since the 1980s and also has the same conclusion:

Theorem 11 (Blackwell dominance for Controlled Sens-

ing. [4], [7]). B(u + 1) >B B(u), u = 1, . . . , U − 1 is a

sufficient condition for the conclusion of Theorem 10 to hold.

Blackwell dominance holds for any number of states X .

In comparison Theorem 10 applies only to POMDPs with

2 underlying states. However, there are numerous 2 state

examples where Theorem 10 applies and Blackwell dominance

does not.

C. Examples

1. Theorem 10 applies to all the 2-state examples in Sec.III

where (A1), (A2), (A3) hold. As discussed in Sec.III-A, there

are many examples where Blackwell dominance does not hold,

but integral precision dominance (A2) does hold.

2. In controlled radar sensing problems [31], observations

are obtained at a faster time scale than the state evolution. That

is, for state Xk (e.g., threat level at time k), an observation

vector Yk = (Yk,1, . . . , Yk,1) is obtained where Yk,l and Yk,m

are conditionally independent given Xk . In such cases, under

(A4), convex dominance holds, and then Theorem 10 holds.

However, Blackwell dominance (Theorem 11) does not hold

for this case.

3. Optimal filter vs predictor scheduling is an important

application of controlled sensing. Filtering uses a sensor

with observation matrix B(2) to obtain measurements of

the Markov chain and incurs a measurement cost but a

performance reward. Prediction (no measurement) has non-

informative observation matrix Biy(1) = 1/Y and incurs

no measurement cost but yields a low performance reward.

Clearly B(2) >B B(1). If B(2) satisfies (A1), then (A2)

holds automatically because
P

y≤ j Biy(1) is constant wrt i

(B(1) is non-informative), while (A1) implies
P

y≥l Biy(2) is

increasing wrt i .

4. Controlled Hierarchical Sensing: In controlled sensing

involving hierarchical sensors (such as hierarchical social

networks), level l of the network receives signal xk distorted by

the confusion matrix M l (l-th power of stochastic matrix M),

where l ∈ {0, 1, . . . , U −1}. That is, each level of the network

observes a noisy version of the previous level. Observing

(polling) level l of the network has observation probabilities B

conditional on the noisy message at level l. Therefore the

conditional probabilities of the observation y given the state x

are B(U − l) = M l B(U) where l is the degree of sepa-

ration from the underlying source (state). This is illustrated
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in Figure 1 for U = 3. The controlled sensing POMDP is to

choose which level to poll at each time in order to optimize

an infinite horizon discounted reward. By Theorem 5, B(u)

is more noisy (has lower Shannon capacity) than B(u + 1);

yet Blackwell dominance does not hold due to the reverse

multiplication order. But using integral precision dominance,

Theorem 10 holds (under assumptions).

5. Word-of-Mouth Social Learning: Sensor 2 observes the

Markov state in noise with observation probabilities B(2).

Sensor 1 receives the observations of sensor 1 in noise,

but these probabilities also depend on the underlying

state. Denote these state dependent probabilities

as Mi (l, m)
defn
= P(Y

(1)
k = m|Y

(2)
k = l, Xk = i) . Thus

sensor 1 observation probabilities are

Bim(1) = P(Y
(1)
k = m|Xk = i) =

X

l∈Y

Bil(2)×Mi (l, m) (17)

Such models arise in multi-agent social learning where agents

use observations/decisions of previous agents and also their

own private observations of the state to estimate the underlying

state [8], [32]. Sensor 1 is influenced by the word-of-mouth

message from sensor 2 but interprets (critiques) this message

based on its own observation of the state. The controlled sens-

ing problem involves dynamically choosing between sensor

1 (direct measurement from source) versus sensor 2 (word of

mouth measurement) to optimize the cumulative reward (13).

