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Abstract—This paper presents adaptive polling algorithms and
their analysis for social networks having a hierarchical influence
structure. The adaptive polling problem on the social network
is formulated as a partially observed Markov decision process
(POMDP). Our main results exploit the structure of the polling
problem to determine novel conditions for Blackwell dominance
that arise in hierarchical social influence networks. The Blackwell
dominance conditions enable the construction of myopic policies
that provably upper bound the optimal policy of the POMDP for
adaptive polling. Adaptive versions of intent polling and expecta-
tion polling are developed using Blackwell dominance, and they
are inexpensive to implement. For polling problems not having a
Blackwell dominance structure, the Le Cam deficiency is used to
determine approximate Blackwell dominance; this is used to de-
velop an adaptive version of the recently proposed Neighbourhood
Expectation Polling algorithm. The proposed Blackwell dominance
conditions also facilitate the comparison of Rényi divergence and
Shannon capacity of more general channel structures that arise in
polling hierarchical social influence networks. Numerical examples
are provided to illustrate the adaptive polling policies with param-
eters estimated from YouTube data.

Index Terms—Adaptive polling, POMDP, structural result,
Blackwell dominance, myopic policy, intent polling, expectation
polling, Neighborhood Expectation Polling, Shannon capacity, Le
Cam deficiency.

I. INTRODUCTION

B
LACKWELL dominance and Le Cam deficiency are

widely used in statistical analysis of estimators [1]–[3];

to characterize game-theoretic equilibria [4], and to construct

myopic bounds in stochastic control [5], [6]. In this paper, we

use Blackwell dominance to construct adaptive polling strategies

for social networks exhibiting a hierarchical influence structure.

The sufficient conditions we propose for the adaptive polling

model also have useful information theoretic interpretations in

terms of capacities and Rényi Divergence of more general chan-

nel structures.

Polling has applications in forecasting the outcome of an elec-

tion [7], [8], estimating the fraction of individuals infected with
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Fig. 1. The figure shows a simple hierarchical influence network where the
individuals are grouped into N + 1 levels Level 0,Level 1, . . . ,LevelN in a
hierarchical fashion. Each level influences the opinion of the level below it.
The underlying state of nature xk determines the opinion. A pollster samples
observationsyk from the nodes having opinionsyl

k
, runs a local filter to compute

the state estimate, and chooses a control to affect the (future) polling action. It is
assumed that the pollster knows the number of hierarchical levels in the network
and the corresponding node associations. The aim of the pollster is to estimate the
underlying state by adapting its polling strategy to incur minimum polling cost.

a disease [9], and predicting the success of a particular prod-

uct. Many social networks have a hierarchical influence struc-

ture; [10]–[14]. So, there is strong motivation to develop polling

strategies that take into the account the inherent hierarchical so-

cial influence. This influence alters the opinions of the lower

level individuals and hence affects the prediction or the poll

estimate.

This paper devises adaptive (feedback control based) polling

strategies for the well studied polling algorithms (intent and ex-

pectation polling) that, in addition, take the hierarchical social in-

fluence and the time varying nature of the state into account; see

Fig. 1. The adaptive polling problem is formulated as a partially

observed Markov decision process (POMDP) to minimize the

polling cost (measurement cost and uncertainty in the Bayesian

state estimate).

A. Context. Blackwell Dominance

In general, POMDPs are computationally intractable1 to

solve [16]. The contribution of this paper is to exploit the

1They are PSPACE hard requiring exponential computational cost (in sample
path length) and memory [6], [15].
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structure of the social influence network to construct compu-

tationally efficient myopic policies that provably upper bound

the optimal POMDP polling policy. Construction of such my-

opic bounds involves using the concept of Blackwell dominance

of the observation likelihoods.

Since the main results of the paper rely on Blackwell dom-

inance, for convenience, we now define Blackwell dominance

and some information theoretic consequences. Blackwell dom-

inance formalizes the notion of which distribution (stochastic

matrix) is more informative than the other.

Definition (Blackwell Dominance [6], [17]): A stochastic2

matrix B(1) ∈ P (Y(1)|X ) Blackwell dominates (more infor-

mative) another stochastic matrix B(2) ∈ P (Y(2)|X ) written

as B(1) �B B(2), if

B(2) = B(1)R, for any stochastic matrixR. (1)

Blackwell dominance also has an information theoretic con-

sequence: Consider the classic Discrete Memoryless Channel

(DMC) [18] with input alphabet X and output alphabet Y de-

noted as P (Y|X ). Let I(X ;Y) denote the mutual information

of the DMC. The post-processing of channel B(1) in (1) is writ-

ten as X → Y(1) → Y(2). Then from Data Processing Inequal-

ity [18], it follows that

B(1) �B B(2) ⇒ I(X ;Y(1)) ≥ I(X ;Y(2)). (2)

Theorem 1 below provides a relation between Blackwell Dom-

inance and Shannon capacity.

Theorem 1 ([3], [19], [20]): For any two conditional distri-

butions B(1) ∈ P (Y(1)|X ) and B(2) ∈ P (Y(2)|X ),

B(1) �B B(2) ⇒ C(1) ≥ C(2), (3)

where the Shannon capacity C(i) of a DMC is defined as

C(i) = sup
pX (x)

I(X ;Y(i)), i = 1, 2. (4)

Here pX (x) is the marginal distribution over the input alpha-

bet X .

In this paper, we will characterize the capacity for more gen-

eral channel structures that arise in polling hierarchical social

influence networks. Also, Blackwell dominance is used to or-

der the Rényi Divergence [18] of the observation likelihoods of

these channels. These information theoretic consequences pro-

vide a ranking of these general channel structures in the order

of their ability to distinguish the states.

B. Main Results and Organization

1) In Sec. II, the underlying state is modeled as a Markov

chain and the adaptive polling problem is formulated as

a POMDP. Open loop polling, where polling at a particu-

lar instant is not influenced by the information previously

collected, is ineffective when the states evolve over time.

In comparison, the proposed adaptive (feedback) polling

2A X × Y matrix B is (row) stochastic if
∑

j
Bij = 1 for all i ∈ X , j ∈ Y ,

and Bij ∈ [0, 1].

algorithms utilize information previously collected to poll

at the next instant. In a hierarchical social influence net-

work, the nodes/ individuals at higher levels in the hier-

archy are more influential and so provide more accurate

information on the underlying state than the lower lev-

els(see Fig. 1). The proposed adaptive polling algorithms

for hierarchical social influence networks also takes this

into account. We formulate adaptive generalizations of the

Intent Polling and Expectation Polling methods3 [21] in

Sec. IV and Sec. V.

2) Blackwell Dominance in Hierarchical Social Influence

Networks: As mentioned above, in general, solving a

POMDP is computationally intractable (see Footnote 1).

A key property of our POMDP model for adaptive polling

is that it exhibits a Blackwell dominance structure. For

such POMDPs, a myopic policy provably forms an up-

per bound to the optimal policy (Theorem 2). For the

two adaptive polling algorithms considered, namely, in-

tent polling and expectation polling, we present several

novel sufficient conditions for Blackwell dominance in-

volving matrix polynomial functions (Proposition IV.1)

and ultrametric matrices (Proposition V.1).

3) Information Theoretic Interpretations: The Blackwell

dominance relations in turn facilitates the comparison of

Rényi Divergence and Shannon capacity of more general

channels that arise naturally in hierarchical social influ-

ence networks. For example, Proposition IV.1 provides

an interesting link between Hurwitz (stable) polynomi-

als and Shannon capacity. While Blackwell Dominance

helps compute computationally inexpensive policies that

provably upper bound the computationally intractable op-

timal policy, the information theoretic consequences guide

the choice of observation channels (likelihoods) for the

pollster.

4) Approximate Blackwell Dominance: Blackwell domi-

nance induces a partial order between two stochastic

matrices; so not every pair of stochastic matrices is com-

parable. However, the upper bounds in Theorem 2 pro-

vide sufficient motivation to find a pair of matrices that

are close to the given pair and are Blackwell comparable.

Sec. VI defines the notion of closeness between stochas-

tic matrices using Le Cam deficiency. Using this notion

of approximate Blackwell dominance, we discuss how to

design adaptive polling algorithms using Neighbourhood

Expectation Polling [22].

5) Performance Bounds and Ordinal Sensitivity: The perfor-

mance bounds of the mis-specified POMDP model and

policy are provided in Sec. VII. This provides a way to

obtain the sensitivity of costs for the misclassification of

the nodes to different levels in the hierarchical social in-

fluence network. Finally, the ordinal sensitivity in polling

hierarchical networks, namely, why some networks are

inherently more expensive to poll than others.

3[21]: Intent Polling– Who will you vote for?
Expectation Polling– Who do you think will win?
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C. Related Literature

[21] analyzes US presidential electoral college results from

1952–2008 where both intention and expectation polling were

conducted and shows a remarkable result: In 77 cases where

expectation and intent polling pointed to different winners, ex-

pectation polling was accurate 78% of the time! Unlike [21],

we consider a Bayesian pollster that uses feedback control, and

exploits the hierarchical influence structure along with the time

evolution of the state (adaptive polling).

[23] analyzes a Bayesian approach to intent and expectation

polling and illustrates how the posterior distribution of the lead-

ing candidate in the poll can be estimated based on incestuous

estimates (each node summarizes the belief of its neighbours,

which in turn are influenced by the nodes belief). Unlike [23],

we consider hierarchical influence structure and feedback con-

trol, in the sense that current estimate dictates where and how to

poll in the hierarchical network.

[24] investigates the role played by the network structure in

polling by considering the trade-off between number of polled

individuals and the bias introduced due to the network struc-

ture. [24] concludes that the estimators that consider the network

structure into account are considerably more efficient than stan-

dard polling estimators. We take the (influence) structure of the

network into account, but unlike [24], propose adaptive versions

of the polling algorithms.

