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Abstract: This paper is concerned with a posteriori error bounds for linear transport equations and related
questions of contriving corresponding adaptive solution strategies in the context of Discontinuous Petrov
Galerkin schemes. After indicating our motivation for this investigation in a wider context the first major part
of the paper is devoted to the derivation and analysis of a posteriori error bounds that, under mild condi-
tions on variable convection fields, are efficient and, modulo a data-oscillation term, reliable. In particular, it
is shown that these error estimators are computed at a cost that stays uniformly proportional to the problem
size. The remaining part of the paper is then concerned with the question whether typical bulk criteria known
from adaptive strategies for elliptic problems entail a fixed error reduction rate also in the context of transport
equations. This turns out to be significantly more difficult than for elliptic problems and at this point we can
give a complete affirmative answer for a single spatial dimension. For the general multidimensional case we
provide partial results which we find of interest in their own right. An essential distinction from known con-
cepts is that global arguments enter the issue of error reduction. An important ingredient of the underlying
analysis, which is perhaps interesting in its own right, is to relate the derived error indicators to the residu-
als that naturally arise in related least squares formulations. This reveals a close interrelation between both
settings regarding error reduction in the context of adaptive refinements.

Keywords: Discontinuous Petrov Galerkin Formulation of Transport Equations, Optimal and Near-Optimal
Test Spaces, Stability
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1 Introduction

Motivation and Goals. Adaptive solution concepts form an important component in strategies for ever
advancing computational frontiers by generating discretizations whose solutions have a desired quality
(e.g. in terms of accuracy) at the expense of a possibly small problem size, viz. number of degrees of free-
dom. Guaranteeing a certain performance and certifying the solution quality poses intrinsic mathematical
challenges that have triggered numerous investigations.

It is fair to say that the most workable starting point for an adaptive method is a variational formulation of
the problem at hand that allows one to relate errors — involving the unknown solution — to residuals — involv-
ing only known quantities. A little wrinkle lies in the fact that these residuals have to be typically evaluated
in dual norms that are not straightforward to compute. A first important goal is therefore (A) to evaluate or
approximate these residual quantities in a tight fashion, see e.g. the fundamental work of Verfiirth [10]. By
tight we mean in what follows that modulo a data oscillation term the a posteriori bounds are reliable as wells
as efficient, i.e., up to moderate constant multiples provide upper as well as lower bounds for the error plus
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data oscillation. This by itself is important since it allows one to quantify the solution accuracy for a given
discretization without a priori knowledge about the solution such as norms of its derivatives. Aside from min-
imizing the size of discrete problems for a given target accuracy via adaptive strategies based on such error
bounds, the availability of certified bounds is essential in a nested iteration context which is sometimes the
only viable strategy for obtaining quantifiable results within a given computational budget.

As part of an adaptive strategy a second, often mathematically even more demanding goal (B) is to con-
trive a suitable mesh refinement strategy derived from the a posteriori residual quantities and to understand its
convergence and complexity properties. The first step in this regard is to show that each step of such a refine-
ment does decrease the current error by a fixed factor. In many works on adaptive methods this last issue is
often ignored or taken for granted when using a “plausible” refinement strategy based on a posteriori indica-
tors. However, in the context of highly convection dominated convection diffusion problems it is shown in [5]
that an error reduction can be delayed until full resolution of boundary layers is established, despite the fact
that robust efficient and reliable error estimators are used.

Once a fixed error reduction rate is established one then estimates in a second step the increase of degrees
of freedom caused by the refinement.

Background. Both steps (A) and (B) are so far best understood for problems of elliptic type and their close
relatives, see e.g. [1, 8, 9]. By this we mean, in particular, variational formulations involving isotropic func-
tion spaces that are essentially independent of problem parameters. Moreover, these variational formulations
appear more or less in a natural way and lead to problems that are well conditioned (on the continuous
infinite-dimensional level) in a sense to be made precise later. This luxury is lost abruptly already when deal-
ing with simple linear transport equations. Our particular interest in the seemingly simple model of first
order steady state linear transport equations stems from the following points. First, classical techniques
for transport equations do typically not come with tight a posteriori error bounds, let alone a rigorously
founded adaptive solution strategy. Second, linear transport equations form a core constituent of impor-
tant kinetic models whose treatment would benefit from the availability of tight a posteriori error bounds
because they would warrant a rigorous control of nested source term iterations avoiding the inversion of large
linear systems which are densely populated due to global scattering operators. Last but not least, linear trans-
port equations can be viewed as a limit case of convection dominated convection diffusion equations. Thus,
appropriate variational formulations are instructive for the singularly perturbed versions as well. We are
content here with the time-independent formulations since corresponding variational formulations would
immediately offer space-time formulations for the time dependent case where initial conditions enter as
“inflow-boundary conditions”.

The classical footing for rigorous a posteriori bounds is a variational formulation of the underlying
(infinite-dimensional) problem for which the induced operator is an isomorphism from the trial space onto
the dual of the test space. This means errors in the trial metric are equivalent to residuals in a dual test-norm
which at least in principle contains only known quantities and hence is amendable to a numerical evalua-
tion. For transport equations, the lack of any diffusion is well known to cause standard Galerkin formulations
being extremely ill-conditioned. This results in notoriously unstable schemes which precludes the availabil-
ity of obvious tight lower and upper a posteriori error bounds. Instead, suitable variational formulations
that could give rise to tight residual a posteriori bounds need to be unsymmetric, i.e., trial and test metrics
differ from each other. In this regard the Discontinuous Petrov Galerkin (DPG) concept offers a promising
framework to accommodate problem classes that are not satisfactorily treated by conventional schemes, i.e.,
they help identifying and numerically accessing suitable pairs of trial and test spaces. A concise discussion
of DPG methods involves two stages: first, in contrast to ordinary DG methods it is important to start from a
mesh dependent infinite-dimensional variational formulation which has to be shown to be uniformly inf-sup
stable with respect to the underlying meshes. The proper choice of function spaces for the bulk as well as
skeleton quantities is crucial. Second, the optimal test spaces that inherit for a given finite-dimensional trial
space the stability of the infinite-dimensional problem are not practical. A computational version requires
replacing local infinite-dimensional test-search spaces by finite-dimensional ones whose size, however,
determines the computational cost. There are to our knowledge only a few results guaranteeing uniform
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fully discrete stability. In the DPG context, this concerns on the one hand problems of elliptic type and their
close relatives in the sense that the involved functions spaces are isotropic [4, 7]. On the other hand, we have
studied in [2] an essentially different problem class, namely first order linear transport problems. There,
we have proposed a fully discrete DPG scheme for linear transport equations with variable convection fields
that is shown to be uniformly inf-sup stable with respect to hierarchies of shape regular meshes. The perhaps
most noteworthy obstruction encountered in this context is the fact that the involved function spaces are
anisotropic and depend on the convection field in an essential way. This means, for instance, that when
perturbing the convection field the test spaces not only vary with respect to the norms but even as sets. This
affects, in particular, the issue of data oscillation. Therefore, the case of variable convection fields is rather
delicate and requires a very careful organization of perturbation arguments, see [2]. The present work builds
on the findings in [2].

Objectives, Results, Layout of the Paper. The central objectives of this paper concern both goals (A) and (B)
for linear first order transport equations. In Section 2 we briefly recall the basic DPG concepts the remaining
developments will be based upon. This includes the notion of projected optimal test spaces as well as the
principal elements of error estimation with the aid of lifted residuals.

In Section 3 we detail the ingredients of the transport problem and recall from [2] a corresponding DPG
scheme. The level of technicality observed there is in our opinion unavoidable and stems from the three stages
of the DPG concept mentioned above. To ease accessibility of the material and fix notation we recall from [2]
some relevant results which the subsequent discussion will build upon.

Section 4 is devoted to goal (A) the derivation of efficient and reliable (in brief “tight”) a posteriori error
bounds. DPG schemes are often perceived as providing “natural” local error indicators ready to use for adap-
tive refinements. Of course, once the uniform well-posedness of the infinite-dimensional DPG formulation
has been established the error in the trial metric is indeed equivalent to a Riesz-lifted residual which is in
fact a sum of local terms. However, in exactly the same way as for optimal test-functions, these quantities
require solving local infinite-dimensional Galerkin problems. Again, one has to develop a practical variant
using appropriate finite-dimensional test-search spaces. To ensure a proper complexity scaling, these spaces
should again have a fixed uniformly bounded finite dimension. An improper choice of such test-search spaces
could result in gross under-estimation of the actual error. Thus, the central issue here is to rigorously ensure
that the so called “practical” versions using localized test-search spaces of fixed finite dimension do actu-
ally capture the true infinite-dimensional residual well enough to quantitatively reflect the error plus a data
oscillation term. This is done in Section 4 for variable convection fields under the same moderate regularity
conditions as used for the uniform inf-sup stability. Again, a central issue here is a very subtle perturbation
strategy that is eventually able to cope with the essential dependence of the test spaces on the convection
field and the fact that the perturbations are only meaningful on the finite-dimensional level.

