
1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2940914, IEEE

Transactions on Knowledge and Data Engineering

1

“What Do Your Friends Think?”:
Efficient Polling Methods for Networks Using

Friendship Paradox

Buddhika Nettasinghe, Student Member, IEEE and Vikram Krishnamurthy, Fellow, IEEE

Abstract—This paper deals with randomized polling of a social network. In the case of forecasting the outcome of an election between

two candidates A and B, classical intent polling asks randomly sampled individuals: who will you vote for? Expectation polling asks:

who do you think will win? In this paper, we propose a novel neighborhood expectation polling (NEP) strategy that asks randomly

sampled individuals: what is your estimate of the fraction of votes for A? Therefore, in NEP, sampled individuals will naturally look at

their neighbors (defined by the underlying social network graph) when answering this question. Hence, the mean squared error (MSE)

of NEP methods rely on selecting the optimal set of samples from the network. To this end, we propose three NEP algorithms for the

following cases: (i) the social network graph is not known but, random walks (sequential exploration) can be performed on the graph (ii)

the social network graph is unknown. For both cases, algorithms based on a graph theoretic consequence called friendship paradox

are proposed. Theoretical results on the dependence of the MSE of the algorithms on the properties of the network are established.

Numerical results on real and synthetic data sets are provided to illustrate the performance of the algorithms.

Index Terms—opinion polling, election forecasting, expectation polling, friendship paradox, variance reduction, stochastic ordering,

degree distribution, graph sampling, social networks, social sampling
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1 INTRODUCTION

THis paper deals with randomized polling of a social
network with a possibly unknown structure. In the

case of forecasting the outcome of an election between two
candidates A and B, classical intent polling asks uniformly
sampled individuals: who will you vote for? Expectation
polling asks: who do you think will win? In this paper, we
propose a novel neighborhood expectation polling strategy
that asks non-uniformly sampled individuals: what is your
estimate of the fraction of votes for A? Next, we formally define
the problem, explain the solution approach and the related
work that motivates it.

Consider a social network represented by an undirected
graph G = (V,E) where, each node v ∈ V has a label
f(v) ∈ {0, 1}. A pollster can query a total of |S| (called the
sampling budget) number of individuals from this social
network.

Problem Definition. Estimate,

f̄ =
|{v ∈ V : f(v) = 1}|

|V | (1)

which is the fraction of nodes with label 1, with a sampling budget
|S| � |V | for the following cases:

• Case 1 - graph G = (V,E) is not known but, the graph can
be explored sequentially using a random walk
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• Case 2 - graph G = (V,E) is not known but, the set of
nodes V can be uniformly sampled

We propose a class of polling methods that we call neigh-
borhood expectation polling (NEP) to address the above
problem1. In NEP, a set S ⊂ V of individuals from the social
network G = (V,E) are selected and asked,

“What is your estimate of the fraction of people with label 1?”.

When trying to estimate an unknown quantity about the
world, any individual naturally looks at her neighbors.
Therefore, each sampled individual s ∈ S would provide
the fraction of their neighbors N (s), with label 1. In other
words, the response of the individual s ∈ S for the NEP
query would be,

q(s) =
|{u ∈ N (s) : f(u) = 1}|

|N (s)| . (2)

Then, the average of all the responses
∑

s∈S
q(s)

|S| is used as

the NEP estimate of the fraction f̄ .

1.1 Context

Why call it NEP? NEP takes its name from the fact
that, the response q(s) of each sampled individual s ∈ S
is the expected label value among his/her neighbors i.e.
q(s) = E{f(U)} where, U is a random neighbor of the
sampled individual s ∈ S.

1Applications of this problem include forecasting the outcome of an
upcoming election [1], estimating the fraction of individuals infected
with a disease [2], estimating the number of individuals interested in
buying a certain product (a market research). More specific real world
examples for case 1 and case 2 are discussed in Sec. 3.1 and Sec. 3.2
respectively.
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(a) Network G1: labels are highly cor-
related with the degrees of nodes

(b) Network G2: nodes with the
same label are clustered (depicting Ho-
mophily)

(c) Network G3: a large regular graph
with uniformly at random assigned la-
bels

Fig. 1: Consider the case of uniformly sampling nodes and obtaining responses q(s) of sampled nodes s ∈ S about the
fraction of red (i.e. label 1) nodes in the network. In graph G1 of Fig. 1a, most nodes have their only neighbor to be of
color red even though most of the nodes in the network are of color blue. Hence, NEP with uniformly sampled nodes
would result in a highly biased estimate in this case. In graph G2 of Fig. 1b, approximately half the nodes have only a
red neighbor and, rest of the nodes have only a blue neighbor. Hence, NEP with uniformly sampled nodes would result
in an estimate with a large variance in this case. In graph G3 of Fig. 1c, average of the NEP responses q(v) of nodes is
approximately equal to the fraction f̄ of nodes with red labels. Further, q(v) does not vary largely among nodes. Hence,
uniformly sampling nodes for NEP in this case would result in an accurate estimate. Similar examples can also be found
in [3]. This figure highlights the importance of exploiting network structure and node label distribution when sampling
nodes to be used for NEP.

Why (not) use NEP? NEP is substantially different to
classical intent polling where, each sampled individual is
asked “What is your label?”. In intent polling, the response
of each sampled individual s ∈ S is his/her label f(s).
In contrast, in NEP, the response q(s) of each sampled
individual s ∈ S is a function of his/her neighborhood
(defined by the underlying graph G) as well as the labels
of his/her neighbors. Therefore, depending on the graph G,
function f and the method of obtaining the samples S, NEP
might produce either,

I. an estimate with a larger MSE compared to intent
polling (e.g. networks in Fig. 1a and Fig. 1b shows
when uniform sampling of individuals for NEP might
not work), or,

II. an estimate with a smaller MSE compared to intent
polling (e.g. network in Fig. 1c shows when uniform
sampling of individuals for NEP might work)

These two possible outcomes highlight the importance of
using the available information about the graph G and the
function f , when selecting the set S of individuals in NEP.
This lead us to the main results of this paper where we com-
bine NEP with friendship paradox (reviewed in Sec. 2) based
sampling methods to obtain statistically efficient estimates.

Remark 1. The assumption that the graph is not fully
known (case 1 and case 2 in problem definition) is applicable
to most contexts that deal with large scale real world net-
works (including online social networks such as Facebook).
This is mostly due to the fact that structures of social net-
works are not made available publicly by online social net-
work network administrators and accurately estimating the
network structure would incur costs (computation, memory,
querying cost, etc. ) that are not feasible in the context of
polling. In contrast, our methods do not rely on estimating
the network structure and instead, rely on friendship paradox
based sampling method.

Remark 2. If the graph G = (V,E) is fully known, a

greedy (deterministic) optimization method (similar to the
one in [4]) can be used to solve the NP hard problem of
finding the set S ⊂ V of |S| individuals whose collective
neighborhood is largest, with a (1 − 1/e) approximation
guarantee. However, the largest collective neighborhood
does not ensure that the set S of individuals would provide
an accurate NEP estimate of the fraction f̄ defined in (1) e.g.
if the sampling budget |S| = 1, the node with the largest
collective neighborhood in the graph G2 in Fig. 1b is the red
color node with degree seven, whose NEP response (fraction
of red neighbors) is q(s) = 1, even though f̄ = 4/7. Hence,
our focus is on randomized sampling methods for NEP that
do not require the graph to be known.

1.2 Main Results and Organization

The main results of this paper are NEP algorithms for the
two cases described in the problem definition and their
analysis. The algorithms utilize properties related to the
structure of the network to find |S| number of samples.
The analysis provides simple and intuitive conditions un-
der which, the proposed algorithms will provide a better
estimate compared to intent polling. These results can be
summarized as follows.

