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Adaptive Polling in Hierarchical Social Networks
Using Blackwell Dominance

Sujay Bhatt

Abstract—This paper presents adaptive polling algorithms and
their analysis for social networks having a hierarchical influence
structure. The adaptive polling problem on the social network
is formulated as a partially observed Markov decision process
(POMDP). Our main results exploit the structure of the polling
problem to determine novel conditions for Blackwell dominance
that arise in hierarchical social influence networks. The Blackwell
dominance conditions enable the construction of myopic policies
that provably upper bound the optimal policy of the POMDP for
adaptive polling. Adaptive versions of intent polling and expecta-
tion polling are developed using Blackwell dominance, and they
are inexpensive to implement. For polling problems not having a
Blackwell dominance structure, the Le Cam deficiency is used to
determine approximate Blackwell dominance; this is used to de-
velop an adaptive version of the recently proposed Neighbourhood
Expectation Polling algorithm. The proposed Blackwell dominance
conditions also facilitate the comparison of Rényi divergence and
Shannon capacity of more general channel structures that arise in
polling hierarchical social influence networks. Numerical examples
are provided to illustrate the adaptive polling policies with param-
eters estimated from YouTube data.

Index Terms—Adaptive polling, POMDP, structural result,
Blackwell dominance, myopic policy, intent polling, expectation
polling, Neighborhood Expectation Polling, Shannon capacity, Le
Cam deficiency.

I. INTRODUCTION

LACKWELL dominance and Le Cam deficiency are
widely used in statistical analysis of estimators [1]-[3];
to characterize game-theoretic equilibria [4], and to construct
myopic bounds in stochastic control [5], [6]. In this paper, we
use Blackwell dominance to construct adaptive polling strategies
for social networks exhibiting a hierarchical influence structure.
The sufficient conditions we propose for the adaptive polling
model also have useful information theoretic interpretations in
terms of capacities and Rényi Divergence of more general chan-
nel structures.
Polling has applications in forecasting the outcome of an elec-
tion [7], [8], estimating the fraction of individuals infected with
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Fig. 1. The figure shows a simple hierarchical influence network where the
individuals are grouped into N + 1 levels Level O, Level 1,...,Level N in a
hierarchical fashion. Each level influences the opinion of the level below it.
The underlying state of nature =, determines the opinion. A pollster samples
observations yy, from the nodes having opinions yi, runs alocal filter to compute
the state estimate, and chooses a control to affect the (future) polling action. It is
assumed that the pollster knows the number of hierarchical levels in the network
and the corresponding node associations. The aim of the pollster is to estimate the
underlying state by adapting its polling strategy to incur minimum polling cost.

a disease [9], and predicting the success of a particular prod-
uct. Many social networks have a hierarchical influence struc-
ture; [10]-[14]. So, there is strong motivation to develop polling
strategies that take into the account the inherent hierarchical so-
cial influence. This influence alters the opinions of the lower
level individuals and hence affects the prediction or the poll
estimate.

This paper devises adaptive (feedback control based) polling
strategies for the well studied polling algorithms (intent and ex-
pectation polling) that, in addition, take the hierarchical social in-
fluence and the time varying nature of the state into account; see
Fig. 1. The adaptive polling problem is formulated as a partially
observed Markov decision process (POMDP) to minimize the
polling cost (measurement cost and uncertainty in the Bayesian
state estimate).

A. Context. Blackwell Dominance

In general, POMDPs are computationally intractable' to
solve [16]. The contribution of this paper is to exploit the

!'They are PSPACE hard requiring exponential computational cost (in sample
path length) and memory [6], [15].
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structure of the social influence network to construct compu-
tationally efficient myopic policies that provably upper bound
the optimal POMDP polling policy. Construction of such my-
opic bounds involves using the concept of Blackwell dominance
of the observation likelihoods.

Since the main results of the paper rely on Blackwell dom-
inance, for convenience, we now define Blackwell dominance
and some information theoretic consequences. Blackwell dom-
inance formalizes the notion of which distribution (stochastic
matrix) is more informative than the other.

Definition (Blackwell Dominance [6], [17]): A stochastic?
matrix B(1) € P(Y™"|X) Blackwell dominates (more infor-
mative) another stochastic matrix B(2) € P(Y?|X) written
as B(1) =5 B(2), if

B(2) = B(1)R, for any stochastic matrix R. (1)

Blackwell dominance also has an information theoretic con-
sequence: Consider the classic Discrete Memoryless Channel
(DMCO) [18] with input alphabet X and output alphabet ) de-
noted as P(Y|X). Let I(X;)) denote the mutual information
of the DMC. The post-processing of channel B(1) in (1) is writ-
ten as X — Y1) — Y@ Then from Data Processing Inequal-
ity [18], it follows that

B(1) =5 B(2) = I(x; Y1) > I1(x; ). 2)

Theorem 1 below provides a relation between Blackwell Dom-
inance and Shannon capacity.

Theorem 1 ([3], [19], [20]): For any two conditional distri-
butions B(1) € P(YM)|X) and B(2) € P(Y?|x),

B(1) =5 B(2) = ¢ > @), 3)
where the Shannon capacity C(*) of a DMC is defined as
CW = sup I(X; YD), i=1,2. 4)
pr(z)

Here py(z) is the marginal distribution over the input alpha-
bet X.

In this paper, we will characterize the capacity for more gen-
eral channel structures that arise in polling hierarchical social
influence networks. Also, Blackwell dominance is used to or-
der the Rényi Divergence [18] of the observation likelihoods of
these channels. These information theoretic consequences pro-
vide a ranking of these general channel structures in the order
of their ability to distinguish the states.

B. Main Results and Organization

1) In Sec. II, the underlying state is modeled as a Markov
chain and the adaptive polling problem is formulated as
a POMDP. Open loop polling, where polling at a particu-
lar instant is not influenced by the information previously
collected, is ineffective when the states evolve over time.
In comparison, the proposed adaptive (feedback) polling

2A X x Y matrix B is (row) stochastic if E]. B;j =1forallic X,j €,
and Bz‘j S [0, ].].

algorithms utilize information previously collected to poll
at the next instant. In a hierarchical social influence net-
work, the nodes/ individuals at higher levels in the hier-
archy are more influential and so provide more accurate
information on the underlying state than the lower lev-
els(see Fig. 1). The proposed adaptive polling algorithms
for hierarchical social influence networks also takes this
into account. We formulate adaptive generalizations of the
Intent Polling and Expectation Polling methods® [21] in
Sec. IV and Sec. V.

2) Blackwell Dominance in Hierarchical Social Influence
Networks: As mentioned above, in general, solving a
POMDP is computationally intractable (see Footnote 1).
A key property of our POMDP model for adaptive polling
is that it exhibits a Blackwell dominance structure. For
such POMDPs, a myopic policy provably forms an up-
per bound to the optimal policy (Theorem 2). For the
two adaptive polling algorithms considered, namely, in-
tent polling and expectation polling, we present several
novel sufficient conditions for Blackwell dominance in-
volving matrix polynomial functions (Proposition IV.1)
and ultrametric matrices (Proposition V.1).

3) Information Theoretic Interpretations: The Blackwell
dominance relations in turn facilitates the comparison of
Rényi Divergence and Shannon capacity of more general
channels that arise naturally in hierarchical social influ-
ence networks. For example, Proposition IV.1 provides
an interesting link between Hurwitz (stable) polynomi-
als and Shannon capacity. While Blackwell Dominance
helps compute computationally inexpensive policies that
provably upper bound the computationally intractable op-
timal policy, the information theoretic consequences guide
the choice of observation channels (likelihoods) for the
pollster.

4) Approximate Blackwell Dominance: Blackwell domi-
nance induces a partial order between two stochastic
matrices; so not every pair of stochastic matrices is com-
parable. However, the upper bounds in Theorem 2 pro-
vide sufficient motivation to find a pair of matrices that
are close to the given pair and are Blackwell comparable.
Sec. VI defines the notion of closeness between stochas-
tic matrices using Le Cam deficiency. Using this notion
of approximate Blackwell dominance, we discuss how to
design adaptive polling algorithms using Neighbourhood
Expectation Polling [22].

5) Performance Bounds and Ordinal Sensitivity: The perfor-
mance bounds of the mis-specified POMDP model and
policy are provided in Sec. VII. This provides a way to
obtain the sensitivity of costs for the misclassification of
the nodes to different levels in the hierarchical social in-
fluence network. Finally, the ordinal sensitivity in polling
hierarchical networks, namely, why some networks are
inherently more expensive to poll than others.

3[21): Intent Polling— Who will you vote for?
Expectation Polling— Who do you think will win?
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C. Related Literature

[21] analyzes US presidential electoral college results from
1952-2008 where both intention and expectation polling were
conducted and shows a remarkable result: In 77 cases where
expectation and intent polling pointed to different winners, ex-
pectation polling was accurate 78% of the time! Unlike [21],
we consider a Bayesian pollster that uses feedback control, and
exploits the hierarchical influence structure along with the time
evolution of the state (adaptive polling).

[23] analyzes a Bayesian approach to intent and expectation
polling and illustrates how the posterior distribution of the lead-
ing candidate in the poll can be estimated based on incestuous
estimates (each node summarizes the belief of its neighbours,
which in turn are influenced by the nodes belief). Unlike [23],
we consider hierarchical influence structure and feedback con-
trol, in the sense that current estimate dictates where and how to
poll in the hierarchical network.