Finally, in Section 5 we address goal (B). As indicated earlier, the situation differs in essential ways from
the key mechanisms that work for elliptic problems. A key obstruction, shared with least-squares methods for
other problem types, is the fact that the error indicators do not explicitly contain any power of the local mesh-
size. Hence, it is now far from obvious that a fixed local refinement actually reduces the error indicator or the
error itself. This means establishing a fixed error reduction being guaranteed by a concrete refinement strategy
becomes the main issue. In fact, we anticipate that, once error reduction is in place the analysis of the overall
complexity will then follow again along more established paths. Therefore, we concentrate in Section 5 on
error reduction. The main tools are carefully exploiting what may be called “Petrov—Galerkin orthogonality”,
and local piecewise polynomial approximations. The central focus point emerging from related attempts,
however, is the fact that the tight a posteriori error indicators are actual equivalent to an entirely mesh-
free indicator of least squares type. In fact, this latter indicator may be viewed as a certain “limit” of the
DPG-indicators resulting from different approximate Riesz-lifts. This connection is in our opinion of interest
in its own right. Using these concepts, we rigorously prove that refinement strategies based on a standard
bulk criterion imply error-reduction in a single spatial dimension. For several space dimensions we formu-
late an analogous result for collections of marked cells which in certain cases are enriched in downstream
direction. The necessity of such enrichments is, however, open.
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Since the focus of this work is on revealing the intrinsic theoretical mechanisms, we dispense with numer-
ical tests but hope that our findings offer new insight and will prove useful for eventually extending the
current state of the art. We present in Section 6 some concluding remarks addressing, in particular, the
relation between DPG and least squares schemes.

We sometimes write a < b to express that a can be bounded by a fixed constant multiple of b where the
multiplicative factor is independent of the relevant parameters a and b may depend on. Likewise a = b means
that both @ < b and b < a hold.

2 Abstract Setting and Preliminary Observations

Transport dominated problems are prominent instances where symmetric variational formulations — trial and
test space coincide - fail to provide well-conditioned problems already on the continuous level. This section
serves two purposes. First, we briefly recap some preliminaries about unsymmetric Petrov—Galerkin formula-
tions which, in particular, Discontinuous Petrov Galerkin (DPG) schemes are based upon. Second, we collect
some general basic facts that will be used later in the a posteriori error analysis.

2.1 Petrov-Galerkin Formulation with Projected Optimal Test Spaces

Let U, V be Hilbert spacesand b : U x V — R a continuous bilinear form, i.e., |b(u; v)| < Cplullullvlv, u € U,
v € V. This means that (Bu)(v) := b(u; v) induces a bounded linear operator from U to V', the normed dual
of V, endowed as usual with the norm ||z|y’ := sup,ey.jy,=1 2(v). Moreover, let us assume that B is an iso-
morphism which we express by writing B € Lis(U, V'). It is well known that this latter property is equivalent
to the validity of the inf-sup conditions

P Rty > 2 Ry 2 @
for some y > 0. One consequence of the entailed stability is the relation
CyMIf = Bwly < [u™ - wly <y 'If - Bwly, weU, (2.2)
where u®* = B~1f is the exact solution of the problem: find u € U such that
b(u;v) =f(v), veV. (2.3)

Clearly, (2.2) is a natural starting point for deriving a posteriori bounds. The tightness of such bounds depends
on the condition (number)

_ Cp
ko, v (B) = Bl s vyl B e v < "
of problem (2.3) which can equivalently be expressed as the operator equation Bu = f.
When trying to approximate u®* by some element in a finite-dimensional trial space U% c U (“8” refers

to “discrete”) the choice of the test space becomes a central issue. A by now well-established mechanism is
to choose a so called test search space V° ¢ V of dimension typically larger than dim U?, for which
b

_ . b(u;v)
y’ = inf

(2.4)
0#ueU 4y ey lullulvily

Clearly, V% = V would yield y® = y so that the size of V% can be viewed as the “invested stabilization”. Defining
then the trial-to-test map t® = t5(V%) e £(U, V%) by

(tPu,viy =bu;v) (ve VP, (2.5)
we obtain that the function t%u is the V-orthogonal projection onto V? of the optimal test function R-1Bu,
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where R™! : V! — V is the inverse Riesz map (or Riesz lift). The space
V8 = v3(U?, V) := ran t%| s

is called projected optimal test space because t®u is the V-orthogonal projection onto V% of the optimal test
function. Also note that
b(u; tbu) b(u,v)
—— =t’ully = sup :
ltPully osvews  IVIlv

so V% gives the same inf-sup constant as V9. Once (2.4) has been established for ¥4, the problem of finding
the Petrov-Galerkin solution u® = u®(f, U%, V%) € U9 of

bw’;v) = fv) (veVd) (2.6)

is for any f € V' well posed. Moreover, the solution of (2.6) yields, up to a factor Cj/y® (bounding ku,v'(B))
the best approximation to B~1f from U®. Here and below we use the superscript & to refer to a discretization
or better finite-dimensional problems.

In summary, it would of course be highly desirable to guarantee uniform stability in 4, i.e., y5 >y>0
in (2.4), while keeping the computational work proportional to the dimension dim U? of the trial sp;lces,
viz. the number of degrees of freedom. This requires a uniform bound for the test-search spaces of the form
dim V9 < dim U?. In [2] this has been shown for linear transport problems with variable convection fields
which the present work will heavily build on, see also Section 3.

2.2 Error Estimation

The accuracy of the Petrov—Galerkin solution ub € UY is, in view of (2.2), estimated from below and above
by the residual f — Bu® in V' whose evaluation would require computing the supremizer

(RW®; ), v)y = bu’;v) - f(v), veV,

since |[RWS; Hllv = If — Bu®|yr. We refer to R(u®; f) as a lifted residual. The exact computation of R(u?; f) is,
of course, not possible. However, to obtain a quantity that is at least uniformly proportional to IRWS; Hllv
one can proceed as in (2.5).

To that end, let us first suppose that f is contained in a finite-dimensional subspace IF® of V' with
dim IF® = dim U%. Now let V4 ¢ V be a closed subspace, that we call the lifted residual search space, such

that

- b(u; v) -
)75 = inf sup M > 0. 2.7)
{WNEUSXES : Bufl o, s U= B~ flullvily

In analogy to (2.5) we then define R® = RS(V9) : U x V' — V9 by
(R°(u; f), v)v = b(u;v) - f(v) = bu - B7'f;v) (v e VP). (2.8)

We call R5(_u; f) the projected lifted residual since it is the V-orthogonal projection of the exact lifted residual
(2.8) onto V4. For (u, f) € U% x F4, it holds that

Plu =B flu < IR°ws llv < I1Bllcw,vllu - B~ flu. (2.9)

Thus the quantities |R%(u; f)lly provide computable upper and lower bounds for the error |u - B fllu
incurred by an approximation u € U? to the exact solution u®* = B1f,

Regarding stable DPG formulations of the transport problem, Section 4 is devoted to identifying suitable
lifted residual search spaces V9 for which (2.7) will be shown to hold, uniformly in 6. In order to do so, just
as for f we will need that the coefficients of transport problem belong to certain finite-dimensional spaces
with dimensions proportional to dim U®. Consequently, for general data, i.e. right-hand side f as well as
convection and reaction coefficients, the lower bound in (2.9) will be valid modulo a data oscillation term
that measures the distance between this data and their best approximations from the aforementioned finite-
dimensional spaces.
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2.3 Towards Error Reduction

By replacing both V¢ and V% by their sum V% + V%, from here on we will assume that V® = V9. Then the
relation
RO(u1; ) - ROz f) = P(ur —u2), feV', up,up €,

follows directly from the definitions of R® and ¢°.
For the Petrov—Galerkin solution u® = u%(f, U%, V%) € U®, Petrov-Galerkin orthogonality

(R°®; ), t(U%))y = 0

yields for any u € U9,
IRS(w?; HIZ = IR (s HIZ - 15 (u - ud)|I3. (2.10)

Remark 2.1. In particular, u® minimizes |R%(- ; f)|y over U°.

3 A Variational Formulation of the Transport Equation with
Broken Test and Trial Spaces

For the convenience of the reader and to fix notation we briefly recall in this section the results from [2]
to ensure the validity of the stability relations (2.1) and (2.4) which all subsequent developments will be
based upon.

3.1 Transport Equation

We adhere to the setting considered in [2, Section 2] and let Q ¢ R" be a bounded polytopal domain,
b € Lo, (div; Q), and ¢ € Lo,(Q). Here we set L, (div; Q) := Wgo(div; Q), where b € Wifo(div; Q) means that
both divb and each b; belong to W&(Q). As usual the outflow/inflow boundary I'. is the closure of all those
points on 0Q for which the outward unit normal n is well defined and +n-b > 0 while 'y = 0Q \ (T_UT})
stands for the characteristic boundary. We consider the transport equation
{b'Vu+cu=f on Q,
(3.1)
u=g onl..
To explain in which sense u is to solve (3.1), the space H(b; Q) := {u € L,(Q) : b- Vu € L,(Q)}, equipped with
the norm ”“"%{(b;o) = ||u||£2 @ *lb- Vu||fZ (a)» Plays a crucial role. More precisely, we need to work with the
closed subspaces Hy r, (b; Q) obtained by taking the closure of smooth functions vanishing on I'., respec-
tively, under the norm | - |p;0)- In fact, for g = 0 a first canonical variational formulation of (3.1) is to find
u € Ho,r_(b; Q) such that
I(b -Vu+cu)vdx = vadx
Q Q
holds for all smooth test functions v € C*®(Q). Alternatively, after integration by parts one looks for u € L,(Q)
such that
J(cv —divvb)udx = va - ngb -ndx
Q Q I
holds for all v € Ho,r, (b; Q), where now the inflow boundary condition enters as a natural boundary condi-
tion. The second summand on the right-hand side vanishes of course for g = 0 which is the case we will focus
on for convenience in what follows, see the discussion in [2].
Accordingly, these formulations induce bounded operators

B:uwb-Vu+cue L(Hor (b;Q), L2(Q)),
B*: v cv—divvb e L(Hor, (b; Q), L2(Q)).
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We stress that B* is the formal adjoint of B. In fact, the “true” adjoint B’ would have to be considered as an
element of £(L,(Q), Ho,r_(b; Q)"). Moreover, B* is the “true” adjoint of the transport operator considered as
a mapping in £(L,(Q), Ho r, (b; Q)"). In view of these distinctions B and B* may in general have different
properties in terms of invertibility.