• For case 1 and case 2, estimation algorithms are ob-
tained by combining NEP with recent statistical results
related to a phenomenon calledfriendship paradox [5].
Analytical results characterizing the dependence of
bias, variance and MSE of estimates on the properties
of the graph G, labels f(v) of individuals v ∈ V are
obtained. These results help to identify conditions on
the graph and the labels for which, friendship paradox
based NEP produces a better estimate compared to
intent polling and naive NEP with uniformly sampled
individuals.

• Empirical and simulation results on five real world
social network datasets and synthetic datasets are pro-

Authorized licensed use limited to: Cornell University Library. Downloaded on June 02,2020 at 08:46:20 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2940914, IEEE

Transactions on Knowledge and Data Engineering

3

vided, illustrating the performance of the proposed
algorithms compared to classical methods. These em-
pirical and simulation results yield useful insights that
complement the analytical results.

Organization: Sec. 2 presents a review of the key results
related to friendship paradox. Sec. 3 presents the two NEP
algorithms based on the friendship paradox for case 1 and
case 2, followed by their theoretical analysis in Sec. 4.
Sec. 5 evaluates the proposed algorithms on empirical and
synthetic datasets to illustrate and compare their perfor-
mances. Finally, Sec. 6 provides a discussion about the two
algorithms, their theoretical and experimental evaluations
and how they relate to each other.

Notation: Table 1 summarizes the parameters and variables
used frequently throughout the paper.

1.3 Related work

As described above, in the classical intent polling2, a set S
of nodes is obtained by uniform sampling with replacement
and then, the average of their labels

I |S| =

∑

u∈S f(u)

|S| , (3)

is used as the estimate (called intent polling estimate hence-
forth) of the fraction f̄ defined in (1). The main limitation
of intent polling is that the sample size needed to achieve a
ε- additive error is O( 1

ε2
) [3]. Our work is motivated by two

recently proposed methods, namely “expectation polling”
[6] and “social sampling” [3], that attempt to overcome this
limitation in intent polling.

Firstly, in expectation polling [6], each sampled individ-
ual provides an estimate of the label held by the majority
of the individuals in the network (i.e. sampled individu-
als answer the question “Who do you think will win the
election?”). Then, each sampled individual will look at her
neighbors and provide the value held by the majority of
them. This method is more efficient (in terms of sample size)
compared to the intent polling method since each sampled
individual now provides the putative response of a neigh-
borhood3,4. Secondly, in social sampling [3], the response of
each sampled individual is a function of the labels, degrees
and the sampling probabilities of her neighbors. [3] provides
several unbiased estimators for the fraction f̄ using this
method and, establishes bounds for their variances. The
main limitation of social sampling method (compared to
NEP) is that it requires the sampled individuals to know
a significant amount of information about the underlying
network. Therefore, a practical implementation of social
sampling might not be feasible in settings with limited

2This method is called intent polling because, in the case of predict-
ing the outcome of an election, this is equivalent to asking the voting
intention of sampled individuals i.e. asking “Who are you going to vote
for in the upcoming election?”) [6].

3Intent polling and expectation polling have been considered in-
tensively in literature, mostly in the context of forecasting elections
and, it is generally accepted that expectation polling is more efficient
compared to intent polling [7], [8], [9], [10], [11].

4 [12], [13] discuss how expectation polling can give rise to misinfor-
mation propagation in social learning and, propose Bayesian filtering
methods to eliminate the misinformation propagation.

TABLE 1: Summary of Notation

Network Parameters

G = (V,E) , Undirected graph with set of nodes V and set of
edges E

A , Symmetric adjacency matrix of the graph G
where

A(u, v) =

{

1, if (u, v) ∈ E

0, otherwise

n , Number of nodes i.e. n = |V |
M , Number of friends i.e. M = 2|E|

N (v) , The set of neighbors of a node v ∈ V as defined
by the graph G

d(v) , Degree of node v ∈ V i.e. d(v) = |N (v)|
f(v) , Binary label of node v ∈ V

f̄ , Fraction of nodes with label 1 i.e.

f̄ =
|{v ∈ V : f(v) = 1}|

|V |

q(v) , NEP response of node v ∈ V i.e.

q(v) =
|{u ∈ N (v) : f(u) = 1}|

|N (v)|

D , Diagonal matrix with D(v, v) = d(v)

A , Normalized adjacency matrix A = D− 1

2 AD− 1

2

Random Variables, Distributions and Related Parameters

X , Uniformly sampled node from set of nodes V

Y , Random friend: uniform sampled end of a uni-
formly sampled edge from E

Z , Random friend of a random node
P (k) , Degree distribution which gives the probability

that a random node X has degree k

q(k) , Neighbor degree distribution that gives the
probability that a random friend Y has degree k

e(k, k′) , Joint degree distribution that gives the probabil-
ity that a random edge (U, Y ) will have nodes
with degrees d(U) = k, d(Y ) = k′

σk , Standard deviation of the degree d(X) of a
random node X i.e. standard deviation of the
degree distribution

σf , Standard deviation of the label f(X) of a ran-
dom node X

rkk , Neighbor degree correlation coefficient defined
in (28)

ρkf , Degree-label correlation coefficient defined
in (29)

Polling Estimates and Related Parameters

S , Set of the individuals queried by the pollster
|S| , Sampling budget (number of individuals

queried by the pollster)
N , Length of Random Walk (for Algorithm 1)

I|S| , Intent polling estimate defined in (3)

T
|S|
UN

, Naive NEP estimate with uniformly sampled
nodes defined in (7)

T
|S|
RW

, NEP estimate obtained via proposed Algo-
rithm 1

T
|S|
FN

, NEP estimate obtained via proposed Algo-
rithm 2
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information about a very large graph. Hence, NEP can be
thought of a as a method which asks a question that seeks
a finer resolution compared to expectation polling and yet,
simpler and intuitive compared to social sampling.

The key idea utilized in our proposed NEP estima-
tors for case 1 and case 2 (stated in problem definition)
is the friendship paradox (detailed in Sec. 2), which is
a form of network sampling bias observed in undirected
graphs. Friendship paradox has recently gained attention in
several applications related to networks under the broad
theme “how network biases can be used effectively for
estimation problems?”. For example, [14], [15] show how
friendship paradox can be utilized for accurate estimation
of a heavy tailed degree distribution, [16], [17] show how
friendship paradox can be used for quickly detecting a
disease outbreak. Our results for the case 1 and case 2 also
fall under this broad theme. Apart from the applications
in estimation problems, friendship paradox has been ex-
plored also in the contexts of perception biases in social
networks [18], [19], [20], information diffusion and opinion
formation [21], [22], [23], [24], influence maximization and
stochastic seeding [25], [26], [27], node properties other than
the degrees [28], [29], [30] and directed social networks [18],
[28], [31].

2 WHAT IS FRIENDSHIP PARADOX?

“Friendship paradox” is a graph theoretic consequence first
presented in [5] by Scott L. Feld in 1991. The friendship
paradox states, “on average, the number of friends of a random
friend is always greater than the number of friends of a random
individual”. Formally:

Theorem 1. (Friendship Paradox [5]) Consider an undirected
graphs G = (V,E). Let X be a node chosen uniformly from V
and, Y be a uniformly chosen node from a uniformly chosen edge
e ∈ E. Then,

E{d(Y )} ≥ E{d(X)}, (4)

where, d(X) and d(Y ) denote the degrees of X and Y , respec-
tively.