Even though from (17), B(1) appears more noisy than B(2),

Blackwell dominance does not necessarily hold. Also the

Blackwell dominance proof of convex dominance breaks down

due to the state dependent probabilities Mi (l, m). However,

integral precision dominance does hold in many cases. Here

is one such example:

B(2) =

�
0.7 0.3 0

0.1 0.2 0.7

�

, M1 =





0.9 0.1

0.5667 0.4333

0.2 0.8



 ,

M2 =





0.1 0.9

0.2 0.8

0.2143 0.7857



 , B(1) =

�
0.8 0.2

0.2 0.8

�

It can be verified that (A1), (A2), (A3) and (A4) hold for this

model, and therefore Theorem 1 and Theorem 10 hold.

V. DISCUSSION

This paper developed sufficient conditions for local and

global convex dominance of the conditional mean in Bayesian

estimation (localization and filtering). We used two techniques

that have recently been developed in economics, namely, inte-

gral precision dominance (this yields local convex dominance)

and aggregating the single crossing property (this yields global

convex dominance). The convex dominance results apply to

several examples where Blackwell dominance does not hold.

As an application, we showed how convex dominance can be

used to construct myopic lower bound to the optimal policy

of a controlled sensing POMDP. The recent preprint [33] has

interesting results on Blackwell dominance in large samples

for two state random variables. In comparison the integral

precision dominance used in the current paper yields global

convex dominance for an arbitrary number of states.

Our main result was to give concise sufficient conditions

for global convex dominance in Bayesian localization (and for

local convex dominance in Bayesian filtering). In future work

it is of interest to develop concise sufficient conditions for

global convex dominance of Bayesian filtering; the conditions

in Sec.III-D are difficult to verify. It is also worthwhile

relating integral precision dominance (single crossing con-

dition) to channel capacity. We know that Blackwell domi-

nance B(2) >B B(1) implies that B(2) has higher capacity

that B(1) (Theorem 5). Since both Blackwell dominance

and integral precision dominance imply convex stochastic

dominance, giving sufficient conditions on integral precision

dominance to relate to channel capacity provides useful links

between the MSE of optimal filters, myopic policies of

POMDPs and information theory.

Finally, this paper considered the effect of sensing (obser-

vation kernels) on convex dominance and MSE when the

transition kernels are identical. If the transition kernels are

different for the two observation processes, then the MSE

of the conditional means are meaningless since the state

processes are different. However, one can still establish local

convex dominance of the optimal filter by introducing suitable

conditions on the transition kernel.

APPENDIX A

PROOF OF THEOREM 1

Definition 5. Let π1, π2 denote two univariate pdfs (or pmfs).

Then π1 dominates π2 with respect to the monotone likelihood

ratio (MLR) order, denoted as π1 ≥r π2, if π1(x)π2(x 0) ≤

π2(x)π1(x 0) for x < x 0.

π1 dominates π2 with respect to first order dominance,

denoted as π1 ≥s π2 if
R x

−∞ π1(ξ)dξ ≥
R x

−∞ π2(ξ)dξ

for all x . A function φ : π → IR is said to be MLR

(resp. first order) increasing if π1 ≥r π2 (resp. π1 ≥s π2)

implies φ(π1) ≥ φ(π2).

For finite state space X, when X = 2, ≥r is a complete

order and coincides with ≥s . For X > 2, ≥r H⇒ ≥s and

both ≥r , ≥s are partial orders since it is not always possible

to order any two arbitrary beliefs π ∈ 5(X ).

Proceeding to the proof of Theorem 1, for notational

convenience we present the proof for finite state space. The

proof for the continuous-state space case is virtually identical

and outlined in Sec.A-C. We assume that the state levels

g, associated with the state space X, are ordered so that

g1 < g2 < · · · gX .