[25] presents a dynamic Bayesian forecasting method that

systematically combines information from historical forecasting

models in real time with results from the large number of state-

level opinion surveys that are released publicly during the cam-

paign. Similar to [25] we consider a dynamic polling method,

but unlike [25] also take the influence structure of the social

network into account.

II. FORMULATION OF ADAPTIVE POLLING

Sec. II-A introduces the model for the adaptive polling prob-

lem, Sec. II-B provides a discussion of the model and illustrates

the setup with a motivating example and Sec. II-C formulates

the adaptive polling problem as a partially observed Markov

decision process (POMDP).

A. Adaptive Polling as a POMDP

We consider the typical framework for information diffusion

and formation of opinions in a social network. The underlying

state (true sentiment underlying social media message, popular-

ity of a product/political party, quality of commercial product)

evolves over time stochastically [26]–[30]. This underlying state

is observed by the individuals in the social network through

tweets, political commentary blogs and videos, or reviews on

social media. Using the available information and interaction

with neighbours, individuals form opinions about the underlying

state. The population is classified into N + 1 levels depending

on the hierarchical influence as shown in Fig. 1. The population

is sampled sequentially by a pollster to gather the information

on the underlying state.

How should the pollster poll the hierarchical social network

to estimate the state while minimizing the polling cost (measure-

ment cost and uncertainty in the Bayesian state estimate)? We

formulate this adaptive polling problem as a partially observed

Markov decision process (POMDP). POMDPs provide a princi-

pled framework for sequential decision making problems with

feedback control in partially observed domains. This formalism

as a POMDP casts the adaptive polling problem as a stochastic

control problem. We refer to [6, Chapter 7] for a detailed treat-

ment of POMDPs - due to space restrictions we give a very terse

description.

The POMDP for adaptive polling is specified by

θ = (X ,Y,Y ,U , C, P,O(u), ρ), (5)

where X denotes the state space, Y denotes the observation

space, Y denotes the opinion space, U denotes the control/ ac-

tion space, C denotes the state-action cost matrix, P is the state

transition matrix,O(u) is the control dependent observation dis-

tribution/ likelihood matrix and ρ ∈ [0, 1) is the economic dis-

count factor.

We now describe the above 8 components of the model (5):

State: Let xk ∈ X = {1, 2, . . . , X} denote a Markov chain

evolving at discrete time instants k = 0, 1, · · · on a finite state

space. As mentioned previously, the state models the time evolv-

ing ground truth (sentiment, popularity, quality) quantized into

a finite number of levels.

Transition matrix: Let P denote the transition probability

matrix of the Markov chain xk with elements

Pij = P (xk+1 = j|xk = i), i, j ∈ X , ∀ k. (6)

Pollster’s control/actions: U = {1, 2, . . . , U} denotes the set

of possible controls (actions), with uk ∈ U denoting the action

chosen at time k. For example, the action can denote the choice

of the hierarchical level the pollster seeks the opinion.

Polling cost: Let C(xk, uk) denote the instantaneous cost in-

curred by the pollster for taking action uk when in state xk.

This models the measurement cost and quality (accuracy) of the

polling algorithm. For example, conducting surveys and opinion

polls incurs a measurement cost and the type of poll conducted

affects the quality of the information gathered.

Pollster’s observation distribution: Let Y denote a finite set

of observations with yk ∈ Y representing the observations of

the underlying state xk ∈ X . The observations yk ∈ Y for the

pollster model the information on the state gathered via views/

sentiments expressed by the nodes or individuals in the hierarchi-

cal social network (see Fig. 1). Let O(u) denote the observation

probability matrix with elements

Oij(u) = P (yk+1 = j|xk+1 = i, uk = u), i ∈ X , j ∈ Y, ∀k.
(7)

At each time k, the pollster receives an observation yk on the

underlying state xk after taking an action uk. The observation

matrix/ distribution O(u) models the likelihood of the observa-

tions yk ∈ Y given the statexk ∈ X , and is different for different

polling algorithms.
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The observations obtained by the pollster are the opinions

about the state provided by the nodes. We now discuss the opin-

ion dynamics, the corresponding opinion distribution, and how

the observation distribution can be expressed in terms of the

opinion distributions:

i) Opinion dynamics: Let yl
k ∈ Y denote the opinion of

nodes at level l of the hierarchical network (see Fig. 1).

Here |Y | = |X |. The opinion dynamics in Fig. 1 proceeds

according to the following protocol for k = 0, 1, · · ·
a) The state xk evolves on time scale k.

b) Opinions yl
k, for l = 1, 2, . . . , N , are formed at the

Level l at the fast time-scale k̄ = k + lδ, where 0 <
δ � 1.

c) At time k + 1, state transitions to xk+1.

We assume that Nδ � 1, where the number of lev-

els in Fig. 1 is N + 1. This implies that the state xk

is evolving over a slower time-scale than the time-

scale over which the opinions are formed across the

network given in Fig. 1.

ii) Opinion distribution: The opinions at different levels in

the hierarchical social influence network are formed via

information diffusion as follows [31], [32]: opinion at

the highest level y0
k is directly influenced by the state xk.

Opinion yl
k, l ≥ 0 influences yl+1

k (see Fig. 1). This is

modeled probabilistically as P (yl+1
k = j|yl

k = i).
Let the opinion distribution at Level 0 be given by the

stochastic matrix B having elements

Bij = P (y0
k = j|xk = i), i ∈ X , j ∈ Y , ∀k. (8)

The opinions at levels l ∈ {1, . . . , N} in the hierarchi-

cal network are directly influenced by the preceding lev-

els (see Fig. 1). The opinions at levels l ∈ {1, . . . , N}
are given by (Bl)ij = P (yl

k = j|xk = i) for i ∈ X , j ∈
Y , and ∀k. The opinions at Level l are determined by the

opinion distribution via the following decomposition

(Bl)ij =
∑

m∈Y

P (yl
k = j|yl−1

k = m)

× P (yl−1
k = m|xk = i). (9)

For tractability, assume4 that the confusion matrix be-

tween successive levels is modeled using the same time-

homogeneous opinion distribution B in (8). So the

opinions at levels l ∈ {0, 1, . . . , N} have an opinion

distribution

Bl = Bl+1, (10)

where Bl denotes the opinion distribution at level l.
iii) Observation distribution via Opinion distribution: Since

the observations for the pollster, to update the estimate of

the state, are the opinions from the nodes, the observation

4This is a modeling assumption, and Example 1 in Sec. VIII shows how to
estimate such a structure using a modified EM algorithm. For the case where it is
known a priori that the distribution (confusion matrix) between the hierarchical
levels are different, results in Sec. VI on Approximate Blackwell Dominance can
be used to obtain the policies and performance bounds on the proposed polling
algorithms in Sec. IV and Sec. V.

distribution (7) is directly related to the opinion distribu-

tion (8). For example, in case of adaptive intent polling

(Sec. IV below), O(u) = Bfu(B), where fu is any ma-

trix polynomial, where the probabilities with which the

nodes at different levels in the hierarchical social net-

work are polled are proportional to the co-efficients of

the polynomial fu; and in case of adaptive expectation

polling (Sec. V below), O(u) = B
lu/l
l , where the nodes

at level l are polled to provide information on the nodes

at level lu.

Polling Objective: The actions taken by the pollster influences

the noisy state-observations via the selection of the observation

distribution. The goal of the pollster is to choose an action, based

on the history of past actions and observations, that minimizes

the expected costs incurred over time. We consider the following

infinite horizon discounted cost for specifying the objective [6,

Chapter 7]:

Jµ(π0; θ) = Eµ

{

∞
∑

k=0

ρkC(xk, uk = µ(Ik))|π0

}

. (11)

Here Jµ(π0; θ) denotes the expected cumulative cost with

respect to the stationary (time-independent) policy µ, Ik =
{π0, u0, y1, . . . , uk−1, yk−1} denotes the history of past ac-

tions and observations and π0 = (π0(i), i ∈ X ), where π0(i) =
P (x0 = i) is the initial probability distribution over the state

space. The objective of the pollster is to find the optimal station-

ary policy µ∗ such that

Jµ∗(π0; θ) = infµ∈µJµ(π0; θ) (12)

where µ denotes the class of stationary policies.

Discounting in Polling: The parameter ρ ∈ [0, 1) is an eco-

nomic discount factor that determines the way the polling cost

is counted towards the polling value defined in (12), and affects

the optimal policy µ∗. Choosing ρ = 0 implies that the poll-

ster is myopic, and only minimizes the instantaneous polling

cost C(x, u) without considering future polling costs. Choosing

ρ > 0 implies that the pollster geometrically weighs the polling

costs incurred in the future.

Summary: We have formulated adaptive polling as a POMDP

parametrized by θ, defined in (5). The infinite horizon objective

(11) is for notational convenience. Our main result will exploit

Blackwell dominance to construct a myopic upper bound to the

optimal policy µ∗ in (12). For a finite horizon formulation - the

optimal policy is non-stationary - but all subsequent results in

this paper continue to hold.

B. Discussion of Model

1) We assume that the POMDP model θ in (5) is known. This

implies that the number of hierarchical levels and nodes-

level associations are known to the pollster. Otherwise the

problem becomes an adaptive stochastic control problem

which is intractable to solve. Note that Blackwell domi-

nance is a class type result - even if the observation proba-

bilities (7) are not known exactly, as long as the Blackwell

dominance condition is satisfied, the main result (Theo-

rem 2 below) holds.
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2) The opinion dynamics are such that the entire network

holds the view on the state xk at time k, between times

k and k + 1. This modeling assumption has two implica-

tions: (i) It enables the decomposition of the opinion distri-

butions (9), (ii) It implies that during the sampling instant,

the information gathered by the pollster, from anywhere in

the hierarchical network, pertains to the same underlying

state.