In Theorem 1, the random variable Y is called a ran-
dom friend (or a random neighbor) since it is obtained by
sampling a pair of friends (i.e. an edge from the graph)
uniformly and then choosing one of them by an unbiased
coin flip. The intuition behind Theorem 1 is as follows.
Individuals with large numbers of friends appear as the
friends of a large number of individuals. Hence, such popu-
lar individuals can contribute to an increase in the average
number of friends of friends. On the other hand, individuals
with smaller numbers of friends appear as friends of a
smaller number of individuals. Hence, they cannot cause
a significant change in the average number of friends of
friends. Further, [32] shows that the original version of
the friendship paradox (Theorem 1) is a consequence of
the monotone likelihood ratio ordering between random
variables d(Y ) and d(X).

Refinements of Friendship Paradox. Recall that friendship
paradox, in its original version given in Theorem 1, is a
comparison between the degrees of a random individual
X and a random friend Y (obtained by sampling an edge

uniformly and then choosing one end of it by an unbiased
coin flip). However, a more intuitive comparison would be
the comparison of degree d(X) of a random individual X
and the degree d(Z) of a random friend Z of a random in-
dividual. [32] develops the following important refinement
of the friendship paradox which achieves this.

Theorem 2. [32] Let G = (V,E) be an undirected graph, X be
a node chosen uniformly from V and, Z be a uniformly chosen
neighbor of a uniformly chosen node from V . Then,

d(Z) ≥fosd d(X) (5)

where, ≥fosd denotes the first order stochastic dominance5.

An immediate consequence of Theorem 2 is,

E{d(Z)} ≥ E{d(X)}, (6)

which says that a random neighbor of a random individual
has more friends than a random individual, on average
(from the fact that first order stochastic dominance implies
larger mean).

With the above background, we present the NEP algo-
rithms that are based on Theorem 1 and Theorem 2.

3 NEP ALGORITHMS BASED ON FRIENDSHIP

PARADOX

In this section, we consider randomized methods for select-
ing individuals for NEP based on the concept of friendship
paradox explained in Sec. 2.

For notational reference, we first describe a naive NEP
method that does not exploit the friendship paradox.

Naive NEP Algorithm:

Step 1: Obtain a set S of uniformly sampled nodes from
V and the NEP response q(s) (defined in (2)) from
each s ∈ S.

Step 2: Compute the naive NEP estimate of f̄ in (1) as,

T
|S|
UN =

∑

s∈S q(s)

|S| (7)

Note from the step 1 of the naive NEP method that

the naive NEP estimate T
|S|
UN of f̄ (fraction of nodes with

label 1) is based on the NEP responses of uniformly sampled
nodes i.e. answers of uniformly sampled individuals to
the question “What is your estimate of the fraction of people
with label 1?” . Hence, the naive NEP algorithm exploits
one’s knowledge about her neighbors but does not exploit
friendship paradox based sampling. Our main contribution
below is to develop NEP algorithms that exploit friendship
paradox based sampling (Sec. 3.1 and Sec. 3.2) and show
that they are more accurate compared to the naive NEP
estimate (7) in terms of mean-squared error under various
network structures.

5A random variable X (with a cumulative distribution function
FX ) first order stochastically dominates a discrete random variable Y
(with a cumulative distribution function FY ), denoted X ≥fosd Y if,
FX(n) ≤ FY (n), for all n.
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3.1 Case 1 - Sampling Friends using Random Walks

This subsection considers the case where the graph
G = (V,E) is not known initially, but sequential exploration
of the graph is possible using multiple random walks (case 1
of problem definition) over the nodes of the graph.

A motivating example for case 1 is a massive online social
network where the fraction of user profiles with a certain
characteristic needs to be estimated (e.g. profiles with more
than ten posts about a product). Web-crawling (using ran-
dom walks) approaches are widely used to obtain samples
from such massive online social networks without requiring
the global knowledge of the full network graph [33], [34],
[35], [36], [37].

Algorithm 1: NEP with Random Walk Based Sampling

Input: |S| number of samples {v1, v2, . . . , v|S|} ⊂ V .

Output: T
|S|
RW which is the estimate of the fraction f̄ of

nodes with label 1.

1) Initialize |S| independent random walks on the social
network starting from v1, v2, . . . , v|S|.

2) Run each random walk for a N steps. Then collect
sample S = {s1, . . . , s|S|} where, si ∈ V is collected
from ith random walk.

3) Query each s ∈ S to obtain NEP response q(s)
(defined in (2)) and, compute the estimate

T
|S|
RW =

∑

s∈S q(s)

|S| .

We propose Algorithm 1 for estimating the fraction f̄
in case 1. The intuition behind Algorithm 1 stems from the
fact that the stationary distribution of a random walk on
an undirected graph (which is connected and non-bipartite)
is the uniform distribution over the set of neighbors [38].
Therefore, Algorithm 1 obtains a set S of |S| neighbors inde-
pendently from the graph G = (V,E) for sufficiently large
N (i.e. one sample from each of the |S| independent random
walks) in the step 2. Then, the response q(s) of each sampled
individual s ∈ S for the NEP query is used to compute the

estimate T
|S|
RW in step 3. According to the friendship paradox

(Theorem 1), NEP with random neighbors is equivalent to
using more node labels (than NEP with random nodes) due
to the fact that random neighbors have more neighbors
than random nodes on average. Hence, it is intuitive that
the variance of this method should be smaller compared to
the naive NEP (with uniformly sampled nodes) and intent
polling method. In Sec. 4, we verify this claim theoretically
and, explore the properties of the underlying network for

the estimate T
|S|
RW to have a smaller MSE compared to the

intent polling method.

3.2 Case 2 - Sampling a Random Friend of a Random
Individual

In case 1 (Sec. 3.1), we assumed that it is possible to crawl
the unknown graph using random walks. Instead, in case 2,
we assume that a set of uniform samples S = {s1, . . . , s|S|}
from the set of nodes V can be obtained and, each sampled

individual si ∈ S has the ability to answer the question
”What is your (random) friend’s estimate of the fraction of
individuals with label 1?”.

A motivating example for case 2 is the situation where ran-
dom individuals are requested to answer survey questions
for an incentive. In such cases, the pollster usually does not
have any information about the structural connectivity of
the queried individuals and, will only be able to obtain their
answer for a question.

For this case, we propose Algorithm 2 to obtain an
estimate of the fraction f̄ of individuals with label 1.

Algorithm 2: NEP with Random Friend Sampling

Input: |S| number of uniform samples
S = {s1, s2, . . . , s|S|} ⊂ V .

Output: T
|S|
FN which is the estimate of the fraction f̄ of

nodes with label 1.

1) Ask each si ∈ S to provide q(ui) (defined in (2)) for
some randomly chosen neighbor ui ∈ N (si).

2) Compute the estimate,

T
|S|
FN =

∑|S|
i=1 q(ui)

|S| .

In Algorithm 2, each uniformly sampled individ-
ual si ∈ S answers the question “What is your (random)
friend’s estimate of the fraction of individuals with label 1?” by
providing q(ui) for a randomly chosen neighbor ui ∈ N (si).
The reasoning behind this method stems from Theorem 2
which states that, a random friend of a randomly chosen
individual has more friends than a randomly chosen indi-
vidual on average6. Therefore, this method should result in
a smaller variance compared to naive NEP (7) and intent
polling (3).

Remark 3. One can think of Algorithm 2 as a special
case of Algorithm 1 with the random walk length set to
N = 1. By the same argument, the naive NEP algorithm
then correspond to a random walk with length N = 0
for the purpose of comparing the three NEP algorithms.
The length of the random walk is used in Sec. 6 to discuss
how friendship paradox based NEP methods achieve a bias-
variance trade-off. We refer to [39] which also explores the
friendship paradox using random walk length.

