IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 5, MAY 2020

3187

Convex Stochastic Dominance in Bayesian
Localization, Filtering, and Controlled
Sensing POMDPs

Vikram Krishnamurthy™, Fellow, IEEE

Abstract—This paper provides conditions on the observation
probability distribution in Bayesian localization and optimal
filtering so that the conditional mean estimate satisfies convex sto-
chastic dominance. Convex dominance allows us to compare the
unconditional mean square error between two optimal Bayesian
state estimators over arbitrary time horizons instead of using
brute force Monte-Carlo computations. The proof uses two key
ideas from microeconomics, namely, integral precision dominance
and aggregation of single crossing. The convex dominance result
is then used to give sufficient conditions so that the optimal
policy of a controlled sensing two-state partially observed Markov
decision process (POMDP) is lower bounded by a myopic policy.
Numerical examples are presented where the Shannon capacity
of the observation distribution using one sensor dominates that of
another, and convex dominance holds but Blackwell dominance
does not hold. These illustrate the usefulness of the main result
in localization, filtering and controlled sensing applications.

Index Terms— Convex dominance, mean squared error, inte-
gral precision, aggregation of single crossing, Bayesian localiza-
tion, optimal filtering, hidden Markov model filtering, POMDP,
controlled sensing, Blackwell dominance.

I. INTRODUCTION

ONSIDER the following Bayesian localization problem:

an underlying random variable X € IR with prior g is
observed via the discrete time noisy observation process {Yx}
where each observation Yj; has conditional cumulative distri-
bution function (cdf) F(y|x). (We use upper case for random
variables and lower case for realizations.) Bayesian localiza-
tion is concerned with recursively computing the posterior
distribution 7y = p(x|y1x), k = 1,2,... of the state x
given observation sample path sequence yix = (y1,..., Vk)
and prior 7o. The posterior distribution 7y is then used to
compute the conditional mean estimate of the state X given k
observations as

m()’l:k,ﬂ'o):/mxn'k(x)dx
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where we have indicated the explicit dependence on the
prior .

Let Y7 denote the sequence of observation random vari-
ables (Yi,...,Yx). A natural question is: how accurate is
the conditional mean state estimate m (Y, p)? Clearly
m (Y1, o) is the minimum mean square error estimate (more
generally it minimizes a Bregman loss), i.e., for all priors 7,

MSE{m (Y14, 70)} = argmin E{ (X — g(Y1, 70))’}
8

over the class of all Borel functions g. But unfortunately, apart
from the well known linear Gaussian case, ! MSE{m (Y1, 7o)}
can only be estimated® via Monte-Carlo simulations. Thus for
general state space models, there is strong motivation to derive
analytical results that compare MSE{m (Y.x, 7o)} for different
observation models. Specifically consider two sensors, where
sensor 1 records observation random variables Yk(l) of state X
with conditional distribution Fj(y|x), k = 1,2, ... and sensor
2 records observation random variables Yk(z) of X with condi-
tional distribution F»(y|x), kK = 1,2, .... Then which sensor
yields a smaller MSE for the conditional mean estimate at
time k?

In this paper, we give sufficient conditions on the
observation probabilities so that the conditional mean esti-
mate m (Y 1(:1k , o) of sensor 1 is convex stochastic dominated
by the estimate mz(Yl(:zk) , o) of sensor 2. Informally, our main
result is:

Theorem A. (Informal) Consider two sensor observation
models with the observation process {Yk(l)} and {Yk(z)}
generated by cdfs Fy(y|x) and F>(y|x), respectively. Sup-
pose Fi(y|x), Fa(y|x) satisfy a single crossing and signed-
ratio monotonicity condition (defined in Sec.Il-B). Then
convex Sstochastic dominance holds for the conditional
mean.: ml(Yl(:lk),no) <ex mz(Yl(:zk),no), i.e., for any convex
function ¢ : IR — IR and prior =y,

Ei{gp(m1 (Y, 70))} < Ealgp(ma(Y\3, 7o)},

for all time k (1)

n the linear Gaussian case, the MSE is computed by the Kalman filter
covariance update (Riccati equation) which is completely determined by the
model parameters.

2Computing the conditional MSE{m (y1.x), 7o} based on a specific obser-
vation sample path yj.; is straightforward in terms of the posterior 7y but not
useful since it only holds for the specific sample path y;.;. We are interested
in characterizing its expectation, i.e., the unconditional MSE.
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Here &, denotes expectation wrt the joint distribution of Yl(i).

Therefore,’ MSE{ml(Yl(:lk), o)} > MSE{mz(Yl(:zk), 7o)} for all
time k.

Theorem A says that localization using sensor 2 is always
more accurate than using sensor 1 for any prior 7o and this
holds globally for all time k. To the best of our knowl-
edge this result is new. Convex stochastic dominance (1)
in a Bayesian framework has been studied extensively in
economics under the area of integral precision dominance,
see [1], [2]. Theorem A asserts convex dominance of the
conditional mean m,, (Y 1(:';() , o) for all k, i.e., a global property.
The proof involves combining two powerful results introduced
recently in economics: integral precision dominance (which
ensures that Theorem A holds for k = 1) and signed ratio
monotonicity [3] (which makes Theorem A hold globally for
all k). The usefulness of Theorem A stems from the fact
that checking (1) numerically is impossible since it involves
checking over a continuum of priors and evaluating intractable
multidimensional integrals for the expected value.

The intuition behind (1) is that of integral precision: if
the observation is noisy, then the posterior is concentrated
around the prior while if the observation is more informative,
then the posterior is more dispersed from the prior (large
variance). This in turn implies that the noisy observation incurs
a larger MSE. In this paper, we show that Theorem A holds
if X € IR (scalar valued) or finite state. Intuitively, if sensor
1 has a higher noise variance than sensor 2, then (1) holds -
we will interpret this in terms of stochastic dispersion domi-
nance in Sec.III-B. But there are many other interesting cases
where (1) holds; the case with finite observation alphabets
is particularly interesting, since there is no noise variance
interpretation in that case (the interpretation is in terms of
Shannon capacity). The single crossing assumption and signed
monotonicity condition in Theorem A are straightforward to
check compared to the well known Blackwell dominance
[4], [5] (see Definition 4) which requires factorization of
probability measures; and they hold in several new examples
where Blackwell dominance does not. For example, Blackwell
dominance does not, in general, hold globally for all k; due
to lack of commutativity of matrix multiplication.

Applications in optimal filtering and controlled sensing.
Since Theorem A applies to any convex function, it has more
applications than just characterizing the mean square error of
Bayesian localization.

As a first application, we will show that convex dominance
applies to the one-step optimal (Bayesian) filtering update in a
two-time scale model. That is, consider a Markov process { X}
which evolves over the slow time scale k with transition
kernel Xr+1 ~ p(xk+1lxk), and is observed in noise via the
observation process { Y} at a fast time scale. So at each time &,
we obtain multiple fast time scale observations denoted as the
vector Yx = (Yk.1,..., Yk o) for some integer A > 1 where
each component Yy ; ~ F,(-|xx) is conditionally independent

3Note MSE{m (Y14, 70)} = B{X?%} — E{m2(Y}.x, m0)}. So clearly (1) with
¢(m) = m? implies MSE{m1 (Y1.x, 70)} = MSE{m(Y1., 70)}.
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of Yim. Then one step of the optimal filter updates the
posterior distribution 7x = p(xg|y1:k) given mwr—1. Then the
conditional mean is determined by y; and zx_; and denoted
as m(YVe, 15 - -+ » Yk, A» Th—1).

Theorem B. (Optimal Filtering). Under the conditions of
Theorem A, convex dominance holds for the conditional mean
for one step of the optimal filter. That is, for any convex
function = : IR — IR and any prior mwi—1,

Ei{g(mi(Ye1, ..., Yia, me—1))}

<E{p(ma(Yi,1,...,Yea,mi—1))} forall Ao (2)

Therefore MSE{m1(Y\}), 7x_1)} = MSE{m2 (Y2, m1_1)}.

Thus the optimal filter with sensor 2 is always more accurate
than sensor 1. Similar to the discussion for Theorem A,
Theorem B is useful since in general, exact computation
of the expectations is impossible (apart from the linear
Gaussian case involving the Kalman filter). The classical
way of establishing (2) is Blackwell dominance. The main
point is that Theorem B covers several cases where Black-
well dominance does not hold (even for A = 1). More-
over, for A > 2, in general Blackwell dominance will not
hold.

As a second application, we will show that Theorem B is
a crucial step in constructing myopic bounds for the optimal
policy of controlled sensing partially observed Markov deci-
sion processes (POMDPs). In controlled sensing POMDPs,
the observation probabilities (which model an adaptive sen-
sor) are controlled whereas the transition probabilities (which
model the Markov signal being observed by the sensor) are not
controlled. Controlled sensing arises in reconfigurable sensing
resource allocation problems (how can a sensor reconfigure its
behavior in real time), cognitive radio, adaptive radars and
optimal search problems. For such problems, the value func-
tion arising from stochastic dynamic programming is convex
but not known in closed form; nevertheless Theorem B applies.
By using Theorem B, the following useful structural result will
be established

Theorem C. (Controlled Sensing POMDP) For a 2-state
Markov chain {Xy}, under suitable conditions on the obser-
vation distributions, the optimal controlled sensing policy is
lower bounded by a myopic policy.