3) Opinions from higher levels or more reputable sources (see

Fig. 1), are more informative (Blackwell sense) and hence

the information acquisition is costlier compared to lower

levels. This is motivated by study in [33], which shows

that information acquisition from more informative dis-

tributions (in the sense of Blackwell) is more costly. The

intuition is that nodes at a higher level pay more atten-

tion to acquire information to form an opinion, and hence

require commensurate compensation to divulge that infor-

mation to the pollster. The assumption on the cost C(x, u)
captures this intuition.

4) Example: Consider estimating the severity of a natural

disaster like an earthquake, modeled as as x(Severity) =
{Low Damage,High Damage} via Twitter. The pollster’s

observations and opinions formed by the nodes at level

l could be modeled as y = yl = {Opinion.1,Opinion.2}.

The pollster incurs a measurement cost for obtaining in-

formation from the people who tweet, and a cost for the ac-

curacy or the uncertainty reduction in the state estimate. In

this example application, polling opinions from the influ-

encers (knowledgeable participants) incurs a higher mea-

surement (processing) cost but their opinions will result in

a larger reduction in uncertainty in the state estimate. The

pollster’s objective is to estimate the disaster intensity by

polling observations from the participant pool while in-

curring the least polling cost on average.

C. Stochastic Dynamic Programming for Adaptive Polling

In this section, the solution of (12) is formulated as a stochastic

dynamic programming problem over the X− dimensional unit

simplex Π(X) = {π : π(i) ∈ [0, 1],
∑X

i=1 π(i) = 1} of poste-

rior probabilities (beliefs); see [6] for details.

Belief State Formulation: Let πk denote the belief at time k
and the ith element πk(i) is:

πk(i) = P (xk = i|Ik) (13)

where x = {1, 2, 3, . . . , X} denotes the state space and Ik =
{π0, u0, y1, . . . , uk−1, yk−1} denotes the history of past actions

and observations. The belief (13) is computed from the opinions

gathered by the pollster, and is a sufficient statistic [6] for the

history of actions and opinions {u1, y1, . . . , uk−1, yk−1}. The

dynamics of the POMDP is given by the Bayesian filtering up-

date

πk = T (πk−1, yk, uk), whereT (π, y, u) =
Oy(u)P

′π

1′Oy(u)P ′π
(14)

and Oy(u) = diag(O1y(u), . . . , OXy(u)). Here 1 is the column

vector of 1s and P ′ denotes the matrix transpose.

As is well known in POMDPs, instantaneous cost C(πk, uk)
in terms of the belief πk given by

C(πk, uk) =
∑

i

C(xk = i, uk)πk(i), (15)

whereπk is the belief at time k. The costsC(π, u) in (15) capture

the cost of measurement and the uncertainty or error in the state

estimate. Any non-linear cost can be used in the formulation of

the polling problems. In this paper, we consider the following

non-linear costs [6, Chapter 8] – entropy and state-estimation

error – to illustrate the different formulations.

Associated with a stationary polling policy µ and initial belief

π0 ∈ Π(X), the objective (11) can be re-expressed as:

Jµ(π0; θ) = Eµ

{

∞
∑

k=0

ρkC(πk, uk = µ(πk−1))|π0

}

. (16)

Our aim is to find the optimal stationary polling policy µ∗ :
Π(X) → U defined in (12).

Stochastic Dynamic Programming: Obtaining the optimal

policy µ∗ in (12) is equivalent to solving Bellman’s stochastic

dynamic programming equation [6, Chapter 7]:

µ∗(π) = argmin
u∈U

Q(π, u)

Jµ∗(π; θ) = V (π) = min
u∈U

Q(π, u),where

Q(π, u) = C(π, u) + ρ
∑

y∈Y

V (T (π, y, u))σ(π, y, u).

(17)

Here σ(π, y, u) = 1′Oy(u)P
′π is the measure on the observa-

tion alphabet Y , V (π) is the value function denoting the mini-

mum expected cost, T (π, y, u) is the Bayesian filtering update

(14), Q(π, u) is the state-action value function (Q− function),

C(π, u) is the state-action cost in terms of the belief state (15)

and ρ is the discount factor.

Since the belief space Π(X) is a continuum, Bellman’s equa-

tion (17) does not translate into practical solution methodologies

as V (π) needs to be evaluated at each π ∈ Π(X). The compu-

tation of optimal policy of the POMDP is P-SPACE hard [16].

Also, the costs C(π, u) capture the cost of measurement and

the uncertainty or error in the state estimate, and hence are non-

linear in the belief. In order to capture the uncertainty in the

estimate it is necessary to use a non-linear cost on the belief

state. The non-linearity is required so that the costs are zero at

the vertices of the belief space Π(X) (reflecting perfect state

estimation) and largest at the centroid of the belief space (most

uncertain estimate). This results in a non-standard5 POMDP.

This motivates the construction of optimal upper bound policy

µ̄(π) to the optimal policy µ∗(π) that is inexpensive to compute.

In the remainder of the section, we construct such upper bound

policies in terms of easily computable myopic policies using

Blackwell dominance, for adaptive polling problems formulated

as POMDPs.

5POMDP solvers can only handle POMDPs with linear costs, see [6, Chap-
ter 7].
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III. META-THEOREMS FOR ADAPTIVE POLLING

Given the POMDP model for adaptive polling (5) and the

polling objective (12), the aim of this section is to describe the

key meta theorems that will be used in subsequent sections to

develop efficient adaptive polling algorithms. In this section,

we provide two main theorems using Blackwell dominance:

(i) A structural result using Blackwell dominance for the adap-

tive polling POMDP, i.e., characterization of achievable perfor-

mance without brute force computations but using mathematical

analysis, (ii) An information theoretic consequence of Blackwell

dominance, namely, Rényi divergence, and why this is useful for

the pollster.

A. Main Result. Optimality of Myopic Polling Policies

The aim of the pollster is to estimate the (underlying) evolving

statexk by incurring minimum cumulative cost (16). The pollster

employs the control uk = µ∗(πk−1) to obtain opinions (yk ∈ Y)

from the nodes, and then updates the belief πk−1 → πk about

the underlying state xk ∈ X using (14).

Define the myopic policy µ̄(π) as

µ̄(π) = argmin
u∈U

C(π, u) (18)

Theorem 2 below provides sufficient conditions on the observa-

tion distribution of the pollster O(u) so that a myopic polling

policy (18) upper bounds the optimal polling policy in (12).

Theorem 2 (Optimality of Myopic Policies via Blackwell

Dominance): Consider the adaptive polling problem formulated

in Sec. II-A as a POMDP. Assume that the cost C(π, u) is

concave in π. Suppose O(u) �B O(u+ 1) ∀u ∈ U . Then µ̄(π)
defined in (18) is an upper bound to the optimal polling policy

µ∗(π) defined in (17), i.e., µ∗(π) ≤ µ̄(π) for all π ∈ Π. In

particular, for belief states where µ̄(π) = 1, the myopic policy

coincides with the optimal policy µ∗(π).
Discussion: The concavity of the costs C(π, u) for each

polling action u implies that the value function V (π) is con-

cave [6, Theorem 8.4.1] on Π(X). This together with Jensen’s

inequality is used to establish Theorem 2. Theorem 2 is a well

known structural result for POMDPs [6, Chapter 14, Sec.14.7],

and it says the following:

i) The instantaneous costs satisfying C(π, 1) < C(π, u) for

u = 2, . . . , U does not trivially imply that the myopic pol-

icy µ̄(π) in (18) coincides with the optimal policy µ(π),
since the optimal policy applies to the cumulative cost

function involving an infinite horizon trajectory of the dy-

namical system. But when O(u) �B O(u+ 1) ∀u ∈ U
and the costs are concave, the myopic policy coincides

and forms a provably optimal upper bound to the com-

putationally intractable optimal policy. The concavity of

the costs imply that extremes are better than averages, re-

flecting perfect state estimation; and captures the effect of

increasing marginal utility.

ii) The trivial sub-optimal policy µ̂(π) = 1∀π ∈ Π(X) is

also an upper bound to the optimal policy - but a useless

bound because µ∗(π) = 1 ⇒ µ̂(π) = 1. In comparison,

the upper bound constructed via Theorem 2 (Blackwell

dominance) says that µ̄(π) = 1 ⇒ µ∗(π) = 1, which is a

much more useful construction. Thus, the myopic polling

policy forms a provably optimal upper bound to the com-

putationally intractable optimal policy.

B. Blackwell Dominance and Rényi Divergence Interpretation

In this section, we will discuss the information theoretic con-

sequences of Blackwell dominance. While Blackwell Domi-

nance helps compute inexpensive policies that provably upper

bound the computationally intractable optimal policy, the infor-

mation theoretic consequences guide the choice of observation

channels (likelihoods) for the pollster.

Rényi Divergence is a generalization of the Kullback-Leibler

divergence [18], and it measures the dissimilarity between two

distributions. Theorem 3 below shows the relation between

Rényi Divergence and Blackwell dominance.

With a slight abuse of notation in (7), let Oi(u) denote the ith

row of the observation likelihood matrix O(u). In words, Oi(u)
is the distribution over the observation alphabet Y conditional

on the state x = i.
Definition: (Rényi Divergence) For an observation likeli-

hood O(u), the Rényi Divergence of order α ∈ [0, 1) for i, j ∈
X is defined as

Dα(Oi(u)||Oj(u)) =
1

α− 1
log

∑

y∈Y

Oα
iy(u)O

α−1
jy (u). (19)

Theorem 3 (Ordering of Rényi Divergence): If the observa-

tion distribution for the pollster satisfy O(u) �B O(u+
1) ∀u ∈ U , then for any i, j ∈ X :

Dα(Oi(u)||Oj(u)) ≥ Dα(Oi(u+ 1)||Oj(u+ 1)) ∀u ∈ U .
(20)

Discussion: Theorem 3 says that when O(u) �B O(u+ 1),
conditional on the state, the observation distributions are more

dissimilar in case of O(u). Here, more the dissimilarity, bet-

ter the pollster is able to distinguish the states. In other words,

Theorem 3 provides a ranking of channel structures in terms of

their ability to distinguish the states. In Sec. IV and Sec. V, we

discuss the ordering of Rényi Divergence for more general chan-

nels that arise in hierarchical social influence networks, where

the information theoretic consequences guide the choice of the

observation distributions for the pollster.