[24] investigates the role played by the network structure in
polling by considering the trade-off between number of polled
individuals and the bias introduced due to the network struc-
ture. [24] concludes that the estimators that consider the network
structure into account are considerably more efficient than stan-
dard polling estimators. We take the (influence) structure of the
network into account, but unlike [24], propose adaptive versions
of the polling algorithms.

[25] presents a dynamic Bayesian forecasting method that
systematically combines information from historical forecasting
models in real time with results from the large number of state-
level opinion surveys that are released publicly during the cam-
paign. Similar to [25] we consider a dynamic polling method,
but unlike [25] also take the influence structure of the social
network into account.

II. FORMULATION OF ADAPTIVE POLLING

Sec. II-A introduces the model for the adaptive polling prob-
lem, Sec. II-B provides a discussion of the model and illustrates
the setup with a motivating example and Sec. II-C formulates
the adaptive polling problem as a partially observed Markov
decision process (POMDP).

A. Adaptive Polling as a POMDP

We consider the typical framework for information diffusion
and formation of opinions in a social network. The underlying
state (true sentiment underlying social media message, popular-
ity of a product/political party, quality of commercial product)
evolves over time stochastically [26]—[30]. This underlying state
is observed by the individuals in the social network through
tweets, political commentary blogs and videos, or reviews on
social media. Using the available information and interaction
with neighbours, individuals form opinions about the underlying
state. The population is classified into IV + 1 levels depending
on the hierarchical influence as shown in Fig. 1. The population
is sampled sequentially by a pollster to gather the information
on the underlying state.

How should the pollster poll the hierarchical social network
to estimate the state while minimizing the polling cost (measure-
ment cost and uncertainty in the Bayesian state estimate)? We
formulate this adaptive polling problem as a partially observed
Markov decision process (POMDP). POMDPs provide a princi-
pled framework for sequential decision making problems with
feedback control in partially observed domains. This formalism
as a POMDP casts the adaptive polling problem as a stochastic
control problem. We refer to [6, Chapter 7] for a detailed treat-
ment of POMDPs - due to space restrictions we give a very terse
description.

The POMDP for adaptive polling is specified by

0= (XayaYaU,C7P,O(U>7P>7 (5)

where X denotes the state space, ) denotes the observation
space, Y denotes the opinion space, U denotes the control/ ac-
tion space, C' denotes the state-action cost matrix, P is the state
transition matrix, O(u) is the control dependent observation dis-
tribution/ likelihood matrix and p € [0, 1) is the economic dis-
count factor.

We now describe the above 8 components of the model (5):

State: Let x, € X = {1,2,..., X} denote a Markov chain
evolving at discrete time instants £ = 0, 1,--- on a finite state
space. As mentioned previously, the state models the time evolv-
ing ground truth (sentiment, popularity, quality) quantized into
a finite number of levels.

Transition matrix: Let P denote the transition probability
matrix of the Markov chain x;, with elements

Py = P(xpy1 = jlag = 1), 4,5 € X, VEk. (6)

Polister’s control/actions: U = {1,2,...,U} denotes the set
of possible controls (actions), with u;, € U denoting the action
chosen at time k. For example, the action can denote the choice
of the hierarchical level the pollster seeks the opinion.

Polling cost: Let C (), uy) denote the instantaneous cost in-
curred by the pollster for taking action u; when in state xj.
This models the measurement cost and quality (accuracy) of the
polling algorithm. For example, conducting surveys and opinion
polls incurs a measurement cost and the type of poll conducted
affects the quality of the information gathered.

Pollster’s observation distribution: Let ) denote a finite set
of observations with y;, € ) representing the observations of
the underlying state x;, € X'. The observations y;, € ) for the
pollster model the information on the state gathered via views/
sentiments expressed by the nodes or individuals in the hierarchi-
cal social network (see Fig. 1). Let O(u) denote the observation
probability matrix with elements

Oi(u) =P(yr1 = jlowr =t up =u), i € X,j €, Vk.

(N
At each time k, the pollster receives an observation y;, on the
underlying state xj, after taking an action uy. The observation
matrix/ distribution O(u) models the likelihood of the observa-
tions y, € ) giventhe state z;, € X, and is different for different
polling algorithms.
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The observations obtained by the pollster are the opinions
about the state provided by the nodes. We now discuss the opin-
ion dynamics, the corresponding opinion distribution, and how
the observation distribution can be expressed in terms of the
opinion distributions:

i) Opinion dynamics: Let yfc €Y denote the opinion of
nodes at level [ of the hierarchical network (see Fig. 1).
Here |Y| = | X|. The opinion dynamics in Fig. 1 proceeds
according to the following protocol for k = 0,1, - -

a) The state x; evolves on time scale k.

b) Opinions yff, forl =1,2,..., N, are formed at the
Level [ at the fast time-scale k = k + 16, where 0 <
0 < 1.

c) Attime k + 1, state transitions to 1.
We assume that V) < 1, where the number of lev-
elsin Fig. 1 is IV + 1. This implies that the state xj,
is evolving over a slower time-scale than the time-
scale over which the opinions are formed across the
network given in Fig. 1.

ii) Opinion distribution: The opinions at different levels in
the hierarchical social influence network are formed via
information diffusion as follows [31], [32]: opinion at
the highest level y? is directly influenced by the state zy.
Opinion y}, I > 0 influences y.'* (see Fig. 1). This is
modeled probabilistically as P (y,™ = jly} = i).

Let the opinion distribution at Level O be given by the
stochastic matrix B having elements

Bij =P(y) = jlag =i), i€ X,j € Y,Vk. (8)

The opinions at levels [ € {1,..., N} in the hierarchi-
cal network are directly influenced by the preceding lev-
els (see Fig. 1). The opinions at levels [ € {1,...,N}
are given by (B))i; = P(y} = jlzy = i) fori € X,j €
Y, and Vk. The opinions at Level [ are determined by the
opinion distribution via the following decomposition

(B)ij = Y Py, = jlyy " =m)

mey
x Py}, ' = mlxy, =1). 9)

For tractability, assume* that the confusion matrix be-
tween successive levels is modeled using the same time-
homogeneous opinion distribution B in (8). So the
opinions at levels [ € {0,1,..., N} have an opinion
distribution

B, = B!, (10)

where B denotes the opinion distribution at level [.

iii) Observation distribution via Opinion distribution: Since
the observations for the pollster, to update the estimate of
the state, are the opinions from the nodes, the observation

4This is a modeling assumption, and Example 1 in Sec. VIII shows how to
estimate such a structure using a modified EM algorithm. For the case where it is
known a priori that the distribution (confusion matrix) between the hierarchical
levels are different, results in Sec. VI on Approximate Blackwell Dominance can
be used to obtain the policies and performance bounds on the proposed polling
algorithms in Sec. IV and Sec. V.

distribution (7) is directly related to the opinion distribu-
tion (8). For example, in case of adaptive intent polling
(Sec. IV below), O(u) = Bf,(B), where f, is any ma-
trix polynomial, where the probabilities with which the
nodes at different levels in the hierarchical social net-
work are polled are proportional to the co-efficients of
the polynomial f,; and in case of adaptive expectation
polling (Sec. V below), O(u) = Bll”/ ! where the nodes
at level [ are polled to provide information on the nodes
at level [,,.

Polling Objective: The actions taken by the pollster influences
the noisy state-observations via the selection of the observation
distribution. The goal of the pollster is to choose an action, based
on the history of past actions and observations, that minimizes
the expected costs incurred over time. We consider the following
infinite horizon discounted cost for specifying the objective [6,
Chapter 7]:

Ju(mo;0) =E, {Z p"C (xh, up = M(Ik))|ﬂ'0} . (an
k=0

Here J,(m;0) denotes the expected cumulative cost with
respect to the stationary (time-independent) policy u, Z =
{70, U0, Y1,---,Uk_1,Yr_1} denotes the history of past ac-
tions and observations and mop = (mo(2),7 € X'), where 7 (i) =
P(29 = 4) is the initial probability distribution over the state
space. The objective of the pollster is to find the optimal station-
ary policy p* such that

Jyu (o3 0) = inf e, J, (103 0) (12)

where p denotes the class of stationary policies.

Discounting in Polling: The parameter p € [0, 1) is an eco-
nomic discount factor that determines the way the polling cost
is counted towards the polling value defined in (12), and affects
the optimal policy p*. Choosing p = 0 implies that the poll-
ster is myopic, and only minimizes the instantaneous polling
cost C'(z, u) without considering future polling costs. Choosing
p > 0 implies that the pollster geometrically weighs the polling
costs incurred in the future.

Summary: We have formulated adaptive polling as a POMDP
parametrized by 6, defined in (5). The infinite horizon objective
(11) is for notational convenience. Our main result will exploit
Blackwell dominance to construct a myopic upper bound to the
optimal policy p* in (12). For a finite horizon formulation - the
optimal policy is non-stationary - but all subsequent results in
this paper continue to hold.