First note that the expectations of mu(Y1:k , π0) are

identical for u ∈ {1, 2}, because E{mu(Y1:k, π0)} =

E{Eu{g0x |Y1:k, π0}} = g0
E{x |π0} = g0π0 . Therefore Theo-

rem 1.5.3 in [13] implies convex dominance is equivalent to

increasing convex dominance. Next, by Theorem 1.5.7 in [13],

increasing convex dominance holds iff for λ ∈ IR,

ψ(λ)
defn
=

Z

Y
k
2

[g0T (π, y1:k, 2) − λ]+σ(π, y1:k, 2) dy1:k

−

Z

Y
k
1

[g0T (π, y1:k, 1) − λ]+σ(π, y1:k, 1) dy1:k ≥ 0. (18)

Here we use the notation [x]+ = max(x, 0). The remainder

of the proof focuses on establishing (18).
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Defining Y
k,λ
u = {y1:k : g0T (π, y1:k, u) > λ},

ψ(λ) =

Z

Y
k,λ
2

[g0T (π, y1:k, 2) − λ] σ(π, y1:k, 2) dy1:k

−

Z

Y
k,λ
1

[g0T (π, y1:k, 1) − λ] σ(π, y1:k, 1) dy1:k (19)

= (g − λ1)0
�
Z

Y
k,λ
2

Byk (2) · · · By1(2) dy1:k

−

Z

Y
k,λ
1

Byk (1) · · · By1(1) dy1:k

�
π

= (g − λ1)0
�
F̄2(zk)F̄2(zk−1) · · · F̄2(z1)

− F̄1(z̄k)F̄1(z̄k−1) · · · F̄1(z̄1)
�
π (20)

for some z1, . . . , zk ∈ IR and z̄1, . . . , z̄k ∈ IR which depend

on λ. Here each diagonal matrix

F̄u(zi ) = diag[F̄u(zi |x = 1), . . . , F̄u(zi |x = X )]

where F̄u(zi |x) = 1 − Fu(zi |x) is the complementary cdf.

Equation (20) follows since under (A1), T (π, y1;k, u) is MLR

increasing in each element yn , n = 1, . . . , k. Therefore, the set

Y
k,λ
u = {y1:k : g0T (π, y1:k, u) > λ} = {y1 > z1, . . . , yk > zk}

(21)

for some λ dependent real numbers z1, . . . , zk and hence (20)

involves complementary cdfs.

A. Proof of Theorem 1 When X Is Finite and Y = IR

Theorem 12 (Convex dominance for finite state localization).

Assume (A1), (A2), (A4) and Y = IR. Then the following

global convex dominance holds for all k: m1(Y
(1)
1:k , π0) <cx

m2(Y
(2)
1:k , π0) That is, for any convex function φ : IR → IR,

Z

Y
k
1

φ
(
g0T (π, y1:k, 1)

)
σ(π, y1:k, 1) dy1:k

≤

Z

Y
k
2

φ
(
g0T (π, y1:k, 2)

)
σ(π, y1:k, 2) dy1:k . (22)

Proof.

Since Y = IR, clearly from (19), limλ→−∞ ψ(λ) =

limλ→∞ ψ(λ) = 0. We establish (18) for λ ∈ IR by

showing13 that ψ(λ∗) ≥ 0 at all stationary points λ∗ such

that dψ(λ)/dλ = 0. Defining sgn(x) ∈ {−1, 0, 1} for

x < 0, x = 0, x > 0, respectively, (20) yields

ψ(λ)=

XX

i=1

(g(i)−λ)
| {z }

αi

sgn

� kY

t=1

F̄2(zt |x = i)−

kY

t=1

F̄1(z̄t |x = i)

�

| {z }

βi

×

�
�
�
�

kY

t=1

F̄2(zt |x = i) −

kY

t=1

F̄1(z̄t |x = i)

�
�
�
�
π(i)

| {z }

pi

(23)

13Since ψ(λ) is continuously differentiable (Lemma 13) with
ψ(−∞) = ψ(∞) = 0, clearly if ψ(λ) ≥ 0 at its stationary points
(minima), then ψ(λ) ≥ 0 for all λ ∈ IR.

Let us next evaluate the stationary points of ψ(λ) for

λ ∈ (0, 1).