IV. ADAPTIVE INTENT POLLING ALGORITHM

In intent polling [21], to decide between two states, the sam-

pled individuals are asked “who will you vote for?”. In this

section, we develop an adaptive version of intent polling [21]:

the resulting algorithm (Algorithm 1 below) is designed for hi-

erarchical social networks with time-varying state of nature.

We present novel sufficient conditions for Blackwell domi-

nance in the context of adaptive intent polling. These conditions

enable the application of Theorem 2 to determine myopic poli-

cies that upper bound the optimal adaptive intent polling policy.

These myopic polices are used for polling in Algorithm 1, which

is inexpensive to implement.
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Algorithm 1: Adaptive Intent Polling for Pollster.

1 Polling Policy: Compute the myopic adaptive intent

polling policy µ̄I : Π(X) → U that maps beliefs to

polling actions.

2 For an initial belief π0, Loop k = 1, 2, · · · :

3 Polling Action: Polling action uk = µ̄I(πk−1) is a

choice of a distribution β(uk),

where β(uk) = (β
(uk)
0 , β

(uk)
1 , · · · β

(uk)
N ) and

∑

i β
(uk)
i = 1 and N + 1 is the number of levels in the

network. Poll a node at level l with a probability β
(uk)
l

and ask the following question to obtain the

observation yk:

“What does it (a node at level l) think the state is?”

4 State-estimation: Estimate the state πk using the

Bayesian filtering update (14) with observation

distribution O(uk) = Bfuk
(B), where B is the opinion

distribution (8) and fuk
(z) is a Hurwitz polynomial.

5 Polling Cost: Incur an intent polling cost

C(πk, uk) = S(β(uk)) + ηe(πk, uk) that is composed

of measurement and entropy costs respectively.

6 End

In the adaptive intent polling (Algorithm 1), the pollster adapts

the intent polling policies, namely, the probabilities with which

the nodes at different levels in the hierarchical social influence

network are polled. This affects the observation distribution

O(u), and hence the state estimate (see Fig. 1).

A. Formulation of Intent Polling Costs

The instantaneous cost in adaptive intent polling consists of

two components– the measurement cost and the entropy cost

(uncertainty in the state estimate):

a) Measurement Cost: Let u ∈ {1, 2, . . . , U} denote

the choice of distributions (polling actions) β(u),

where β(u) = (β
(u)
0 , β

(u)
1 , · · · β

(u)
N ) and

∑

i β
(u)
i = 1.

Here β
(u)
l for l = 0, 1, 2 · · · , N denotes the probability

of selecting a node from level l, having an opinion distri-

bution Bl+1. Let s(l) denote the measurement cost from

level l. Since nodes at higher levels in the hierarchy (small

l) provide more informative (in the Blackwell sense)

observations, higher costs are associated with obtaining

observations from these levels [33], i.e., s(l) ≥ s(l + 1),
and the average measurement cost for employing the

polling algorithm β(u) is S(β(u)) =
∑N

l=0 β
(u)
l s(l).

b) Entropy Cost: The entropy cost models the uncertainty in

the state estimate π in (13), and is given as

ηe(π, u) = −γ1(u)
2

∑

i=1

π(i)log2π(i) + γ2(u)

for πk(i) ∈ (0, 1) and ηe
∆
=0 for πk(i) = {0, 1}. Here

γ1, γ2 > 0 are user defined scalar weights.

Since more informative opinions lead to larger reduction in

uncertainty, γ1(u) > γ1(u+ 1) and γ2(u+ 1) > γ2(u).
The net instantaneous cost C(π, u) in (15) incurred by the

pollster in case of adaptive intent polling is thus given as:

C(π, u) = S(β(u)) + ηe(π, u). (21)

The cost (21) expressed in terms of the belief state π captures the

fact that a control with higher measurement cost should result in

a smaller entropy (more reduction in uncertainty) cost and vice

versa.

B. Matrix polynomials and Blackwell Dominance

The aim of this section is to provide a rationale for choos-

ing the intent polling actions (distributions) β(u), u ∈ U , with

fu(z) =
∑N

l=0 β
(u)
l zl denoting the polynomial associated with

action distributions β(u). It is shown that when fu(z) is Hur-

witz stable, there exists a Blackwell dominance relation be-

tween the observation distributions (7) for the pollster. LetPN =
{h|h(z) =

∑N
i=0 βiz

i,
∑N

i=0 βi = 1, βi ≥ 0} denote the set of

all polynomials with co-efficients that constitute a convex com-

bination.

Proposition IV.1: Let Q be a stochastic matrix. For n > m,

let p(z) ∈ Pn and q(z) ∈ Pm be two polynomials such that all

the roots of q(z) are roots of p(z). If q(z) and p(z) are Hurwitz,

then q(Q) �B p(Q).
Discussion: The above result is interesting since it shows that

Hurwitz stability is a sufficient condition for Blackwell domi-

nance. Consider two polynomial channels p(Q) and q(Q)where

Q is any stochastic matrix. Proposition IV.1 says that polling

with observation channel q(Q) is always better than polling with

channel p(Q). In adaptive intent polling (Theorem 4), the de-

gree of the polynomial is the same as the number of levels in the

hierarchy (Fig. 1). A polling action in adaptive intent polling cor-

responds to choosing the (normalized) co-efficients of a polyno-

mial, and these coefficients are the probabilities of polling from

the various levels of the social network.

According to Proposition IV.1, if the polynomials are Hurwitz

and have common factors, a Blackwell dominance relation exists

between their corresponding matrix polynomials. If, however,

p(z) ∈ Pn is not a Hurwitz polynomial, then q(Q) �B p(Q)
only if the polynomial q(z) ∈ Pm is the single quadratic factor

(m = 2) corresponding to any conjugate pair of zeros of p(z)
having smallest argument in magnitude; see [34].

C. Main Result. Myopic Policies for Adaptive Intent Polling

Our main result on adaptive intent polling is Theorem 4 be-

low. It shows that when it cheaper for the pollster to (myopically)

listen to the polynomial channel that provides largest reduction

in uncertainty on the state, it is indeed optimal to do that. Poly-

nomial channels are parallel cascaded channels that model the

communication medium between the pollster and the nodes of

a social network having a hierarchical influence structure as in

Fig. 1, when the pollster polls all levels of the hierarchical net-

work as in intent polling.
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Let fu(z) =
∑N

l=0 β
(u)
l zl denote the polynomial correspond-

ing to the polling policy β(u). For an opinion distribution B
(defined in (8)), let the matrix polynomials be fu(B) ∀u ∈ U .

Theorem 4 (Adaptive Intent Polling): Consider the adaptive

intent polling problem with costs specified in (21). Let the obser-

vation distribution for the pollster be O(u) = Bfu(B) ∀u ∈ U .

Assume that the polynomial fU (z) ∈ PN is Hurwitz.6

a) Then, O(u) �B O(u+ 1) ∀u ∈ U .
b) By Theorem 2, the myopic intent polling policy µ̄I(π)

forms an upper bound to the optimal intent polling policy

µ∗
I(π), i.e., µ∗

I(π) ≤ µ̄I(π) for all π ∈ Π. In particular,

for belief states where µ̄I(π) = 1, the myopic policy co-

incides with the optimal policy µ∗
I(π).

Discussion: The instantaneous cost for adaptive intent

polling (21) is concave in π by definition. The proof of The-

orem 4 follows from Proposition IV.1 and Theorem 2. The

adaptive intent polling algorithm employed by the pollster de-

termines how the opinions are gathered, and the opinions are

distributed as O(u) for the pollster. For an opinion distribu-

tion B, the observation distribution of the pollster in case of

adaptive intent polling is given as O(u) = Bfu(B), where

fu(B) =
∑N

l=0 β
(u)
l Bl and nodes at level l are sampled with

probability β
(u)
l . The matrix polynomial fu(B) has an identity

observation likelihood for the co-efficient β
(u)
0 . This motivates

the choice O(u) = Bfu(B) ∀u ∈ U .

Proposition IV.1 provides a justification for the polynomial

fU (z) to be Hurwitz. If fU (z) is Hurwitz, then a way to compute

fg(z) for g ∈ {U − 1, . . . , 2, 1} is by successive long-division

of fU (z) by linear or quadratic factors of fU (z). If we know that

the polynomial fU (z) is Hurwitz, then the polynomial fU−1(z)
obtained by removing any linear or quadratic factor from fU (z)
is also Hurwitz. From Proposition IV.1, we know that if two

polynomials are Hurwitz, there is a Blackwell dominance rela-

tion between them. From Theorem 4, the observation distribu-

tion for the pollster is ordered as

O(U − 1) = B · fU−1(B) �B B · fU (B) = O(U).

A similar procedure can be carried out to obtain observation dis-

tributions for u = U − 2, . . . , 1 as long as the number of levels

N + 1 is greater than U in the hierarchical social network, as

there are N + 1 roots for a polynomial of degree N + 1.

D. Information Theoretic Interpretation

The aim of this section is to provide an interesting link

between Hurwitz stability and channel capacity in terms of

Blackwell dominance. Let I(X ;Y(u)) denote the mutual in-

formation of channel fu(B) and C(u) denote the capacity de-

fined in (4). Let f i
u(B) denote the ith row of the matrix

polynomial fu(B).
Proposition IV.2: If the channel error probabilities (likeli-

hoods) for the pollster satisfy fu(B) �B fu+1(B) ∀u ∈ U , then

a) Shannon Capacity Ordering: C(u) ≥ C(u+1) ∀u ∈ U .

6A polynomial f is Hurwitz if all its zeroes lie in the open left half-plane of
the complex plane, and all its co-efficients have the same sign.

Algorithm 2: Adaptive Expectation Polling for Pollster.