4 STATISTICAL ANALYSIS OF THE ESTIMATES OB-

TAINED VIA ALGORITHM 1 AND ALGORITHM 2

Algorithm 1 and Algorithm 2 presented in Sec. 3 query
random friends (denoted by Y in Theorem 1) and random
friends of random nodes (denoted by Z in Theorem 2) re-
spectively, exploiting the friendship paradox. In this context,
the aim of this section is to analyze the bias, variance and the

6This does not follow from the original version of friendship
paradox (Theorem 1) since the random friend is not a uniformly chosen
neighbor from the set of all 2|E| neighbors. Instead, the response is
obtained from a random neighbor of a uniformly sampled node.
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mean-squared error (MSE)7 of the estimates obtained using
these proposed algorithms to show that they outperform
alternative methods (intent polling and naive NEP without
friendship paradox). More specifically,

1) Theorem 3 motivates the use of friendship paradox
based NEP algorithms (compared to the naive NEP
with uniformly sampled nodes) by considering the
case where the label of each node is assigned by an
independent and identically distributed coin toss.

2) Theorem 4 relates bias and variance of the estimate

T
|S|
RW obtained using Algorithm 1 to network properties

such as degree label correlation and absence of bottle-
necks. Then, Corollary 5 gives sufficient conditions on
the sampling budget |S| for which the Algorithm 1 has
a smaller MSE compared to intent polling.

3) Theorem 6 characterizes the bias and variance of the
naive NEP (with uniformly sampled nodes and hence,
not exploiting friendship paradox) and Corollary 7
compares the worst case performance of friendship
paradox based NEP (Algorithm 1) with naive NEP to
highlight how friendship paradox results in a reduced
variance.

4) Theorem 8 characterizes the bias and variance of the

estimate T
|S|
FN obtained using Algorithm 2 and relates

them to properties of the underlying network.

4.1 Independent and Identically Distributed Labels

Consider graph G = (V,E) where each node v ∈ V has
a binary label f(v) ∈ {0, 1} that is a Bernoulli random
variable which is independent of and identically distributed
to other labels. The following result shows how friendship
paradox based sampling (Algorithm 1 and Algorithm 2)
results in reduced variance NEP estimates.

Theorem 3. Let the set of labels {f(v) : v ∈ V } be independent
and identically distributed (iid) Bernoulli random variables. Then,

MSE{T |S|
FN} ≤ MSE{T |S|

UN} (9)

MSE{T |S|
RW } ≤ MSE{T |S|

UN} (10)

where, MSE denotes mean square error defined in (8),

T
|S|
UN is the naive NEP estimate (7),

T
|S|
RW is the estimate obtained using Algorithm 1,

T
|S|
FN is the estimate obtained using Algorithm 2.

Proof. By definition,

E{T |S|
RW } = E{q(Y )} = E

{

∑

u∈N (Y ) f(u)

d(Y )

}

E{T |S|
FN} = E{q(Z)} = E

{

∑

u∈N (Z) f(u)

d(Z)

}

E{T |S|
UN} = E{q(X)} = E

{

∑

u∈N (X) f(u)

d(X)

}

.

7The mean-squared error (MSE) of estimate T of a parameter f̄ is

MSE{T} = E{(T − f̄)2} = Bias{T}2 +Var{T}. (8)

Consider E{T |S|
RW }.

E{T |S|
RW } = E

{

∑

u∈N (Y ) f(u)

d(Y )

}

= E

{

E

{
∑k

i=1 Li

k

∣

∣

∣

∣

d(Y ) = k

}}

where, Li, i = 1, . . . , k are the iid labels of the neighbors
of Y . Since the labels Li are iid, the inner expectation
becomes E{f(X)}. Therefore,

E{T |S|
RW } = E{f(X)} = f̄ .

Following similar arguments, we also get,

E{T |S|
FN} = E{T |S|

UN} = E{f(X)} = f̄ .

Therefore, the estimates are unbiased when the labels are
iid.

Next, consider the variances of the estimate T
|S|
RW . Since

all |S| samples are independent,

Var{T |S|
RW } =

1

|S| Var
{

∑

u∈N (Y ) f(u)

d(Y )

}

By applying the law of total variance, we get,

Var{T |S|
RW } =

1

|S|

[

Var

{

E

{

∑

u∈N (Y ) f(u)

d(Y )

∣

∣

∣

∣

d(Y )

}}

+

E

{

Var

{

∑

u∈N (Y ) f(u)

d(Y )

∣

∣

∣

∣

d(Y )

}}]

=
σ2
f

|S|E
{

1

d(Y )

}

(since the labels are iid)

where, σ2
f denotes the variance of iid la-

bels i.e. σ2
f = Var{f(X)}. Following similar steps, we

obtain,

Var{T |S|
FN} =

σ2
f

|S|E
{

1

d(Z)

}

, Var{T |S|
UN} =

σ2
f

|S|E
{

1

d(X)

}

.

Then, the result follows by noting that

1

d(X)
≥fosd

1

d(Y )
,

1

d(X)
≥fosd

1

d(Z)
(11)

where, ≥fosd denotes the first order stochastic dominance
defined in Footnote 5 in Sec. 2. Eq. (11) follows immediately
from Theorem 1 and Theorem 2 (note that d(·) is strictly
positive for connected graphs).

Theorem 3 shows that friendship paradox based NEP
methods (Algorithm 1 and Algorithm 2) have smaller MSE
compared to naive NEP (7) when the node labels are iid
Bernoulli random variables. A natural question is “How do
friendship paradox based NEP methods perform when the
node labels are from an arbitrary joint distribution?”. We
consider this next.
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4.2 Arbitrarily Assigned Node Labels

In the remainder of this section, we assume that node labels
{f(v) : v ∈ V } are already assigned from an arbitrary joint
distribution or deterministically specified.

We first characterize the bias Bias{T |S|
RW } and the vari-

ance Var{T |S|
RW } of the estimate T

|S|
RW obtained via Algo-

rithm 1 as the random walk length N goes to infinity.
Define the |V | × |V | dimensional diagonal matrix D and
the normalized adjacency matrix A as,

D(v, v) = d(v), A = D− 1

2AD− 1

2 . (12)

Let ||Q|| denote the spectral norm of a matrix Q (recall that
the spectral norm is the maximum singular value).

Theorem 4. Let G = (V,E) be a connected, non-bipartite
graph. Then, as the random walk length N tends to infinity,

the bias Bias{T |S|
RW } and the variance Var{T |S|

RW } of the esti-

mate T
|S|
RW , obtained via Algorithm 1 are given by,

Bias(T
|S|
RW ) = E{f(Y )} − E{f(X)}

=
Cov{f(X), d(X)}

E{d(X)}
(13)

Var{T |S|
RW } =

1

|S|M fTD
1

2

(

A2 − 1

M
D

1

211
TD

1

2

)

D
1

2 f

≤ 1

|S|λ
2
2E{f(Y )}

(14)

where, X is a random node, Y is a random friend, M is the
total number of friends, λ2 is the second largest singular value of
the normalized adjacency matrix A (defined in (12)) and f is a
column vector with label f(v) ∈ {0, 1} of node v at vth element.