Since we do not strive for identifying the weakest possible assumptions on the problem parameters under
which both mappings are invertible, we adopt this in what follows as an assumption

B € Lis(Ho,r_(b; Q), L2(Q)), 3.2)
B* € Lis(Ho,r, (b; Q), L2(Q)), (3.3)

where L£is(U, V) denotes the space of linear isomorphisms from U onto V and refer to, e.g., [2, 6] for con-
crete conditions on the problem parameters under which these assumptions are valid. Assumption (3.2) is
essential for the stability of the subsequent DPG scheme. Finally, we note that the true adjoint of B*, in turn,
belongs to £L(L,(Q), Hor, (b; Q)') and can be viewed as an extension of B to L,(Q).

3.2 DPG Formulation of (3.1)

For a polyhedral Q let T denote an (infinite) family of partitions 7 of Q into essentially disjoint closed
n-simplices that can be created from an initial partition 7, by a repeated application of a refinement rule to
individual n-simplices which splits them into two or more subsimplices. For T, T € T, we write T < T when
T is a refinement of T. We write T < T when T < T and T # . For a n-simplex K, let

B diam(K)

" sup{diam(B) : Baballin K}

denote its shape-parameter. With ¥ denoting the set of all n-simplices in any partition T € T, we assume that
these simplices (or briefly ¥) are (is) uniformly shape regular in the sense that

Ok :

Q :=Sup gk < oo.
Ke¥

For each K € ¥, we split its boundary into characteristic and in- and outflow boundaries, i.e.,
0K = 0Ko U 0K, UOK_,

and, for T € T, denote by 07 := | Jxey 0K\ 0K, the mesh skeleton, i.e., the union of the non-characteristic
boundary portions of the elements.
Denoting by Vo the piecewise gradient operator, we consider the “broken” counterpart to H(b; Q)

Hb;T)={veLy(Q):b-Vgve L (Q)},

equipped with squared “broken” norm ||v|| %I(b"J’) = ||V||%Z(Q) +[b-Vgv| iz(Q)’ and view the quantities living on
the skeleton as elements of the space

Ho,r_(b; 07) := {wlo7 : w € Ho,r_(b; Q)},
equipped with quotient norm
1015, ;07 := Inf{lWllam;q) : 6 = wloT, w € Hor_(b; Q)}.

For T € T, a piecewise integration-by-parts of the transport equation (3.1) leads to the following “mesh-
dependent” (but otherwise “continuous” infinite-dimensional) variational formulation:

Problem 3.1. For Uy := L,(Q) x Ho,r (b; 07), Vg := H(b; T), given f € V!, find the solution
(ug, 07) = (us(f), 07(f)) € Us
that, for all v € V+, satisfies

by (us, O1;v) := J(cv -b-Vyv-vdivb)uy dx + j [vb] 07 ds = f(v).
Q oT
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Here Iafy[[‘/b]] O ds should read as the unique extension to a bounded bilinear form on Hy r (b; 07) x Vg
(cf.[2, Lemma. 3.4]) of the integral over 07 of the product of [vb] and 8, where for smooth vand x e 9K N oK',
[vb](x) := (vb|g - ng)(x) + (vb|g' - ng)(x), and [vb](x) := (vb|g - ng)(x) for x € 0Q N oK. Note the introduc-
tion of the notation (us, 6) for the exact solution of this variational problem.

In the following, we abbreviate [|B ™| ¢z, Ho.r ;00> 1(B*) ™ .2(2(Q), Hor, ds))» 1diVbIL, (), Il @)
and |c - divb|_(q) as B, IB~*I, lldivb], [cl, and |c - divb]|| respectively. The following result roughly
says that Problem 3.1 is uniformly inf-sup stable whenever the operators B, B* are isomorphisms on the
respective function space pairs.

Theorem 3.2 ([2, Theorem 3.1]). Assume thatb € Ly, (div; Q), ¢ € Lo (Q) and that conditions (3.2), (3.3) hold.
Then, defining By : Ug — V.. by (Bg(u, 0))(v) := by (u, 6;v), one has By € Lis(Ug, Vi) with

1Brllcwy,viy <2+ divb] + [lc - divb],

||B}1||L(V’T,U7) <y 1B=11? + C%,

where Cg := (1 + |B7*(1 + lc = divb]))IB~L(lc - divb| + 1).

The additional independent variable 85 introduced in the mesh-dependent variational formulation replaces
the trace ug|sr which generally is not defined for us € L,(Q). If f € L,(Q), however, or, equivalently,
ug € Ho r (b; Q), then a reversed integration by parts shows that

uy =u = u*(f) := B, 05 = u|y7.

3.3 Petrov—Galerkin

Forany T € T, let T € T be a refinement of T. We set

diam(K) .. ,
= —,d K ), 3.4
o= supmax( | max oy diam(K) 64
which later will be assumed to be sufficiently small. We also require that
inf min diam(K) > 0. (3.5)

TeTK'eT {I(E‘JI'I: 1 1r<lc1<'} diam(K")
This means that we will assume that any partition 7 € T is sufficiently fine, and, what is more important, that
Ts € T is a refinement of T such that the subgrid refinement factor (or sometimes called subgrid refinement
depth) % when going from any 7 to T is sufficiently large. In addition to the conditions from Theorem 3.2,
we assume henceforth
blx € WL (div;K), clx € WL (K) (KeTs), [bl™!eLe(Q).

Under these assumptions, we have the following result:

Theorem 3.3 ([2, Theorem 4.8]). Selecting, for some fixed degrees m,, > 1, and my,
U o= [ P (K) (Ho,r,(b;Q)n I meW(K’))l cUs,
K'eT K'eT 0Ts

V) =[] Pm,(K) c Vo,
KeTy

where m, > max(my, my) + 1, for 0 > 0 small enough it holds that

. . b(fs(uy 9; V)

inf  inf sup ——

TET 0£(u,0)€U%, opvevs, (U Olus, Vilvs,
Ts

>

only dependent on (upper bounds for) my, my, @, bl Iz, @)» 1B l.2(L().Hor (b:0))» SUPKer, IBlklwe @ivi»
and supgeg lIclkllw, -

1 In the theorem in [2] the last two expressions read as ||b|| WL (div;0) and |[c|| WL (Q) but an inspection of the proof shows that they
can be replaced by the current ones.
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Consequently, as we have seen in Section 2.1, the Petrov—Galerkin solution (ug, Bg) € Ug c Ug, of
by, (uf, 65:v) = flv) (v erant’lys ),

where
(W, 0), V)v,, = by, (u,6;v) (veV)),

is a near-best approximation to (ug,, 07,) = Br}i f € Ug, from IUfr.

Since the above stability is ensured by “some” fixed subgrid-refinement depth, the computational work
for computing the test-basis functions remains uniformly proportional to the dimension of the trial space and
in this sense scales optimally. While the actual depth is hard to quantify precisely the experiments considered
in [2] actually suggest that one or even no additional refinement suffice in these examples.

We emphasize that although the bilinear form b corresponds to the variational formulation of the trans-
port problem obtained by applying a piecewise integration by parts with respect to the “fine” partition T, and
the test search space strs consists of piecewise polynomials with respect to T too, the applied trial space con-
sists of pairs of functions that are piecewise polynomial with respect to the “coarse” partition T, or that are
restrictions of such functions to 075, respectively.

Remark 3.4. Actually, in [2] we established a slightly stronger inf-sup condition. Defining

8= T P (K) x (Ho,r_(b;g) n ] meW(K’)) € Ly(Q) x Ho,r (b;Q) = U
K'eT K'eT

any (u, 0) € lUgc Ug, is of the form (u, wly,) for some (u, w) € lfJ‘sT. In [2] it was shown that

inf inf sup M >0, (3.6)

TeT 0x(uw)elh ovews, 1 WplVivs,

which implies Theorem 3.3 because of [[(u, w)lly = (u, wls7))llu., -

Knowing (3.6), the uniform boundedness of |B,|| (Ugy, V) shows that [(u, W)l = lI(u, wlog)llus,
on IU5 In particular, this means that (u, w| ag‘s) determines (u, w) ¢ IU uniquely, so that equally well we can
speak of the Petrov—Galerkin solution (u,I, W(I) € lUg of

b, (uf, wilz;v) = fv)  (verantlys ), (3.7)
where, of course, t%(u, w) := 5 (u, wly,).