1 Polling Policy: Compute the myopic adaptive

expectation polling policy µ̄E : Π(X) → U that maps

beliefs to polling actions.

2 For an initial belief π0, Loop k = 1, 2, · · · :

3 Polling Action: Polling action uk = µ̄E(πk−1) is a

choice of level in the network. Poll a node at level l and

ask the following question to obtain the observation yk:

“what does a node at level l think

the nodes at level j(< l) would report the state as?”

4 State-estimation: Estimate the state using the

Bayesian filtering update (14) with observation

distribution O(uk) = B
luk

/l

l , where Bl is the opinion

distribution (10) and B in (8) is an ultrametric matrix.

Here nodes at level l are polled to provide information

of the nodes at level luk
.

5 Polling Cost: Incur an expectation polling cost

C(πk, uk) = S(β(uk)) + η2(πk, uk) that is composed

of measurement and state estimation error respectively.

6 End

b) Rényi Divergence Ordering:

Dα(f
i
u(B)||f j

u(B)) ≥ Dα(f
i
u+1(B)||f j

u+1(B))

for all u ∈ U and for all i, j ∈ X .

Discussion: The proof of Proposition IV.2 follows from Theo-

rem 1 and Theorem 3. From Proposition IV.2, the Hurwitz poly-

nomial channels are ordered such that the channel that is a sub

channel of the other results in a larger reduction in uncertainty

on the state.

Together with Proposition IV.1, Proposition IV.2 provides an

interesting link between Hurwitz (stable) polynomials and chan-

nel capacity. From Proposition IV.1, those polling actions that

result in Hurwitz (stable) polynomials allow decomposition of

channels into sub channels that have higher capacity from Propo-

sition IV.2.

V. ADAPTIVE EXPECTATION POLLING

In expectation polling [21], to decide between two states, the

sampled individuals are asked “who will your friends vote for?”.

In a hierarchical network, this can be seen as asking “who will

your more influential friends vote for?”. In this section, we de-

velop an adaptive version of expectation polling [21]: the result-

ing algorithm (Algorithm 2 below) is designed for hierarchical

social influence networks with time-varying state of nature.

We present novel sufficient conditions for Blackwell domi-

nance in the context of adaptive expectation polling. These con-

ditions involving ultrametric matrices enable the application of

Theorem 2 to determine myopic policies that upper bound the

optimal adaptive expectation polling policy. The myopic poli-

cies are used for polling in Algorithm 2, which is inexpensive

to implement.

Authorized licensed use limited to: Cornell University Library. Downloaded on June 02,2020 at 09:06:07 UTC from IEEE Xplore.  Restrictions apply. 



546 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 5, NO. 3, SEPTEMBER 2019

Algorithm 2 below is a more sophisticated version of standard

expectation polling, for multiple states and hierarchical social

networks.

In adaptive expectation polling (Algorithm 2), the pollster

controls the observation distribution O(u) by choosing different

levels to gather the opinion, and this in turn affects the estimate

of the state (see Fig. 1).

A. Formulation of Expectation Polling Costs

The instantaneous cost in adaptive expectation polling con-

sists of two components– the measurement cost and the uncer-

tainty in the state estimate:

a) Measurement Cost: Let u ∈ {1, 2, . . . , U} denote the

choice of levels. In adaptive expectation polling, unlike

adaptive intent polling, not all levels are polled. The poll-

ster selects a level l and asks the nodes at level l to provide

information about the other levels. Let S(u) denote the

measurement cost for action u. Since more informative

opinions are costlier to obtain [33], from Theorem 5(i)

below, S(u) ≥ S(u+ 1) ∀u ∈ U .

b) State-Estimation error: The state-estimation error in-

curred in choosing action u is modelled as

η2(x̄, u) = wu‖x̄− π‖2. (22)

The scalar wu > 0 allows the costs associated with differ-

ent controls/ or the levels to be weighed differently. In (22),

π denotes the posterior distribution updated according to

(14) and x̄ ∈ {e1, e2, . . . , eX}, where ei is the unit indi-

cator vector. Note that this is an alternate representation of

the state space X . In (22) using the law of iterated expec-

tation [6, Chapter 8, Sec.8.4.2], [35, Lemma 3.2], η2(π, u)
can be expressed in terms of the belief π as follows:7

η2(π, u) = wu (1− π′π) (23)

Since more informative opinions lead to smaller state-

estimation error, from Theorem 5(i) below, wu+1 > wu.

The net instantaneous cost C(π, u) in (15) incurred by the

pollster in adaptive expectation polling is thus given as:

C(π, u) = S(u) + η2(π, u) (24)

The cost (24) expressed in terms of the belief state π models the

fact that asking the nodes at level i to provide information on the

opinions of nodes at levels j(<i) is costly, but more informative

– smaller state estimation error.

7

Jµ(π0)=Eµ

{

∞
∑

k=0

ρkE{C(x̄k,uk) |Ik}|π0

}

.

Jµ(π0)=Eµ

{

∞
∑

k=0

ρk
X
∑

i=1

C(ei,uk)πk(i) |π0

}

from (13).

The instantaneous cost is thus given as
∑X

i=1
C(ei, uk)πk(i), where

C(ei, uk) = S(uk) +wuk
‖ei − πk‖2. By noting that ‖ei − πk‖2 =

∑X

m=1
|ei(m)− πk(m)|2, the equation (23) follows from (22) by simple

algebraic manipulation.

B. Fractional Exponents of Stochastic Matrices and

Blackwell Dominance

The aim of this section is to provide a rationale for choosing

the expectation polling actions, which correspond to sampling

nodes at a particular level and soliciting information from other

levels (see Fig. 1). It is shown fractional matrix powers can

model requesting information from hidden levels in a hierarchi-

cal social influence network. When the opinion distribution is

an ultrametric matrix, there is a relation between the fractional

matrix powers and Blackwell dominance.

Definition: (Ultrametric Matrix [36]) A square stochastic

matrix Q is ultrametric if

1) Q is symmetric.

2) Qij ≥ min{Qik, Bkj} for all i, j, k.

3) Qii > minQik for all k �= i.
For any ultrametric matrix Q, the Kth primary root, Q1/K ,

is also stochastic for any positive integer K; see [36].

Proposition V.1: For any ultrametric matrix Q, the following

hold for any positive integer j:

a) Qj/K �B Qj .

b) Qj/K �B Q(j+1)/K . . . �B Q(j+K−1)/K

c) Qj/(K+1) �B Qj/(K).

d) Q �B Qj/K , for all j > K.

Discussion: Clearly, any integer power of a stochastic

matrix is a stochastic matrix. Proposition V.1 says that frac-

tional power of certain stochastic matrices, namely ultrametric,

are also stochastic. In adaptive expectation polling (Theorem 5),

polling actions correspond to choosing different levels in the hi-

erarchy (Fig. 1) and soliciting opinions of nodes at other levels.

In Proposition V.1,Qj+1/K+1 can be used to interpret the notion

of node at level K providing information on nodes’ opinions at

level j, and hence provides a way to order the likelihoods cor-

responding to different polling actions. According to Proposi-

tion V.1, when the opinion distribution B in (8) is ultrametric,

there exists a Blackwell dominance relation between the obser-

vation distributions of the pollster.

C. Main Result. Myopic policies for

Adaptive Expectation Polling

Our main result in adaptive expectation polling is Theorem 5

below. It shows that when it is cheaper for the pollster to (my-

opically) listen to the ultrametric channel that provides the most

information on the state, it is optimal to do so. Ultrametric chan-

nels are (hidden) cascaded channels that model the communi-

cation medium between the pollster and the nodes of a social

network having a hierarchical influence structure as in Fig. 1,

when the pollster seeks opinions formed at the hidden levels

from the levels that are easily accessible.

Theorem 5 (Adaptive Expectation Polling): Consider the

adaptive expectation polling problem with costs specified

in (24). Assume that the opinion distribution B (defined in (8))

is ultrametric. Let the observation distributions for the pollster

be O(u) = B
lu/l
l ∀u ∈ U .
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a) For the choice of levels lu > lu+1, we have

O(u) �B O(u+ 1) ∀u ∈ U .

b) By Theorem 2, the myopic expectation polling policy

µ̄E(π) forms an upper bound to the optimal expectation

polling policy µ∗
E(π), i.e., µ∗

E(π) ≤ µ̄E(π) for all π ∈ Π.

In particular, for belief states where µ̄E(π) = 1, the my-

opic policy coincides with the optimal policy µ∗
E(π).

Discussion: The instantaneous cost for adaptive expectation

polling (24) is concave in π by definition. The proof of The-

orem 5 follows from Proposition V.1 below and Theorem 2.

The expectation polling algorithm employed by the pollster

determines how the opinions are gathered, and the opinions

are distributed as O(u) for the pollster. Proposition V.1 be-

low provides a justification for the opinion distribution B to

be ultrametric. Note that Bl denotes the opinion distribution at

level l, i.e., Bl = Bl+1 from Fig. 1. For any K > 0, clearly

B
j+1/K+1
K = Bj . This motivates the choice of the observa-

tion distribution of the pollster in case of adaptive expectation

polling as O(u) = B
lu/l
l , where nodes at level l are polled to

provide information of the nodes at level lu. It is easiest (see

Sec. VIII) to poll nodes at level N , so a convenient choice is

O(u) = B
lu/N+1
N+1 .

D. Information Theoretic Interpretation

The aim of this section is to provide a link between ultramet-

ric channels (hidden channels) and Shannon capacity in terms of

Blackwell dominance. Let I(X ;Y(lu)) denote the mutual infor-

mation of the ultrametric channel Qlu/K and C(lu) denote the

capacity defined in (4). Let Q
lu/K
i denotes the ith row of the

channel Qlu/K .