Lemma 13. ψ(λ) defined in (18) is continuously differen-

tiable wrt λ ∈ (0, 1) with gradient

dψ(λ)

dλ
= −10

�

F̄2(zk)F̄2(zk−1) · · · F̄2(z1)

− F̄1(z̄k)F̄1(z̄k−1) · · · F̄1(z̄1)

�

π (24)

(Proof at the end of this subsection).

Thus the stationary points of ψ(λ) satisfy (using the nota-

tion βi , pi defined in (23))

dψ(λ)

dλ
= 10

�

F̄2(zk)F̄2(zk−1) · · · F̄2(z1)

− F̄1(z̄k)F̄1(z̄k−1) · · · F̄1(z̄1)

�

π =
X

i

βi pi = 0. (25)

So to prove Theorem 12, it only remains to show that ψ(λ)

is non-negative at these stationary points. To establish this we

use the Fortuin-Kasteleyn-Ginibre (FKG) inequality [34] on

(23). In our framework the FKG inequality14 reads: If α, β

are generic increasing vectors and p a generic probability mass

function, then
X

i

αiβi pi ≥
X

i

αi pi

X

j

β j p j . (26)

Clearly in (23):

1) αi = g(i) − λ is increasing since the elements of g are

increasing by assumption;

2) βi is increasing by Theorem 14 below;

3) pi is non-negative and thus proportional to a probability

mass function.

Also from (25),
P

i βi pi = 0. So, applying FKG inequality

to (23) yields ψ(λ) =
P

i αiβi pi ≥ 0. Thus we have

established (18) for Y = IR.

Proof of Lemma 13 Here we prove Lemma 13 that

was used to evaluate the gradient of ψ(λ) in the proof

above. For s ∈ IR, similar to (21) define Y
k,s
u = {y1:k :

g0T (π, y1:k, u) > s}. Start with (18), and use the so

called “integrated survival function” on page 19, [13],

namely, integration by parts yields
R

Yk
u
|g0T (π, y1:k, u) −

λ|+σ(π, y1:k, u) dy1:k =
R ∞

λ

R

Y
k,s
u

σ(π, y1:k, u) dy1:k ds.

Therefore ψ(λ) =
R ∞

λ 10
�R

Y
k,t
2

Byk (2) · · · By1(2) dy1:k −
R

Y
k,t
1

Byk (1) · · · By1(1) dy1:k

�
π dt . Then evaluating dψ(λ)/dλ

yields (24). Finally, (24) implies ψ(λ) is continuously

differentiable because
P

Yλ
u

By(u) is continuous wrt λ

(since By(u) is absolutely continuous wrt Lebesgue measure

by assumption.)

Theorem 14. Under (A2) and (A4),

βi = sgn[

kY

t=1

F̄2(zt |x = i) −

kY

t=1

F̄1(z̄t |x = i)]

14Proof: Since α and β are increasing vectors, therefore (αi −α j )(βi −β j ) ≥

0 for all i, j . This implies the expectation
P

i

P

j
(αi −α j )(βi −β j )pi p j ≥ 0

which immediately yields the inequality (26).
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in (23) is increasing in i . (This property was used to prove

Theorem 12).

Proof. Showing that βi is increasing in i is equivalent to

showing that
Qk

t=1 F̄2(zt |x = i) −
Qk

t=1 F̄1(z̄t |x = i) is

a single crossing function in i . By the ordinal property of

single crossing [20], this in turn is equivalent to showing that

log
Qk

t=1 F̄2(zt |x = i) − log
Qk

t=1 F̄1(z̄t |x = i) is a single

crossing function in i or equivalently,
Pk

t=1[log F̄2(zt |x =

i) − log F̄1(z̄t |x = i)] is single crossing.

(A2) implies that each term log F̄2(zt |x = i)−log F̄1(z̄t |x =

i) is single crossing. So proving βi ↑ i boils down to showing

that the sum of single crossing functions is single crossing.

The paper [3] shows that the signed monotonicity ratio (A4)

is a necessary and sufficient condition for this to hold.