Remark 3.5. The trial spaces fjg are nested whenever the underlying partitions are nested. This plays an
important role for conceiving adaptive strategies.

Remark 3.6. Since a polynomial of degree > 3 is not uniquely determined by its values on the boundary of

a triangle, the inf-sup stability (3.6) can apparently only hold for m,, > 3 when Ty is a true refinement of 7.
In the latter formulation involving the lifted version w of the skeleton quantity 8, the scheme provides two

approximations for the solution of the transport problem, namely ug € L,(Q) and a second one wg € H(b; Q).

Remark 3.7. For a function in [[gcq Prm, (K") to be in H(b; Q), it has to be continuous at any intersection
of an in- and outflow face of any K’ € 7. To realize this condition, an obvious approach is to consider in the
definition of U4 or US the space Ho,r_(b; Q) N C(Q) N [Tgrcr Pm,, (K') instead of Ho,r (b; Q) N [T cor Pm,, (K').
Obviously with this modification, Theorem 3.3 and Remark 3.4 remain valid, and so does the whole further
exposition.

4 A Posteriori Error Estimation

The central goal in this section is to establish the validity of (2.7) for locally uniformly finite-dimensional test
search spaces of the same form as used in Theorem 3.3. We will be able to do so modulo a data oscillation
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term. The principal difficulty lies in an intrinsic sensitivity of essential problem metrics with respect to pertur-
bations in the convection field. To exploit the fact that we can identify optimal test spaces for locally constant
convection comes at the price of an elaborate perturbation analysis to be carried out in this section. In fact, it
involves two levels of perturbation, namely passing from general data b, c, f to piecewise polynomial ones,
and then to piecewise constant b on a subgrid. The passage to piecewise polynomial data is accounted for by
data oscillation terms. The piecewise polynomial structure of the data with respect to the (coarser) trial grid 7,
in turn, is needed to control the effect of the reduction to piecewise constant convection on the discrete level.

4.1 Main Results

Theorem 4.1. Assume (3.2), and let f € L,(Q). For T € T, assume that for K' € T, one has b|g € WL (K')",
clgr € WL(K'), and let b, ¢, f denote the best piecewise polynomial approximations to b, c, f of degrees mp,
me, and my with respect to T in Lo, (Q)"-, Loo(Q)-, or L»(Q)-norm, respectively. Let

oscr(b, ¢, f) = max(If @, (I ~ ), max diam(K')™ 11b ~ Bll.,x))IflL.co)

and
m, > max(my + max(me, 1, mp — 1), my + max(me, 1), mg). (4.1)

Then, with Ifjg and WIS as defined before, for fixed sufficiently small o > 0 in (3.4), and for any (u, w) € lfj‘fr for
which max(||lullz, ), IWli,) < IfllL,q) (Which, on account of (3.6), is valid for the Petrov—Galerkin solution),
it holds that

IRS vy, < 1™, u™) = (u, W)l < IRS. v, +osc(b, ¢, ), (4.2)

where Rgs € Vgs is defined by

(RS, Vv, = b, whor,iv) - [ frax (v e W) 4.3)
Q

(cf. (2.8)). The constants absorbed by the <-symbols in (4.2) depend only on the polynomial degrees and on
(upper bounds for) o, [I[bl™ I, ()» SUbgreg Ibllwa kryn> SUPKreq Il kry» and 1B~ oz, @), Hor (b:)-

Note that for given degrees m, and m,, then, for sufficiently large my, m, and my (and thus m,) and piece-
wise smooth b, ¢ and f, oscy(b, c, f) can be reduced at a better rate in terms of #J than generally can be
expected for [[(u®, u®) - (s, wd)ly.

The proof of Theorem 4.1 will be based on the following proposition.

Proposition 4.2. In the situation of Theorem 4.1, let

b, (u, w;v) := Z br(u, w;v),
KeTg
where
br(u, w;v) := J(Eu +b-vw)yv+ (w-u)(vdivbh + b - Vv) dx.
K
Then, for any (u, w, f) € Dy := [Tcr P, (K') X P, (K') x P, (K"), it holds that

N o b, (u, w;v) - [, fvdx
lw—ullz, +IIb-Vow+cw —flr,@ < sup IQ , (4.4)

- v Iviv
C Eatawh 0#veV? 75

only dependent on the polynomial degrees and on (upper bounds for) g, |||b|~}||._ ), SUPkr e bl k> and
supgreg lclwe, k).

Remark 4.3. In a strict sense the quantities R‘ss, defined in (4.3) can, for general coefficients b, c, not be
computed exactly. Under the presumption that the accuracy of quadrature can be adjusted, this issue is usu-
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ally neglected, as we did in (4.2) above. Since quadrature is in essence based on replacing the integrand by
alocal polynomial approximation, a natural way of incorporating this issue here is to work with the analogous
projected lifted residuals with respect to the perturbed data

(RS, Vv, = b, wloriv) - [frdx ve V),
Q

which can be computed exactly. Under the assumptions of Theorem 4.1 one then obtains the following
estimates:
IRS vy, < 1, u™) = (u, w)llg + oscg (b, ¢, /) < IR, v, +osca(b, ¢, . (4.5)

Sections 4.2-4.4 will be devoted to the proof of Proposition 4.2. In the course of these developments it will
be seen that the residual E4(u, w, f) is actually equivalent to ||R6¢;s lv,, and may therefore also be used as
error indicator.

Assuming for the moment the validity of Proposition 4.2, we can give the proof of Theorem 4.1 and
Remark 4.3.

Proof of Theorem 4.1. Applications of the triangle inequality show that

@™, u®™) - (u, Wy = lu - wl, + U™ = wlama),
and it holds that

U™ = Wlam) < 1B 2@, Hor b;0n I1BW = flL,)-

By using the inverse inequality on piecewise polynomials of degree my,, and [wllr, () < Ifllz,q), we infer
that
IBw - fll,) — b - Vow + éw — fliL, )| < oscg (b, ¢, f).

An application of Proposition 4.2 gives

b, (u, w;v) - fov dx

lw—ullz,q) +Ib-Vow +cw - flr,@ < sup
0TS IViv,,

We show next that the right-hand side deviates from the analogous unperturbed quantity only by osc (b, c, f).
To that end, it holds that

< If = fll, @ IVILy @)

vadx—lfvdx

Q Q

and

|by, (u, wlog,;v) — by (u, wyv)| =

Y [(c-du+®d-b)- Vw)v + (w - u)(vdiv(b - b) + (b - b) - Vv) dx
KeTg K

< oscy(u, w, NIz, @),
where we used that for K’ € T,
Ib =Bl ey < diam(K") " [b = bz, (xryn (4.6)

(cf., e.g., [3] for the argument); Vv, < diam(K)™|[v|,x for K € Ts; and diam(K)~! < diam(K')~? for
K ¢ K' by (3.5). We conclude that

b, (u, w;v) - [, fvdx b, (u, w;v) - | fvdx
sup T )= [ f ~ T, Jo f

v Vi s oscg(b, . f).
0#veVd ViV, 0#veV? ViV

From
b“Ts(uy w; V) - J‘va dx

IR, lv,, = sup < @, u®) = (u, wllg,
Ts s

omers,  Wivs,

the assertion of Theorem 4.1 follows. The above argument also shows that ||Rf}s - Rfrs vy, <oscy(b,c,f)
which confirms (4.5) as well. O
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Remark 4.4. Estimate (4.6) together with ||b — b|| Loy < diam(K")[b] wi k) implies that

|b|W(1,O(K/)" < IbIWéO(K’)"

which, as the analogous ||y k) < €l k1), Will be often used in the following.

4.2 Lifting Modified Residuals

As in [2] the verification of uniform inf-sup stability (4.4) relies on judiciously perturbing exact Riesz lifts
corresponding to certain perturbed bilinear forms. To describe this, given T € T, let we define for K € T5 U T,
the constants
by = K| J bdx, dg:= K" J divh dx
K K
and for T € T, let b € Lo, (Q)" be given by

blg :=bgx (K€ Ts).
On IUE?T X Wfrs we introduce yet another modified bilinear form

by, (u, w;v) ==Y b(u, w;v), (4.7)
KeTg

where the summands b x(u, w; v) are defined by

bx(u, w;v) := J (b-Vu+cu+ dg(w - u))vdx + J bx - ng(w - u)vds. (4.8)
K oK

Note that b and d are piecewise constant with respect to Ts, whereas b and ¢ are piecewise polynomial with
respect to T. This form is only introduced for analysis purposes since, as it turns out, it allows us to determine
local lifted residuals exactly. Their use requires then yet another layer of perturbation arguments.

Remark 4.5. The particular form of the modified bilinear form (4.7)-(4.8), in particular the integrand in the
boundary integral over 0K, is to ensure that v BK(u, w; V) isin H(BK; K.

The proof of Proposition 4.2 is based on the following steps:

(1) We will construct an R= f%crs(u, w;f) € V‘frs such that

bo.(u, w; R) - ij dx = £5(u, w, DRIy, .
Q

of course, uniformly in T € T and (u, w, f)€ D4.
(1) Starting from the simple decomposition
be, (u, w; R) - Jff? dx = b (u, w;R) - Ifﬁ dx + b, (u, w; R) - b, (u, w; R),
Q Q

we will show for the second summand that
|bs, (u, w; R) - by, (u, w; R)| < 6&5(u, w, PRI,
holds for a sufficiently small § > 0, depending on the inf-sup constant for the first summand.