The motivation for Theorem C is two-fold. First, since in
general solving a POMDP for the optimal policy is compu-
tationally intractable, there is substantial motivation to derive
structural results that bound the optimal policy; see [6]-[10]
for an extensive discussion of POMDP structural results and
construction of myopic bounds. Second, the myopic bounds
we propose are straightforward to compute and implement and
can be used as an initialization for more sophisticated sub-
optimal algorithms. Existing works [7], [10] in constructing
myopic lower bounds to the optimal policy use Blackwell
dominance of probability measures. Theorem C includes sev-
eral classes of POMDPs where Blackwell dominance does not
hold.
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Limitations. Our results have two limitations. First, for
continuous-state problems, we require a scalar state (x € IR).
This is essential for convex dominance; multivariate con-
vex dominance is an open area. Actually, for finite states
(Hidden Markov Model localization and filter) this is not a
limitation since a multivariate finite state is straightforwardly
mapped to a scalar finite state. Second, while we show
global convex dominance for localization (Theorem A), for
optimal filtering we can only show one-step convex dominance
(Theorem B). Note however, Theorem B does hold for the
two-time scale problem where the state remains fixed for
multiple observations. We emphasize that for the POMDP
controlled sensing application, neither of these are limita-
tions, since stochastic dynamic programming relies only on
the one-step filtering update. Also, despite these limitations,
the sufficient conditions given cover numerous new examples
where the only competing methodology (Blackwell domi-
nance) does not hold. Finally, using the ingenious proof
of [11], it is possible to give global convex dominance
results for the optimal filter; but the corresponding sufficient
conditions involve strong conditions and are complicated to
check (albeit still finite dimensional); see Sec.III-D for a
discussion.

Related Works. As mentioned above, Integral Precision
dominance which refers to convex dominance of conditional
expectations, has been studied in [1]. The single crossing
condition proposed in [12] is a sufficient condition for integral
precision dominance (for continuous-valued random variables
observed in noise). Our main result, namely Theorem 1, gen-
eralizes this to hold for an arbitrary sequence of observations
- this requires generalizing the single crossing condition of
the observation probabilities in [12] to aggregating the single
crossing condition [3] and dealing with boundary conditions
when the observation distribution has finite support. For a
textbook treatment of convex dominance and stochastic orders
in general, see [13], [14].

Regarding controlled sensing POMDPs, [4], [5], [7], [10]
used convexity of the value function together with Blackwell
dominance to construct a myopic lower bound. Reference [15]
considers controlled sensing with hypothesis testing.

As mentioned earlier, Blackwell dominance [4], [5], [16]
requires factorization of probability measures; and does not,
in general, hold globally for all k; due to lack of commutativity
of matrix multiplication. We refer the reader to [17], [18]
for an excellent recent discussion on Blackwell dominance
in an information theoretic setting. Finally, there are other
approaches for quantifying the MSE in estimation; [19] uses
an interesting approach involving finite time anticipative rate
distortion.

Organization. Sec.II formulates the localization and filtering
models, key assumptions, and main theorem (Theorem 1) on
convex dominance of the conditional mean. Sec.III discusses
important examples where Theorem 1 applies including dis-
crete memoryless channels, additive noise with log-concave
density and power law density. Sec.IV shows how local convex
dominance of the optimal filter can be used to construct a
myopic lower bound for the optimal policy of a controlled
sensing POMDP.

3189

II. CONVEX DOMINANCE FOR BAYESIAN
LOCALIZATION AND FILTERING

In this section we formulate the Bayesian estimation (local-
ization and filtering problems), and then present our main
result on convex dominance of the conditional mean estimate,
namely, Theorem 1. The various assumptions required for
Theorem 1 to hold are then discussed. Regarding notation,
we use uppercase for random variables and lower case for
realizations. The superscript ' denotes transpose.

A. Bayesian Localization and Filtering Models

For notational simplicity, we first formulate the filtering
problem with finite underlying state space X. Then we for-
mulate the continuous state filtering with state space on IR.
In either case, choosing the transition probability (density)
as identity (Dirac mass) for the underlying Markov process
results in the Bayesian localization problem.

Model 1. Finite State Estimation. Consider a discrete time
Markov chain {X;} with finite state space X = {1,2,..., X},
initial probability vector 7o = [P(Xg = 1),...,P(Xo = X)]
and transition matrix P = [Py 4. Pj = P(Xip1 =
Jj|IXx = 1i). The Markov chain is observed in noise by
sensor u#. We consider two sensors u € {1, 2} which generate
the corresponding observation process {Yk(")}, k=1,2,...
Here Yk(”) lies in observation space Y, and has conditional
distribution F, (-|xg), i.e., Yk(”) is conditionally independent
of Yn(”), n < k. We consider three types of observation
spaces Y,: either Y, is a finite set of action dependent
alphabets, Y, = {1,2,..., 0}, u € U; or Y, = IR;
or Y, = [ay,by], i.e., finite support for u € {1,2}. Let
Mx) = {n 7)€ 0,11, %, 7() = 1} denote the unit
simplex of X-dimensional probability vectors.

Definition 1.A (Finite State Filtering and Localization).
Assume P, F,(-|x), 7o are known. Given an observation
sequence yix = (1,...,Yk) from sensor u, the aim of
filtering is to estimate the Markov state Xy, k = 1,2,...,
by computing the posterior probability mass function y =
[P(Xx = Lyrx, u), ..., P(Xk = X|y1x, u)]" € I(X) recur-
sively over time k. Localization refers to the special case with
transition matrix P = I (identity matrix), and the aim is to
estimate the random variable X by computing the posterior
T = [P(Xo = lly1s, u), ..., P(Xo = X|y1x, u)] € T(X)
recursively over time k.

The solution to the filtering problem is as follows: Starting
with initial distribution 7¢p = [P(Xg = 1),...,P(Xg = X)] €
I1(X), the posterior using sensor # is computed recursively
using the classical hidden Markov model (HMM) state filter
as
By(u) P'n
wx = T (wk—1, Yk, u), where T (z,y,u) = ————,
o (m,y,u)

o (m,y,u) =1yBy(u)P =,
By (u) = diag{B1,y(u), -+, Bx,y(u)}. 3)

Here 1y represents a X-dimensional vector of ones. When
the observation space Y, of sensor u is a finite set,
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Byy(u) = P(Ykr1 = y[Xk41 = x,uxp = u), y € Y,
denotes the observation probabilities for sensor u. When Y,
is continuum, we assume that the conditional distribution
F,(y|x) is absolutely continuous wrt the Lebesgue measure
and so the controlled conditional probability density function
Byy(u) = p(Ypy1 = yIXgy1 = x,ur = u) exists. We
assume for each y, B;jy(u) # O for at least one state i;
otherwise o (7, y,u) = 0 and T'(x, y, u) are not well defined.

The notation in (3) specifies the filtering/localization update
for a single observation y;. Given a sequence of observa-
tions y;.x = (y1, ..., yx) and prior 7o, we denote the resulting
computation of the posterior 7y as T (7q, yi:k, #) with normal-
ization term o (o, y14, u). Let g = [g(1), ..., g(X)] denote
the physical state levels associated with the states 1,..., X,
respectively. Then, for sensor u, the conditional mean estimate
of the state is defined as the Yl(f;() measurable random variable

defi
Y, 70) ‘L By {g(X0) 1YY, 7o) = &' T(mo, Y, w).

“)

my(

Finally, for sensors u € {1, 2}, the mean square error (MSE)
of the conditional mean given prior 7y is

— ma (V{4 70))*)
= E{g*(Xx)} — /Yk (mu(ylck,ﬂo))zﬂ(ﬂo,yuk,u) dyi:k

(5)

MSE{m, (Y%, m0)} = E{(2(Xx)

where fYk denotes the k-dimensional integral over
Yy x --- quu.

Given the complicated nature of (4) and (5), evaluat-
ing the MSE analytically for all priors 7o is impossible,
even when the observation space Y, is finite. The MSE
is computed by Monte-Carlo simulation by averaging over
a large number of sample paths y;x. Our main result
below gives an analytical characterization for any convex
function: glven two sensors u € {l1,2}, with observation
processes {Yk } {Yk } where observation YV ~ Fj(-|x)
and Y@ ~ F»(-|x) respectively, we give sufﬁc1ent conditions
so that MSE{m;(Y\}), 70)} > MSE{ma(Y%, 70)} for all
priors 7.

Model 2. Continuous State Estimation: Here we assume a
continuous state Markov process {X;} with space X = IR,
initial distribution P(Xg € §), and transition distribu-
tion P(Xy4+1 € S|xx) for any Borel set § C IR. We assume
absolute continuity wrt Lebesgue measure so that the initial
density 7o(x) = p(Xo = x) and transition density p(xjt1|xx)
exists. The Markov process is observed by noise sensor u.
For each sensor u € {1, 2}, we assume the observation space
is Y, = IR. The observations are generated with conditional
cdf F,(y|x) with support on IR. We assume F,(y|x) is
absolutely continuous wrt the Lebesgue measure and so the
controlled conditional pdf Byy(u) = p(Yiy1 = yIXit1 =
X, Uk = U) exists.

Definition 1.B (Continuous State Filtering and Localization).
Assume p(xpi1lxx), Fu(v|x), o are known. Identical to Def-
inition 1.A except that posterior wy = p(Xp = x|y, ) is
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now a probability density function. In the localization problem,
the transition density p(x|x) = é(x — x) is a Dirac mass.

The solution of the filtering problem is as follows: Starting
with initial density mo(x), the posterior state density for
sensor u is computed recursively using the optimal filter
(Bayesian recursion)

T (zp—1, yk, u)(x),
Byy(u) f]R px|xX)m (x)dx
o(m,y,u)

o, you) = /]R /]R Biy () p(¢ 9y (P)dide. ©)

mr(x) =

where T (7, y, u)(x) =

>

The conditional mean estimate mu(Yl(f;{), 7o) of the state X
and associated MSE for sensor u € {1, 2} are given by

m“(Yl(:L;c)’n'O) E, {Xk|Y1k,7TO} Z/]Rxnk(x)dx,
MSE{m, (Y4, 7o)} = B{(X — m, (v, z0))*}  (7)

Apart from the case where the densities p(xxy|xr), Fy(y|x)
and 7y are Gaussian,* 7; in (6) does not have a finite
dimensional statistic and can only be computed approximately
(using, for example, sequential Markov-chain Monte-Carlo
methods). It is impossible to evaluate the MSE analytically
over the continuum of priors 7z(; thus there is strong motivation
to give sufficient conditions that yield convex dominance
and therefore an ordering of the MSE between two sensor
models u =1 and u = 2.