B. Discussion of Model

1) We assume that the POMDP model 6 in (5) is known. This
implies that the number of hierarchical levels and nodes-
level associations are known to the pollster. Otherwise the
problem becomes an adaptive stochastic control problem
which is intractable to solve. Note that Blackwell domi-
nance is a class type result - even if the observation proba-
bilities (7) are not known exactly, as long as the Blackwell
dominance condition is satisfied, the main result (Theo-
rem 2 below) holds.
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2) The opinion dynamics are such that the entire network
holds the view on the state x; at time k, between times
k and k + 1. This modeling assumption has two implica-
tions: (i) It enables the decomposition of the opinion distri-
butions (9), (ii) It implies that during the sampling instant,
the information gathered by the pollster, from anywhere in
the hierarchical network, pertains to the same underlying
state.

3) Opinions from higher levels or more reputable sources (see
Fig. 1), are more informative (Blackwell sense) and hence
the information acquisition is costlier compared to lower
levels. This is motivated by study in [33], which shows
that information acquisition from more informative dis-
tributions (in the sense of Blackwell) is more costly. The
intuition is that nodes at a higher level pay more atten-
tion to acquire information to form an opinion, and hence
require commensurate compensation to divulge that infor-
mation to the pollster. The assumption on the cost C'(x, u)
captures this intuition.

4) Example: Consider estimating the severity of a natural
disaster like an earthquake, modeled as as =(Severity) =
{Low Damage, High Damage} via Twitter. The pollster’s
observations and opinions formed by the nodes at level
I could be modeled as y = y' = {Opinion.1, Opinion.2}.
The pollster incurs a measurement cost for obtaining in-
formation from the people who tweet, and a cost for the ac-
curacy or the uncertainty reduction in the state estimate. In
this example application, polling opinions from the influ-
encers (knowledgeable participants) incurs a higher mea-
surement (processing) cost but their opinions will result in
a larger reduction in uncertainty in the state estimate. The
pollster’s objective is to estimate the disaster intensity by
polling observations from the participant pool while in-
curring the least polling cost on average.

C. Stochastic Dynamic Programming for Adaptive Polling

In this section, the solution of (12) is formulated as a stochastic
dynamic programming problem over the X — dimensional unit
simplex I1(X) = {7 : w(i) € [0,1], 32;, 7(i) = 1} of poste-
rior probabilities (beliefs); see [6] for details.

Belief State Formulation: Let ;. denote the belief at time &
and the i element 7, (i) is:

where = {1,2,3,..., X} denotes the state space and Z;, =
{70, %0, Y1, .-, Uk_1,Yk—1} denotes the history of past actions
and observations. The belief (13) is computed from the opinions
gathered by the pollster, and is a sufficient statistic [6] for the
history of actions and opinions {uy,y1,...,ug1,Yk-1}- The
dynamics of the POMDP is given by the Bayesian filtering up-
date
~ Oy(u)P'r
- 10y (u)P'r
(14)
and Oy (u) = diag(O1y(u), ..., Oxy(u)). Here 1 is the column
vector of 1s and P’ denotes the matrix transpose.

e = T(’/kala Yk Uk), WherCT(’]T, Y, U)

As is well known in POMDPs, instantaneous cost C'(, u)
in terms of the belief 7 given by

Oy, ur) =Y Clag = i,up)m (i), (15)

where 7, is the belief at time k. The costs C'(7, u) in (15) capture
the cost of measurement and the uncertainty or error in the state
estimate. Any non-linear cost can be used in the formulation of
the polling problems. In this paper, we consider the following
non-linear costs [6, Chapter 8] — entropy and state-estimation
error — to illustrate the different formulations.

Associated with a stationary polling policy 1 and initial belief
7o € II(X), the objective (11) can be re-expressed as:

Ju(m0;0) =E, {Zpkc(ﬂk,uk = M(Wkl))|7fo} - (16)
k=0
Our aim is to find the optimal stationary polling policy p* :
II(X) — U defined in (12).
Stochastic Dynamic Programming: Obtaining the optimal
policy p* in (12) is equivalent to solving Bellman’s stochastic
dynamic programming equation [6, Chapter 7]:

w(m) = argmin Q(7, u)

ueld
Ju(m30) =V (m) = Hlellf{l Q(m,u), where
Qm,u) = C(m,u) +p Yy V(T(m,y,u)o(m,y,u).

yey

A7)

Here o(m,y,u) = 1'0O,(u)P'n is the measure on the observa-
tion alphabet ), V() is the value function denoting the mini-
mum expected cost, T'(, y, u) is the Bayesian filtering update
(14), Q(m, u) is the state-action value function (Q— function),
C(m,u) is the state-action cost in terms of the belief state (15)
and p is the discount factor.

Since the belief space II(X) is a continuum, Bellman’s equa-
tion (17) does not translate into practical solution methodologies
as V(m) needs to be evaluated at each 7 € II(X). The compu-
tation of optimal policy of the POMDP is P-SPACE hard [16].
Also, the costs C'(m,u) capture the cost of measurement and
the uncertainty or error in the state estimate, and hence are non-
linear in the belief. In order to capture the uncertainty in the
estimate it is necessary to use a non-linear cost on the belief
state. The non-linearity is required so that the costs are zero at
the vertices of the belief space II(X) (reflecting perfect state
estimation) and largest at the centroid of the belief space (most
uncertain estimate). This results in a non-standard® POMDP.
This motivates the construction of optimal upper bound policy
fi(7) to the optimal policy p*(7) that is inexpensive to compute.
In the remainder of the section, we construct such upper bound
policies in terms of easily computable myopic policies using
Blackwell dominance, for adaptive polling problems formulated
as POMDPs.

SPOMDP solvers can only handle POMDPs with linear costs, see [6, Chap-
ter 7].
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III. META-THEOREMS FOR ADAPTIVE POLLING

Given the POMDP model for adaptive polling (5) and the
polling objective (12), the aim of this section is to describe the
key meta theorems that will be used in subsequent sections to
develop efficient adaptive polling algorithms. In this section,
we provide two main theorems using Blackwell dominance:
(1) A structural result using Blackwell dominance for the adap-
tive polling POMDP, i.e., characterization of achievable perfor-
mance without brute force computations but using mathematical
analysis, (ii) An information theoretic consequence of Blackwell
dominance, namely, Rényi divergence, and why this is useful for
the pollster.

A. Main Result. Optimality of Myopic Polling Policies

The aim of the pollster is to estimate the (underlying) evolving
state zj, by incurring minimum cumulative cost (16). The pollster
employs the control uy, = p*(7x_1) to obtain opinions (y;, € ))
from the nodes, and then updates the belief 7,1 — 7, about
the underlying state z;, € X using (14).

Define the myopic policy fi(7) as

f(m) = argmin C'(m, u)

ueld

(18)

Theorem 2 below provides sufficient conditions on the observa-
tion distribution of the pollster O(u) so that a myopic polling
policy (18) upper bounds the optimal polling policy in (12).

Theorem 2 (Optimality of Myopic Policies via Blackwell
Dominance): Consider the adaptive polling problem formulated
in Sec. II-A as a POMDP. Assume that the cost C'(m,u) is
concave in 7. Suppose O(u) =p O(u + 1) Vu € U. Then ()
defined in (18) is an upper bound to the optimal polling policy
() defined in (17), ie., p*(w) < f(w) for all 7 € IL. In
particular, for belief states where fi(7) = 1, the myopic policy
coincides with the optimal policy p* (7).

Discussion: The concavity of the costs C'(m,u) for each
polling action u implies that the value function V (7) is con-
cave [6, Theorem 8.4.1] on II(X). This together with Jensen’s
inequality is used to establish Theorem 2. Theorem 2 is a well
known structural result for POMDPs [6, Chapter 14, Sec.14.7],
and it says the following:

i) The instantaneous costs satisfying C(m, 1) < C(7,u) for

u = 2, ..., U does not trivially imply that the myopic pol-
icy fi(m) in (18) coincides with the optimal policy p(7),
since the optimal policy applies to the cumulative cost
function involving an infinite horizon trajectory of the dy-
namical system. But when O(u) =5 O(u+ 1)Vu e U
and the costs are concave, the myopic policy coincides
and forms a provably optimal upper bound to the com-
putationally intractable optimal policy. The concavity of
the costs imply that extremes are better than averages, re-
flecting perfect state estimation; and captures the effect of
increasing marginal utility.

ii) The trivial sub-optimal policy fi(7) = 1Vm € II(X) is
also an upper bound to the optimal policy - but a useless
bound because p*(m) =1 = ji(m) = 1. In comparison,
the upper bound constructed via Theorem 2 (Blackwell

dominance) says that ji(7) = 1 = p*(7) = 1, whichis a
much more useful construction. Thus, the myopic polling
policy forms a provably optimal upper bound to the com-
putationally intractable optimal policy.

B. Blackwell Dominance and Rényi Divergence Interpretation

In this section, we will discuss the information theoretic con-
sequences of Blackwell dominance. While Blackwell Domi-
nance helps compute inexpensive policies that provably upper
bound the computationally intractable optimal policy, the infor-
mation theoretic consequences guide the choice of observation
channels (likelihoods) for the pollster.

Rényi Divergence is a generalization of the Kullback-Leibler
divergence [18], and it measures the dissimilarity between two
distributions. Theorem 3 below shows the relation between
Rényi Divergence and Blackwell dominance.

With a slight abuse of notation in (7), let O; (u) denote the i*"
row of the observation likelihood matrix O(u). In words, O; (u)
is the distribution over the observation alphabet ) conditional
on the state x = 1.