As the construction of the modified bilinear form B:TS from i)g’s builds on the approximation of b by b, the
space H (B; Ts) =11 ke, H (BK; K), equipped with the corresponding prod1u1ct norm || - || H(b:T ) will play its role
as aspace “nearby” Vg, = H(b; Ts). In the next proposition, we equip H(bg; K) with an equivalent Hilbertian
norm that, as we will see, gives rise to a local Riesz lift H(bg; K)' — H(bg; K) of the residual of the modified
bilinear form that can be determined explicitly.
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Proposition 4.6 ([2, Remark 4.5]). Fordiam(K) < |13K|, and with r(s) denoting the distance froms € 0K_to oK,
along BK, the scalar product

b
04 2D ity = O O, Do + | 92| 25 n))|ris) s
oK L

gives rise to a (uniform) equivalent norm ||| - || Hiby:K) O H(bg; K).

The corresponding global versions read

€ Vagery = 2 Gk 1k g axy»

KeTy

and s0 - o, == VEkem, I, -
For the next observation it is convenient to use the shorthand notations

Pi=w-u, A:=0gw+ew—f, y:i=A-(opu+Cpu+dgp),
so that, in particular, y = ogu + Cu — f - aK(w —u). Note also that

Ex(u, W,f)z = z ”H”%z(K) + |M”12~2(K)'
KeTs

For smooth u, w, and f on K, the solution Rx = Rg(u, w; f) e H(BK; K) of the variational problem

(Ric: V) oy = Bic wiv) = [Frdx (v e Hibi ) (4.9)
K

is the (strong) solution of
-02 Rg=y onk,
bk
aBKRK — r|51<|‘1R1< =u on oK,
aBKRK =pu onok,.

This R is the exact Riesz lift of the local modified residual

v by, wlok, v) - jfv dx < H(by: K)',
K

with H (BK; K) being equipped with (-, - ) Hby:K)*

To identify next Ry exactly, let (x4, ..., X,) denote Cartesian coordinates on K with the first basis vector
being equal to lg—K For x = (x, V) € K, let x.(y) be such that (x.(y), V) € oK., see Figure 1.

K|

b = |ble;
x-(y),y) (), y)
x-(n,y) (x+(»),y)
X)) (1), y)
y x-),y) (x+(¥),y)
X

Figure 1: x, on a triangle K with two (left) or one (right) inflow boundaries. The enclosing triangle K and X_ will get their meaning
in Section 4.3.
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The solution R reads then as

X z x:(Y)

Re(x, y) = by j j y(g, ) dgdz + (|BI<|-1y(m(y), y) + lbg |2 j ¥(@.y) dq)(x — X))
x(¥) x-(y) x(y)
X @51+ y)a, ) dg
W)y

and is seen to be piecewise polynomial over K when y, u are polynomial over K.

4.3 Approximate Lifted Residuals

Next we define an approximation R  to Ry by discarding higher order terms. Whereas, for polynomial u, w,
f,b, and ¢ on K, Ry is only piecewise polynomial with respect to a partition of K into subsimplices (indicated
by the dotted lines in Figure 1) that depends on the field b, R x will always be polynomial on K.

The reason for introducing I:QK is that b* - VR can be arbitrarily large, which would not allow us to
perform Step (II) on page 12 of our proof. This is caused by the fact that the subdivision of K into the aforemen-
tioned subsimplices can have arbitrarily small angles, and thus impedes a useful application of the inverse
(or Bernstein) inequality to R.

To define R , first we construct a polyhedral set K that contains K as follows. The number of inflow faces
of K is between 1 and n - 1, where n is the spatial dimension. Let F be the inflow face whose normal makes
the smallest angle with by, and let v denote the vertex of K that does not belong to F. Finally, let Hr denote
the (n — 1)-hyperplane containing F. The “shadow” of K on Hp, i.e., F := {x € Hp : {x + tbg : t e R} nK # 0},
is an (n - 1)-dimensional polyhedron containing F. Let K denote the convex hull of v and F, cf. Figure 1 for
n = 2. Then, by construction, K has only one inflow face 0K_ := F, and K < K with equality if and only if K
has only one inflow face, namely 0K_ = F.

Forx = (x,y) € K > K,letx — x_(y) € P1(K) be the linear function with (x_(y), y) € 0K_, i.e., X_(y) agrees
with x_(y) on F. Then we have

diam(K) < diam(K), (4.10)
|7_C|Wgo(f() <1, (4.11)

where both constants depend only on (an upper bound fgr) 0K-
We define the approximate lifted local residual Rg = Rg(u, w; f) € P, (K) (cf. (4.1)) by

Ri(x, y) := bgl  p(x (¥), Y)(x - X(¥)) + (A= (€ +dp)E(V), y). (4.12)

Note that aBKfzK =u(x(y),v). 3
The following lemmas show how R relates on the one hand to the exact Riesz lift Rx and on the other
hand to the “residuals” p = w —u, A = opw + cw —f on K.

Lemma 4.7. Fordiam(K) < IBKI, it holds that
IRk — Rl < IBx1™ diam(O (11l g5, + 1A 56 i) + diam Ul k) »
with a constant depending only on (upper bounds for) ||c|| WL (K)» |b| Wi (K)ns and pg.

Proof. We write Rx — Rg as

X (¥) X z

|BK|-2((x—uy)) j y(g,y)dq - j j y(q,wdq) (4.13)
x(y) x-(y) x-(y)
+ bl (U0 (), ¥) (X = X_(¥)) = H((y), V) (x - X-(¥))) (4.14)
[F @51+ y)a, v dg

— (A= (& + dRp)(x(y), V). (4.15)

x.(y) — x(y)
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:*(y) Op (4, V) dq, and similarly for u(x_(y),y), and using that

Writing u(x.(y), y) as u(x, y) + [bx|™ |
diam(K) < |bg|, one infers that the L, (K)-norm of (4.14) is

< [bg| ™ diam(K)l|ullz, k) + [bx|™> diam(K)* 105 pllp, i)
< x| ™ diam(K) 5,y

with a constant only depending on gg.
The L, (K)-norm of (4.13) in turn is

< [bg|™% diam(K)? |y L, x)
< b |2 diam(K)?(IAllL, oy + (1€l k) + 1drDIRIL, ) + NI, k) 1 Er 1))
< [bg|™t diam(K) (Al k) + 11z, x)) + diam(K)|ul g )

with a constant depending only on (upper bounds for) [|€|r k) <lclr., &), and [div b LK) < IISIWéO(K)n <
Iblwz (kyn» where we have used that b - BK|||L.X,(K) < diam(K)|l~3|Wéo(K)n and diam(K) < |bg|.
Using that Op Mty = A—(C+ EIK)y + (bg — b) - Vi, we find that the L, (K)-norm of (4.15) is bounded by
a constant multiple of
[bi| ™" diam(K)||9y (A - (€ + diOMW, i + Bl o diam(K)|ulg k)
< [bgl ™t diam(K) (10, Al &) + Il g5,.00) + di@mUOIlr: o

only dependent on (upper bounds for) ||| wi i) Shclw ks |b| WL (K and pg.
Next, we write

x:(Y)
05, (Rx(x, ) - R(x, y)) = n(x.(¥), y) + [bg| ™! J (4, V) dq - p(x(y), y).

Its Ly (K)-norm is

< [bg| ™" diam(K) (1105, 1l ) + 1VIL.w0)
< [bk|™* diam(K) (Il g, 50 + AN, 10

only dependent on (upper bounds for) [[c|lL, &), Ibllwz x> and gk. By collecting the derived upper bounds,
the proof is completed. O

We end this subsection with another technical lemma which will play a key role to prove Step (I) on page 12.
In fact, using that A and y are piecewise polynomial on T, inverse inequalities will allow us to show that the
terms involving first order derivatives can be kept small relative to the other ones by choosing the subgrid
depth sufficiently large. Then the next lemma in conjunction with the previous Lemma 4.7 already hints at
the fact that & (u, w, f) provides a lower bound for |R|| Hb:T,) 1t then remains to switch to the correct norm
to establish Step (I), see Corollary 4.9 below.

Lemma 4.8. For diam(K) < |bgl, it holds that

E . 2 2 2
IIRKIIiI(BK;K) + dlam(K)z(IulHl(,-O + I/llfp(l-o) 2 AL, &) + ML, i) »

where the constant depends only on (upper bounds for) ||clr_. () |b| WL Qs and pg.