Proposition V.2: If the channel error probabilities (likeli-

hoods) for the pollster satisfy Qlu/K �B Qlv/K for any K > 0,

we have

i) Shannon Capacity Ordering: C(lu) ≥ C(lv) for lu > lv .

ii) Rényi Divergence Ordering:

Dα(Q
lu/K
i ||Q

lu/K
j ) ≥ Dα(Q

lv/K
i ||Q

lv/K
j )

for all u ∈ U and for all i, j ∈ X .

Discussion: The proof of Proposition V.2 follows from The-

orem 1 and Theorem 3. Proposition V.2 provides an ordering

of Rényi Divergence and Shannon capacity between ultrametric

channelsQlu/K , K > 0, ∀u ∈ U . From Proposition V.2, the ul-

trametric channels are ordered such that the information of nodes

at Level 0, for example, revealed by the nodes at Level N( �= 0)
result in a larger reduction in uncertainty on the state, than opin-

ions from nodes at Level N + 1( �= 0).

VI. APPROXIMATE BLACKWELL DOMINANCE

So far we have discussed sufficient conditions for Blackwell

dominance; when these conditions hold, the optimal adaptive

polling policy is provably upper bounded by a myopic policy. A

natural question is: Can efficient polling methods be developed

when Blackwell dominance does not hold exactly?

Algorithm 3: Approximate Blackwell Dominance.

1 Let M denotes the set of all stochastic matrices.

2 Initialize: O(1) = Ô(1)
3 For u ∈ {1, 2, . . . , U − 1}, do:

4 R∗
u+1 = argminR∈M ‖O(u+ 1)− Ô(u)R‖∞

5 Ô(u+ 1) = Ô(u)R∗
u+1

6 end

7 Output: Ô(u) for u ∈ U .

This section discusses approximate Blackwell dominance and

its applications in a novel polling method called adaptive neigh-

borhood expectation polling. The main idea involves Le Cam

deficiency.

A. Le Cam Deficiency

Given a collection of matrices, it is important to check whether

there exists a Blackwell dominance relation, as Theorem 2 can

used to compute inexpensive policies. In this section, an ap-

proximation procedure using Le Cam deficiency is provided. Le

Cam deficiency enables to calculate the closest matrix that is

Blackwell comparable.

Definition: (Le Cam deficiency) For any two stochastic ma-

trices W and H , the Le Cam deficiency is

δ(W,H)
∆
= inf

R∈M
‖W −HR‖∞, (25)

where M denotes the set of all stochastic matrices and ‖ · ‖∞
denotes the induced norm.

The inf in (25) is achieved – this can be shown using Le

Cam randomization criterion [37]. The Le Cam deficiency is an

approximation measure that quantifies the loss when using one

observation distribution instead of the other. There is no loss if

there exists a mechanism able to convert the observations from

one distribution to the other.

(25) can be solved as a convex optimization problem using

CVXOPT toolbox in Python or CVX in Matlab. Solving (25)

yields observation distributions that are Blackwell comparable.

Consider a POMDP model θ = (X ,Y, P,O(u), C, ρ), where

O(u) for u = {1, 2, . . . , U} are observation matrices that are

not Blackwell comparable. Consider an approximation γ =
(X ,Y, P,O(1), Ô(û), C, ρ), where û = U/{1} and the obser-

vations distributions are such that

O(1) �B Ô(2) · · · �B Ô(U). (26)

Algorithm 3 details a procedure to compute observation distri-

butions that share a Blackwell dominance relation (26).

B. Applications of Approximate Blackwell Dominance

Algorithm 3 can be used to design POMDPs for adaptive

polling that have observation distributions that are not Blackwell

comparable – for example, when the polling distributions in case

of adaptive intent polling are not Hurwitz, when the opinion

distributions are not ultrametric in case of adaptive expectation

polling, when the pollster has a choice between different polling

algorithms over the polling horizon, etc.
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1) Adaptive Neighborhood Expectation Polling: Here each

polled node gathers the opinion from other nodes at the same

level on each state and reports the opinion fraction to the poll-

ster. The question asked by the pollster in case of adaptive NEP

polling is

“what does a node at level l think the fraction

in favor of different states is, at level l?”

This polling algorithm is a more sophisticated version of

Neighborhood Expectation Polling (NEP) [22]. NEP is a polling

algorithm to decide between two states where the pollster asks

the following question [22]: “what is a nodes’ estimate of the

fraction of votes for a particular candidate?”.

In the case of adaptive NEP polling, the pollster controls the

observation distribution O(u) by choosing different levels to

gather the information in the form of fractions, and this in turn

affects the estimate of the state (see Fig. 1).

Remark: In case of adaptive NEP polling, the nodes report

opinion fractions to the pollster. If instead, the nodes report prob-

abilities with Y = [0, 1]|X |, there is a possibility that the pollster

receives biased information. There is a disjunction effect – the

beliefs about the state change when aggregated differently. This

is the well known Simpson’s Paradox; see [38].

The adaptive NEP polling algorithm deployed by the pollster

determines how the opinions are gathered, and the observations

for the pollster are tuples reported by the nodes that indicate the

fraction in favor of each state. Channels specified by multinomial

distributions model the likelihood of opinion counts in favor of

different states from different nodes at the same level. Let N ∈
{1, 2, . . . ,N} denote the number of nodes accessible (friends

with) to nodes at each level in the hierarchical social influence

network. This models the possibility of different individuals or

nodes having different friends with N denoting a finite maxi-

mum number. Let the observation alphabet for the pollster be

Y = {(n1

N , n2

N , . . . , nX

N ) ∀N : ni ∈ Z+,
∑

i ni = N}, where

Z+ denotes the set of non-negative integers. Let O(l) denote the

opinion fraction that the pollster receives from level l, and has

elements

(O(l))ij = P (ylk+1 = j|xk+1 = i,Nj), i ∈ X , j ∈ Y.

Here,

j =

(

n
(j)
1

Nj
,
n

(j)
2

Nj
, . . . ,

n
(j)
X

Nj

)

, Nj ∈ {1, 2, . . . ,N},

∑

h

n
(j)
h = Nj .

P

(

ylk+1 = j|xk+1 = i,Nj

)

=
Nj !

n
(j)
1 !× · · · × n

(j)
X !

×
X
∏

h=1

(Bl)
n

(j)
h

ih . (27)

Here Nj and n
(j)
i indicate the total and the number in favor of

x = i reported and Bl denotes the opinion distribution (10) at

level l. The likelihood in (27) is the well known multinomial

distribution.

The observation distributions (27) are not necessarily Black-

well ordered, but it is intuitive that the opinion fractions

in (27) from nodes at level i are more informative than opin-

ion fractions from nodes at level j(>i) in Fig. 1 owing to ob-

vious Blackwell dominance relation of opinion distributions

Bl for l = i, j in (10). However, Algorithm 3 can be used

to obtain approximate Blackwell dominance of observation

distributions (27).

2) Adaptive Polling With Choice: In this section, we estab-

lish that expectation polling from the lowest level (least infor-

mative) and seeking opinions about the highest level is better

(more informative) than intent polling (here, the pollster seeks

information from all levels). Depending on the availability of

access to different levels for the pollster, it can switch between

polling algorithms.

For example, when using intent polling on an organizational

network (implicitly hierarchical in nature), the executive levels

might become inaccessible during IPOs or financial crisis. Then,

the pollster can switch to listening the inside information from

the lower levels (expectation polling), to estimate the underlying

state of nature.

Let the opinion distribution B (defined in (8)) be ultrametric

and f2(z) ∈ PN be any polynomial. Let the true POMDP model

be θ = (X ,Y,Y , P,O(1), O(2), C) and the approximation be

γ = (X ,Y,Y , P,O(1), Ô(2), C). Let µ(·; γ) denote the policy

parameterized by the approximate model γ.

Proposition (Adaptive Expectation v/s Intent): Let O(1) =

B
l1/N+1
N+1 , and O(2) = Bf2(B) for some l1 and f2, denote the

observation distributions in case of adaptive expectation polling

and adaptive intent polling respectively.

i) The approximate Blackwell ordering using Algorithm 3

is

O(1) �B Ô(2).

ii) The myopic polling policy µ̄(π; γ) is an upper bound to the

optimal polling policy µ∗(π; γ), i.e., µ∗(π; γ) ≤ µ̄(π; γ)
for all π ∈ Π.

Discussion: For u = 1, the pollster chooses expectation

polling and hence listens to an ultrametric channel, and for

u = 2, the pollster chooses intent polling and hence listens to

a polynomial channel. As O(2) = Bf2(B), we have B �B

O(2). Note that since O(1) = B
l1/N+1
N+1 , when l1 = 1 (nodes

at Level N are polled to provide opinion of nodes at Level 0),

O(1) = B
1/N+1
N+1 = B �B O(2). This implies that expectation

polling is more informative than intent polling.

For l1 > 1, there is no apparent comparison of ultrametric

and polynomial channels. However, Algorithm 3 can be used to

design POMDPs for adaptive polling for arbitrary l1 and f2.

VII. PERFORMANCE BOUNDS AND ORDINAL SENSITIVITY

In Sec. VI, we discussed an approximation procedure to com-

pute a POMDP model for an adaptive polling problem that has

a Blackwell dominance structure and is close (Le Cam sense) to

the true POMDP. Sec. VII-A provides performance bounds on

the comparison of POMDPs for adaptive polling.
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Sec. VII-B provides the ordinal sensitivity in polling, i.e., an

ordering of the cumulative costs with respect to the variation in

opinion distributions B (defined in (8)).

A. Performance Bounds on Adaptive Polling

Let θ = (X ,Y,Y , P,O(u), C, ρ) denote the given POMDP

model for adaptive polling and γ = (X ,Y,Y , P, Ô(u), C, ρ)
denote the POMDP model for adaptive polling having a Black-

well dominance relation between the observation distributions.

Let Jµ∗(γ)(π; θ) and Jµ∗(γ)(π; γ) be defined as in (16), and de-

note the cumulative costs incurred by the two models θ and γ re-

spectively, when using the polling policyµ∗(γ). Let Jµ∗(θ)(π; θ)
and Jµ∗(θ)(π; γ) be defined as in (16), and denote the cumulative

costs incurred by the two models θ and γ respectively, when us-

ing the polling policy µ∗(θ). Theorem 6 below provides a bound

on the deviations from the optimal cost and policy performance

of the POMDP models for adaptive polling.