Remark. Two time scale filtering: In Sec.I we discussed a
two time scale system where the state process {Xy} evolved
on a slow time scale k and observations {Y;} are recorded
on a fast time scale. That is, at each time k corresponding to
state Xy, we obtain A fast time scale observations represented
by the vector Yy = (Y 1, ..., Yk a) for some integer A where
each component Yy ; ~ F, (-]xx) is conditionally independent
of ij . Then the filtering recursions (3) and (6) apply with

Biy(u) = T, By (u).

B. Assumptions and Main Result

We are now ready to state our main results. The key
condition we will use is that of single crossing.

Definition 2 (Single Crossing [20]). A function ¢ : X — IR
is single crossing, denoted as ¢(x) € SC in x € X, if

d(x) >0 = ¢(x') >0 when x' > x, and $(x’) <0
= ¢(x) <0 whenx' >x (8)

In words, ¢ (x) crosses zero at most once from negative to
positive as x increases. (Note that in our case X is a totally
ordered set; actually the single crossing definition applies more
generally to partially ordered sets.)

4In the Gaussian case, posterior 7y is Gaussian and its mean and variance
are computed via the Kalman filter.
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1) Assumptions: The following are our main assumptions;
recall By, (u) is the conditional observation pdf, F;, (y|x) is the
conditional observation cdf and F,, (y|x) is the complementary
conditional cdf for sensor u € {1, 2}:

(A1) [TP2 observation probabilities] The observation proba-
bility kernel (matrix) B(u) is totally positive of order 2
(TP2). >

(A2) [Single Crossing Condition] For any y € Y, y € Yo,

F1(y|x)—F>(y|x) € SCin x € X. Equivalently, in terms

of complementary cdfs, F>(y|x) — Fi(¥|x) € SC.

[Boundary conditions] If Y, = {1, ..., V,}, u € {1, 2},

then for the boundary values 1 and )),:

B,1(1) Bz1(2) < Bx1(2) Bz (1),
Byy, (1) Bzy, (2) > By, (2) Bry, (1),

If Y, = [ay, b,] then the above equation holds with 1
and ), replaced by a, and b,. (A3) is not required
if Y, =1IR.

[Signed Ratio Monotonicity] If Fi(y|x) < F(z|x)
and F)(3|x) > F>(z|x) then for all y,y € Y; and z,
= Yz,

(A3)

X > X.

(A4)

log Fi (ylx) —log F5(z|x) _ log F (y|) —log F5(z|%)
log F1(y|x) —log F2(z|x) — log F1(¥|x) — log F>(z]x)
for_)E > X. B B B

If Fi(ylx) > Fa(z|x) and Fi(y|x) < F2(z|x) then for
all y,y e Y; and z,Z € Yy,

log F1(3|x) —log F>(Z|x) _ log F1(3|%) —log F>(Z|)
log Fi(y|x)—log F2(zlx) ™ log F1(y|%) —log F(2%)’

for x > x.

The assumptions are discussed below in Sec.II-C. However,
we note at this stage that (A4) is equivalent to the following
single crossing condition (proof in Theorem 14 in the appen-
dix): for any yi4 € Y, 314 € YA

k k
[ &G = ] FiGilx) e SC, x e X. ©)
=1 =1

The main point is that (9) globalizes (A2), namely

F>(y|x) — F1(3|x) € SC, to a product from time 1 to arbitrary
time k. (A4) is a tractable condition for (9) in terms of the
model parameters (observation probabilities); see discussion
below.

2) Main Result: Our main result involves convex dominance
of the conditional mean. Let us define this formally.

Definition 3 (Convex dominance of conditional mean).
Consider two sensor models u € {1,2} with observa-
tion process {Yk(l)} and {Yk(z)} generated by cdfs Fi(y|x)
and F>(y|x), respectively. Let fYk denote the k-dimensional
integral over Yy X --- X Y. Consider the Bayesian localiza-
tion/filtering problem of Definition 1.

S5That is, Bx(u) <, Bji(u) where the monotone likelihood ratio (MLR)
order <, is defined in Appendix A. Equivalently, for X finite, the i-th row
of B is MLR dominated by the (i + 1)-th row, i.e., the rows of the matrix are
totally monotone wrt the MLR order. When Y, is finite, TP2 is equivalent to
all second-order minors of matrix B(u) being nonnegative.
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1) Global convex stochastic dominance of the conditional
mean estimates (4) or (7) denoted as ml(Yl(zlk), 70) <cx
mz(Yl(:zk), 7o) holds if  for all time @k,
Er{g(m (Y}, 70))) < Ealp(ma(¥(Q.m0)}  for
any6 convex function ¢ : IR — IR and prior m.
Equivalently, for all time k,

/Ykﬁb(ml(J’l:k,ﬂO))0'(71'0,)’1:10 1) dyix

1

S/Yk¢(M2(y1:k,7ro))0(7T0,y1;k,2)dy1:k (10)

2

2) Local (one step) convex dominance of the con-
ditional mean estimates (4) or (7) denoted as
ml(Yk(l), Th—1) <cx mz(Yk(z), Tk—1) holds at each time k
UCE1{¢(m1(Y;§1),7Tk71))} < E2{¢(m2(Yk(2),7Tk71))} for
any convex function ¢ : IR — IR and prior mi_;.
Equivalently, at each time k,

/Y (1 (k. 1)) & (s yi 1) dyi

E/Y¢(m2()’ka77k71))0'(75k9)’kaz)d)’k (11)
2

We are now ready to state our main results for Bayesian
localization and filtering.

Theorem 1 (Global Convex Dominance for Bayesian
Localization). Consider the Bayesian localization problem of
Definition 1:

1) For the finite state model (3), under (Al), (A2), (A3),
(A4) (or (9)), global convex stochastic dominance of
the conditional mean estimates (4) holds for all time k,
ie., ml(Yl(:lk), 7o) <cx mz(Yl(zzk), o).

2) For the continuous state model (6), under (Al), (A2),
(A4) (or (9)), global convex stochastic dominance of the
conditional mean estimates (7) holds for all time k.

Therefore, in both cases,

MSE{m; (Y|, 70)} = MSE{ma(YZ), 70)}

holds globally for all time k.
The proof of Theorem 1 is in Appendix A.

Corollary 2 (Local Convex Dominance for Optimal Filtering).
Consider the optimal filtering problem of Definition 1:

1) For the finite state model under (Al), (A2), (A3), local
convex dominance of the conditional mean estimates (4)
of the Hidden Markov Model (HMM) filter (3) holds at

. . 1 2)
each time k, i.e., mi(Y; ', mr—1) <cx ma (Y™, wr—1).

2) For the continuous state model under (Al), (A2), local
convex dominance of the conditional mean estimates (7)
for the optimal filter (6) holds at each time k.

Therefore, for both cases, MSE{m (Yk(l), Tk—1)} >
MSE{mz(Yk(z), Tk—1) holds at each time k.

Corollary 3 (Two time-scale filtering). For the two-time scale
filtering problem discussed in Sec.II-A,

6Providing the integral exists.
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1) For the HMM filter, local convex dominance (11) holds
under (Al), (A2), (A3), (A4)
2) For the continuous state filter, local convex dominance
(11) holds under (Al), (A2), (A3), (A4).
In either case, le‘ in (11) denotes the A-dimensional
integral.

Proof. The one step filtering update (3) is identical to local-
ization with P’z replaced by m. Since Theorem 1 holds for
all # € TI(X), Corollary 2 and 3 follow. O

Let us reiterate the main point: It is clear from (4), (5) that
evaluating the MSE analytically for all priors 7 is impossible,
even when the observation space Y, is finite. Theorem 1
and its corollaries are useful since they give sufficient con-
ditions that ensure one sensor observation model yields a
MSE that dominates another sensor observation model; indeed
they guarantee dominance for any convex function. Also for
continuous state optimal filtering, in general there is no finite
dimensional statistic for z; thereby making it impossible to
compute exactly; yet Corollary 2 and 3 give useful insight into
how the observation probabilities affect the mean square error
of the conditional mean.

3) Why Can’t We Establish Global Convex Dominance of
the Optimal Filter?: The above results establish global convex
dominance for Bayesian localization and local convex domi-
nance for optimal filtering. The key step in the proof of global
convex dominance is (20) in the appendix: in simpler notation
the task is to prove that (g—A1)Ax > 0 for 1 € IR where g
is the vector of state levels of the Markov chain, A is a square
matrix, and 7 is the prior. In the localization problem, A
is a diagonal matrix involving the observation distributions.
Because of this diagonal structure, useful sufficient conditions
can be given in terms of the model parameters B(1), B(2).
In the filtering case A is no longer a diagonal matrix - it
is the non-commutative product of transition matrices and
observation matrices. Then there is no obvious way of giving
useful sufficient conditions for (¢ — A1)Az > 0 in terms of
the model parameters.

In Sec.III-D we will give an alternative set of sufficient con-
ditions for global convex dominance that apply to the optimal
filter when the observation spaces Y,, u € {1, 2} are finite.
However, checking these sufficient conditions for length &
observation sequences requires a computational cost that is
exponential in k and so intractable for large k. Nevertheless,
the sufficient conditions of Sec.III-D guarantee global convex
dominance for all (continuum of) priors 7 and so are useful
for small k.

C. Discussion of Assumptions (Al)-(A4)

This subsection discusses the main assumptions of
Theorem 1. Section III below discusses several examples.

(A1). The TP2 condition (A1) is widely used to characterize
the structural properties of Bayesian estimation. (A1) is nec-
essary and sufficient for the Bayesian filter update T (7, y, u)
to be monotone likelihood ratio increasing wrt y; see [10]
for proof. This implies m,(y, ) is increasing in y. This
monotonicity wrt y is a crucial step in proving Theorem 1.
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Reference [10] gives several examples of continuous and dis-
crete distributions that satisfy (A1) in the context of controlled
sensing. We refer to the classic work [21] for details and
examples of TP2 dominance, see also [10].