Definition: (Rényi Divergence) For an observation likeli-
hood O(u), the Rényi Divergence of order « € [0, 1) fori,j €
X is defined as
i(u)[|0;(u)) =

D, (O O"lu).

19)

logZO

yey

Theorem 3 (Ordering of Rényi Divergence): If the observa-
tion distribution for the pollster satisfy O(u) =p O(u +

1)Vu € U, then for any i,j € X
Oi(u)]|0;(u)) = Da(Oi(u + 1)[|0j(u + 1)) Yu € U.
(20)
Discussion: Theorem 3 says that when O(u) =5 O(u + 1),
conditional on the state, the observation distributions are more
dissimilar in case of O(u). Here, more the dissimilarity, bet-
ter the pollster is able to distinguish the states. In other words,
Theorem 3 provides a ranking of channel structures in terms of
their ability to distinguish the states. In Sec. IV and Sec. V, we
discuss the ordering of Rényi Divergence for more general chan-
nels that arise in hierarchical social influence networks, where
the information theoretic consequences guide the choice of the
observation distributions for the pollster.

D, (

IV. ADAPTIVE INTENT POLLING ALGORITHM

In intent polling [21], to decide between two states, the sam-
pled individuals are asked “who will you vote for?”. In this
section, we develop an adaptive version of intent polling [21]:
the resulting algorithm (Algorithm 1 below) is designed for hi-
erarchical social networks with time-varying state of nature.

We present novel sufficient conditions for Blackwell domi-
nance in the context of adaptive intent polling. These conditions
enable the application of Theorem 2 to determine myopic poli-
cies that upper bound the optimal adaptive intent polling policy.
These myopic polices are used for polling in Algorithm 1, which
is inexpensive to implement.
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Algorithm 1: Adaptive Intent Polling for Pollster.

1 Polling Policy: Compute the myopic adaptive intent
polling policy iy : II(X) — U that maps beliefs to
polling actions.

2 For an initial belief mg, Loop k = 1,2,---:

3 Polling Action: Polling action uy, = fir(m_1) is a
choice of a distribution 3(“),
where B(ur) = (5(()“1@)7 (we)
52,88 = 1and N + 1 is the number of levels in the

network. Poll a node at level [ with a probability ﬁ;“k)
and ask the following question to obtain the
observation yy:

5\7}%)) and

“What does it (a node at level 1) think the state is?”

4 State-estimation: Estimate the state 7, using the
Bayesian filtering update (14) with observation
distribution O(uy) = B f., (B), where B is the opinion
distribution (8) and f,, (z) is a Hurwitz polynomial.

5 Polling Cost: Incur an intent polling cost
C (g, up) = S(BU)) 4 0 (mh, uy ) that is composed
of measurement and entropy costs respectively.

6 End

In the adaptive intent polling (Algorithm 1), the pollster adapts
the intent polling policies, namely, the probabilities with which
the nodes at different levels in the hierarchical social influence
network are polled. This affects the observation distribution
O(u), and hence the state estimate (see Fig. 1).

A. Formulation of Intent Polling Costs

The instantaneous cost in adaptive intent polling consists of
two components— the measurement cost and the entropy cost
(uncertainty in the state estimate):

a) Measurement Cost: Let w € {1,2,...,U} denote
the choice of distributions (polling actions) A",
where S = (5", 8, 8%)) and 3, 8 = 1.
Here Bl(u) for  =0,1,2---, N denotes the probability
of selecting a node from level /, having an opinion distri-
bution B+, Let 5(I) denote the measurement cost from
level [. Since nodes at higher levels in the hierarchy (small
[) provide more informative (in the Blackwell sense)
observations, higher costs are associated with obtaining
observations from these levels [33], i.e., s(I) > s(l + 1),
and the average measurement cost for employing the
polling algorithm 3 is S(3®) = SN 8™ s(1).

b) Entropy Cost: The entropy cost models the uncertainty in
the state estimate 7 in (13), and is given as

2
Me(m,u) = —y1(u) > w(i)logym(i) + v2(u)
1=1

for 7, (i) € (0,1) and neéo for (i) = {0,1}. Here
1, v2 > 0 are user defined scalar weights.

Since more informative opinions lead to larger reduction in
uncertainty, v1 (u) > 71 (v + 1) and v2(u + 1) > ya(u).
The net instantaneous cost C'(7,u) in (15) incurred by the
pollster in case of adaptive intent polling is thus given as:
C(m,u) = S(B™W) + ne(m, u). (21)
The cost (21) expressed in terms of the belief state 7 captures the
fact that a control with higher measurement cost should result in
a smaller entropy (more reduction in uncertainty) cost and vice
versa.

B. Matrix polynomials and Blackwell Dominance

The aim of this section is to provide a rationale for choos-
ing the intent polling actions (distributions) 3("), u € U, with
Ju(z) = Zf\;o ﬁl(u)zl denoting the polynomial associated with
action distributions 4(*). It is shown that when f,(2) is Hur-
witz stable, there exists a Blackwell dominance relation be-
tween the observation distributions (7) for the pollster. Let Py =
{hh(z) = SN Bizt, SN Bi = 1, Bi > 0} denote the set of
all polynomials with co-efficients that constitute a convex com-
bination.

Proposition IV.1: Let @) be a stochastic matrix. For n > m,
let p(z) € Py, and ¢(z) € Py, be two polynomials such that all
the roots of ¢(z) are roots of p(z). If ¢(z) and p(z) are Hurwitz,
then ¢(Q) = p(Q).

Discussion: The above result is interesting since it shows that
Hurwitz stability is a sufficient condition for Blackwell domi-
nance. Consider two polynomial channels p(Q) and ¢(Q) where
@ is any stochastic matrix. Proposition IV.1 says that polling
with observation channel ¢(Q) is always better than polling with
channel p(Q). In adaptive intent polling (Theorem 4), the de-
gree of the polynomial is the same as the number of levels in the
hierarchy (Fig. 1). A polling action in adaptive intent polling cor-
responds to choosing the (normalized) co-efficients of a polyno-
mial, and these coefficients are the probabilities of polling from
the various levels of the social network.

According to Proposition I'V.1, if the polynomials are Hurwitz
and have common factors, a Blackwell dominance relation exists
between their corresponding matrix polynomials. If, however,
p(z) € Py, is not a Hurwitz polynomial, then ¢(Q) =5 p(Q)
only if the polynomial ¢(z) € P,, is the single quadratic factor
(m = 2) corresponding to any conjugate pair of zeros of p(z)
having smallest argument in magnitude; see [34].

C. Main Result. Myopic Policies for Adaptive Intent Polling

Our main result on adaptive intent polling is Theorem 4 be-
low. It shows that when it cheaper for the pollster to (myopically)
listen to the polynomial channel that provides largest reduction
in uncertainty on the state, it is indeed optimal to do that. Poly-
nomial channels are parallel cascaded channels that model the
communication medium between the pollster and the nodes of
a social network having a hierarchical influence structure as in
Fig. 1, when the pollster polls all levels of the hierarchical net-
work as in intent polling.
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Let f,(2) = Zz]i 0 ﬁlu)zl denote the polynomial correspond-
ing to the polling policy 5*). For an opinion distribution B
(defined in (8)), let the matrix polynomials be f,(B) Vu € U.

Theorem 4 (Adaptive Intent Polling): Consider the adaptive
intent polling problem with costs specified in (21). Let the obser-
vation distribution for the pollster be O(u) = B f,(B) Yu € U.
Assume that the polynomial fi;(z) € Py is Hurwitz.b

a) Then, O(u) =p O(u+1)Yu € U.

b) By Theorem 2, the myopic intent polling policy fi; ()
forms an upper bound to the optimal intent polling policy
wi(m), ie., pi(m) < fiy(m) for all w € II. In particular,
for belief states where fi;(7) = 1, the myopic policy co-
incides with the optimal policy p (7).

Discussion: The instantaneous cost for adaptive intent
polling (21) is concave in 7 by definition. The proof of The-
orem 4 follows from Proposition IV.1 and Theorem 2. The
adaptive intent polling algorithm employed by the pollster de-
termines how the opinions are gathered, and the opinions are
distributed as O(u) for the pollster. For an opinion distribu-
tion B, the observation distribution of the pollster in case of
adaptive intent polling is given as O(u) = Bf,(B), where
fu(B) =31, Bl(“)Bl and nodes at level [ are sampled with
probability Bl(“). The matrix polynomial f, (B) has an identity

observation likelihood for the co-efficient ﬁé“). This motivates
the choice O(u) = Bf,(B)Yu € U.

Proposition IV.1 provides a justification for the polynomial
fu(2) tobe Hurwitz. If fi;(z) is Hurwitz, then a way to compute
fq(z) for g € {U —1,...,2,1} is by successive long-division
of fur(z) by linear or quadratic factors of fi;(z). If we know that
the polynomial f;(z) is Hurwitz, then the polynomial fi7_1(z)
obtained by removing any linear or quadratic factor from fi;(z)
is also Hurwitz. From Proposition IV.1, we know that if two
polynomials are Hurwitz, there is a Blackwell dominance rela-
tion between them. From Theorem 4, the observation distribu-
tion for the pollster is ordered as

O(U—-1)=B" fuv-1(B) =z B+ fu(B) = O(U).

A similar procedure can be carried out to obtain observation dis-
tributions foru = U — 2,...,1 as long as the number of levels
N + 1 is greater than U in the hierarchical social network, as
there are N + 1 roots for a polynomial of degree NV + 1.