B. Proof of Theorem 1 When X Is Finite and Yu Has Finite

Support or Yu Is Finite

The following result is required for establishing our main

result when Yu is either finite or has finite support; see

Case 1 and Case 2 of proof of Theorem 12 below. It is here

that (A3) is the crucial assumption.

Theorem 15 (Finite support observation distributions). Sup-

pose Yu = [au, bu], u ∈ {1, 2}. Assume (A1), (A3). Then

{g0T (π, y, 1), y ∈ Y1} ⊆ {g0T (π, y, 2), y ∈ Y2}

Thus, defining Y
λ
u = {y : g0T (π, y, u) > λ} and Ȳ

λ
u = {y :

g0T (π, y, u) ≤ λ}, it follows that Y
λ
2 = ∅, Y

λ
1 6= ∅ and

Ȳ
λ
2 = ∅, Ȳ

λ
1 6= ∅ are impossible,

Proof. Since T (π, y, u) is MLR increasing wrt y under (A1),

it suffices to show that

g0T (π, a2, 2) ≤ g0T (π, a1, 1), and

g0T (π, b2, 2) ≥ g0T (π, b1, 1) (27)

The first inequality in (27) is equivalent to
PX

i=1

PX
j=1 gi

(
Bi1(2)B j1(1) − Bi1(1)B j1(2)

)
π(i)π( j) ≤ 0.

So (A3) is a sufficient condition for the inequality to hold. A

similar proof holds for the second inequality in (27).

Case 1. Yu = [au, bu]: Next we prove (18) for the

finite support case where Yu is the interval [au, bu]. The key

difference compared to the case Y = IR is due to the possible

discontinuity of the conditional probability densities Biy(u) at

the end points au and bu . Without appropriate assumptions,

ψ(λ) defined in (18) can become negative in two ways:

(i) If Y
λ
2 = ∅ and Y

λ
1 is non-empty (ii) Ȳ

λ
2 = ∅ and Ȳ

λ
1

is non-empty. Assumption (A3), see Theorem 15, ensures that

these two cases do not occur.

To prove ψ(λ) ≥ 0 for λ ∈ [0, 1], boundary conditions need

to be handled. Define λa, λb, λc, λd as

λa = sup{λ : Ȳ
λ
1 = ∅, Ȳ

λ
2 = ∅}

λb = sup{λ : Ȳ
λ
1 = ∅, Ȳ

λ
2 6= ∅};

λc = inf{λ : Y
λ
1 6= ∅, Y

λ
2 = ∅};

λd = inf{λ : Y
λ
1 = ∅, Y

λ
2 = ∅}. (28)

Clearly, λa ≤ λb ≤ λc ≤ λd since g0T (π, y, u) is

increasing in y by (A1) and Y
λ
u ⊆ Y

λ̄
u for λ < λ̄. We now

consider λ ∈ [0, 1] split into the following 5 sub-cases and

show that ψ(λ) ≥ 0 for each sub-case:

Case 1a. λ ∈ [0, λa] ⇐⇒ Ȳ
λ
1 = ∅, Ȳ

λ
2 = ∅

Case 1b. λ ∈ (λa, λb] ⇐⇒ Ȳ
λ
1 = ∅, Ȳ

λ
2 6= ∅

Case 1c. λ ∈ (λb, λc] ⇐⇒ Ȳ
λ
1 6= ∅, Ȳ

λ
2 6= ∅

Case 1d. λ ∈ (λc, λd ] ⇐⇒ Y
λ
1 = ∅, Y

λ
2 6= ∅

Case 1e. λ ∈ (λd , 1] ⇐⇒ Y
λ
1 = ∅, Y

λ
2 = ∅. (29)

Note that (19) implies ψ(λ) = 0 for Case 1a and Case 1e.