Proof. By diam(K) < diam(K) < |bg/, similarly as in the proof of Lemma 4.7, one infers that

IR - Az, < Iy + diam(K) (gl gy + 1Al g i)

and <
10, R = ML) < diam(K)plpp ).

with constants depending only on (upper bounds for) [cz_ (), |B|W§0(Q)n, and pg.
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By two applications of Young’s inequality, we infer that

P P _ ° 1 &
”RK”[Z‘Z(K) + ”aBKRK"%z(K) 2 (1 - ﬂ)llﬂlliz(m - ()'1 T 1)"RK - A"i([{) + §||H||%Z(K) - (2 - 1)"aBKRK - y"%z(]()-

By selecting the constant 17 € (0, 1) sufficiently close to 1, the proof is completed. O

4.4 Proof of Proposition 4.2

So far we have not used that u, w, f b, and ¢ are piecewise polynomial with respect to T, whilst qu( -,-)is
a “broken” bilinear form with respect to a sufficiently refined partition 75, and furthermore that |b| ™! € Lo, (Q).
These facts are going to be used in the following.
Setting
bk - blllL, &)
D:=sup sup —————— (<00),
KeT ozbewd, (kyr HAmMK)[blyz gy
let
g>0
be such that for o € (0, 6] and T € T, T is sufficiently fine to ensure that

. _ 1
diam(K) [||b|~*|lz., a0 max (1, Dby ) < = (K € Tg). (4.16)

2
Then for any K € T, we have
bl = bl 12 &) = bk = bl &)
> Il M} ) — D diam(K)blyz,

1 -1-1 1 -1-1 i
> B g = max( S B g diam(K) ),

where we have used (4.16).
For K € T, and k > £ € INp, we will make repeated use of the inverse inequality

| 1o < diam(K)" O - ey on Pr(K),
where the constant depends only on m, gk, and k.

Corollary 4.9. We define R and R by Rlx := Rk and Rl := R for K € Ts. Then one has for (u, w, f) € Dy,
o< (0, (f]vthat

@ IR - Rl < 0&7(u, w, f),

(ii) ”R"H(B;‘Ts) > Ex(u, w, f), provided that o € (0, oo] with oy € (0, 0] being sufficiently small.

Both constants hidden in the < and > symbols, and the upper bound for oy depend only on the quantities
mentioned in the statement of Proposition 4.2.

Proof. ForK' € Tand p € P,(K'), we have that

Y = Y Pl = Pl < diamK) IR, o). (4.17)
{KeTs:KcK'} {KeTs:KcK'}

with a constant depending on p and m. By applying this type of estimate to A and p, preceded by an applica-
tion of Lemma 4.7 whilst using [bg|~ < 2[|[b|~!|l1_(q) and [bx| < [Bllrx) < 2[bl. (), We obtain

”R - R”H(B;‘TS) < o&g(u, w, f)

By summing the result of Lemma 4.8 over K € T; and applying (4.17) with p = p and p = A, we infer that for
o small enough, IRl g, = Ex(u, w, f). -

The next proposition is almost Step (I) on page 12, except that we still have to replace ||1:3|| HB:0) by ||13||v75,
which will be done using the subsequent Lemma 4.11 (b).
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Proposition 4.10. There exist a x > 0 and a 01 € (0, 0¢], that depend only on the quantities mentioned in the
statement of Proposition 4.2, such that for o € (0, 01], and any (u, w, f) € D,

bty wi B) - [ FRax > ket w IRy,
Q

Proof. With R|k := Rx(u, w; /), its definition in (4.9) shows that

B‘Ts(u, wy ﬁ) - J-ff2 ax = Z <<RKa feK»H(BK;K)'
Q KeTg

Thanks to the equivalence of norms from Proposition 4.6, an application of Corollary 4.9((i)) shows that

¥ (R~ R Rid o | < 087, W PR,
KeTg

For o0 being sufficiently small, an application of Corollary 4.9 (ii) shows that

M 2 _ M 2 ~ M B
”lR"'H(B;er) = ”R"H(B;‘Is) 2 Ex(u, w, IR g,
by which the proof is easily completed. O

Lemma 4.11. For (u,w, f) € D+, 0 € (0, 09, it holds that

i 2R el 21 B2
@) Yger, diam()? IRkl ) < 0*IRIE & s

(1) WRNgs;m — IRV, | < 0IRI g5,
depending only on the quantities mentioned in the statement of Proposition 4.2.

Proof. (a) For K € T, we split feK = 1531(,1 + 1=2K,2 + 1:%1(,3 defined by
Rk, y) = [bx| u(x (v), )(x - X(¥)),
Ryx(%,y) i= (A= (& + dg)p)(X_(¥), ),
Rsx(x, ) := (dir — dg)u(x (y), y),

where K’ € TissuchthatK ¢ K'. Correspondingly, we split R= 1521 + 1:%2 + 15?3.
Since Ry x vanishes on 0K, an application of Poincaré’s inequality on each streamline following bx
shows that (cf. possibly [2, Proposition 4.3])

||R1,K||L2(j() < [bg|™ diam(R)||aBKRl,K||L2(j()-

From the fact that ﬁl,K is polynomial, diam(K) < diam(K), and aBKfel, K= aBKfeK, by an application of the
inverse inequality we obtain

Y. diam()? IRyl gy < Y [bx|™ diam(K)? [0y, Rxllf, ) < O*IRIG 5 ) -
KeTs KeTs '

Recalling from (4.11) that [X_|yz k) < 1, and since A - (C + d x')M is polynomial on K, we have
106, ¥) = A= (@ + dx) W) E ), Ve < 1A= (€ + dg)lla -
Now using that for 75 K' > K, A - (¢ + dg )u is polynomial on K’, an application of (4.17) shows that

Y. diam(K)? IRz kllip g, < 02, w, )2 < ORI, &

)’
KeTy

where the last inequality follows from Corollary 4.9 (ii).
Again by [X |y (k) < 1, we have IRs kg1 (k) < |B|W§O(K’)"P"H1(K): which together with (4.17) yields that

Y. diam(K)?|Rs,kl ) < ). diam () Il < 0*IRIZ 6 .
KeTs KeTs E

by Corollary 4.9 (ii), which completes the proof of (a).
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(b) From the triangle inequality, and || |bx - bl Lok < D diam(K)[b|y1 k), we infer that

|||R"H(I3;‘Ts) - "R”\Vrsl < \j Z diam(K)2|RK|?{1(K) < 0||R"H(|3;Q)
KeTy

by (a), which is (b). O

Proposition 4.10 together with Lemma 4.11 (b) complete the proof of

bo.(u, w; R) - Jffe dx = k& (u, w, IRy,
Q

for sufficiently small ¢ > 0, being Step (I) in our proof of Proposition 4.2.
Step (II) is implied by the next result when we use that [|u - w||1,q) < E7(u, w, f.
Proposition 4.12. For (u, w, f) € D+, 0 € (0, 0] sufficiently small, it holds that
|b, (u, w; R) - by, (u, w; R)| < 0llu - Wl IRllv,

Both the upper bound for o and the constant hidden in the <-symbol depend only on the quantities mentioned
in the statement of Proposition 4.2.

Proof. For K € T and sufficiently smooth u, w, and v, it holds that

br(u, w;v) = J(&u +b-vu)vdx + J b-ng(w-u)vds,
K oK

and so
br(u, w;v) - BI<(u, w;V) = — J EIK(W —u)vdx + j (b- 131<) -ng(w -u)vds.
K oK
With z := (w - u)v, and z := |K|™* szdx, recalling that dg = |K|™! fK divb dx, an application of the trace
theorem shows that

‘—J&szx+ J(B—BK)-nszs = I—J&K(z—z)dx+ J(B—BK)-nK(z—Z)ds
oK K oK

< Idiv bl i1z = ZlL, &) + 11D = Bl |2l w1 (k)

< diam(K)|zly1 x)
< diam(K)(Iw - ullL, a0 VI o) + VI, a0 1w = Ul x))-

By substituting v = R x>, summing over K € T, and applying the Cauchy-Schwarz inequality, we find that

b, (u, w; R) - b, (u, w; R)| < |lw - ulle(Q)\/ > diam(K)?|RI7; g, + "R”LZ(Q)\/ Y diam(K)?|u - Wit
KeTy KeTg

< ollu = Wi, @ IRl 7.

where we have applied (4.17) and Lemma 4.11 (a). Finally, for sufficiently small o, in the last expression
IRl Heb:7,) Can be replaced in view of Lemma 4.11 (b) by "R”V75 . O

Since we have performed Steps (I)-(II) on page 12, the proof of Proposition 4.2 is complete.

5 Effective Mark and Refinement Strategy for
an Adaptive DPG Method

The key common ingredient of an adaptive solution strategy for a PDE is a collection of local error indica-
tors associated with the current partition 7 underlying the discretization. While an individual indicator does
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not characterize the actual local error the accumulation of all indicators is equivalent to the global current
approximation error. Based on the error indicators one contrives a marking strategy which identifies a subset
M c T of marked cells to be refined in the subsequent adaptive step. The perhaps most prominent marking
strategy is based on a bulk criterion, sometimes called “Dorfler Marking” where one collects (a possibly small
number of) cells for which the accumulated combined indicators capture at least a given fixed portion of
the global a posteriori error bound. While this is usually perceived as a heuristically very plausible strategy,
a rigorous convergence and complexity analysis is actually quite intricate. It typically comes in two stages,
namely establishing first that such a strategy reduces the current error by a fixed ratio, and second to esti-
mate the number of new degrees of freedom incurred by the refinement step. This paradigm has been studied
extensively and is by now well understood for problems of elliptic type where the dominating effect is diffu-
sion. The first step of error reduction hinges on (near-)Galerkin orthogonality and is greatly helped by the fact
that the common residual based error indicators contain as an explicit factor a power of the respective cell
diameter. Thus, a refinement does decrease the indicators.