D. Information Theoretic Interpretation

The aim of this section is to provide an interesting link
between Hurwitz stability and channel capacity in terms of
Blackwell dominance. Let I(X ;y<u>) denote the mutual in-
formation of channel f,(B) and C(*) denote the capacity de-
fined in (4). Let fi(B) denote the i'" row of the matrix
polynomial f,(B).

Proposition IV.2: If the channel error probabilities (likeli-
hoods) for the pollster satisfy f,,(B) =g fut+1(B)Vu € U, then

a) Shannon Capacity Ordering: C(*) > C(“+1 oy € I{.

oA polynomial f is Hurwitz if all its zeroes lie in the open left half-plane of
the complex plane, and all its co-efficients have the same sign.

Algorithm 2: Adaptive Expectation Polling for Pollster.

1 Polling Policy: Compute the myopic adaptive
expectation polling policy fig : II(X) — U that maps
beliefs to polling actions.

2 For an initial belief 7o, Loop k = 1,2, ---:

3 Polling Action: Polling action uy, = fip(7;_1) is a
choice of level in the network. Poll a node at level [ and
ask the following question to obtain the observation yy:

“what does a node at level 1 think
the nodes at level j(< 1) would report the state as?”

4 State-estimation: Estimate the state using the
Bayesian filtering update (14) with observation
distribution O(uy,) = Bll’“ /l, where B; is the opinion
distribution (10) and B in (8) is an ultrametric matrix.
Here nodes at level [ are polled to provide information
of the nodes at level [,,, .

5 Polling Cost: Incur an expectation polling cost
C(mp,ug) = S(BW)) + 12 (7y, ug) that is composed
of measurement and state estimation error respectively.

6 End

b) Rényi Divergence Ordering:

Da(fu(B)IIf1(B)) = Dalfis1(B)||f141(B))

forall u € U and for all i, j € X.

Discussion: The proof of Proposition I'V.2 follows from Theo-
rem 1 and Theorem 3. From Proposition IV.2, the Hurwitz poly-
nomial channels are ordered such that the channel that is a sub
channel of the other results in a larger reduction in uncertainty
on the state.

Together with Proposition IV.1, Proposition IV.2 provides an
interesting link between Hurwitz (stable) polynomials and chan-
nel capacity. From Proposition IV.1, those polling actions that
result in Hurwitz (stable) polynomials allow decomposition of
channels into sub channels that have higher capacity from Propo-
sition IV.2.

V. ADAPTIVE EXPECTATION POLLING

In expectation polling [21], to decide between two states, the
sampled individuals are asked “who will your friends vote for?”.
In a hierarchical network, this can be seen as asking “who will
your more influential friends vote for?”. In this section, we de-
velop an adaptive version of expectation polling [21]: the result-
ing algorithm (Algorithm 2 below) is designed for hierarchical
social influence networks with time-varying state of nature.

We present novel sufficient conditions for Blackwell domi-
nance in the context of adaptive expectation polling. These con-
ditions involving ultrametric matrices enable the application of
Theorem 2 to determine myopic policies that upper bound the
optimal adaptive expectation polling policy. The myopic poli-
cies are used for polling in Algorithm 2, which is inexpensive
to implement.
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Algorithm 2 below is a more sophisticated version of standard
expectation polling, for multiple states and hierarchical social
networks.

In adaptive expectation polling (Algorithm 2), the pollster
controls the observation distribution O(u) by choosing different
levels to gather the opinion, and this in turn affects the estimate
of the state (see Fig. 1).

A. Formulation of Expectation Polling Costs

The instantaneous cost in adaptive expectation polling con-
sists of two components— the measurement cost and the uncer-
tainty in the state estimate:

a) Measurement Cost: Let v € {1,2,..., U} denote the
choice of levels. In adaptive expectation polling, unlike
adaptive intent polling, not all levels are polled. The poll-
ster selects a level [ and asks the nodes at level [ to provide
information about the other levels. Let S(u) denote the
measurement cost for action u. Since more informative
opinions are costlier to obtain [33], from Theorem 5(i)
below, S(u) > S(u+1)Vu € Y.

b) State-Estimation error: The state-estimation error in-
curred in choosing action u is modelled as

N2 (Z,u) = wy||T — 7|2 (22)

The scalar w,, > 0 allows the costs associated with differ-
ent controls/ or the levels to be weighed differently. In (22),
7 denotes the posterior distribution updated according to
(14) and 7 € {ey,ea,...,ex}, where e; is the unit indi-
cator vector. Note that this is an alternate representation of
the state space X'. In (22) using the law of iterated expec-
tation [6, Chapter 8, Sec.8.4.2], [35, Lemma 3.2], 12 (7, u)
can be expressed in terms of the belief 7 as follows:’

(23)

na(m,u) = wy (1 —7'r)

Since more informative opinions lead to smaller state-
estimation error, from Theorem 5(i) below, w,, 41 > w,,.
The net instantaneous cost C'(m, ) in (15) incurred by the
pollster in adaptive expectation polling is thus given as:

C(m,u) = S(u) + na(mr,u) 24)

The cost (24) expressed in terms of the belief state m models the
fact that asking the nodes at level 7 to provide information on the
opinions of nodes at levels j(< 7) is costly, but more informative
— smaller state estimation error.

JH(WO)EM{

k

Ju(m0)=E, {
k

The instantaneous cost is thus given as Zjil C(e;,up)m (i), where
C(es,up) = S(ug) + wy,, |le; — mll2. By noting that |[le; — mxll2 =
Eizl \ei(m) — jrk(m)\Q, the equation (23) follows from (22) by simple
algebraic manipulation.

2

0

PPE{C (3, ur) [Tk o }

2

X
PE Y Cleiup)mi(i) m} from (13).

0 i=1

B. Fractional Exponents of Stochastic Matrices and
Blackwell Dominance

The aim of this section is to provide a rationale for choosing
the expectation polling actions, which correspond to sampling
nodes at a particular level and soliciting information from other
levels (see Fig. 1). It is shown fractional matrix powers can
model requesting information from hidden levels in a hierarchi-
cal social influence network. When the opinion distribution is
an ultrametric matrix, there is a relation between the fractional
matrix powers and Blackwell dominance.

Definition: (Ultrametric Matrix [36]) A square stochastic
matrix () is ultrametric if

1) @ is symmetric.

2) Qij > min{Qik, Bkj} for all i,j, k.

3) Qi > min @y, for all k # 4.

For any ultrametric matrix (), the K th primary root, Ql/ K
is also stochastic for any positive integer K; see [36].

Proposition V.1: For any ultrametric matrix (), the following
hold for any positive integer j:

a) QK =p Q.

b) QI/E =5 QUIV/K - p QUK-1)/K

¢) QI/E+D) »p i/ (K),

d) Q>=p QI/K forall j > K.

Discussion: Clearly, any integer power of a stochastic
matrix is a stochastic matrix. Proposition V.1 says that frac-
tional power of certain stochastic matrices, namely ultrametric,
are also stochastic. In adaptive expectation polling (Theorem 5),
polling actions correspond to choosing different levels in the hi-
erarchy (Fig. 1) and soliciting opinions of nodes at other levels.
In Proposition V.1, Q7+1/K+1 can be used to interpret the notion
of node at level K providing information on nodes’ opinions at
level j, and hence provides a way to order the likelihoods cor-
responding to different polling actions. According to Proposi-
tion V.1, when the opinion distribution B in (8) is ultrametric,
there exists a Blackwell dominance relation between the obser-
vation distributions of the pollster.

C. Main Result. Myopic policies for
Adaptive Expectation Polling

Our main result in adaptive expectation polling is Theorem 5
below. It shows that when it is cheaper for the pollster to (my-
opically) listen to the ultrametric channel that provides the most
information on the state, it is optimal to do so. Ultrametric chan-
nels are (hidden) cascaded channels that model the communi-
cation medium between the pollster and the nodes of a social
network having a hierarchical influence structure as in Fig. 1,
when the pollster seeks opinions formed at the hidden levels
from the levels that are easily accessible.

Theorem 5 (Adaptive Expectation Polling): Consider  the
adaptive expectation polling problem with costs specified
in (24). Assume that the opinion distribution B (defined in (8))
is ultrametric. Let the observation distributions for the pollster

be O(u) = Bi"/'Vu e U.
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a) For the choice of levels [, > [,,41, we have
O(u) =g O(u+1)Yu € U.

b) By Theorem 2, the myopic expectation polling policy
jig(m) forms an upper bound to the optimal expectation
polling policy p%; (), i.e., iy (7) < fip(m) forall m € II.
In particular, for belief states where fig(7m) = 1, the my-
opic policy coincides with the optimal policy (7).