Proof. If G = (V,E) is a connected, non-bipartite graph,
then the stationary distribution of a random walk on G
samples each v ∈ V with a probability proportional to the
degree d(v) of v (page 298, [40]). Equivalently, sampling
from the stationary distribution of a random walk on a finite
connected, non-bipartite graph is equivalent to sampling
friendships (U, Y ) ∈ E uniformly. Therefore,

Bias(T
|S|
RW ) = E{T |S|

RW } − f̄ = E{q(U)} − f̄

= E{f(Y )} − E{f(X)}

=
∑

v∈V

f(v)
d(v)

∑

v∈V d(v)
−

∑

v∈V f(v)

|V |

=
E{f(X)d(X)} − E{f(X)}E{d(X)}

E{d(X)}

=
Cov{f(X), d(X)}

E{d(X)}
To obtain the variance of q(Y ), let ev denote the n × 1

dimensional unit vector with 1 at the vth element and zeros
elsewhere. Then, q(v) = eTv D

−1Af . Hence,

E{q(Y )} =
∑

v∈V

d(v)

M
eTv D

−1Af =
1

M
1
TDD−1Af

=
1

M
1
TAf =

1

M
1
TDf (15)

E{q2(Y )} =
∑

v∈V

d(v)

M
fTAD−1eve

T
v D

−1Af

=
1

M
fTAD−1Af. (16)

Therefore,

Var{q(Y )} = E{q2(Y )} − E{q(Y )}2

=
1

M
fTAD−1Af − 1

M2
fTD11

TDf

=
1

M
fTD

1

2

(

(

D− 1

2AD− 1

2

)2

−
(D

1

21√
M

)(

1
TD

1

2√
M

)

)

D
1

2 f

=
1

M
fTD

1

2

(

A2 −
(D

1

21√
M

)(

1
TD

1

2√
M

)

)

D
1

2 f,

where A denotes the normalized adjacency matrix defined

in (12). Note that D
1

2 1√
M

is the eigenvector corresponding to

the largest eigenvalue 1 of A2. Therefore, we get
∣

∣

∣

∣

1

M
fTD

1

2

(

A2 −
(D

1

21√
M

)(

1
TD

1

2√
M

)

)

D
1

2 f

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

∣

∣

D
1

2 f√
M

∣

∣

∣

∣

∣

∣

∣

∣

×
∣

∣

∣

∣

∣

∣

∣

∣

(

A2 −
(D

1

21√
M

)(

1
TD

1

2√
M

)

)

D
1

2 f√
M

∣

∣

∣

∣

∣

∣

∣

∣

(by Cauchy-Schwarz inequality)

≤
∣

∣

∣

∣

∣

∣

∣

∣

(

A2 −
(D

1

21√
M

)(

1
TD

1

2√
M

)

)
∣

∣

∣

∣

∣

∣

∣

∣

×
∣

∣

∣

∣

∣

∣

∣

∣

D
1

2 f√
M

∣

∣

∣

∣

∣

∣

∣

∣

2

(where, ||Q|| denotes operator norm of a matrix Q)

= λ2
2E{f(Y )}

and (14) follows.

Theorem 4 gives insight into the network properties that
affect the performance of the Algorithm 1. Eq. (13) states

that, the bias of the estimate T
|S|
RW is proportional to the

covariance between the degree d(X) and the label f(X) of a
random node X . Theorem 4 also shows that the variance of
the estimate T

|S|
RW is bounded above by a function of the sec-

ond largest singular value λ2 of the normalized adjacency
matrix A and the expected label value of a random friend Y .
Hence, a smaller λ2 which indicates that the network has a
good expansion8 (i.e. absence of bottlenecks) [41] will result

in a smaller variance in the estimate T
|S|
RW .

The following corollary gives a sufficient condition

for the estimate T
|S|
RW to be more statistically efficient

(i.e. smaller MSE) compared to the classical intent polling
method. Recall that the sampling budget |S| denotes the
number of nodes queried by the pollster.

Corollary 5. If the sampling budget |S| satisfies

|S| ≤
(

Var{f(X)} − λ2
2E{f(Y )}

)

E{d(X)}2
Cov{f(X)d(X)}2 , (17)

then the estimate T
|S|
RW obtained from Algorithm 1 has a smaller

MSE compared to the intent polling estimate I |S| in (3),

i.e. MSE{T |S|
RW } ≤ MSE{I |S|}.

8A network is considered to have “good expansion” if every subset
S of nodes (S ≤ 50% of the nodes) has a neighborhood that is larger
than some “expansion factor” multiplied by the number of nodes
in S. Hence, a good expansion factor indicates that that there are
no bottlenecks i.e. there is no small set of edges whose removal will
fragment the network into two large connected components [41].
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Proof. From (13) and (14) we get,

MSE{T |S|
RW } = Bias{T |S|

RW }2 +Var{T |S|
RW }

≤
(

Cov{f(X), d(X)}
E{d(X)}

)2

+
λ2
2E{f(Y )}

|S| . (18)

Also,

MSE{I |S|} = Var{I |S|} =
Var{f(X)}

|S| . (19)

Hence, the result follows from (18) and (19).

Corollary 5 indicates that a smaller degree-label corre-
lation and the absence of bottlenecks result in the estimate
T

|S|
RW outperforming intent polling (3) for a larger range of

sampling budgets |S|. This is because smaller label-degree
correlation and the absence of bottlenecks make the bias
and variance of T

|S|
RW smaller according to Theorem 4 and

therefore, makes the MSE of T
|S|
RW smaller.

Next, we characterize bias and variance of the naive
NEP estimate T

|S|
UN (defined in (7)), thereby allowing us to

compare it with friendship paradox based NEP methods
(Algorithm 1 and Algorithm 2).

Theorem 6. The bias Bias{T |S|
UN} and the variance Var{T |S|

UN}
of the naive NEP estimate T

|S|
UN (defined in (7)) are given by,

Bias(T
|S|
UN ) = E{f(Z)} − E{f(X)} (20)

Var{T |S|
UN} =

1

|S|nf
TD

1

2AD− 1

2

(

I − 11
T

n

)

D− 1

2AD
1

2 f

≤ 1

|S|
E{f(Y )}E{d(X)}

dmin

(21)

where, n is the total number of nodes, X is a random node, Y is
a random friend, Z is a random friend of a random node, A is the
normalized adjacency matrix defined in (12) and f is a column
vector with label f(v) ∈ {0, 1} of node v at vth element.

Proof. Note that,

E{q(X)} = E

{

∑

u∈N (X) f(u)

d(X)

}

= E
{

E
{

f(Z)|X
}}

= E{f(Z)},

from which, (20) follows.

Next, recall that q(v) = eTv D
−1Af . Hence,

E{q(X)} =
∑

v∈V

1

n
eTv D

−1Af =
1

n
1
TD−1Af and,

E{q2(X)} =
∑

v∈V

1

n
fTAD−1eve

T
v D

−1Af

=
1

n
fTAD−2Af

Therefore,

Var{q(X)} = E{q2(X)} − E{q(X)}2

=
1

n
fTAD−2Af − 1

n2
fTAD−1

11
TD−1Af

=
1

n
fTD

1

2

(

(

D− 1

2AD− 1

2

)

D−1
(

D− 1

2AD− 1

2

)

− 1

n
D− 1

2AD−1
11

TD−1AD− 1

2

)

D
1

2 f

=
1

n

(

fTD
1

2

)(

AD− 1

2

)

(

I − 11
T

n

)

(D− 1

2A
)(

D
1

2 f
)

By the sub-multiplicative property of matrix norms,
∣

∣

∣

∣

∣

∣

∣

∣

(

AD− 1

2

)

(

I − 11
T

n

)

(D− 1

2A
)

∣

∣

∣

∣

∣

∣

∣

∣

≤ ||A||2||D− 1

2 ||2
∣

∣

∣

∣

∣

∣

∣

∣

I − 11
T

n

∣

∣

∣

∣

∣

∣

∣

∣

2

=
1

dmin

(22)

(where, ||Q|| denotes operator norm of a matrix Q).