(A2). (A2) is the key condition required for integral pre-
cision dominance. First a few words about integral precision
dominance. For random variable x € IR with prior 7 and
posterior T (z, y, u)(x), Definition 2(ii), pp.1011 in [1] says
that integral precision dominance holds if the conditional
expectations exhibit convex dominance:

mi(Y) = /IRxT(ir,Y, 1)(x)dx

<ex mz(Y)z/ xT (7, Y,2)(x)dx
R
Equivalently
/Y¢(ml()’))0(7f,y,1)dyE/Y¢<m2(y))0(”a)’a2)dy

for any convex function ¢, providing the integrals exist.
For x € IR, [12] gives a single crossing condition similar
to (A2) for integral precision dominance; see also footnote 9,
pp-1016 in [1]. Our setting is different since we consider a
Markov process { X} observed in noise and we are considering
convex dominance wrt the process {Y}. However, our main
proof is similar in spirit to [12], but in addition to (A2),
we also need the boundary condition (A3) for finite support
and finite set observations; also we need (A4) for global
convex dominance. Finally, note that [22] examines integral
precision dominance as a special case of Lehmann precision
(see Corollary 4.6 of [22]) after the seminal paper by [23].

Returning to the single crossing condition (A2), it can
also be viewed as signed-submodularity of the observation
probability distributions. A function ¢(x, u) is submodular
if A(x,u) defn ¢(x,u) — ¢(x,u + 1) is increasing in x.
In comparison, (A2) says’ sgn (A(x, u)) is increasing in x
where A(x,u) = 37, _; Bey(u) — >°, o Bxy(u + 1). Requir-
ing A(x,u) to be increasing in x is impossibly restrictive,
whereas requiring sgn (A(x, u)) to be increasing in x leads
to numerous examples as discussed below. We will use
this signed-submodularity assumption in the FKG inequality
(Theorem 12) to prove integral precision dominance.

(A3). The boundary condition (A3) is not required if the
observation space Y, = IR for u € {I,2}. (A3) is only
required when Y, has finite support or Y, is finite. (A3)
is not restrictive since it only imposes conditions on the
observation probabilities at the boundary values of Y. (A3)
is a sufficient condition for the range of the posterior for
sensor 1 to be a subset of that for sensor 2, i.e., {g'T (%, y, 1),
y € Y1} € {gT(x,y,2), y € Yz}. Several examples that
satisfy (A3) are given below. Also to give further insight,
the end of Appendix A-B gives numerical examples where
integral precision dominance does not hold when (A3) is not
satisfied.

(A4). Signed ratio monotonicity (A4) is a key condition
from the paper [3, Proposition 1]; it is a necessary and

TFor z € R, define the signum function sgn(z) € {—1,0, 1} for z < 0,
z = 0,z > 0, respectively. Note that sgn(¢(x)) increasing in x (ignoring
excursions to zero) is equivalent to ¢ (x) € SC in Definition 2.
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sufficient for any non-negative linear combination of sin-
gle crossing functions to be single crossing. Translated to
our problem, (A4) is required for establishing Theorem 1
for k > 1 (global convex dominance), i.e., when multiple
observations yj; are used to compute the posterior. (A4) is
not required for the case k = 1 (local convex dominance).
In simple terms (A4) extends the single crossing condition
(A2) to the sum of single crossing functions. Note that (A2)
involves each individual sensor u, whereas (A4) involves both
sensors’ observation probabilities.

To motivate (A4), start with (9). The ordinal prop-
erty of single crossing [20] implies that (9) is equiva-
lent to the difference in logs being single crossing, i.e.,
Zle[log F>(y:1x) — log F1(y;]x)] € SC. Note (A2) implies
that each term [log Fz(y,|x) — log Fl(y,lx)] € SC; but this
does not imply that the sum over ¢ is single crossing. (In
general the sum of single crossing functions is not single
crossing.) The main point is that signed ratio monotonicity
condition (A4) is necessary and sufficient for any non-negative
linear combination of single crossing functions to be single
crossing [3, Proposition 1]. This allows us to express (9)
as the tractable condition (A4) which directly involves the
observation density. Finally, in the special case of additive
log-concave noise densities, (A4) automatically holds if (A2)
holds; this is discussed below in Sec.III-B.

Another intuitive way of viewing (9) is: a sufficient condi-
tion for local convex dominance is that F>(y|x) — Fj(¥|x) is
increasing in x (this is stronger than (A2) which only needs
sgn(F>(y|x)— F1(¥]x)) to increase in x); a sufficient condition
for global convex dominance requires that F(y|x)/Fi(¥|x)
is increasing in x (this is stronger than (9)).

III. EXAMPLES OF CONVEX DOMINANCE IN
LOCALIZATION AND FILTERING

To illustrate Theorem 1 and its corollaries, we discus 3
important examples of convex dominance in Bayesian esti-
mation. Then we briefly discuss conditions for global convex
dominance of the optimal filter.

A. Example 1. Blackwell Dominance, Integral Precision
Dominance and Channel Capacity

Here we discuss our first main example; namely how
Theorem 1 and its corollaries apply to finite set observation
models and HMMs. As mentioned in Section I, Blackwell
dominance is a widely used condition for convex dominance.
Since Theorem 1 uses integral precision dominance to give
a new set of conditions for convex dominance compared
to Blackwell dominance, we compare them using several
numerical examples below.

Definition 4 (Blackwell dominance B(2) >p B(l)). Sup-
pose Biy(1) = > 5oy, Biy(2) Ly,y for y € Y1 where L is
a stochastic kernel, i.e., Zerl Lyy = 1and Ly, > 0.
Then B(2) Blackwell dominates B(1); denoted as B(2) >p
B(1). So when Y{,Y, are finite, B(2) >p B(l) if B(1) =
B(2) x L where L is a stochastic (not necessarily square)
matrix.
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Intuitively B(1) is noisier than B(2). Using a straightfor-
ward Jensen’s inequality argument, the following result holds:

Theorem 4 (Blackwell dominance [7]). B(2) >p B(1)
is a sufficient condition for the one step (local) stochastic
dominance conclusion of Theorem 1 to hold.

Insight. Both integral precision dominance (Theorem 1)
and Blackwell dominance (Theorem 4) exploit convexity.
But there is an important difference: Blackwell dominance
implies that for any convex function ¢ RY - R,
Zyuqﬁ(T(n,y,u))a(n,y,u) is increasing in u for all
r € II(X). In comparison, integral precision dominance
(Theorem 1) implies convex dominance in one dimension,
namely, for any scalar convex function ¢ R — IR,
2oy, ¢(g'T(w,y,u))o(x,y,u) is increasing in u for all
7w € II(X). As will be shown below there any many impor-
tant examples where integral precision dominance holds but
Blackwell dominance does not hold.

Note that Blackwell dominance (Theorem 4) does not hold
globally for all k unlike integral precision (Theorem 1). This
is because B(2) >p B(1) does not imply that the k-th powers
satisfy BX(2) >p BX(1), apart from the pathological case
B(2)L = LB(2) where matrix multiplication commutes (i.e.,
the pathological case when L and B(2) are simultaneously
diagonalizable). Thus global convex dominance in Theorem 1
is a useful and substantial generalization.?

Examples: Example (i): Here are examples of observation
matrices that satisfy assumptions (Al), (A2), (A3), (A4)
implying that integral precision dominance and global convex
dominance in Theorem 1 holds. But Blackwell dominance
does not hold.

(0.8 02 0 09 01 0
Exl. B(1)= [0.1 0.8 0.1|, B2)=|0.1 0.8 0.1
|0 02 08 0 0.15 0.85
[0.44847  0.30706 0.24447
Ex2. B(1) = |0.33443 0.28762 0.37795] ,
0.32463  0.28971 0.38565
0.170021 0.410485 0.419494
B(2) = [0.106500 0.433559 0.459941
0.020739 0.263223 0.716038
0.8 0.2 07 03 0
Ex 3. B(l) = {0.2 0.8]’ B2 = {0.1 0.2 0.7}’

Y ={1,2}, Yo, ={1,2,3}.
Note the third example has different observation spaces for the
two actions. Interestingly, in all three examples above, B(2)
does not Blackwell dominate B(1); i.e., B(1) # B(2) x L for
stochastic matrix L.

Example (ii). A consequence of [24] is that for symmet-
ric 2 x 2 matrices B(1), B(2), if By;(1) < Bj1(2), then
Blackwell dominance is equivalent to integral precision dom-
inance (A2). Then (A3) automatically holds. This is easy to
show, see [1]: B(2) >p B(1) since L = B~!(2)B(1) is a valid

8Le Cam deficiency is a useful way of finding the closest Blackwell
dominant matrix to B(2) given B(l); it also yields the loss (deficiency) in
choosing this closest matrix, see [17] for a nice discussion. However, this
loss is impossible to compute for an arbitrary convex function such as the
value function of a controlled sensing POMDP which is apriori unknown and
intractable to compute.
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stochastic matrix as can be verified by explicit symbolic
computation.

Example (iii). Channel Capacity. Shannon [25] establishes
the following result in terms of channel capacity; see [26] for
a detailed exposition.

Theorem 5 ( [25]). If B(1) = M B(2) L where L and M are
stochastic matrices, then discrete memoryless channel B(1)
has a smaller Shannon capacity (conveys less information)
than B(2).

Blackwell dominance B(1) = B(2)L is a special case
of Theorem 5 when M = [I. However, if the multiplication
order is reversed, i.e., suppose B(1) = M B(2) where M is a
stochastic matrix, then even though B(1) is still more “noisy”
(conveys less information according to Theorem 5) than B(2),
Blackwell dominance does not hold.