Discussion: The instantaneous cost for adaptive expectation

polling (24) is concave in 7 by definition. The proof of The-
orem 5 follows from Proposition V.1 below and Theorem 2.
The expectation polling algorithm employed by the pollster
determines how the opinions are gathered, and the opinions
are distributed as O(u) for the pollster. Proposition V.1 be-
low provides a justification for the opinion distribution B to
be ultrametric. Note that B; denotes the opinion distribution at
level I, i.e., B; = B! from Fig. 1. For any K > 0, clearly
B?l/ K+l B;. This motivates the choice of the observa-
tion distribution of the pollster in case of adaptive expectation
polling as O(u) = Bll'“/ !, where nodes at level [ are polled to
provide information of the nodes at level [,,. It is easiest (see
Sec. VIII) to poll nodes at level N, so a convenient choice is

lu/N+1
O(u) = B\

D. Information Theoretic Interpretation

The aim of this section is to provide a link between ultramet-
ric channels (hidden channels) and Shannon capacity in terms of
Blackwell dominance. Let (X Y)Y denote the mutual infor-
mation of the ultrametric channel Q"+/% and C(*+) denote the
capacity defined in (4). Let Qi“/ K denotes the " row of the
channel Q'/ K.

Proposition V.2: If the channel error probabilities (likeli-
hoods) for the pollster satisfy Q'«/% =5 Q"/X forany K > 0,
we have

i) Shannon Capacity Ordering: C(*+) > C(*) for I, > 1,,.

ii) Rényi Divergence Ordering:

lu /K | Al /K lo /K ) Alo /K
Do (@ MNQY ) = Da(Q " N1QL )

forall w € Y and for all 7,5 € X.

Discussion: The proof of Proposition V.2 follows from The-
orem 1 and Theorem 3. Proposition V.2 provides an ordering
of Rényi Divergence and Shannon capacity between ultrametric
channels Q'+/% | K > 0, Vu € Y. From Proposition V.2, the ul-
trametric channels are ordered such that the information of nodes
at Level 0, for example, revealed by the nodes at Level N (# 0)
result in a larger reduction in uncertainty on the state, than opin-
ions from nodes at Level N + 1(# 0).

VI. APPROXIMATE BLACKWELL DOMINANCE

So far we have discussed sufficient conditions for Blackwell
dominance; when these conditions hold, the optimal adaptive
polling policy is provably upper bounded by a myopic policy. A
natural question is: Can efficient polling methods be developed
when Blackwell dominance does not hold exactly?

Algorithm 3: Approximate Blackwell Dominance.

1 Let M denotes the set of all stochastic matrices.
Initialize: O(1) = O(1)

Foru € {1,2,...,U — 1}, do: R

Riyy = argmingep [O(u+ 1) — O(u) R
O(u+1) = O(u)R;, 4

end

Output: O(u) for u € U.

~N N B WD

This section discusses approximate Blackwell dominance and
its applications in a novel polling method called adaptive neigh-
borhood expectation polling. The main idea involves Le Cam
deficiency.

A. Le Cam Deficiency

Given a collection of matrices, it is important to check whether
there exists a Blackwell dominance relation, as Theorem 2 can
used to compute inexpensive policies. In this section, an ap-
proximation procedure using Le Cam deficiency is provided. Le
Cam deficiency enables to calculate the closest matrix that is
Blackwell comparable.

Definition: (Le Cam deficiency) For any two stochastic ma-
trices W and H, the Le Cam deficiency is

A .

(W, H) = inf [[W — HR|w, (25)
where M denotes the set of all stochastic matrices and || - ||~
denotes the induced norm.

The inf in (25) is achieved — this can be shown using Le
Cam randomization criterion [37]. The Le Cam deficiency is an
approximation measure that quantifies the loss when using one
observation distribution instead of the other. There is no loss if
there exists a mechanism able to convert the observations from
one distribution to the other.

(25) can be solved as a convex optimization problem using
CVXOPT toolbox in Python or CVX in Matlab. Solving (25)
yields observation distributions that are Blackwell comparable.

Consider a POMDP model § = (X, Y, P,O(u),C, p), where
O(u) for u={1,2,...,U} are observation matrices that are
not Blackwell comparable. Consider an approximation v =
(X,Y,P,0(1),0(i), C, p), where & = U/{1} and the obser-
vations distributions are such that

O(1) =5 O(2) - = O(U). (26)

Algorithm 3 details a procedure to compute observation distri-
butions that share a Blackwell dominance relation (26).

B. Applications of Approximate Blackwell Dominance

Algorithm 3 can be used to design POMDPs for adaptive
polling that have observation distributions that are not Blackwell
comparable — for example, when the polling distributions in case
of adaptive intent polling are not Hurwitz, when the opinion
distributions are not ultrametric in case of adaptive expectation
polling, when the pollster has a choice between different polling
algorithms over the polling horizon, etc.
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1) Adaptive Neighborhood Expectation Polling: Here each
polled node gathers the opinion from other nodes at the same
level on each state and reports the opinion fraction to the poll-
ster. The question asked by the pollster in case of adaptive NEP
polling is

“what does a node at level | think the fraction
in favor of different states is, at level [?”

This polling algorithm is a more sophisticated version of
Neighborhood Expectation Polling (NEP) [22]. NEP is a polling
algorithm to decide between two states where the pollster asks
the following question [22]: “what is a nodes’ estimate of the
fraction of votes for a particular candidate?”.

In the case of adaptive NEP polling, the pollster controls the
observation distribution O(u) by choosing different levels to
gather the information in the form of fractions, and this in turn
affects the estimate of the state (see Fig. 1).

Remark: In case of adaptive NEP polling, the nodes report
opinion fractions to the pollster. If instead, the nodes report prob-
abilities with ) = [0, 1]1%], there is a possibility that the pollster
receives biased information. There is a disjunction effect — the
beliefs about the state change when aggregated differently. This
is the well known Simpson’s Paradox; see [38].

The adaptive NEP polling algorithm deployed by the pollster
determines how the opinions are gathered, and the observations
for the pollster are tuples reported by the nodes that indicate the
fraction in favor of each state. Channels specified by multinomial
distributions model the likelihood of opinion counts in favor of
different states from different nodes at the same level. Let N €
{1,2,...,N} denote the number of nodes accessible (friends
with) to nodes at each level in the hierarchical social influence
network. This models the possibility of different individuals or
nodes having different friends with N denoting a finite maxi-
mum number. Let the observation alphabet for the pollster be
V={(% "% K)VN :n, € Zy, Y ;n; = N}, where
7 denotes the set of non-negative integers. Let O(l) denote the
opinion fraction that the pollster receives from level [/, and has
elements

Here,

) 0 ()
. ny ny nx N
(2 P2 DX ) N e {1,2,..., N},
> o =N
h

N
(j)!

P vk = dlown = iA5) = o
nyl X - xny

X nl@
< o e
h=1
Here ./\/'J and nl(.j ) indicate the total and the number in favor of
x = 1 reported and B; denotes the opinion distribution (10) at

level [. The likelihood in (27) is the well known multinomial
distribution.

The observation distributions (27) are not necessarily Black-
well ordered, but it is intuitive that the opinion fractions
in (27) from nodes at level ¢ are more informative than opin-
ion fractions from nodes at level j(>14) in Fig. 1 owing to ob-
vious Blackwell dominance relation of opinion distributions
B; for | =i,7 in (10). However, Algorithm 3 can be used
to obtain approximate Blackwell dominance of observation
distributions (27).

2) Adaptive Polling With Choice: In this section, we estab-
lish that expectation polling from the lowest level (least infor-
mative) and seeking opinions about the highest level is better
(more informative) than intent polling (here, the pollster seeks
information from all levels). Depending on the availability of
access to different levels for the pollster, it can switch between
polling algorithms.

For example, when using intent polling on an organizational
network (implicitly hierarchical in nature), the executive levels
might become inaccessible during IPOs or financial crisis. Then,
the pollster can switch to listening the inside information from
the lower levels (expectation polling), to estimate the underlying
state of nature.

Let the opinion distribution B (defined in (8)) be ultrametric
and f2(z) € Py be any polynomial. Let the true POMDP model
be 0 = (X, ), Y, P,0(1),0(2),C) and the approximation be
v=(X,Y,Y,P,0(1), OA(Z)7 (). Let u(+;y) denote the policy
parameterized by the approximate model ~.

Proposition (Adaptive Expectation v/s Intent): Let O(1) =
Bé\l,ﬂ”rl, and O(2) = B f2(B) for some [y and f3, denote the
observation distributions in case of adaptive expectation polling
and adaptive intent polling respectively.

1) The approximate Blackwell ordering using Algorithm 3

is

ii) The myopic polling policy ji(7;~y) is an upper bound to the
optimal polling policy p*(7;7), i.e., pu*(m; ) < @(m;y)
forall m € IL.

Discussion: For uw =1, the pollster chooses expectation
polling and hence listens to an ultrametric channel, and for
u = 2, the pollster chooses intent polling and hence listens to
a polynomial channel. As O(2) = B f3(B), we have B =p
0(2). Note that since O(1) = B;{,@{H, when /; =1 (nodes
at Level IV are polled to provide opinion of nodes at Level 0),
o) = lev/iv1+1 = B =p O(2). This implies that expectation
polling is more informative than intent polling.

For [; > 1, there is no apparent comparison of ultrametric
and polynomial channels. However, Algorithm 3 can be used to
design POMDPs for adaptive polling for arbitrary /; and fo.

VII. PERFORMANCE BOUNDS AND ORDINAL SENSITIVITY

In Sec. VI, we discussed an approximation procedure to com-
pute a POMDP model for an adaptive polling problem that has
a Blackwell dominance structure and is close (Le Cam sense) to
the true POMDP. Sec. VII-A provides performance bounds on
the comparison of POMDPs for adaptive polling.
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Sec. VII-B provides the ordinal sensitivity in polling, i.e., an
ordering of the cumulative costs with respect to the variation in
opinion distributions B (defined in (8)).