Therefore, by applying Cauchy-Schwarz inequality and then
using (22), we get

Var{q(X)} ≤ ||D 1

2 f ||2
n

1

dmin

= E{f(Y )}E{d(X)}
dmin

,

and (21) follows.

The following corollary is a consequence of Theorem 4
and Theorem 6. It compares the worst case performances of

friendship paradox based NEP estimate T
|S|
RW (obtained via

Algorithm 1) and naive NEP estimate T
|S|
UN (defined in (7)).

The result shows how friendship paradox based sampling
reduces variance of NEP methods.

Corollary 7. The upper bound (14) for the variance of the

estimate T
|S|
RW (from Algorithm 1) and the upper bound (21) for

the variance of the estimate T
|S|
UN (naive NEP) satisfy,

1

|S|λ
2
2E{f(Y )} ≤ 1

|S|
E{f(Y )}E{d(X)}

dmin

. (23)

Proof. The proof follows by the fact that

0 ≤ λ2
2 < 1 ≤ E{d(X)}

dmin
.

Finally, we characterize bias and variance of the esti-

mate T
|S|
FN obtained via Algorithm 2 which exploits the

second version of the friendship paradox (Theorem 2).

Theorem 8. The bias Bias{T |S|
FN} and the variance Var{T |S|

FN}
of the estimate T

|S|
FN , obtained via Algorithm 2 satisfy,

Bias{T |S|
FN}2 =

1

n
1
TD− 1

2

(

A2 − I
)

D
1

2 f

≤ (λ2
n − 1)2E{f(Y )}E{d(X)}

d̄hm

(24)

Var{T |S|
FN} =

1

|S|nf
TAD

− 1

2

hm

(

D−1 − D
− 1

2

hm11
TD

− 1

2

hm

n

)

D
− 1

2

hmAf

(25)

where, λn is the smallest singular value of the normalized adja-

cency matrix A, d̄hm = E
{

1
d(X)

}−1
is the harmonic mean degree

of the graph and Dhm is a diagonal matrix with harmonic mean
of the neighbor degrees of node v ∈ V at the vth element.
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Proof. Note that P{Z = v} = 1
n
eTv AD

−1
1 and recall that

q(v) = eTv D
−1Af . Hence,

E{q(Z)} =
∑

v∈V

P{Z = v}eTv D−1Af

=
∑

v∈V

1

n
(1TD−1Aev)(e

T
v D

−1Af)

=
1

n
1
TD−1AD−1Af (26)

Following similar steps to the above, we get,

E{q2(Z)} =
∑

v∈V

P{Z = v}fTAD−1eve
T
v D

−1Af

=
1

n
fTAD−1

(

∑

v∈V

eve
T
v AD

−1
1eTv

)

D−1Af

=
1

n
fTAD−1

hmD−1Af where, (27)

Dhm is a diagonal matrix with harmonic mean of the
neighbors of node v ∈ V at vth diagonal element

i.e. Dhm(v, v) = d(v)
(

∑

u∈N (v)
1

d(u)

)−1

. Then, (25) follows

from (26) and (27).
Next we prove (24).

Bias{T |S|
FN} = E{q(Z)} − E{f(X)}

=
1

n
1
TD−1AD−1Af − 1

T f

n

=
1
TD− 1

2

n

(

A2 − I
)

D
1

2 f

Hence,

|Bias{T |S|
FN}| ≤

∣

∣

∣

∣

∣

∣

∣

∣

1
TD− 1

2

n

(

A2 − I
)

D
1

2 f

∣

∣

∣

∣

∣

∣

∣

∣

=
1

n
(λ2

n − 1)||D 1

2 f || × ||1TD− 1

2 ||

which implies,

Bias{T |S|
FN}2 ≤ M

n
(λ2

n − 1)2
||D 1

2 f ||2
M

×
∑

v∈V
1

d(v)

n

= (λ2
n − 1)2E{f(Y )} × E{d(X)}

d̄hm

and (24) follows.

Eq. (24) shows that the bias of the estimate T
|S|
FN depends

on the smallest singular value of the normalized adjacency

matrix A. This suggests that, the bias of the estimate T
|S|
FN

based on second version of friendship paradox depends
on spectral properties of the network as opposed to the

estimate T
|S|
RW (obtained via Algorithm 1) based on the first

version of the friendship paradox (Theorem 1).

Summary of Statistical Analysis: The above results (The-
orem 3 to Theorem 8) motivate the use of NEP with
friendship paradox based sampling (Algorithm 1 and Algo-
rithm 2) compared to the intent polling and NEP without
friendship paradox (i.e. naive NEP). Theorem 3 showed
that the two friendship paradox based NEP algorithms
have smaller MSE compared to the naive NEP method
when labels are independently and identically distributed.
Then, Theorem 4 characterized the bias and variance of

the estimate T
|S|
RW obtained via Algorithm 1 and Corol-

lary 5 illustrated that it has a smaller MSE compared to
intent polling for small sampling budget |S| values. Further,
Theorem 4 also showed that the bias and variance of the
estimate T

|S|
RW are affected by the degree-label correlation

and the expansion of the network respectively. Next, The-
orem 6 characterized the bias and variance of the naive
NEP estimate T

|S|
UN and Corollary 7 illustrated how NEP

with friendship paradox outperforms naive NEP (without
friendship paradox). Finally, Theorem 8 characterized the

bias and variance of estimate T
|S|
FN produced by the Al-

gorithm 2 based on the second version of the friendship
paradox (Theorem 2). It shows that the bias of estimate

T
|S|
FN depends on the spectral properties of the network as

opposed the estimate T
|S|
RW based on the first version of the

friendship paradox.

5 EMPIRICAL AND SIMULATION RESULTS

The aim of this section is to evaluate Algorithm 1 and
Algorithm 2 on five large scale real world social networks as
well as synthetic network datasets in order to obtain insights
that complement the analytical results presented in Sec. 4.
More specifically,

1) Sec. 5.2 evaluates Algorithm 1, Algorithm 2, naive NEP
and intent polling on four real world social networks
with different degree-label correlation coefficients.

2) Sec. 5.2 evaluates Algorithm 1, Algorithm 2, naive NEP
and intent polling on networks that are obtained from
two well known models: configuration model [42] and
Erdős-Rényi (G(n, p)) model [43].

The key conclusions that can be drawn from these experi-
ments and simulations, and how they relate to the analytical
results, are then discussed in detail in Sec. 6.

Before proceeding to present the results, we define three
key variables that are widely used in social network analy-
sis.

1) Degree distribution P (k) is the probability that a ran-
domly chosen node has k neighbors.

2) Neighbor degree correlation (assortativity) coefficient
is defined as,

rkk =
1

σ2
q

∑

k,k′

kk′
(

e(k, k′)− q(k)q(k′)
)

(28)

where, e(k, k′) is the probability of nodes at the ends
of a randomly chosen edge have degrees k and k′ (joint
degree distribution of neighbors), q(k) is the probability
that a random neighbor has k neighbors (marginal
distribution of e(k, k′)) and σq is the standard deviation
with respect to q.

3) Degree-label correlation coefficient is defined as,

ρkf =
1

σkσf

∑

k

k
(

P(f(X) = 1, d(X) = k)

− P(f(X) = 1)P (k)
)

(29)

where, σk and σf are the standard deviations of the
degree of a random node and the label of a random
node respectively.
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A detailed discussion of these variables and their effects can
be found in [20].