Motivated by Theorem 5, a natural question is: Does integral
precision dominance and hence Theorem 1 hold for examples
where B(1) = M B(2) where M is a stochastic matrix? As an
example consider

0.4703  0.2068]
0.4902 0.2861] ,
0.4620 0.3793 |

0.5190 0.0423]
0.6625 0.0920
0.2829 0.6556 |

03229
0.2237
01587

[0.4387
0.2455
0.0615

X=3Y=3U=2 B(l)=

Then there exists a stochastic matrix M such that
B(1) = M B(2) but Blackwell dominance does not hold
since B(1) # B(2)L for stochastic matrix L. But (Al),
single crossing condition (A2), boundary condition (A3), and
signed ratio monotonicity (A4) hold for this example; therefore
Theorem 1 holds.
Further examples involving hierarchical sensing and word-
of-mouth social learning are discussed in Section IV.

Summary: This subsection discussed several examples
where integral precision dominance and global convex domi-
nance of the conditional mean holds but Blackwell dominance
does not hold. The two specific cases we discussed are:

1) B(1) = MBQR)L where L and M are stochastic
matrices,

2) Blackwell dominance B(2) >p B(l) does not imply
global Blackwell dominance B¥(2) >3 B*(1). In com-
parison, Theorem 1 gives conditions for which global
convex dominance holds.

B. Example 2. Sensing in Additive Noise With
Log-Concave Density

We now discuss how Theorem 1 and its corollaries apply to
sensing in additive noise, where the additive noise has a log-
concave density. The main point is that for additive noise with
log-concave density, higher differential entropy or variance of
the additive noise is a necessary condition for the MSE of
the Bayesian localization and filtered estimate to be higher.
(Sec.ITI-C below shows that if the noise does not have a log-
concave density, then higher differential entropy or variance
is not a necessary condition).
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In the additive noise setting, the sensor observation models
are Yk(”) = X + Wk(”), u € {1,2}. The additive noise Wk(”)
is independent and identically distributed with a log-concave
pdf pw(-|lu). Recall [27] that a log-concave density has the
form pw(w) = exp(¢(w)) where ¢ is a concave function
of w. There are numerous examples of log-concave densities:
normal exponential, uniform, Gamma (with shape parame-
ter o > 1), Laplace, logistic, Chi, Chi-squared, etc.

We assume for u € {1,2} that the density pw(-|u) has
either support on IR (then (A3) is not required) in which
case By (u) = pw (™ — x|u) ; or pw(-lu) has support
on IRy in which case B, w (1) = pw (W —x|u) (Y™ > x)
(then (A3) holds straightforwardly; e.g. if x € IRy, then
a, = 0 in (A3) and both sides of the first inequality in (A3)
are zero.)

The following result characterizes the assumptions of
Theorem 1 for additive noise models with a log-concave
density.

Theorem 6. Consider the additive noise sensing model
Yk(u) = Xr+ W,fu), u € {1, 2} where the additive noise W,fu) is
independent and identically distributed with pdf pw(-|lu) and
cdf Fwy (-|lu). Then:

1) (Al) holds iff pw(:|1) and pw(-|2) are log-concave
densities.

2) (A2) holds iff Fw(-|1) >p Fw(-|2) holds where >p
denotes the dispersive stochastic order?

3) (9) or equivalently (A4) holds if pw(-|1) and pw(-|2)
are log-concave densities and Fy(-|]1) >p Fw(-]2) ,
i.e., (A2) holds.

4) pw(-12) having smaller differential entropy than pw(-|1)
is a necessary condition for (A2) to hold. Also pw(-|2)
having smaller variance than pw(-|1) is a necessary
condition for (A2) to hold.

Therefore for log-concave additive noise pw (-|1) and pw(-]2),
if Fw(-|1) >p Fw(:|2), then Theorem 1 and Corollaries 2, 3
hold.

Proof. Statement 1 is proved in [14, Theorem 1.C.52 (iii)].
Statement 2 is proved in [12, Remark 3]. Statement 4 follows
from [13, Theorems 1.5.42 and 1.7.8].

Statement 3: Since the pdfs are log-concave, their
complementary cdfs Fy (w|1) and Fy (w|2) are log-concave;
see [27, Theorem 2(i)]. Next from [14, Theorem B 20.
ppl56], Fw(-|]1) >p Fw(:]2) and the complementary
cdfs being log-concave implies that hazard rate
dominance  Fy (-|1) >pg Fw(-2) holds, i.e.,
Fw(w|2)/Fw(w|1) is decreasing in w. This implies Fy (3 —
x[2)/Fw(y — x|1) is increasing in x for all y € Y,
and y € Y. Therefore, log Fyy (3 — x|2) — log Fw(y —
x|1) is increasing in x which in turn implies
that S*_ log Fw (5 — x2) — log Fw(y, — x|1) s
increasing x. Therefore log Hle F>(5|x)—log Hle F1(3|x)
is increasing in x which implies log]_[f=1 F(x) —
log [T, Fi(G:lx) € SC. Finally, ¢;(x) — $a(x) € SC

9Cdf G dominates cdf F wrt dispersive order, denoted G >p F,
it FYB) - F Y a)<G 1B -G Ha)for0 <a < B < 1.
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implies that ¢1(f(x)) — ¢2(f(x)) € SC for any monotone
function!® f. Thus (9) holds. o

Theorem 6 gives a complete characterization of global
convex dominance in additive noise models. It confirms the
intuition that additive noise with higher differential entropy (or
variance) results in larger MSE for Bayesian localization and
optimal filtering. More precisely, higher differential entropy
(or variance) is a necessary condition for (A2); indeed (A2)
(dispersion dominance) is a stronger condition than dominance
of differential entropy.

Examples of log-concave densities that satisfy (A1), disper-
sive dominance (A2) and therefore (A4) include:

1) Normal cdf: Fy(w|lu) = N(0,02) with 012 > 022,

w € IR.
2) Exponential cdf: Fy (wlu) = 1 — exp(—4,w) , with rate
parameter 1o > A1, w € IRy.
3) Gamma distribution [28]: Fy (w|u) = r(}x -
w € IRy with shape parameter o1 > o > f
For these examples Theorem 1 and Corollaries 2, 3 hold.
Also for these examples, (A2) is equivalent to pw (-|2) having
smaller differential entropy (or variance) than pw (-|1); that is
Statement 4 of Theorem 6 is necessary and sufficient.

auflefw

w

i

C. Example 3. Additive Sensing. Power Law vs Exponential
Noise in Social Networks

Motivated by sampling social networks, we now discuss an
example where instead of the TP2 condition (Al), a reverse
TP2 condition holds (due to log convex density additive noise).
The main point below is that regardless of whether the power
law noise has a smaller variance than exponential noise,
the MSE is always larger due to convex dominance.

Suppose we wish to compare the MSE of the conditional
mean estimates when the additive noise pw(wl|l) is a
log convex density that decays according to a power law
while pw(w|2) is an exponential density (log-concave).
That is:

pw([1) = (= 1) (1 +w)™,
FywD=1—(w+1D)'"* a>1, welRy
pw(w|2) = Aexp(—4iw),

Fw(w|2) =1 —exp(—iw), 1 >0, welRy

For example, the empirical degree distribution (number of
neighbors of per node normalized by the total number of
nodes) of several social media networks such as Twitter [29]
have a power law with exponent a € [2,3]; while social
health networks in epidemiology have an exponential degree
distribution. Based on observations obtained by sampling
individuals in the network and asking each such individual
how many friends it has (degree), a natural question is: how
accurate is the Bayesian conditional mean estimate for the
average degree of the network?

Theorem 7. Consider the additive noise model Yk(”) =
Xi + W;”), u € {1,2} where the additive noise W,f") is

10This is the well known ordinal property of single crossing [20].
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independent and identically distributed with pdf pw (-|u). Then
the conclusions of Theorem 1 hold for the following cases:
1) Power law density pw(w|l) and  exponential
density pw(w|2)
2) Power law densities pw(w|1) and pw(w|2) with power
law coefficients or > oj.

Theorem 7(1) is interesting because it asserts convex dom-
inance between two different types of noise densities. It says
that the conditional mean estimate in additive exponential
noise is always more accurate than that in power law noise.
Interestingly, the variance for a power law density can be
smaller than that of an exponential density; for power law
exponent oo = 3.1, the variance is 17.35 which is smaller than
the variance of an exponential for A < 0.24; yet the MSE
of the conditional mean is larger in power law noise. (Note
for o < 3, the power law variance is not finite). Theorem 7(2)
is intuitive; a larger power law implies the density decays faster
to zero; and therefore the MSE is smaller.

Proof. Statement (1): (Al) holds for the observation likeli-
hood B(2), but (Al) does not hold for B(1). Instead B(1)
satisfies a reverse TP2 ordering: B,(1) >, B;z(l), x < Xx.
Indeed, Byy(1)/Bz,y = (1+y—x)*/(14+y—x)* is increasing
in y for x < x. Then using a similar proof to Theorem 1,
global convex dominance holds if (recall SC is defined in (8)):

F(y11x) -+ F2(ylx) = FiGilx) - - Fi(Gklx) € SC, x € X.

A similar proof to Theorem 6 shows that the above condition
holds because

BOlkx)  Fw(Q —x12)  exp(dx —¥))

Fi(ylx) Fy(-x|l) 1-(@-x-DI’
is increasing in x for all y > x and y > x.
Statement (2): Since B(1) an B(2) are reverse TP2, the global
convex dominance condition becomes F>(y|x) - - Fa(yr|x) —
Fi(y1|x)--- F1(yk|x) € SC. This holds because (1 — (y —x +
1'=%2) /(1= (y—x+1)'7%1) is increasing in x for y, j > x. O

o> 1

D. Single Crossing in Conditional Mean and Global Convex
Dominance of HMM Filter

So far we used the single crossing of the conditional
distributions (A2), (A4), to establish convex dominance. We
conclude this section by discussing an alternative condition
based on an ingenious result from [11]; it uses single crossing
of the conditional mean to establish global convex dominance
of the conditional mean; but the conditions are computation-
ally expensive to verify.

Proposition 8 ( [11, Proposition 2.1]). Suppose m,(y, ), u €
{1,2} is increasing in y and my(y,n) — mi(y,7) € SC
in y. Then convex dominance holds for the conditional means.
(Recall SC is defined in (8)).