In the current scenario of transport equations the situation looks similar at the first glance. Using
(u,w) e Ifjg as primal unknowns, we have a hierarchy of nested trial spaces at hand, see Remark 3.5. Due to
the product structure of the test search spaces we have computable local error indicators associated with the
current discretization whose sum is, thanks to Theorem 4.1, modulo data oscillation uniformly equivalent
to the error in the trial metric. This suggests using a similar bulk criterion in a mark-and-refine framework to
drive adaptive refinements which is, in fact our choice in the subsequent discussion.

A closer look reveals, however, some essential distinctions which may actually nourish some doubts
about whether such strategies work in a transport problem just as well as in a diffusion problem. The error
indicators in the form of projected lifted residuals depend of course on the mesh defining the DPG scheme but
they do not contain any local mesh size factor that ensures a decay under refinement. In contrast to the usual
way of analyzing residual based a posteriori error estimators we are able to deduce a fixed error reduction rate
only when starting from a Petrov—Galerkin solution using what one may call Petrov—Galerkin orthogonality
in place of Galerkin orthogonality. Moreover, there is actually an infinite family of equivalent a posteriori
bounds obtained for any refinement of the current partition arising from different mesh-dependent Riesz
liftings. A key observation, which we heavily exploit and which may actually be of interest in its own right, is
the interrelation of these error indicators with yet another completely mesh-independent variant representing
the residual for a least squares formulation.

As indicated by these comments the crucial issue for adaptivity in the context of transport equations is
the effectivity of a given mark and refinement strategy in the sense of a guaranteed error reduction rate. The
basic structure of a subsequent complexity analysis can instead be expected to be less problem specific. We
therefore confine the subsequent discussion entirely to the issue of effectivity which we are currently only
able to fully establish in one spatial dimension n = 1.

For n > 1 we will employ a downstream enriched refinement strategy where additionally cells downwind
from the marked cells are refined as well. Our derivation of effectivity in this case will partly be based on
a conjecture.

5.1 Setting and Results

In view of the already considerable level of technicality we confine the subsequent discussion to the case
of a constant convection field b, and a piecewise constant reaction coefficient ¢ with respect to the current
partition 7 for the trial space. In an adaptive setting the latter means that necessarily c is piecewise constant
with respect to the initial partition T, i.e., we always assume that

b(x)=b, c=(cx)xer, € Po(TL). (5.1)
Given (u, w) € lfj‘s,‘T and f € F8, from (4.3) recall the definition of the projected lifted residual
RY =R% (u,w;f) = (RY)ker, € V5 Vg,
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For a collection of marked cells M ¢ 7, we set

TV = {K eT, i Ke | K’}
K'eM
for the corresponding portion of the test-subgrid with the convention Ts = T5(7). We use the notation R%S(M)
to denote (R?()KG‘J'S(M)-
Aside from a partition T and its refinement 75, we consider a refined partition § with companion refine-
ment 7. Note that U5 ¢ II“J?T, ‘7675 c YV?T ,and F) ¢ IF‘;, see Remark 3.5.
Since in the current setting oscT(b,sc, f) = 0, according to (4.2) one has for any (u, w) € U2,

IRS (u, w; Al = I, w) = @™, u™)llg, (5.2)

errors are thus uniformly equivalent to sums of computable local quantities that suggest themselves as
error indicators.

Definition 5.1. For r ¢ N and v € (0, 1), we say that a strategy of marking M c 7 is (r, v)-effective when for
T =T(T,M,r) € T, obtained from T by r refinements of each K' € M, and for n > 1, of each K' € T with
K’ n UK"EM, t=0 I(” +tbh * 0, it holds that

IRS, (3, Wi All;, < VIRS, (UG, was Dz,
where (u‘%, w‘;), s, Wf‘r) are the Petrov—Galerkin solutions of (3.7) from U2, ID";-,, respectively.

Note that only for n > 1 the refinement includes a downstream enrichment comprised of those cells that are
intersected by rays in direction b emanating from cells in M.

Remark 5.2. A repeated application, starting from some initial partition, of mark followed by the downwind
enriched refinement strategy, described in Definition 5.1, ensures that no mesh can ever become coarser in
the down-stream direction.

Of course, by (5.2), (r, v)-effectiveness translates for some v’ € (0, 1) into error decay for the solutions
™, u™) - @, whllo < VI, u™) - @s, whllu,
where now 7 is to be understood as the result of possibly several but uniformly bounded finite number of
refinements of the above type.
As indicated earlier, our goal is to prove effectiveness for a marking strategy based on a bulk-criterion. To
make this precise for some 9 € (0, 1], (u, w) € U2, we let

M =M((u,w),9) T besuchthat [RS 0 w;Alawr.o0) = IR (u, w; Hllaw:T,)- (5.3)

We are currently able to fully establish effectivity of the standard bulk chasing strategy based on refining
just cells in M given by (5.3), only in the one-dimensional case.

Theorem 5.3. We adopt the assumptions of Theorem 4.1 with the additional assumption m,, < my, + 1, and the
specifications (5.1) of b and c. Then, for n = 1 and o sufficiently small there exist r € N, v = v(9) < 1 such that
the marking strategy based on (5.3) is (r, v)-effective for T € T, f € IF@.

Under the forthcoming Conjecture 5.17, the same result holds true for n > 1 (thus with the downwind
enriched refinement strategy).

The remainder of this section is to develop the conceptual ingredients entering results of the above type.
A first natural ingredient for proving Theorem 5.3 seems to be Petrov—Galerkin orthogonality (2.10)

5 8 B.a12  _ 1pb (18 8 .2 IRV RPN R R S
"R‘j’s(u‘j"w‘j"f)"H(b;‘j‘s)_lle’S(MT’WT’f)llH(b;‘j‘s) ||tj~s(uj' Us, Wo W‘j')"H(b;‘j‘s) (5-4)

in combination with a proof of
6 (1,6 6 .6 B 6 (1,6 1,6
||trj~s(ug' — Uz, Wg — er~)"H(b;‘j's) 2 "Rfj's(ui]" W‘J';f)"H(b;‘j's)'
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A complication, however, is the presence of the “wrong” mesh-dependent lifting Rf‘r (ug, wg;f) instead
of Ri}s(ug, wg;f) in the first term on the right-hand side of (5.4). To tackle this problefn, in the next sub-
section we construct mesh-independent error indicators. (The appearance of the “wrong” norm | - || Hb:T,)
instead of || - | H;7,) does not cause any problems because ||R5¢r5(u57, wg;f)IIH(b;(TS) = IIR‘S,TS(ug, wg;f)IIH(b;qs).)

5.2 A Mesh-Independent Error Indicator and Related Least Squares Problems

In the light of the remarks at the end of the previous subsection we quantify next the interrelation of various
equivalent error indicators arising from different liftings as well as from different equivalent inner products.
A pivotal role is played by the following “domain-additive” quantity. For any subdomain Q' ¢ Q we introduce

N, Wi f) = llu = wi} o) + 10pw + cu = I} o)- (5.5)

Accordingly, for a collection O of subdomains, we define
noWwif) = Y ng Wi P = nfjqre, W wi .
Q'eO

Note that for f € L,(Q) and Q' = Q both components (u, w) of the minimizer of (5.5) over L,(Q) x H(b; Q)
agree with the minimizer w € H(b; Q) of the least squares functional

Bw _f”%Z(Q) = [[lopw + cw _f“%z(gl),

see the comment in Section 5.3.1 below.

As indicated above it will be crucial to relate these mesh-independent quantities to the following quanti-
ties each of which being useful for different purposes: Besides the projected lifted residual from (4.3), recall
first the definitions of the lifted residual

Ry, = Ry, (u, w; f) = (Rg)kes, € Vg, = H(b; Ts),

determined by (Ry,, V)H®Mb,7,) = b7, (U, WloT,5V) — IQ fvdx (v € Vo). In a similar spirit as in the analysis of
test functions we need to make use of the lifted modified residual (cf. (4.9))

Ry, = Ry,(u, w; f) = (Rk)ker, € V7,,
and the piecewise polynomial approximate lifted modified residual (cf. (4.12))
Ry, = Ry, (u, w; f) = (Re)ker, € A

In the current setting of b being a constant, and so dgx = 0 and by, = B«_TS, the lifted residual and the lifted
modified residual differ only in the sense that R is the lift of the local residual with respect to the alternative
inner product { -, - ) Hw;x) on H(b; K).
The advantage of the latter quantity is its simple explicit analytic expression from which one can actually
see the connection with (5.5) as the “limit case” with respect to increasing subgrid depth. In fact, for K' € T
we will show that 3
||R‘J'5(K’)”?{(b;g's(1(l)) - )ﬁ(,(u, w; f)

for the subgrid-depth (lr of the test-search spaces tending to co. Since f?r;s is constructed as a piecewise
polynomial approximation for Ry, we also have that

< < 1
"R(‘R(K')”?{(b;‘TS(K’)) - ”Rirs(K’)”%{(b;‘Ts(K’)) when E — 0.