For Case 1b, re-expressing Ȳ
λ
2 = {y : −(g − λ1)0

By(2)P 0π > 0}, (20) implies that ψ(λ) ≥ 0. Equivalently, (24)

implies dψ(λ)/dλ > 0; since ψ(λa) = 0, therefore ψ(λ) ≥ 0

for λ ∈ (λa, λb]. For Case 1d, it follows immediately from

(18) that ψ(λ) ≥ 0. Equivalently, (24) implies dψ(λ)/dλ < 0;

since ψ(λd ) = 0, therefore ψ(λ) ≥ 0 for λ ∈ (λc, λd ).

Finally, for Case 1c, since both Y
λ
1 and Y

λ
2 are non-empty,

the single crossing condition (A2) kicks in and an identical

argument as the case Y = IR applies. Indeed, ψ(λb) ≥ 0,

ψ(λc) ≥ 0, and ψ(λ) is differentiable for λ ∈ (λb, λc); so

ψ(λ) ≥ 0 for λ ∈ (λb, λc) because ψ(λ∗) ≥ 0 at each

stationary point λ∗ ∈ (λb, λc).

Remark: The case Y = IR (Theorem 12) can be viewed as

a special instance of (29) with λa = λb = 0, and λc = λd = 1

(but to enhance clarity we described it before Case 1). The

main point when Y = IR is that Y
λ
1, Y

λ
2 are never empty

for λ ∈ (0, 1) and therefore only Case 1c occurs.

Case 2. Yu is finite: Finally, we prove (18) for the

case Yu = {1, 2, . . . ,Yu}. Construct the piecewise constant

probability density function Oio(u) = Biy(u) for o ∈ [y, y+1)

and y ∈ {1, 2, . . . ,Yu}. It is easily verified that T (π, o, u) =

T (π, y, u), σ(π, o, u) = σ(π, y, u), and the value function

and optimal policy remain unchanged. Then the above proof

for Case 1 (finite support) applies.

Remark. To emphasize the importance of sufficient condi-

tion (A3), the following examples show that (A3) is in some

sense necessary; when it fails to hold, then ψ(λ) < 0 for some

interval of λ and convex dominance does not hold. Consider

X = 3,Y = 3, π =
�
0.2 0.3 0.5

�0
, g = [0, 0, 1]0.

Example 1. P =





0.9 0.1 0.1

0.1 0.8 0.1

0 0.1 0.9



, B(1) =





0.7 0.2 0.1

0.1 0.3 0.6

0 0.1 0.9



, B(2) =





0.8 0.1 0.1

0.2 0.2 0.6

0.05 0.05 0.9



.

Then φ(λ) < 0 for λ ∈ (0, 0.26]. This example violates

Case 1b.

Example 2. P =





0.9 0.1 0.1

0.1 0.8 0.1

0 0.1 0.9



, B(1) =





0.8 0.2 0

0.1 0.8 0.1

0 0.2 0.8



, B(2) =





0.8 0.1 0.1

0.1 0.3 0.6

0 0.1 0.9



. Then ψ(λ) < 0

for λ ∈ [0.25, 0.93]. This example violates Case 1d.
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C. Proof of Theorem 1 When X = IR and Y = IR

In complete analogy to (18) convex dominance holds if

for λ ∈ IR,

ψ(λ)
defn
=

Z

y∈Y
k
2

[m2(y1:k, π0) − λ]+σ(π, y1:k, 2)

−

Z

y∈Y
k
1

[m1(y1:k, π0) − λ]+σ(π, y1:k, 1) ≥ 0. (30)

where

mu(y1:k, π0)=hx, T (π0, y1:k, u)i
defn
=

Z

X

x T (π0, y1:k, u)(x) dx

Defining Y
k,λ
u = {y1:k : hx, T (π, y1:k, u)i > λ},

ψ(λ) =

Z

Y
k,λ
2

[hx, T (π, y1:k, 2)i − λ] σ(π, y1:k, 2)

−

Z

Y
k,λ
1

[hx, T (π, y1:k, 1)i − λ] σ(π, y1:k, 1)

=
�
(x − λ1),

�
F̄2(zk)F̄2(zk−1) · · · F̄2(z1)

− F̄1(z̄k)F̄1(z̄k−1) · · · F̄1(z̄1)
�
π

�

for some z1, . . . , zk ∈ IR and z̄1, . . . , z̄k ∈ IR which depend

on λ.