A. Performance Bounds on Adaptive Polling

Let 0 = (X, ),Y, P,O(u),C, p) denote the given POMDP
model for adaptive polling and v = (X, V,Y, P, O(u), C,p)
denote the POMDP model for adaptive polling having a Black-
well dominance relation between the observation distributions.
Let J,(y)(m;0) and J,,« () (7; v) be defined as in (16), and de-
note the cumulative costs incurred by the two models 6 and ~ re-
spectively, when using the polling policy p*(y). Let J ;- (g) (73 0)
and J,- () (7; ) be defined as in (16), and denote the cumulative
costs incurred by the two models 6 and  respectively, when us-
ing the polling policy *(6). Theorem 6 below provides a bound
on the deviations from the optimal cost and policy performance
of the POMDP models for adaptive polling.

Theorem 6: Consider two POMDP models 6 = (X, ), Y,
P,O(u),C,p) and v = (X, ), Y, P, O(u), C, p) for adaptive
polling. Then for the mis-specified model and mis-specified pol-
icy, the following sensitivity bounds hold:

Mis-specified Model: sup |J, () (757) — J s () (73 0))|
mell

<Glv-4l. (28)

Mis-specified Policy:.J - () (m; 0) < J ) (5 0) + 2G|y — 0]
(29)

Here G = maxcx 4 C(l%lp”) and e; denotes the indicator vector

with a ‘1’ in the #*" position, and
[y =0l = mfxmiaxz > Pijl0jy(w) = Oy (w)].
Yy oJ

Discussion: Theorem 6 provides uniform bounds on the ad-
ditional cost incurred for using parameters that are Blackwell
comparable in place of the given parameters of the POMDP for
adaptive polling. The proof follows from arguments similar to
[6, Theorem 14.9.1], and is omitted.

So far it was assumed that the pollster has complete knowl-
edge of the node-level associations. However, if a set of nodes are
misclassified to a different level by the pollster, then the pollster
is essentially updating the belief using different observation dis-
tributions. Theorem 6 can be used to compute the performance
bounds for this misclassification as well.

B. Ordering of Hierarchical Social Influence Networks

So far we have discussed two types of polling algorithms on a
single hierarchical social influence network. In this section, we
briefly discuss how to order hierarchical influence networks that
differ in the opinion distributions B, according to the expected
polling cost. Theorem 7 below shows that some networks are
inherently more expensive to poll than others; it defines a partial
order over networks that results in an ordering of the cost of
polling.

Let the POMDP model of the hierarchical influence net-
work H; for ¢i=1,2,--- be 6;, where the tuple 6; =

(X,0,Y,P,0% C). Let i (m; 6;) denote the optimal polling
policy on each of the network, and let .J,,: g, (7; 6;) denote the
corresponding optimal cumulative cost.

Theorem 7 (Ordinal sensitivity in Polling): Consider two hi-
erarchical networks H; and Hs. Let the POMDPs for adaptive
polling of each hierarchical network have the observation dis-
tributions that satisfy O") =5 O(?), Then

Ty 00) (T361) < Tz (0,) (75 62).

Here OY) =5 O denotes O™V (u) =5 O@) (u)Yu € U.

Discussion: The proof of Theorem 7 follows from arguments
similar to Theorem 14.8.1 in [6], and is omitted. Since the ob-
servation likelihood for the pollster (O*) Vi) depends on the
opinion distribution (10), Theorem 7 provides a way to com-
pare the cumulative costs of hierarchical influence networks with
different opinion distributions. The result is useful, in that, a hi-
erarchical influence network that has more informative opinion
distribution at every level compared to another hierarchical influ-
ence network is cheaper to poll on average as the nodes provide
more informative opinions.

(30)

VIII. NUMERICAL EXAMPLES

The main results of this paper involve using Blackwell domi-
nance to construct myopic policies that provably upper bound the
optimal adaptive polling policy. In this section, the performance
of this myopic upper bound is illustrated using numerical exam-
ples for adaptive polling. As discussed in Sec. II-A, the discount
factor p determines the way the polling cost is counted towards
the polling value J,- (7o) defined in (12) when using the opti-
mal policy p* (7). Since the computationally inexpensive my-
opic policy is used for polling in Algorithm 1 and Algorithm 2,
instead of the optimal policy p*(7), the performance loss and
sensitivity (both defined below) in terms of the polling value
J,-(mo) is evaluated for different values of the discount factor.

Let J;(m) denote the discounted costs associated with the
myopic policy (7). We consider the following two measures
for measuring the effectiveness of the myopic polling policy:

i) The percentage loss in optimality due to using the myopic
policy ji instead of optimal policy p* is

Ju(m0) = Jy (o)
Sy (7o)
In (31), the total average cost is evaluated using 1000
Monte carlo simulations over a horizon of 100 time units.
The optimal cost J,,- () is calculated as in (12).

ii) Let II represent the set of belief states for which
C(m, 1) < C(m,u)Yu = 2,...,U. So on the set IIf, the
myopic policy coincides with the optimal policy p* (7).
What is the performance loss outside the set 11{? Define
the following discounted cost

Ly = (€20

jﬂ‘(ﬂ-o) =E {Z pk_lé (T, N*(ﬂ'k»}v where p€ [0, 1),

(m,1) m eIl
(m, 1) + wane(m,2) =« & 115

(@]
=
=

*

3

I
—
Q Q
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Clearly a lower bound for the percentage loss in optimality
due to using the myopic policy f instead of optimal policy p* is

Ja(m0) = Jur (o)
e (o)

In (32), the cumulative discounted cost is evaluated using 1000
Monte carlo simulations over a horizon of 100 time units.

Here p* is the optimal policy of the non-standard (non-linear

cost) POMDP, and is solved using POMDP algorithms in [6,
Chapter 8, Sec.8.4.4].

Ly = (32)

A. Example 1: Market Research. Adaptive
Expectation Polling via YouTube

We describe how to estimate the revenue level that a movie
generates based on the response received on the social media
platform YouTube.

YouTube Dataset: A sample of 30 comedy movies from 2016—
2018 were selected. For each of these movies, YouTube com-
ments on their trailers that expressed personal opinions were col-
lected using the Python YouTube API.® The sentiment associated
with each of the comments was identified using sentiment anal-
ysis tool - textblob (http://textblob.readthedocs.org/en/dev/).

Hierarchical network modeling: The critics and those who
see the movie before its release will influence the future movie
goers by sharing opinions on social media platforms. So the
critics are in Level 0 and the common movie goer is Level 1. So
the number of levels in the hierarchical social network (Fig. 1)
for this example is thus N = 1.

Polling algorithm — Expectation Polling: In adaptive expec-
tation polling (Sec. V), to poll the common movie goers who
provide their opinion on YouTube, the pollster asks the follow-
ing question to estimate the performance of a movie:

“what does a node at Level I think the nodes at
Level 0 (u=1) and Level 1 (u=2) would report the state as?”

In other words, the pollster asks “what do you think?” and
“what do they think?”. So the polling action u € {1, 2} selects
the opinion distributions BY/2,

State — Popularity: The popularity of each of 30 movies is
modeled as a 3 state Markov chain x, and depending on their
box-office revenues (https://www.boxofficemojo.com/), each of
these movies were assigned a state from the state-space X' =
{High, Medium, Low}.

State transition matrix — Popularity changes: The popularity
of a movie evolves over time due to a number of factors in-
cluding release of a better advertised movie, release of a more
anticipated movie, the gradual decline of the hype surrounding
the movie, or increase in popularity after celebrity endorsement
etc. This is modelled using a state transition matrix and the max-
imum likelihood estimate was computed using an Expectation
Maximization algorithm with ultrametric constraints (see Ap-
pendix B).

Observation matrix — Sentiments: Prior to a movie’s release,
the production and the media house (proprietor) associated with

8https://gdata-python-client.googlecode.com/hg/pydocs/gdata.youtube.html

the movie release a variety of promotional material, in the form
of trailer videos, digital billboards, blogs, pre-screenings etc.,
to advertise the movie. A matrix consisting of number of pos-
itive, neutral and negative comments for state of each movie
{Good, Neutral, Bad} was formed. Using this matrix, the opin-
ion matrix Bs, given in (33) was then obtained by using max-
imum likelihood estimation algorithm with (See Appendix B)
ultrametric constraints. This can be used to obtain the opinion
distribution B; of Level 0.

Parameters: The computed parameters (see Appendix B)
for P, O(1) = O'/2(2), and O(2) are as follows:

0.9089 0.0281 0.0630 0.6382 0.1809 0.1809
0.0346 0.9433 0.0221 |, | 0.1809 0.6382 0.1809 |,
0.0065 0.0138 0.9797 0.1809 0.1809 0.6382
0.4728 0.2636 0.2636
0.2636 0.4728 0.2636 (33)
0.2636 0.2636 0.4728
The costs associated with actions v = 1, 2 are chosen as:
S(1) =0.5,5(2) = 0.25, w1 = 0.5, wy = 1. (34)

The numerical values in (34) are real numbers that obey the ordi-
nal relations below, and are chosen using the empirical evidence
in [33]. The ordinal relations capture the fact that higher levels
are more informative (Blackwell sense) and hence more costly.
Note that the costs associated with the actions u = 1 and u = 2
in (34) assume the following structure: w; < wy model the accu-
racy of the observations and S(1) > S(2) model the additional
cost in expectation polling — nodes need to be compensated for
exhausting their resources gathering information from different
levels.