5.1 Real World Networks

Dataset Description: The datasets used in this subsection
are openly available from the Stanford Network Analysis
Project (SNAP) [44]. Below, we describe each dataset briefly.

1) Facebook Social Circles [45]: This dataset consists of
“circles” (or “friends lists”) from Facebook that were
collected using the Facebook App. Total number of
nodes and edges in the network constructed from this
dataset are 4039 and 88234 respectively. The neighbor
degree correlation coefficient rkk (defined in (28)) of the
network is 0.06

2) Co-authorship Network [46]: This dataset contains the
scientific collaborations between authors of papers sub-
mitted to General Relativity and Quantum Cosmology
category in the Arxiv website. More specifically, an
author i co-authoring a paper with author j will be rep-
resented by an undirected edge between the two nodes
i and j in the network. Total number of nodes and edges
in the network constructed from this dataset are 5242
and 14496 respectively. The neighbor degree correlation
coefficient rkk (defined in (28)) of the network is 0.66.

3) Athlete Network [47]: This dataset contains Facebook
page networks of athletes. The nodes in the network
represent the Facebook pages of athletes and the edges
represent mutual likes among them. Total number of
nodes and edges in the network constructed from this
dataset are 13, 866 and 86, 858 respectively. The neigh-
bor degree correlation coefficient rkk (defined in (28))
of the network is −0.03.

4) Politician Network [47]: This dataset contains Facebook
page networks of politicians. The nodes in the net-
work represent the Facebook pages of politicians and
the edges represent mutual likes among them. Total
number of nodes and edges in the network constructed
from this dataset are 5908 and 41729 respectively. The
neighbor degree correlation coefficient rkk (defined in
(28)) of the network is 0.02.

5) Company Network [47]: This dataset contains Facebook
page networks of different companies. The nodes in
the network represent the Facebook pages of companies
and the edges represent mutual likes among them. Total
number of nodes and edges in the network constructed
from this dataset are 14, 113 and 52, 310 respectively.
The neighbor degree correlation coefficient rkk (defined
in (28)) of the network is 0.01.

Label swapping procedure for modifying degree-label
correlation: Given a graph G = (V,E), we first assign labels
f(v) to each node v ∈ V with a fixed probability. Then, to
set the degree-label correlation coefficient defined in (29) to
a desired value, we utilize the label swapping procedure fol-
lowed in [20]: a node v0 with a label f(v0) = 0 and a node v1
with a label f(v1) = 1 are selected randomly and their labels
are swapped if d(v0) < d(v1) (respectively, d(v0) > d(v1)) to
increase (respectively, decrease) the degree-label correlation
coefficient ρkf to the desired value (or until it no longer
changes). We consider ρkf = −0.1, 0, 0.1 in our experiments

to study the effect of negative and positive degree-label
correlations on the accuracy of the polling algorithms.

Empirical Results: The MSE and variance of the four
polling methods (Algorithm 1, Algorithm 2, intent polling
and naive NEP) were estimated using Monte-Carlo sim-
ulation over 600 independent iterations for each value of
the sampling budget |S| from 1 to approximately 1% of
the total number of nodes in the network. The results are
displayed in Fig. 2. The conclusions and insights that can be
drawn from these empirical results and how they relate to
the analytical results are discussed in Sec. 6.

5.2 Numerical Examples

Generative Models for Graphs: We use the following two
generative models to yield two different types of degree dis-
tributions: power-law degree distribution and exponential
degree distribution. In all experiments below, we consider
graphs with n = 5000 nodes.

• Configuration Model [42]: Generate k half-edges for
each of the n nodes where k ∼ ck−α (where c is a
normalizing constant) and then, connect each half-edge
to the another randomly selected half-edge avoiding
self loops. This model yields a power-law degree dis-
tribution9 p(k) = ck−α. We consider two cases: α = 2.1
and α = 2.4.

• Erdős-Rényi (G(n,p)) model [43]: Any two (distinct)
nodes are connected by an edge with probability p. This
model results in a Binomial degree distribution which
can be approximated by a Poisson distribution for large
n. We choose p = 0.01, n = 5000 to ensure that the
graph has no isolated nodes with high probability.

Newman’s edge-rewiring procedure for modifying neigh-
bor degree correlation: We utilize the edge-rewiring proce-
dure proposed in [51] to change the assortativity coefficient
rkk (28) of the graphs generated using the above models
to a desired value while preserving the degree distribution.
In the edge-rewiring procedure, two uniformly chosen links
(v1, v2), (u1, u2) ∈ E at each iteration are replaced with new
links (v1, u1), (v2, u2) if it increases (respectively, decreases)
the value of the assortativity coefficient rkk. The process is
repeated until the desired value of the assortativity coeffi-
cient rkk is achieved (or until it no longer changes).

Simulation Results: The four polling methods (Algorithm 1,
Algorithm 2, intent polling (3) and naive NEP (7)) were
evaluated on the networks obtained using the simulation
setup described above. The MSE of the polling methods
were estimated using Monte-Carlo simulation over 600
independent iterations. The resulting empirical MSE values
for the configuration model (power-law degree distribution)
are shown in Fig. 3 and Fig. 4 for power-law coefficient
values α = 2.4 and α = 3.1 respectively. Similarly, results
obtained for Erdős-Rényi graphs (Poisson degree distribu-

9The power-law degree distribution is generally accepted as a key
feature of many real world networks such as World Wide Web, Internet
and social networks [37], [43], [48], [49] with a power-law exponent
2 < α < 3 [50]. Further, it has been shown that friendship paradox
and some of its effects are amplified in the presence of such power-law
degree distributions [15], [20].
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Fig. 2: Empirical MSE and Variance of estimates T
|S|
RW (Algorithm 1), T

|S|
FN (Algorithm 2), I |S|(intent polling) and T

|S|
UN

(naive NEP) on five real world datasets (described in Sec. 5.1). The subplots show that friendship paradox based NEP
methods (Algorithm 1 and Algorithm 2)) are more statistically efficient compared to intent polling and naive NEP and,
achieves a bias-variance trade-off based on the length of the random walk.
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tion)10 are shown in Fig. 5. The conclusions and insights
that can be drawn from these simulation results and how
they relate to the analytical results are discussed in Sec. 6.

6 DISCUSSION OF EMPIRICAL AND SIMULATION

RESULTS

This section discusses the insights and conclusions that can
be drawn from the empirical and simulation results (Sec. 5)
and, how they relate to the analytical results (Sec. 4). The
main aim is to highlight how the analytical and experimen-
tal results help identify the contexts for which each polling
algorithm is suitable.

6.1 Power-law Graphs

Intent Polling vs. Friendship Paradox Based NEP: Corol-
lary 5 stated that the friendship paradox based NEP Al-
gorithm 1 outperforms the classical intent polling in terms
of the mean-squared error for small sampling budget |S|
values. The empirical results (Fig. 2) are consistent with
Corollary 5; it can be seen that the MSE of the intent
polling estimate I |S| is larger than the MSE of the estimates

T
|S|
RW , T

|S|
FN obtained via the friendship paradox based NEP

methods for smaller (less than 50) sampling budget |S|
values. Further, MSE of estimates T

|S|
RW , T

|S|
FN are smaller

for all considered sampling budget |S| values when the
degree-label correlation coefficient ρkf is zero (and hence,
the friendship paradox based polling produces an unbiased
estimate according to Theorem 4). Hence, both analyti-
cal and empirical results indicate that friendship paradox
based NEP methods outperform the classical intent polling
method when the sampling budget |S| is constrained to be
smaller or, the node labels are uncorrelated with the node
degrees (ρkf = 0).