We now use Proposition 8 to establish global convex dom-
inance for the HMM filter (3); but the sufficient conditions
given below are expensive to check and only tractable for
finite observation spaces Y and Y».

Note that y;x € YX with V¥ elements. Label the )X
elements lexicographically and denote them as z e {l,
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2,..., V%) . Foru € {1,2} and each i, j € X, define the X x X
matrices

k
Ly(yix) = H P By, (u),
=1
Hu(i» j; Z» Z) = Lu(z) (ejel/' - eie}) L/M(Z)
+L,(2) (e,-e;» —eje) L, (2),
H(i, j,2) = L2(2) (ejef — eie}) L (2)

+L1@) (eie} — eje)) Ly@)  (12)

We introduce the following assumptions for global convex

dominance:

(AS5) The matrices H,(i, j, z, z) are elementwise positive for
allz >z, j>1i,i,jeX.

(A6) The matrices H(i, j,z) are elementwise negative
for z < z* and positive for z > z*, for all j > i,
i, jeX, for some z* € {1,..., Y~}

Theorem 9. Under (A5) and (A6), global convex dominance

ml(Yl(:lk), 70) <cx mz(Yl(:zk), 7o) holds for all priors wq for the

HMM filter (3) with finite observation space Y, u € {1, 2}.

Proof. (AS5) is sufficient for T(x,z,u) <, T(w,z,u) for

z < Zz; this can be verified from the definition of likelihood

ratio dominance, namely

e;L,(z)m - e}Lu(Z)”
eL,()r ~ e}Lu(Z)ﬂ ’

j=i,z2>z

This in turn is sufficient for the first condition of Proposi-
tion 8, namely, m,(z, 7) is increasing in z.

Similarly it can be shown that (A6) is sufficient for
T(n,z,1) < T(m,z,2) for z > z* and T(w,z,1) >,
T(r,z,2) for z < z*. This implies the second condition of
Proposition 8 is satisfied, namely m>(z, 7) < m(z, ),z < z*
and ma(z, w) = mi(z, @), z = z*. o

Example. It can be verified numerically that P =
0.9 0.1 0.7 0.3 0.8 0.2 .
[0.1 0.9]’ By = [0.3 0.7} B2) = [0.2 0.8] satisfies
(AS) and (A6) for k =1, 2.

Summary: In contrast to previous subsections, this subsec-
tion used the single crossing property of conditional means to
propose sufficient conditions (A5) and (A6) for global convex
dominance of the HMM filter. Verifying (AS) and (A6) involve
checking negative/positive elements for O (> X?) matrices is
computationally intractable for large k. However, the condi-
tions guarantee global convex dominance for all (continuum)
of priors 7o and are useful for small k.

IV. EXAMPLE. CONTROLLED SENSING PARTIALLY
OBSERVED MARKOV DECISION PROCESS (POMDP)

Thus far we have discussed convex dominance of the
conditional mean (in filtering and localization) between two
fixed sensors. This section considers a POMDP controlled
sensing problem where we optimize the dynamic switching
between multiple sensors. The main result of this section is an
important application of Corollary 2 (local convex dominance
for the HMM filter): we construct a myopic lower bound
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to the optimal policy of a 2-state (but arbitrary observation
space Y,) controlled sensing POMDP. Thus far, the only
known way of constructing such lower bounds involved Black-
well dominance [4], [7], [10]. The plethora of examples
in Sec. Il where integral precision dominance holds (but
Blackwell dominance does not), demonstrates the usefulness
of Theorem 1 in controlled sensing.

In controlled sensing, the aim is to dynamically decide
which sensor (or sensing mode) u; to choose at each time k
to optimize the objective defined in (13) below. In general,
POMDPs are computationally intractable to solve (PSPACE
complete). Therefore, from a practical point of view, construct-
ing a myopic lower bound is useful since myopic policies
are trivial to compute/implement in large scale POMDPs and
provide a useful initialization for more sophisticated sub-
optimal solutions.

A. Controlled Sensing POMDP

We consider an infinite horizon discounted reward con-
trolled sensing POMDP. It is customary to call the posterior 7
as the “belief”. A discrete time two-state Markov chain evolves
with transition matrix P on the state space X = {I,2}.
So the belief space I1(2) is a two-dimensional simplex,
namely z(1) + #(2) = 1, #(1),z(2) > 0. Denote the
action space as U = {1,2,...,U}. For each action u € U
denote the observation space as Y,. We assume either Y, =
{1,2,...,),}, ie., finite set of action dependent alphabets
for all u € U, or Y, = IR, or Y, = [ay,b,], ie., finite
support for all u € U. For stationary policy u : [1(2) — U,
initial belief 7o € I1(2), discount factor p € [0, 1), define the
discounted cumulative reward:

o0
Ju(mo) = Eﬂ{Zp" i) ”k}-
k=0

Here r, = [r(1,u),r(2,u)] is the reward vector for each
sensing action u € U, and the belief state evolves accord-
ing to hidden Markov model filter defined in (3) where
Byy(u) = P(yks1 = ylxiq1 = x, ux = u), y € Y, denotes the
controlled observation probabilities.

The aim is to compute the optimal stationary policy u* :
I1(2) — U such that J,x(mo) = J,(mo) for all 7o € 11(2).
Obtaining the optimal stationary policy u* is equivalent to
solving Bellman’s stochastic dynamic programming equation:
u*(m) = argmax Q(w,u), Jy+(mwo) = V(mo), where

ueld

V(r) = max Q(m,u),

13)

O(w,u) = ryx —l—p/Y V(T(n,y,u))a(n,y,u)dy. (14)

The value function V(x) is the fixed point of the following
value iteration algorithm: Initialize Vo(z) = 0 for 7 € I1(2).
Then for k =0,1, ...

Vig1(w) = max Quy1(w,u), wpi = argmax Qi(x,u),
ueld ueld

Qiti1(m,u) = rzm —l—p/Y Vk(T(n,y,u))a(n,y,u)dy.

u

15)
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The sequence {Vi(w),k = 0,1,...} of value functions
converges uniformly to V(z) on I1(2) geometrically fast.
Since IT(2) is continuum, Bellman’s equation (14) and the
value iteration algorithm (15) do not directly translate into
practical solution methodologies since they need to be eval-
uated at each 7 € I1(2). Almost 50 years ago, [30] showed
that when Y, is finite, then for any k, Vix(x) has a finite
dimensional piecewise linear and convex characterization.
Unfortunately, the number of piecewise linear segments can
increase exponentially with the action space dimension U
and double exponentially with time k. Thus there is strong
motivation for structural results to construct useful myopic
lower bounds u(7) for the optimal policy u™* (7).

Remark 1. For controlled sensing POMDPs, the transition
matrix P, which characterizes the dynamics of the signal
being sensed, does not depend on action u. Only r,, which
models the information acquisition reward of the sensor,
and observation probabilities B(u), which model the sensor’s
accuracy when it operates in mode u, are action dependent.

Remark 2. A POMDP with finite horizon N has objec-
tive J, (wo) = E, {Z,ivz_ol r,:lN—k(ﬂ'k) Tk —i—rs/irN} where y =
(1,...,un) and rg is the terminal reward vector. Then (15)
initialized as Vy(x) = rs/n for iterations k = 0,...,N — 1
yields the optimal policy sequence p* = (u7, ..., u}y)-

B. Main Result — Myopic Lower Bound

Theorem 10 (Controlled sensing POMDP). Assume (Al),
(A2), (A3) hold. Then Q(m,u) — r,m is increasing'! in u .
Therefore, the myopic policy pu(z) = argmax, r,x forms a
lower bound to the optimal policy in the sense that u*(w) >
w(n) for all © € T1(2). Hence, for beliefs = where u(x) = U,
the optimal policy p*(z) coincides with the myopic pol-
icy u(m). An identical result holds in the finite horizon case
for the policy sequence (), k=1,...,N.

Proof. The value function V(zx) is convex in 7z [10].
Since X = 2, & is completely specified by #(2) = g'n
where g = [0, 1]". So V(x (2)) = V (g'm) is convex. Assuming
(A1), (A2), (A3), it follows from Theorem 1 that for all
T € I1(2),

> VT, y,u+ D)o,y u+1)
YLH»I

=Y V(T(x, y,w)o(x,y,u) (16)
Yy

Equivalently, see (15), Q(z,u+1)— Q(z,u) > r, @ —r,m .
Then Lemma 2 in [6] implies'> p*(z) > wu(zx) for all
m € TI(2). The same argument applies to Vi (z) and ui(m)
for the finite horizon case with terminal reward. |

From a practical point of view, Theorem 10 is useful since
the myopic policy u is trivial to compute and implement and
gives a guaranteed lower bound to the optimal policy of the
POMDP which is intractable to compute.

11By increasing, we mean non-decreasing.

2proof: If u* = argmax,, r;, @, then (16) implies Q(w,u*) > Q(x, u)
for u < u*. This implies x*(z) € {u*,u* +1,...,U}. So u(x) = u* =
w(w) € (w*, u*+1,..., U}. If u* is not unique, the proof needs more care,
see Lemma 2, [6].
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B(3) B(2) B(1)

Fig. 1. Controlled Hierarchical Sensing where Blackwell dominance does
not necessarily hold. Level / of the backbone network receives the Markovian
signal xy distorted by the confusion matrix M Polling any specific level has
observation probabilities B; so the conditional probabilities of y at level /
given x is specified by stochastic matrix M'B.

The main point is that Theorem 10 provides an alternative
to Blackwell dominance for POMDPs which has been widely
studied since the 1980s and also has the same conclusion:

Theorem 11 (Blackwell dominance for Controlled Sens-
ing. [4], [7]). Bu+ 1) >p Bu), u = 1,...,U — 1 is a
sufficient condition for the conclusion of Theorem 10 to hold.

Blackwell dominance holds for any number of states X.
In comparison Theorem 10 applies only to POMDPs with
2 underlying states. However, there are numerous 2 state
examples where Theorem 10 applies and Blackwell dominance
does not.