For a new (test) movie, depending on which level the observa-
tion is obtained from, the pollster updates the probability distri-
bution over the states using the state transition matrix P and the
corresponding estimated observation distribution matrix O(1)
or O(2).

Performance evaluation: The probabilities in (33) and the
costs in (34) constitute the POMDP parameters. Fig. 2 pro-
vides percentage loss in optimality £; and L9, and the change
in optimality 68—5; for different values of the discount factor
p € [0,1)]. In the adaptive expectation polling algorithm (Al-
gorithm 2), a myopic policy is used to poll the YouTube users.
Of course, when p = 0, the myopic policy is the optimal pol-
icy. When p > 0, the pollster still adopts the computationally
inexpensive myopic policy (which provably upper bounds the
optimal policy via Theorem 2), while clearly compromising on
the polling value J,-(mp). It is intuitive that the performance
loss measured as the difference of the expected cost when us-
ing a myopic policy Jj (7o) and the polling value J, (7o) will
increase with the discount factor as p — 1; as evident in Fig. 2.
Also, the performance loss sensitivity % is observed in Fig. 2
to be higher for changes in large values of the discount fac-
tor. These two observations imply that a more forward looking
pollster, i.e., larger value of p, will incur higher losses than its
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Fig.2. The percentage loss in optimality £1 and L2, and the sensitivity of the
performance loss to discount factor aa—ﬁpl ,is evaluated by simulation for different
values of the discount factor p, when using a myopic policy for Example 1 and
Example 2 respectively. L2 is a lower bound for £;. The performance loss is
observed to be most sensitive to changes in large values of the discount factor.

short-sighted counterpart; for an inexpensive implementation of
the polling algorithms.

B. Example 2: Large Dimensional Example. Adaptive Intent
Polling With X =20, Y=20,U=5and N =9

The Blackwell dominance structural result is particularly use-
ful for large number of states and observation symbols since
solving the POMDP (for the optimal policy) is intractable. Ran-
dom stochastic matrices of size 20 x 20 were generated for the
transition probability matrix P and the observation probability
matrix B. The matrices are generated by stochastic simulation
as follows: twenty (1 x 20) probability vectors were simulated
from the Dirichlet distribution on a 19 dimensional unit simplex
and stacked as rows. We know that B! for / = 2, ..., 10 consti-
tute the opinion distribution of level . The observation distribu-
tion of the pollster O(u) = leio ﬂl(“)Bl+1, v =[5,4,3,2,1]
and v2 = [1,2, 3,4, 5]. The cost parameters conform to the or-
dinal relations that capture the fact that higher levels are more
informative and hence more costly. Here the probability dis-
tributions are chosen as follows: 3(°) is chosen as® and (%)
for u = {4,3,2, 1} are obtained by successively removing the
smallest root.

Fig. 2 provides (average) percentage loss in optimality £
and Lo, and the change in optimality %—EP} for different values
of the discount factor p. In the adaptive intent polling algorithm
(Algorithm 1), a myopic policy is used to poll the users. Of
course, when p = 0, the myopic policy is the optimal policy.
When p > 0, the pollster still adopts the computationally in-
expensive myopic policy, while clearly compromising on the
polling value J,,- (7).

IX. CONCLUSIONS

This paper considered the problem of adaptive (stochastic
feedback control based) polling in hierarchical social networks,

98(5) = [25/1296, 1555/15552, 3461/15552, 86925/311040, 13627/ 62208,
11617/103680, 437/11520, 2671/311040, 73/62208, 29/ 311040, 1/311040].

formulated as a partially observed Markov decision process
(POMDP). POMDPs are intractable to solve. The key idea of the
paper was to exploit Blackwell dominance to construct myopic
bounds that provably upper bound the optimal polling policy.
We presented two main results. First, the notion of Blackwell
dominance was extended to the case of polynomial observation
likelihoods (channels) described by matrix polynomials. This
was used to develop an adaptive intent polling algorithm that
is inexpensive to implement. Second, the notion of Blackwell
dominance was extended to the case of ultrametric observation
likelihoods (channels) described by fractional matrix powers.
This was used to develop an adaptive expectation polling algo-
rithm that is inexpensive to implement.

This extension of Blackwell dominance to more general chan-
nels that arise in hierarchical social influence networks was used
to provide a natural ordering of Rényi Divergence and Shannon
capacity. These information theoretic consequences provide a
ranking of these general channel structures in the order of their
ability to distinguish the states, and hence guide the choice of
observation distributions for the pollster.

We discussed approximate Blackwell dominance based on
Le Cam deficiency to facilitate the comparison of the different
polling algorithms, and situations where a Blackwell dominance
relation is absent. This was used to provide an adaptive gener-
alization of neighborhood expectation polling to hierarchical
social influence networks, where the notion of Blackwell dom-
inance was extended to the case of multinomial distributions of
observation likelihoods. We also provided performance bounds
on the cumulative cost and polling policy, when the model pa-
rameters are mis-specified. Finally, we illustrated the results and
the performance of the myopic polling policy using a YouTube
social media dataset.

APPENDIX A
PROOFS

Proof of Theorem 2: Denote by y*) as the observations
recorded when using action u. Then O(u + 1) = O(u)R im-
plies the following

P (s ) = 3P (3Ol ) B (yle)  G3)
g

For notational convenience, let 7T'(w,y,u) be written as
T(m, ™) = y). Observe that,

Outi1(y)P'm
o (mylt) =y)

Y AT (m,y™ =)

T (777y(u+1) _ y) _

(36)

where A(r) is a probability mass function w.r.t  and defined as

Y

A(r) =P (y(uH) - y|y(u) - T) o (77 yutl) = )
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The following inequality follows from the concavity of V ()
and (37)

1% (T (7r7y(u+1) _ y)) -V ZA(T)T(W,y(“) —r)

V(T (my =y)) = S AV (T g™ = 1))
' (38)

Following completes the proof of Theorem 2 using (38).

> o(myt =y v (T (my(““) = y))

Y

>3 ANV (T =) olmy ™+ =)

-5 (1 =) =)

SO 1) <C(mu)Vu = pf(n) =1= p*(m) < p(r). B
Proof of Theorem 3: Let O(u) =p O(u + 1) foru € U.From
the definition of Rényi Divergence (19) we have [39]:

Do (Oi(u +1)[|05(u + 1))

(39)

< min {(1 — a)D(0;(u+ 1)[|0; (u + 1)),

aD(O;(u+1)[0s(u+1)}. (40)

We know that [40]:
O(u) =5 O(u+1)
= D(0;(u)[|0;(u)) = D(Oi(u+1)[|0;(u+ 1)), (4D

for all 7, 7 € X'. From (40) and (41), the result follows. [ |
Proof of Proposition IV.1: Tt is given that p(z) € P,, and

q(2) € Ppy, with n > m. Clearly, f(Q) and g(Q) are stochas-

_ [(2)

= S
9(2)

tic matrices. Further, if the quotient polynomial h(z)

Pn—m) then it is easily seen that g(Q) =5 f(Q).

Since the polynomials p(z) and ¢(z) are Hurwitz, the quo-
tient polynomial h(z) = 522 = yinom
efficients; i.e., a;; > 0. It suffices to prove that h(z) € P(—p).
It is clear that p(1) = ¢(1) = 1, which implies that h(1) = 1;
e, M = 1. m

Proof of Proposition V.1: We will only prove Theorem V.1 b
and Theorem V.1 c.

For Theorem V.1 b, we have QUT/)/K = Qi/K x QJ/K,
Therefore Q7/K =5 QUFI/K,

For Theorem V.1 ¢, we have Q7/ K = Qi/K+1 y Qi/K(K+1),
Therefore Q7/K =5 QI/K+1, [ |

;2" has positive co-

APPENDIX B
EM ALGORITHM WITH ULTRAMETRIC CONSTRAINTS

The parameters of the POMDP are computed using a sequence
of observations obtained from level IV in Fig. 1. Specifically,
we describe a modified version of the EM algorithm [41] is

used to compute the maximum likelihood estimate of the tu-
ple (P, By1), where By is restricted to the space of ul-
trametric stochastic matrices. The opinion probability matrices
at all other levels are computed by taking fractional exponents
of Bynyi. In this modified EM algorithm, computing By
requires maximizing an auxiliary likelihood function (of ob-
servation sequences) subject to ultrametric constraints (see
Footnote 13) on Byy;. However, the space of ultramet-
ric stochastic matrices is non-convex because of constraint
BN+1(i’j) > min {BN+1(ivk)aBN+1(kvj)}'

The following reformulation based on the Big-M method in
linear programming [42] is used to deal with the non-convex
constraint. For all ¢, j, k € X,i # j # k:

Bnyi1(iyj) > By1a(is k) + M(1 — k), (42)
Byy1(i,j) = Byya(k, j) + Mk, (43)
Bnyi1(k, j) > By1a(iy k) + M(1 — k), (44)
Bny1(i, k) > Byya(k, j) + Mk, (45)
k>0, (46)

-k > -1, (47)

for some large positive value M. The resulting observation like-
lihood B4 is a stochastic and ultrametric matrix.
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