Theorem 6: Consider two POMDP models θ = (X ,Y,Y ,
P,O(u), C, ρ) and γ = (X ,Y,Y , P, Ô(u), C, ρ) for adaptive

polling. Then for the mis-specified model and mis-specified pol-

icy, the following sensitivity bounds hold:

Mis-specified Model: sup
π∈Π

|Jµ∗(γ)(π; γ)− Jµ∗(γ)(π; θ)|

≤ G‖γ − θ‖. (28)

Mis-specified Policy:Jµ∗(γ)(π; θ) ≤ Jµ∗(θ)(π; θ) + 2G‖γ − θ‖.
(29)

Here G = maxi∈X ,u
C(ei,u)
1−ρ and ei denotes the indicator vector

with a ‘1’ in the ith position, and

‖γ − θ‖ = max
u

max
i

∑

y

∑

j

Pij |Ojy(u)− Ôjy(u)|.

Discussion: Theorem 6 provides uniform bounds on the ad-

ditional cost incurred for using parameters that are Blackwell

comparable in place of the given parameters of the POMDP for

adaptive polling. The proof follows from arguments similar to

[6, Theorem 14.9.1], and is omitted.

So far it was assumed that the pollster has complete knowl-

edge of the node-level associations. However, if a set of nodes are

misclassified to a different level by the pollster, then the pollster

is essentially updating the belief using different observation dis-

tributions. Theorem 6 can be used to compute the performance

bounds for this misclassification as well.

B. Ordering of Hierarchical Social Influence Networks

So far we have discussed two types of polling algorithms on a

single hierarchical social influence network. In this section, we

briefly discuss how to order hierarchical influence networks that

differ in the opinion distributions B, according to the expected

polling cost. Theorem 7 below shows that some networks are

inherently more expensive to poll than others; it defines a partial

order over networks that results in an ordering of the cost of

polling.

Let the POMDP model of the hierarchical influence net-

work Hi for i = 1, 2, · · · be θi, where the tuple θi =

(X ,Y,Y , P,O(i), C). Let µ∗
i (π; θi) denote the optimal polling

policy on each of the network, and let Jµ∗
i
(θi)(π; θi) denote the

corresponding optimal cumulative cost.

Theorem 7 (Ordinal sensitivity in Polling): Consider two hi-

erarchical networks H1 and H2. Let the POMDPs for adaptive

polling of each hierarchical network have the observation dis-

tributions that satisfy O(1) �B O(2). Then

Jµ∗
1(θ1)

(π; θ1) ≤ Jµ∗
2(θ2)

(π; θ2). (30)

Here O(1) �B O(2) denotes O(1)(u) �B O(2)(u) ∀u ∈ U .

Discussion: The proof of Theorem 7 follows from arguments

similar to Theorem 14.8.1 in [6], and is omitted. Since the ob-

servation likelihood for the pollster (O(i) ∀i) depends on the

opinion distribution (10), Theorem 7 provides a way to com-

pare the cumulative costs of hierarchical influence networks with

different opinion distributions. The result is useful, in that, a hi-

erarchical influence network that has more informative opinion

distribution at every level compared to another hierarchical influ-

ence network is cheaper to poll on average as the nodes provide

more informative opinions.

VIII. NUMERICAL EXAMPLES

The main results of this paper involve using Blackwell domi-

nance to construct myopic policies that provably upper bound the

optimal adaptive polling policy. In this section, the performance

of this myopic upper bound is illustrated using numerical exam-

ples for adaptive polling. As discussed in Sec. II-A, the discount

factor ρ determines the way the polling cost is counted towards

the polling value Jµ∗(π0) defined in (12) when using the opti-

mal policy µ∗(π). Since the computationally inexpensive my-

opic policy is used for polling in Algorithm 1 and Algorithm 2,

instead of the optimal policy µ∗(π), the performance loss and

sensitivity (both defined below) in terms of the polling value

Jµ∗(π0) is evaluated for different values of the discount factor.

Let Jµ̄(π0) denote the discounted costs associated with the

myopic policy µ̄(π). We consider the following two measures

for measuring the effectiveness of the myopic polling policy:

i) The percentage loss in optimality due to using the myopic

policy µ̄ instead of optimal policy µ∗ is

L1 =
Jµ̄(π0)− Jµ∗(π0)

Jµ∗(π0)
. (31)

In (31), the total average cost is evaluated using 1000

Monte carlo simulations over a horizon of 100 time units.

The optimal cost Jµ∗(π0) is calculated as in (12).

ii) Let Πs
1 represent the set of belief states for which

C(π, 1) < C(π, u) ∀u = 2, . . . , U . So on the set Πs
1, the

myopic policy coincides with the optimal policy µ∗(π).
What is the performance loss outside the set Πs

1? Define

the following discounted cost

J̃µ∗(π0) = E

{

∞
∑

k=1

ρk−1C̃ (πk, µ
∗(πk))

}

, where ρ∈ [0, 1),

C̃ (π, µ∗(π)) =

{

C (π, 1) π ∈ Πs
1

C(π, 1) + w2η2(π, 2) π �∈ Πs
1
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Clearly a lower bound for the percentage loss in optimality

due to using the myopic policy µ̄ instead of optimal policy µ∗ is

L2 =
Jµ̄(π0)− J̃µ∗(π0)

J̃µ∗(π0)
. (32)

In (32), the cumulative discounted cost is evaluated using 1000

Monte carlo simulations over a horizon of 100 time units.

Here µ∗ is the optimal policy of the non-standard (non-linear

cost) POMDP, and is solved using POMDP algorithms in [6,

Chapter 8, Sec.8.4.4].

A. Example 1: Market Research. Adaptive

Expectation Polling via YouTube

We describe how to estimate the revenue level that a movie

generates based on the response received on the social media

platform YouTube.

YouTube Dataset: A sample of 30 comedy movies from 2016–

2018 were selected. For each of these movies, YouTube com-

ments on their trailers that expressed personal opinions were col-

lected using the Python YouTube API.8 The sentiment associated

with each of the comments was identified using sentiment anal-

ysis tool - textblob (http://textblob.readthedocs.org/en/dev/).

Hierarchical network modeling: The critics and those who

see the movie before its release will influence the future movie

goers by sharing opinions on social media platforms. So the

critics are in Level 0 and the common movie goer is Level 1. So

the number of levels in the hierarchical social network (Fig. 1)

for this example is thus N = 1.

Polling algorithm – Expectation Polling: In adaptive expec-

tation polling (Sec. V), to poll the common movie goers who

provide their opinion on YouTube, the pollster asks the follow-

ing question to estimate the performance of a movie:

“what does a node at Level 1 think the nodes at

Level 0 (u=1) and Level 1 (u=2) would report the state as?”

In other words, the pollster asks “what do you think?” and

“what do they think?”. So the polling action u ∈ {1, 2} selects

the opinion distributions B
u/2
2 .

State – Popularity: The popularity of each of 30 movies is

modeled as a 3 state Markov chain x, and depending on their

box-office revenues (https://www.boxofficemojo.com/), each of

these movies were assigned a state from the state-space X =
{High,Medium,Low}.

State transition matrix – Popularity changes: The popularity

of a movie evolves over time due to a number of factors in-

cluding release of a better advertised movie, release of a more

anticipated movie, the gradual decline of the hype surrounding

the movie, or increase in popularity after celebrity endorsement

etc. This is modelled using a state transition matrix and the max-

imum likelihood estimate was computed using an Expectation

Maximization algorithm with ultrametric constraints (see Ap-

pendix B).

Observation matrix – Sentiments: Prior to a movie’s release,

the production and the media house (proprietor) associated with

8https://gdata-python-client.googlecode.com/hg/pydocs/gdata.youtube.html

the movie release a variety of promotional material, in the form

of trailer videos, digital billboards, blogs, pre-screenings etc.,

to advertise the movie. A matrix consisting of number of pos-

itive, neutral and negative comments for state of each movie

{Good,Neutral,Bad} was formed. Using this matrix, the opin-

ion matrix B2, given in (33) was then obtained by using max-

imum likelihood estimation algorithm with (See Appendix B)

ultrametric constraints. This can be used to obtain the opinion

distribution B1 of Level 0.

Parameters: The computed parameters (see Appendix B)

for P , O(1) = O1/2(2), and O(2) are as follows:

⎛

⎜

⎝

0.9089 0.0281 0.0630

0.0346 0.9433 0.0221

0.0065 0.0138 0.9797

⎞

⎟

⎠
,

⎛

⎜

⎝

0.6382 0.1809 0.1809

0.1809 0.6382 0.1809

0.1809 0.1809 0.6382

⎞

⎟

⎠
,

⎛

⎜

⎝

0.4728 0.2636 0.2636

0.2636 0.4728 0.2636

0.2636 0.2636 0.4728

⎞

⎟

⎠
. (33)

The costs associated with actions u = 1, 2 are chosen as:

S(1) = 0.5, S(2) = 0.25, w1 = 0.5, w2 = 1. (34)

The numerical values in (34) are real numbers that obey the ordi-

nal relations below, and are chosen using the empirical evidence

in [33]. The ordinal relations capture the fact that higher levels

are more informative (Blackwell sense) and hence more costly.

Note that the costs associated with the actions u = 1 and u = 2
in (34) assume the following structure:w1 ≤ w2 model the accu-

racy of the observations and S(1) ≥ S(2) model the additional

cost in expectation polling – nodes need to be compensated for

exhausting their resources gathering information from different

levels.

For a new (test) movie, depending on which level the observa-

tion is obtained from, the pollster updates the probability distri-

bution over the states using the state transition matrix P and the

corresponding estimated observation distribution matrix O(1)
or O(2).