In complete analogy to Lemma 13, ψ(λ) = 0 for λ → −∞

and λ = ∞ and ψ(λ) is continuously differentiable wrt λ ∈ IR

with gradient

dψ(λ)

dλ
= −

�
1,

�
F̄2(zk)F̄2(zk−1) · · · F̄2(z1)

− F̄1(z̄k)F̄1(z̄k−1) · · · F̄1(z̄1)
�
π

�
(31)

The remainder of the proof is similar to that of Theorem 12.

REFERENCES

[1] J.-J. Ganuza and J. S. Penalva, “Signal orderings based on dispersion and
the supply of private information in auctions,” Econometrica, vol. 78,
no. 3, pp. 1007–1030, May 2010.

[2] S. Athey and J. Levin, “The value of information in monotone decision
problems,” Res. Econ., vol. 72, pp. 101–116, Mar. 2018.

[3] J. K.-H. Quah and B. Strulovici, “Aggregating the single crossing
property,” Econometrica, vol. 80, no. 5, pp. 2333–2348, Sep. 2012.

[4] C. C. White and D. P. Harrington, “Application of Jensen’s inequality
to adaptive suboptimal design,” J. Optim. Theory Appl., vol. 32, no. 1,
pp. 89–99, Sep. 1980.

[5] U. Rieder and R. Zagst, “Monotonicity and bounds for convex stochastic
control models,” Z. Oper. Res., vol. 39, no. 2, pp. 187–207, Jun. 1994.

[6] W. S. Lovejoy, “Some monotonicity results for partially observed
Markov decision processes,” Oper. Res., vol. 35, no. 5, pp. 736–743,
Sep./Oct. 1987.

[7] U. Rieder, “Structural results for partially observed control models,”
Z. Oper. Res., vol. 35, no. 6, pp. 473–490, Nov. 1991.

[8] V. Krishnamurthy, “Quickest detection POMDPs with social learning:
Interaction of local and global decision makers,” IEEE Trans. Inf.

Theory, vol. 58, no. 8, pp. 5563–5587, Aug. 2012.
[9] V. Krishnamurthy and U. Pareek, “Myopic bounds for optimal policy

of POMDPs: An extension of Lovejoy’s structural results,” Oper. Res.,
vol. 62, no. 2, pp. 428–434, 2015.

[10] V. Krishnamurthy, Partially Observed Markov Decision Processes: From

Filtering to Controlled Sensing. Cambridge, U.K.: Cambridge Univ.
Press, 2016.

[11] M. Denuit, “Positive dependence of signals,” J. Appl. Probab., vol. 47,
no. 3, pp. 893–897, Sep. 2010.

[12] T. Mizuno, “A relation between positive dependence of signal and the
variability of conditional expectation given signal,” J. Appl. Probab.,
vol. 43, no. 4, pp. 1181–1185, Dec. 2006.

[13] A. Muller and D. Stoyan, Comparison Methods for Stochastic Models

and Risks. Hoboken, NJ, USA: Wiley, 2002.
[14] M. Shaked and J. G. Shanthikumar, Stochastic Orders. New York, NY,

USA: Springer-Verlag, 2007.
[15] S. Nitinawarat, G. K. Atia, and V. V. Veeravalli, “Controlled sensing for

multihypothesis testing,” IEEE Trans. Autom. Control, vol. 58, no. 10,
pp. 2451–2464, Oct. 2013.

[16] D. Blackwell, “Equivalent comparisons of experiments,” Ann. Math.

Statist., vol. 24, no. 2, pp. 265–272, Jun. 1953.
[17] M. Raginsky, “Shannon meets Blackwell and Le Cam: Channels, codes,

and statistical experiments,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jul./Aug. 2011, pp. 1220–1224.

[18] M. Raginsky, “Channel polarization and Blackwell measures,” in Proc.

IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2016, pp. 56–60.
[19] P. A. Stavrou, T. Charalambous, and C. D. Charalambous, “Finite-

time nonanticipative rate distortion function for time-varying scalar-
valued Gauss-Markov sources,” IEEE Control Syst. Lett., vol. 2, no. 1,
pp. 175–180, Jan. 2018.

[20] R. Amir, “Supermodularity and complementarity in economics: An
elementary survey,” Southern Econ. J., vol. 71, no. 3, pp. 636–660,
Jan. 2005.

[21] S. Karlin and Y. Rinott, “Classes of orderings of measures and related
correlation inequalities. I. Multivariate totally positive distributions,”
J. Multivariate Anal., vol. 10, no. 4, pp. 467–498, Dec. 1980.

[22] C.-K. Chi, “The value of information and dispersion,” Ph.D. dissertation,
Univ. Wisconsin-Madison, Madison, WI, USA, 2014.

[23] E. L. Lehmann, “Comparing location experiments,” Ann. Statist., vol. 16,
no. 2, pp. 521–533, 1988.

[24] I. Jewitt, “Information order in decision and agency problems,” Nuffield
College, Oxford, U.K., Tech. Rep., 2007.

[25] C. E. Shannon, “A note on a partial ordering for communication
channels,” Inf. Control, vol. 1, no. 4, pp. 390–397, Dec. 1958.

[26] T. M. Cover and J. A. Thomas, Elements of Information Theory.
Hoboken, NJ, USA: Wiley, 2006.

[27] M. Bagnoli and T. Bergstrom, “Log-concave probability and its appli-
cations,” Econ. Theory, vol. 26, no. 2, pp. 445–469, 2005.

[28] M. Shaked, “Dispersive ordering of distributions,” J. Appl. Probab.,
vol. 19, no. 2, pp. 310–320, Jun. 1982.

[29] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social
network or a news media?” in Proc. 19th Int. Conf. World Wide Web,
2010, pp. 591–600.

[30] E. J. Sondik, “The optimal control of partially observed Markov
processes,” Ph.D. dissertation, Dept. Elect. Eng., Stanford Univ., Stan-
ford, CA, USA, S1971.

[31] V. Krishnamurthy and D. Djonin, “Structured threshold policies for
dynamic sensor scheduling—A partially observed Markov decision
process approach,” IEEE Trans. Signal Process., vol. 55, no. 10,
pp. 4938–4957, Oct. 2007.

[32] C. Chamley, Rational Herds: Economic Models of Social Learning.
Cambridge, U.K.: Cambridge Univ. Press, 2004.

[33] X. Mu, L. Pomatto, P. Strack, and O. Tamuz, “Blackwell domi-
nance in large samples,” 2019, arXiv:1906.02838. [Online]. Available:
https://arxiv.org/abs/1906.02838

[34] C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre, “Correlation inequalities
on some partially ordered sets,” Commun. Math. Phys., vol. 22, no. 2,
pp. 89–103, 1971.

Vikram Krishnamurthy (F’05) received the Ph.D. degree from the Australian
National University in 1992. He is currently a professor in the School of
Electrical & Computer Engineering, Cornell University. From 2002-2016 he
was a Professor and Canada Research Chair at the University of British
Columbia, Canada. His research interests include statistical signal processing
and stochastic control in social networks and adaptive sensing. He served as
Distinguished Lecturer for the IEEE Signal Processing Society and Editor-in-
Chief of the IEEE JOURNAL ON SELECTED TOPICS IN SIGNAL PROCESSING.
In 2013, he was awarded an Honorary Doctorate from KTH (Royal Institute of
Technology), Sweden. He is author of the books Partially Observed Markov

Decision Processes and Dynamics of Engineered Artificial Membranes and

Biosensors published by Cambridge University Press in 2016 and 2018,
respectively.

Authorized licensed use limited to: Cornell University Library. Downloaded on June 02,2020 at 08:42:57 UTC from IEEE Xplore.  Restrictions apply. 