C. Examples

1. Theorem 10 applies to all the 2-state examples in Sec.III
where (A1), (A2), (A3) hold. As discussed in Sec.III-A, there
are many examples where Blackwell dominance does not hold,
but integral precision dominance (A2) does hold.

2. In controlled radar sensing problems [31], observations
are obtained at a faster time scale than the state evolution. That
is, for state X (e.g., threat level at time k), an observation
vector Yy = (Y1, ..., Yk a) is obtained where Y ; and Yy
are conditionally independent given Xy. In such cases, under
(A4), convex dominance holds, and then Theorem 10 holds.
However, Blackwell dominance (Theorem 11) does not hold
for this case.

3. Optimal filter vs predictor scheduling is an important
application of controlled sensing. Filtering uses a sensor
with observation matrix B(2) to obtain measurements of
the Markov chain and incurs a measurement cost but a
performance reward. Prediction (no measurement) has non-
informative observation matrix B;,(1) = 1/) and incurs
no measurement cost but yields a low performance reward.
Clearly B(2) >p B(l). If B(2) satisfies (Al), then (A2)
holds automatically because ny j Bjy(1) is constant wrt i
(B(1) is non-informative), while (A1) implies Zyzl Biy(2) is
increasing wrt i.

4. Controlled Hierarchical Sensing: In controlled sensing
involving hierarchical sensors (such as hierarchical social
networks), level [ of the network receives signal x; distorted by
the confusion matrix M’ (I-th power of stochastic matrix M),
where [ € {0, 1, ..., U —1}. That is, each level of the network
observes a noisy version of the previous level. Observing
(polling) level [ of the network has observation probabilities B
conditional on the noisy message at level /. Therefore the
conditional probabilities of the observation y given the state x
are B(U — 1) = M! B(U) where [ is the degree of sepa-
ration from the underlying source (state). This is illustrated
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in Figure 1 for U = 3. The controlled sensing POMDP is to
choose which level to poll at each time in order to optimize
an infinite horizon discounted reward. By Theorem 5, B(u)
is more noisy (has lower Shannon capacity) than B(u + 1);
yet Blackwell dominance does not hold due to the reverse
multiplication order. But using integral precision dominance,
Theorem 10 holds (under assumptions).

5. Word-of-Mouth Social Learning: Sensor 2 observes the
Markov state in noise with observation probabilities B(2).
Sensor 1 receives the observations of sensor 1 in noise,
but these probabilities also depend on the underlying
state.  Denote these state dependent probabilities
as M;(l, m) defn P(Yk(l) = m|Yk(2) = [,X; = i) . Thus
sensor 1 observation probabilities are

Bin(1) = P(Y) =m|X, = i)=Y By(Q)xM;(l,m) (17)
leY
Such models arise in multi-agent social learning where agents
use observations/decisions of previous agents and also their
own private observations of the state to estimate the underlying
state [8], [32]. Sensor 1 is influenced by the word-of-mouth
message from sensor 2 but interprets (critiques) this message
based on its own observation of the state. The controlled sens-
ing problem involves dynamically choosing between sensor
1 (direct measurement from source) versus sensor 2 (word of
mouth measurement) to optimize the cumulative reward (13).
Even though from (17), B(1) appears more noisy than B(2),
Blackwell dominance does not necessarily hold. Also the
Blackwell dominance proof of convex dominance breaks down
due to the state dependent probabilities M;(l, m). However,
integral precision dominance does hold in many cases. Here
is one such example:

09 0.1
B(2) = {8'? 8‘3 007},M1: 0.5667 0.4333 ],
R 02 08
0.1 09
My=| 02 08 |, B1)= {85 gé]
0.2143 0.7857 =

It can be verified that (A1), (A2), (A3) and (A4) hold for this
model, and therefore Theorem 1 and Theorem 10 hold.

V. DISCUSSION

This paper developed sufficient conditions for local and
global convex dominance of the conditional mean in Bayesian
estimation (localization and filtering). We used two techniques
that have recently been developed in economics, namely, inte-
gral precision dominance (this yields local convex dominance)
and aggregating the single crossing property (this yields global
convex dominance). The convex dominance results apply to
several examples where Blackwell dominance does not hold.
As an application, we showed how convex dominance can be
used to construct myopic lower bound to the optimal policy
of a controlled sensing POMDP. The recent preprint [33] has
interesting results on Blackwell dominance in large samples
for two state random variables. In comparison the integral
precision dominance used in the current paper yields global
convex dominance for an arbitrary number of states.
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Our main result was to give concise sufficient conditions
for global convex dominance in Bayesian localization (and for
local convex dominance in Bayesian filtering). In future work
it is of interest to develop concise sufficient conditions for
global convex dominance of Bayesian filtering; the conditions
in Sec.Ill-D are difficult to verify. It is also worthwhile
relating integral precision dominance (single crossing con-
dition) to channel capacity. We know that Blackwell domi-
nance B(2) >p B(l) implies that B(2) has higher capacity
that B(1) (Theorem 5). Since both Blackwell dominance
and integral precision dominance imply convex stochastic
dominance, giving sufficient conditions on integral precision
dominance to relate to channel capacity provides useful links
between the MSE of optimal filters, myopic policies of
POMDPs and information theory.

Finally, this paper considered the effect of sensing (obser-
vation kernels) on convex dominance and MSE when the
transition kernels are identical. If the transition kernels are
different for the two observation processes, then the MSE
of the conditional means are meaningless since the state
processes are different. However, one can still establish local
convex dominance of the optimal filter by introducing suitable
conditions on the transition kernel.

APPENDIX A
PROOF OF THEOREM 1

Definition 5. Let 71, 72> denote two univariate pdfs (or pmfs).
Then 71 dominates o with respect to the monotone likelihood
ratio (MLR) order, denoted as wy >, m, if m1(x)ma(x’) <
ma(x)m (x') for x < x'.

w1 dominates mo with respect to first order dominance,
denoted as m\ >y m if [* mi(&)dE = [T ma(&)dE
for all x. A function ¢ : ©# — IR is said to be MLR
(resp. first order) increasing if w1 >, wa (resp. my >g w2)
implies ¢ (1) > P (m2).

For finite state space X, when X' = 2, >, is a complete
order and coincides with >;. For X > 2, >, — >, and
both >,, >, are partial orders since it is not always possible
to order any two arbitrary beliefs 7 € I1(X).

Proceeding to the proof of Theorem 1, for notational
convenience we present the proof for finite state space. The
proof for the continuous-state space case is virtually identical
and outlined in Sec.A-C. We assume that the state levels
g, associated with the state space X, are ordered so that
g1 <8 <---8x.

First note that the expectations of my, Y1k, mg) are
identical for u € {1,2}, because E{m,(Yix, 7o)} =
E{E,{g'x|Y1x, mo}} = g'E{x|mo} = g'mo . Therefore Theo-
rem 1.5.3 in [13] implies convex dominance is equivalent to
increasing convex dominance. Next, by Theorem 1.5.7 in [13],
increasing convex dominance holds iff for 1 € IR,

def
=" /Yk[g’T(n,yl:kJ) — Yo (m, yix, 2) dyix
2

w(l) =

- /Yk[g/T(ﬂ,w:k, 1) — A o (z, yis, Ddyie = 0. (18)
1

Here we use the notation [x]™ = max(x, 0). The remainder
of the proof focuses on establishing (18).
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Defining Y’;”l = {y1x: &'T(w, yrk, u) > A},

w(l) = /Y“[g/T(ﬂ, ik, 2) — Alo(x, yix, 2) dyik

2

- /Y“ [&'T(m, y1k, 1) — Ao (z, yia, Ddyrx (19)

1

(=[], Bu @) By @y

2

- /k . B}‘k(l) T Byl(l)dylzk} T
Yl’/'

= (g — AV [Fa(z) Fazk—1) - - Fa(z1)
- PG -- FGE)]

, Zk € IR which depend

(20)

for some z1,...,zx € IR and 71, ...
on A. Here each diagonal matrix

Fu(Zi) = diag[ﬁu(Zilx = 1)’~-~; Fu(Zi|X = X)]

where F,(zi|x) = 1 — F,(zi|x) is the complementary cdf.
Equation (20) follows since under (Al), T'(x, y1.x, #) is MLR

increasing in each element y,, n = 1, ..., k. Therefore, the set
Vo4 = (v 0 T (@, yises ) > A} = (91> 205 -+, Yi > 26)
(2D

for some A dependent real numbers z, ...
involves complementary cdfs.

, Zk and hence (20)

A. Proof of Theorem 1 When X Is Finite and Y = IR

Theorem 12 (Convex dominance for finite state localization).
Assume (Al), (A2), (A4) and Y = IR. Then the following
global convex dominance holds for all k: ml(Yl(zlk), 7o) <cx
mg(Yl(zzk), o) That is, for any convex function ¢ : IR — IR,

/Yk (&'T(x, y1x, D) o (z, yix, 1) dyrk

1
< [ ET@ D) ol s 22
2

Proof.

Since Y = IR, clearly from (19), lim,__oo w(1) =
lim),0o y(4) = 0. We establish (18) for 4 € IR by
showing!3 that w(1*) > 0 at all stationary points A* such
that dw(4)/d2 = 0. Defining sgn(x) € {—1,0,1} for
x <0,x =0,x > 0, respectively, (20) yields

k
[[AGII= i)]

t=1

X k
w(A)= (g(i)—ﬂ)sgn{ Fy(zlx = i)—

23}

Bi
k ~ k ~
[[AGx=)-T]AGk=1i

X (i)
=1 =1
pi
(23)
BSince w(4) is continuously differentiable (Lemma 13) with

y(—o0) = wy(oo) = 0, clearly if y(4) > 0 at its stationary points
(minima), then y(4) >0 for all 1 € R.

3199

Let us next evaluate the stationary points of (1) for
L€ (0,1).