Performance evaluation: The probabilities in (33) and the

costs in (34) constitute the POMDP parameters. Fig. 2 pro-

vides percentage loss in optimality L1 and L2, and the change

in optimality ∂L1

∂ρ for different values of the discount factor

ρ ∈ [0, 1)]. In the adaptive expectation polling algorithm (Al-

gorithm 2), a myopic policy is used to poll the YouTube users.

Of course, when ρ = 0, the myopic policy is the optimal pol-

icy. When ρ > 0, the pollster still adopts the computationally

inexpensive myopic policy (which provably upper bounds the

optimal policy via Theorem 2), while clearly compromising on

the polling value Jµ∗(π0). It is intuitive that the performance

loss measured as the difference of the expected cost when us-

ing a myopic policy Jµ̄(π0) and the polling value Jµ∗(π0) will

increase with the discount factor as ρ → 1; as evident in Fig. 2.

Also, the performance loss sensitivity ∂L1

∂ρ is observed in Fig. 2

to be higher for changes in large values of the discount fac-

tor. These two observations imply that a more forward looking

pollster, i.e., larger value of ρ, will incur higher losses than its
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Fig. 2. The percentage loss in optimality L1 and L2, and the sensitivity of the

performance loss to discount factor
∂L1
∂ρ , is evaluated by simulation for different

values of the discount factor ρ, when using a myopic policy for Example 1 and
Example 2 respectively. L2 is a lower bound for L1. The performance loss is
observed to be most sensitive to changes in large values of the discount factor.

short-sighted counterpart; for an inexpensive implementation of

the polling algorithms.

B. Example 2: Large Dimensional Example. Adaptive Intent

Polling With X = 20, Y = 20, U = 5 and N = 9

The Blackwell dominance structural result is particularly use-

ful for large number of states and observation symbols since

solving the POMDP (for the optimal policy) is intractable. Ran-

dom stochastic matrices of size 20× 20 were generated for the

transition probability matrix P and the observation probability

matrix B. The matrices are generated by stochastic simulation

as follows: twenty (1× 20) probability vectors were simulated

from the Dirichlet distribution on a 19 dimensional unit simplex

and stacked as rows. We know that Bl for l = 2, . . . , 10 consti-

tute the opinion distribution of level l. The observation distribu-

tion of the pollster O(u) =
∑N

l=0 β
(u)
l Bl+1, γ1 = [5, 4, 3, 2, 1]

and γ2 = [1, 2, 3, 4, 5]. The cost parameters conform to the or-

dinal relations that capture the fact that higher levels are more

informative and hence more costly. Here the probability dis-

tributions are chosen as follows: β(5) is chosen as9 and β(u)

for u = {4, 3, 2, 1} are obtained by successively removing the

smallest root.

Fig. 2 provides (average) percentage loss in optimality L1

and L2, and the change in optimality ∂L1

∂ρ for different values

of the discount factor ρ. In the adaptive intent polling algorithm

(Algorithm 1), a myopic policy is used to poll the users. Of

course, when ρ = 0, the myopic policy is the optimal policy.

When ρ > 0, the pollster still adopts the computationally in-

expensive myopic policy, while clearly compromising on the

polling value Jµ∗(π0).

IX. CONCLUSIONS

This paper considered the problem of adaptive (stochastic

feedback control based) polling in hierarchical social networks,

9β(5) = [25/1296, 1555/15552, 3461/15552, 86925/311040, 13627/ 62208,
11617/103680, 437/11520, 2671/311040, 73/62208, 29/ 311040, 1/311040].

formulated as a partially observed Markov decision process

(POMDP). POMDPs are intractable to solve. The key idea of the

paper was to exploit Blackwell dominance to construct myopic

bounds that provably upper bound the optimal polling policy.

We presented two main results. First, the notion of Blackwell

dominance was extended to the case of polynomial observation

likelihoods (channels) described by matrix polynomials. This

was used to develop an adaptive intent polling algorithm that

is inexpensive to implement. Second, the notion of Blackwell

dominance was extended to the case of ultrametric observation

likelihoods (channels) described by fractional matrix powers.

This was used to develop an adaptive expectation polling algo-

rithm that is inexpensive to implement.

This extension of Blackwell dominance to more general chan-

nels that arise in hierarchical social influence networks was used

to provide a natural ordering of Rényi Divergence and Shannon

capacity. These information theoretic consequences provide a

ranking of these general channel structures in the order of their

ability to distinguish the states, and hence guide the choice of

observation distributions for the pollster.

We discussed approximate Blackwell dominance based on

Le Cam deficiency to facilitate the comparison of the different

polling algorithms, and situations where a Blackwell dominance

relation is absent. This was used to provide an adaptive gener-

alization of neighborhood expectation polling to hierarchical

social influence networks, where the notion of Blackwell dom-

inance was extended to the case of multinomial distributions of

observation likelihoods. We also provided performance bounds

on the cumulative cost and polling policy, when the model pa-

rameters are mis-specified. Finally, we illustrated the results and

the performance of the myopic polling policy using a YouTube

social media dataset.

APPENDIX A

PROOFS

Proof of Theorem 2: Denote by y(u) as the observations

recorded when using action u. Then O(u+ 1) = O(u)R im-

plies the following

P

(

y(u+1)|x
)

=
∑

y(u)

P

(

y(u+1)|y(u)
)

P

(

y(u)|x
)

(35)

For notational convenience, let T (π, y, u) be written as

T (π, y(u) = y). Observe that,

T
(

π, y(u+1) = y
)

=
Ou+1(y)P

′π

σ
(

π, y(u+1) = y
)

=
∑

r

Λ(r)T (π, y(u) = r) (36)

where Λ(r) is a probability mass function w.r.t r and defined as

Λ(r) = P

(

y(u+1) = y|y(u) = r
) σ

(

π, y(u) = r
)

σ
(

π, y(u+1) = y
) (37)
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The following inequality follows from the concavity of V (π)
and (37)

V
(

T
(

π, y(u+1) = y
))

= V

(

∑

r

Λ(r)T (π, y(u) = r)

)

V
(

T
(

π, y(u+1) = y
))

≥
∑

r

Λ(r)V
(

T (π, y(u) = r)
)

(38)

Following completes the proof of Theorem 2 using (38).

∑

y

σ(π, y(u+1) = y)V
(

T
(

π, y(u+1) = y
))

≥
∑

y

∑

r

Λ(r)V
(

T (π, y(u) = r)
)

σ(π, y(u+1) = y)

=
∑

r

V
(

T
(

π, y(u) = r
))

σ
(

π, y(u) = r
)

(39)

∴ C(π, 1) ≤ C(π, u) ∀u ⇒ µ∗(π) = 1 ⇒ µ∗(π) ≤ µ̄(π). �

Proof of Theorem 3: LetO(u) �B O(u+ 1) for u ∈ U . From

the definition of Rényi Divergence (19) we have [39]:

Dα(Oi(u+ 1)||Oj(u+ 1))

≤ min
{

(1− α)D(Oi(u+ 1)||Oj(u+ 1)),

αD(Oj(u+ 1)||Oi(u+ 1))
}

. (40)

We know that [40]:

O(u) �B O(u+ 1)

⇒ D(Oi(u)||Oj(u)) ≥ D(Oi(u+ 1)||Oj(u+ 1)), (41)

for all i, j ∈ X . From (40) and (41), the result follows. �

Proof of Proposition IV.1: It is given that p(z) ∈ Pn and

q(z) ∈ Pm, with n > m. Clearly, f(Q) and g(Q) are stochas-

tic matrices. Further, if the quotient polynomial h(z) = f(z)
g(z) ∈

P(n−m), then it is easily seen that g(Q) �B f(Q).
Since the polynomials p(z) and q(z) are Hurwitz, the quo-

tient polynomial h(z) = p(z)
q(z) =

∑(n−m)
i=0 αiz

i has positive co-

efficients; i.e., αi > 0. It suffices to prove that h(z) ∈ P(n−m).

It is clear that p(1) = q(1) = 1, which implies that h(1) = 1;

i.e.,
∑(n−m)

i=0 αi = 1. �

Proof of Proposition V.1: We will only prove Theorem V.1 b

and Theorem V.1 c.

For Theorem V.1 b, we have Q(j+J)/K = Qj/K ×QJ/K .

Therefore Qj/K �B Q(j+J)/K .

For Theorem V.1 c, we haveQj/K = Qj/K+1 ×Qj/K(K+1).

Therefore Qj/K �B Qj/K+1. �

APPENDIX B

EM ALGORITHM WITH ULTRAMETRIC CONSTRAINTS

The parameters of the POMDP are computed using a sequence

of observations obtained from level N in Fig. 1. Specifically,

we describe a modified version of the EM algorithm [41] is

used to compute the maximum likelihood estimate of the tu-

ple (P,BN+1), where BN+1 is restricted to the space of ul-

trametric stochastic matrices. The opinion probability matrices

at all other levels are computed by taking fractional exponents

of BN+1. In this modified EM algorithm, computing BN+1

requires maximizing an auxiliary likelihood function (of ob-

servation sequences) subject to ultrametric constraints (see

Footnote 13) on BN+1. However, the space of ultramet-

ric stochastic matrices is non-convex because of constraint

BN+1(i, j) ≥ min {BN+1(i, k), BN+1(k, j)}.

The following reformulation based on the Big-M method in

linear programming [42] is used to deal with the non-convex

constraint. For all i, j, k ∈ X , i �= j �= k:

BN+1(i, j) ≥ BN+1(i, k) +M(1− κ), (42)

BN+1(i, j) ≥ BN+1(k, j) +Mκ, (43)

BN+1(k, j) ≥ BN+1(i, k) +M(1− κ), (44)

BN+1(i, k) ≥ BN+1(k, j) +Mκ, (45)

κ ≥ 0, (46)

−κ ≥ −1, (47)

for some large positive value M . The resulting observation like-

lihood BN+1 is a stochastic and ultrametric matrix.
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