Effect of degree-label correlation (ρkf ): Fig. 2 shows that
the friendship paradox based polling Algorithms 1 and 2
outperform both intent polling and naive NEP (7) for all
considered sampling budget |S| values when the node
labels and node degrees are uncorrelated (ρkf = 0). When
the node degree and node labels are correlated (ρkf 6= 0),
Algorithm 2 still outperforms (in terms of MSE) the both
intent polling and naive NEP methods for all considered
sampling budget |S| values whereas naive NEP method
outperforms Algorithm 1 when |S| becomes large due to
the bias variance trade-off that is discussed next.

Friendship paradox based bias variance trade-off opti-

mization: Note that the naive NEP estimate T
|S|
UN , NEP

estimate T
|S|
FN based on version 2 of friendship paradox

(Theorem 2) and NEP estimate T
|S|
RW based on version 1

of friendship paradox (Theorem 1) correspond to random

walks of length N = 0 (T
|S|
UN ), N = 1 (T

|S|
FN ) and N → ∞

(T
|S|
RW ). As such, T

|S|
UN is based on responses of individuals

sampled independent of their degree, T
|S|
RW is based on

responses of individuals sampled with probabilities pro-

portional to their degrees and T
|S|
FN achieves a trade-off

10In the case of Erdős-Rényi graphs, we only consider assortativity
coefficient rkk = 0 since it cannot be changed significantly due to the
homogeneity in the degree distribution.

by taking only a single step random walk. Therefore, it
is intuitive that the variance of the estimates should sat-
isfy Var{T |S|

RW } ≤ Var{T |S|
FN} ≤ Var{T |S|

UN}, agreeing with
Corollary 7 and the empirical variances plotted in Fig. 2.
However, in terms of the mean-squared error (which takes

the bias of the estimates into account), T
|S|
FN outperforms

both T
|S|
UN , T

|S|
RW (in terms of MSE) for all |S| values con-

sidered in the empirical results. This observation suggests
that the length of random walk (e.g. N = 1) can be used to
control the bias-variance trade-off of the friendship paradox
based NEP methods. For example, if it is apriori known
to the pollster that the labels have negligible correlation
with the degrees (i.e. ρkf ≈ 0 and hence, the bias of both

T
|S|
RW , T

|S|
FN will be negligible), she can choose to use T

|S|
RW to

minimize the variance of the estimate.

Effect of the heavy-tails: Comparing Fig. 3 with Fig. 4
shows that the MSE of Algorithm 1 and Algorithm 2 are
smaller in the network with power-law coefficient α = 2.1
compared to that with α = 2.4. The difference in MSE is
more pronounced for Algorithm 2 compared to Algorithm 1.
This suggests that friendship paradox based algorithms are
more suitable when the underlying network has a heavy
tailed degree distribution.

Effect of the Assortativity of the Network: Different joint
degree distributions e(k, k′) can yield the same neighbor
degree distribution q(k) (explained in Sec. 5). Naturally,
this marginal distribution q(k) does not capture the joint
variation of the degrees a random pair of neighbors. In
Algorithm 1 (which samples neighbors uniformly), the de-
gree distribution of the samples (i.e. queried nodes) is the
neighbor degree distribution q(k). Hence, the performance
is not affected by the assortativity coefficient rkk, which
captures the joint variation of the degrees of a random pair
of neighbors. This is seen in Fig. 3 where, each column (cor-
responding to different rkk values) has approximately same
MSE for Algorithm 1. However, the MSE of Algorithm 2
(that samples random friends Z of random nodes) increases
with assortativity rkk due to the fact that the distribution
of degree d(Z) of a random friend Z of a random node is
a function of the joint degree distribution. In order to high-
light this further, Fig. 6 illustrates the effect of the neighbor
degree correlation rkk on the distribution of d(Z) (and the
invariance of the distribution of d(Y ) to rkk). This result
indicates that, if the network is disassortative (rkk < 0),
Algorithm 2 is a more suitable choice for polling compared
to Algorithm 1.

6.2 Erdős-Rényi Graphs

The Erdős-Rényi (G(n, p)) model constructs a random graph
as follows: start with n vertices and then connect any two
vertices with probability p. Therefore, the average degree of
the resulting graph is (n−1)p. From Fig. 5, it can be seen that
both Algorithm 1 and Algorithm 2 yield a smaller MSE than
the intent polling method for the Erdős-Rényi network with
p = 0.01 and n = 5000. Also, Algorithm 1 and Algorithm 2
have approximately equal MSE. This is due to the fact that
in an Erdős-Rényi network, the neighbor degree correlation
is approximately zero and therefore, distributions of the
degree d(Y ) of a random neighbor Y and the distribution of
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Fig. 3: MSE of the estimates obtained using the four polling algorithms for a power-law graph with parameter α = 2.4 and
different values of assortativity coefficient rkk and degree-label correlation coefficient ρkf . Subplots show that, for power-
law networks, proposed polling methods have smaller MSE compared to alternative methods under general conditions.

the degree d(Z) of a random neighbor Z of a random node
are approximately equal.

7 CONCLUSION

This paper considered the problem of estimating the fraction
of nodes in a graph that has a particular attribute (repre-
sented by a binary label) and, proposed a novel class of
polling methods called Neighborhood Expectation Polling
(NEP). In NEP, each sampled individual responds with
information about the fraction of her neighbors in the social
network that has label 1. We considered the cases where
either: 1) the pollster has no knowledge about the social
graph but, has the ability to perform random walks on the
graph 2) uniformly sampled nodes from the unknown social
graph are available. Two NEP algorithms were proposed
(for case 1 and case 2) exploiting a form of network bias
called friendship paradox. Theorems 3 to 8 characterized
the bias, variance and mean-squared error of the estimate
as well as how they depend on the properties of the under-
lying network (correlation between node labels and degree,
expansion, average, minimum and maximum degree, etc.)
were derived. These results are useful for a pollster to
incorporate prior knowledge about the underlying network
to choose the best algorithm (in terms of statistical effi-
ciency) and guarantee its performance. Extensive empirical

and simulation results are provided to illustrate the perfor-
mance of the proposed methods under different network
properties. These complement the theoretical analysis and
provide insights into how the proposed algorithms would
perform under different conditions. Both theoretical and
experimental results indicate that the friendship paradox
based NEP algorithms are capable of obtaining an estimate
with a smaller mean-squared error with only a smaller
(compared to alternative methods) number of respondents.

ACKNOWLEDGMENTS

The authors thank Jon Kleinberg at Department of Com-
puter Science of Cornell University for helpful suggestions.

REFERENCES

[1] A. Tumasjan, T. O. Sprenger, P. G. Sandner, and I. M. Welpe,
“Predicting elections with twitter: What 140 characters reveal
about political sentiment.” ICWSM, vol. 10, no. 1, pp. 178–185,
2010.

[2] K. J. Gile, “Improved inference for respondent-driven sampling
data with application to HIV prevalence estimation,” Journal of the
American Statistical Association, vol. 106, no. 493, pp. 135–146, 2011.

[3] A. Dasgupta, R. Kumar, and D. Sivakumar, “Social sampling,”
in Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2012, pp. 235–243.

[4] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread
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Fig. 5: MSE of the estimates obtained using the four polling algorithms for a Erdős-Rényi (ER) graph with average degree
50 with assortativity coefficient rkk = 0 and different values of degree-label correlation coefficient ρkf . The main conclusion
is that, for ER graphs, the proposed friendship paradox based NEP method as well as the greedy deterministic sample
selection method result in better performance compared to the intent polling method.
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