Lemma 13. (1) defined in (18) is continuously differen-
tiable wrt 1 € (0, 1) with gradient

dy (A _ _ _
dvd) _ _y F(zi) Fa(zx—1) - - - Fa(z1)
di
—F@E)F G- FGE) |7 24
(Proof at the end of this subsection). ]

Thus the stationary points of (1) satisfy (using the nota-
tion f;, p; defined in (23))

dy ()
d

— FIGOF G- F (zl)} =Y Bipi=0. (25

=1'|Fa(z) Fa(zk—1) - - - Fa(z1)

So to prove Theorem 12, it only remains to show that y (1)
is non-negative at these stationary points. To establish this we
use the Fortuin-Kasteleyn-Ginibre (FKG) inequality [34] on
(23). In our framework the FKG inequality'* reads: If a, f
are generic increasing vectors and p a generic probability mass

function, then
> aipipi = aipi Y Bip;.
i i j

Clearly in (23):

1) a; = g(i) — A is increasing since the elements of g are

increasing by assumption;
2) p; is increasing by Theorem 14 below;
3) pi is non-negative and thus proportional to a probability
mass function.

Also from (25), >, fipi = 0. So, applying FKG inequality
to (23) yields w(4) = >, aifipi = 0. Thus we have
established (18) for Y = IR. ]

Proof of Lemma 13 Here we prove Lemma 13 that
was used to evaluate the gradient of w(4) in the proof
above. For s € IR, similar to (21) define Y55 = {yj4 :
g'T(z, y1.k,u) > s}. Start with (18), and use the so
called “integrated survival function” on page 19, [13],
namely, integration by parts yields fY’; |g'T (m, y1k, u) —
Mro(m, yuwwydyie = [ [ys 0 (@, yi, u) dyrads.
Therefore w (1) = [[°1] fyg,, By, (2)--- By, (2)dy1x —
fYk" By, (1)--- By, (1) dylck] 7 dt . Then evaluating dy (1) /d A
yiellds (24). Finally, (24) implies w(1) is continuously
differentiable because ) v By(u) is continuous wrt 1
(since By (u) is absolutely continuous wrt Lebesgue measure
by assumption.) m|

Theorem 14. Under (A2) and (A4),

(26)

k k
pi=senl] [ B2Glx =) = [[ FiGilx = )]

=1 t=1

14proof: Since a and [ are increasing vectors, therefore (a; —a ;) (i —f;) >
0 for all , j. This implies the expectation Ei Zj (aj—0j)(Bi—=Pj)pipj =0
which immediately yields the inequality (26).
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in (23) is increasing in i. (This property was used to prove
Theorem 12).

Proof. Showing that f; is increasing in i is equivalent to
showing that Hle Fr(zx = i) — Hle Fi(Zx = i) is
a single crossing function in i. By the ordinal property of
single crossing [20], this in turn is equivalent to showing that
log]_[f=1 F(zilx = i) — logl—[f=l Fi(Z/|x = i) is a single
crossing function in i or equivalently, Zle[log P (z|x =
i) — log Fi (z;|x = i)] is single crossing.

(A2) implies that each term log F> (z;|x = i)—log F} (Z/|x =
i) is single crossing. So proving f; 1 i boils down to showing
that the sum of single crossing functions is single crossing.
The paper [3] shows that the signed monotonicity ratio (A4)
is a necessary and sufficient condition for this to hold. a

B. Proof of Theorem 1 When X Is Finite and Y, Has Finite
Support or Y, Is Finite

The following result is required for establishing our main
result when Y, is either finite or has finite support; see
Case 1 and Case 2 of proof of Theorem 12 below. It is here
that (A3) is the crucial assumption.

Theorem 15 (Finite support observation distributions). Sup-
pose Y, = [ay, b,], u € {1,2}. Assume (Al), (A3). Then

(gT(m,y, 1),y e Y1} C{g'T(m,y,2),y € Yo}

Thus, defining Yﬁ ={y: g/T(n,y,u)ﬂ> A} and Yﬁ ={y:
gT(x,y,u) < 2}, it follows that Y = 9,Y{ # ¢ and
Y5 =0, Y% # ) are impossible,

Proof. Since T (x, y,u) is MLR increasing wrt y under (Al),
it suffices to show that

gT(r,a2,2) < g'T(m,ay, 1), and

gT(x,by,2) > g'T(x, by, 1) 27)

Thg{ ﬁr;t inequality in  (27) is equivalent to
Zi:l Zj:1 8i (Bil(z)le(l) - Bil(l)le(z))”(i)”(j) <0.
So (A3) is a sufficient condition for the inequality to hold. A
similar proof holds for the second inequality in (27). m|

Case 1. Y, = [ay,b,]: Next we prove (18) for the
finite support case where Y, is the interval [a,, b,]. The key
difference compared to the case Y = IR is due to the possible
discontinuity of the conditional probability densities By (u) at
the end points a, and b,. Without appropriate assumptions,
w(A) defined in (18) can become negative in two ways:
a) If Y% = () and Yf is non-empty (ii) Y% = ¢ and Y%
is non-empty. Assumption (A3), see Theorem 15, ensures that
these two cases do not occur.

To prove w(4) > 0 for 4 € [0, 1], boundary conditions need
to be handled. Define 1., Ap, A¢, Ag as

da =sup{d : Y} =0, Y4 = 0}
Ay = sup{d : Y} =0, Y5 # 0);
de = inf{L: Y} # 0, Y5 = 0);

dq =inf{l: Y} =@, Y5 = o). (28)
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Clearly, 4, < Ap < A¢ =< Ag since g'T(x,y,u) is
increasing in y by (Al) and Y/ C Yﬁ for 1 < A. We now
consider 4 € [0, 1] split into the following 5 sub-cases and
show that y (1) > 0O for each sub-case:

Case la. 1 € [0, 2,] <= Y{ =0,V =0
Case 1b. 2 € (g, Ap] <= Y} =0, Y4 # 0
Case lc. 2 € (Ap, Ac] <= Y} #0,Y% # 0
Case 1d. 4 € (he, da] <= Y} =0,Y} # 0

Case le. 2 € (g, 1] &= Yi =0, Y=0. (29)

Note that (19) implies (1) = 0 for Case la and Case le.
For Case 1b, re-expressing Y% = {y —(g — A1)
By(2)P'm > 0}, (20) implies that y (1) > 0. Equivalently, (24)
implies dy (4)/dA > 0; since y(14) = 0, therefore w(4) >0
for 1 € (Aq4, Ap]. For Case 1d, it follows immediately from
(18) that (1) > 0. Equivalently, (24) implies dy (1)/dA < 0;
since w(1q) = 0, therefore y (1) > 0 for 1 € (4¢, 44).

Finally, for Case lc, since both Yf and Y% are non-empty,
the single crossing condition (A2) kicks in and an identical
argument as the case Y = IR applies. Indeed, w (1) > 0,
w(Ae) = 0, and w(4) is differentiable for 1 € (43, 4¢); so
w(l) = 0 for 1 € (4p, Ac) because w(4*) > 0 at each
stationary point 1* € (1p, A).

Remark: The case Y = IR (Theorem 12) can be viewed as
a special instance of (29) with A, = 4, =0,and A, = 44 =1
(but to enhance clarity we described it before Case 1). The
main point when Y = IR is that Yf,Yﬁ are never empty
for A € (0, 1) and therefore only Case lc occurs.

Case 2. Y, is finite: Finally, we prove (18) for the
case Y, = {1,2,...,),}. Construct the piecewise constant
probability density function O;, (1) = B;y(u) foro € [y, y+1)
and y € {1,2,...,V,}. It is easily verified that T'(x, 0, u) =
T(x,y,u), o(xr,o,u) = o(n,y,u), and the value function
and optimal policy remain unchanged. Then the above proof
for Case 1 (finite support) applies. m|

Remark. To emphasize the importance of sufficient condi-
tion (A3), the following examples show that (A3) is in some
sense necessary; when it fails to hold, then w(4) < 0O for some
interval of A and convex dominance does not hold. Consider
X=3Y=3z=[02 03 05 ,¢g=100,0,11.

0.9 0.1 0.1
Example 1. P = 0.1 08 0.1|, B(1) =
0 0.1 09
0.7 0.2 0.1 0.8 0.1 0.1
0.1 03 06(,B2)={02 02 06].
0 0.1 09 0.05 0.05 0.9
Then ¢(1) < 0 for A € (0,0.26]. This example violates
Case 1b.
0.9 0.1 0.1
Example 2. P = 0.1 0.8 0.1, B(1) =
0 0.1 09
08 02 0 0.8 0.1 0.1
0.1 08 0.1|, B2)= 0.1 03 0.6|. Then y(1) <0
0 02 038 0 0.1 09

or A € [0.25,0.93]. This example violates Case 1d.
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C. Proof of Theorem 1 When X =R and Y = IR

In complete analogy to (18) convex dominance holds if
for A € IR,

p () L / [m2(y14, o) — AT 0 (2, Y14, 2)
erlz‘

- / (1 (1 70) — AT (. yia 1) = 0. (30)
yEYf
where
defn
my(Y1:k, mo) = (x, T (w0, y1:k» 1)) =/Xx T (7o, y1:k, u)(x) dx
Defining Y&* = {y1 : (x, T(7, y1x u)) > A},

W(/’{) = /k}[(x’ T(”» yl:ka 2)) - /1]0-(”5 ylikaz)
ko4

2

- /Yk’}'[(x’ T(ﬂ:» yl:k; 1)) - /1]0'(7[, yl:k, 1)
1

= ((x — A1), [Fa(z) F2(zk-1) - - - Fa(21)
- FE)F @) - F@E)] o)

for some z1,...,zr € IR and z1,...,Zx € IR which depend
on A.

In complete analogy to Lemma 13, (1) =0 for A — —o0
and 4 = oo and y(4) is continuously differentiable wrt 1 € IR

with gradient

vy _

71 (1, [F2(zx) Fa(zk—1) - -~ Fa(z1)

— RGO Grer) -+ FiGD] 7)

The remainder of the proof is similar to that of Theorem 12.

€1V
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