As we will see, the norms || - |gw;xy and |l - llzm;x) on H(b; K) are not only equivalent but even converge to
each other when 1 — co, which will yield

< 1
"R(‘R(K')”%{(b;‘TS(K’)) - ”R(fs(K’)”?{(b;‘J’s(K’)) when E — 0.
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Finally, since R16< is the best approximation to R from Py, (K), we have that
IR ~ Rellosio < IR ~ Rl — 0 when ~ — co.
The details of this roadmap are as follows.
Proposition 5.4. Forv € H(b; K), we have
VI k)~ IV | < 101 diam(OIVIZ g -

Proof. Without loss of generality, we consider the case that % = 21.Given X ¢ K, lets (t) denote the projection
of X on 0K_ (0K, ) along the x;-direction. Applying

h x h
hz(0) - jz(x) ax = |- | [ 7w dyax| <k [ Zoiay.
00 0
we find that
¢ 2r(s) [
r(s)v(s)? — Jv(x)z dxq| < | Ilv(x)abv(x)ldxl.
S1 S1
Integrating now this estimate over x,, ..., x,, using that ds = |bn (s)|dX2 .dxp, and finally applying
Cauchy-Schwarz’ inequalities confirms the claim. O

As a consequence, lifted and modified lifted residuals become closer with increasing subgrid depth.
Corollary 5.5. For (u, w), f) € U% x % and K € T5, we have
IRk - Rl < bI™2 diam(K)? | Rl Hawsi0-

Proof. Inside this proof we drop the subscript H(b; K) from the norms and inner products. Note that for any
v € H(b; K), it holds by definition that (Rg, v) = (Rx, V).

With 5
7= Ivi —1‘(s bl~! diam(K)),
o#veHm:K) | IVII2
we find that
[(Rk, Rk - Rx)| = |IRklI* - lIRkllI?| < TRkl (5.6)
From . .
IRel? = sup (Rk, v)? C (Rg, v)? ~ (Rg, v)? |||V|||2’
osveHm:k) VI osverm:k)  IVI2 orverm:k)  MVIIZ (V2
and

(R, v)? livi?

orveHm:K)  IVII? vl

we infer that ||Rkll? - lIRkllI?| < TlIRklI>. Now from (Rg, Rk — Rk) = IRklI? - IRk]I? and (5.6), we arrive at
IRk - Rxl? < T(IIRkII? + IRkI1?) < 7(2 + T)IIRkI?, which gives the result. O

D 2
= lIRkll*,

el-1,1+1],

Corollary 5.5 is one of the ingredients to prove the mutual closeness of the various error indicators.

Proposition 5.6. For (u, w) € Ifjfr,f e FS, K’ € T, we have

Y IRg = @bw +cu—DIE, i) + 106RY = (w =W, o) < 01w, w5 (5.7)
KeTs(K")

and
|IIR¢T ey W W Dl e iy = M s w3 )] < 0 g (u, ws ),

only dependent on the involved polynomial degrees, and on (upper bounds for) |b|™1, | c| Lo (K" and Q.
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Proof. Applications of the triangle inequality show that

Y IRY - @bw + cu=NIE, k) + 106RE = (W=} 5,
KeTs(K'")

< 2"Rg“s(K’) - R‘J’S(K’)||12L1(b;g~s(1(/)) +2 Z "RK - (Opw + cu _ﬂlliz(K) + "abRK = (w- u)"i([{)- (5.8)
KeTs(K")

We estimate now the terms on the right-hand side of (5.8). For each K € T5(K"), from R k € Pm,(K) and
Rf( being the H(b, K)-orthogonal projection of R onto Pp,, (K), we have
IRS - 1:31<||H(b;1<) < IRS - Rillum;x) + IRk — feK"H(b;K)
< 2|Rk - 1:31(||H(b;K)
< 2|IRg - Rillamsx) + 2Rk — feK"H(b;K),
which yields

6 M ~ -~ i~
"R‘.TS(K’) - R‘Ts(K')”%—I(b;‘IS(K’)) < 8||R‘J'S(I(’) - RTs(K’)"I%I(b;‘IS(K’)) + 8”Rg‘s(Kr) — RTS(K’)"%I(IJ;‘TS(K’)' (59)
Using that for K € T5(K'), diam(K) < o diam(K') < 62, an application of Corollary 5.5 shows that
IR, k) = Ror, k) W yqpser. cieryy S 017 02 IR e ey iy - (5.10)
Lemma 4.7 shows that for K € T5(K'),
IRk - Rxllam:x) < diam(K)([u - wilg1 k) + [0pW + cw = fllgi i),
dependent on (upper bounds for) g, |b|™%, and ||c|| L.(k"- Squaring, summing over K ¢ K', and using inverse
inequalities yields 3
"R'J'S(K’) - RTs(K’)"é(b;‘J'S(K’)) < Uzn%(/(uy W;f)- (511)
It remains to estimate the terms in the sum in the right-hand side of (5.8). For each K € T5(K’), we have
IRk = bW + cu = N, < IbI™! diam(EK){Iw — ullL,x) + [bI™* diam(K)[0p (W — w)llL, )}
+ |b|™" diam(K)[|0p (dbw + cu — Nz, ),
by applications of Poincaré’s inequality in the streamline direction (cf. the second paragraph in the proof of
Lemma 4.11). Similarly
lobRK — (W = WllL, &) < Ib|™* diam(K)[|0p(w — w)llL, x)-

Squaring and summing over K € T4(K'), and using inverse estimates yields

Y IRk = (pw + cu =PI, oo + 19bRk — (W = wIIF, ) < 07N (u, W ), (5.12)
KeT(K")
only dependent on (upper bounds for) g, |b|~! and the involved polynomial degrees.
By combining (5.8)—(5.12), one infers (5.7).
Now using that for vectors @, b,

Y PR TV T
@12 - 1BI2| < 1@ - Bllla + Bl < 1@ - BIC21Bl + 1 - Bl < 1512 = " (z N = ")

and, when 4 is of the form (||f;|); and b= (lgilhi, furthermore
I - Bl 3 2ilfi - gill?
Ll V2 lgil2
from (5.7) we conclude that

Y IRYZ o + IOBRYIE ) = Y. Noww + cu = fIF, o) + Iw = ullf,

KcK' KcK'
2 2 2
<o Z lovw + cu = fllf, i) + lw = ullg, )
KcK'
which, in compact notation, is the second statement to be proven. O
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5.3 A Companion Mesh-Independent Least Squares Formulation of
the Transport Problem

For (u, w) € U, it holds that
g, w;0) = 10w + cullf o) + lu - wif ) 2 I0pw + cWll} o) + lu - Wi}

-1-2 2 2
2 1B ety e i, acan W) + 10 = WIL, ()

2 [|(u, WlIg, 2 1 (u, w; 0).

Therefore, for f € L,(Q) and any closed subspace of U, the problem of minimizing né( -, -3 f) over that sub-
space is well posed.

Proposition 5.7. For T € T, let

@5, W) := argmin n3 (u, w; f). (5.13)
(u,w)els

Then, for 0 small enough, it holds that
s, wh) - @5, whHiZ < oll @™, u™) - wl, whliZ,
where (uf}, wf}) € IDf, is the Petrov—Galerkin solution of (3.7)

Proof. “Galerkin orthogonality” shows that for any (u, w) € wé s

e, w; f) - ng @5, whs ) = n* (u - uf, w - wl; 0) = | (u, w) - @5, w)lg, - (5.14)

Since (uﬁ}, wfr) minimizes ||R£}S(u, w; f)||f{(b;75) over (u, w) € lfJ‘sT, two applications of Proposition 5.6 show
that for some |&1], |£>] < 0,

(1+ &g, whs ) = IR, (S, whs Dy, < IRY, @5, Wos Dy, = (1 + Eng @G, whs

which, together with (5.14), shows that for ¢ small enough,
NG, wh) - @, WO, < ong b, wis f) = ollw®™, u™) - u§, wi)l,. O

In complete analogy we can define effectivity of a mark-and-refine strategy for the least squares scheme
(5.13) based on a bulk criterion for the quantities ng, denoting the collection of correspondingly marked
cells by M = M((@S, w3), 9).

Proposition 5.8. For sufficiently small o, (1, v)-effectivity of the above refinement strategy for the DPG scheme
is equivalent to (r, v)-effectivity of the analogous strategy with the same 9 for the least squares estimator.

Proof. Using Proposition 5.7, stability of both estimators shows that for any M ¢ T,

5 55 5 5 .6
[IRS ey (@ > W5 All a7 ve)) = RS (vey (s> W All sy ovey |
55 5 .68
lrIM(urI; Wq;f) - )’IM(U(I, Wg';f)l

Now let M ¢ T be such that ||R§S(M)(ufr, wg;f')IIH(b;qs(M)) > SIIRETS(ug, wg;f)IIH(b;qs). Then elementary oper-
ations using Propositions 5.6 and 5.7 show the existence of a |¢] < +/0, and thus for o small enough, [¢]| < 1
with nM(ﬁf}, v'yf};f} >9(1 + {)ng(ﬁg, Wg;f). Now, if the latter implies that for some v = v(9) < 1, and with the
refined mesh T = T(T, M, r) from Definition 5.1, it holds that ng(ﬂg, v‘vf.r;f) < VI’[Q(ﬂg-, v‘vg;f), then we have
that for some |&1], |¢21, &3] < o,

} < Vona§, ws; .

IRS (ug, wis Al < IRS (@5, Wi Dllgqns,y = M0 (@3, W3 H(1 + &)
<vna@, Wi AL+ &) = vl wis AL+ &) (1 + JE)
— VIRS, (uB, wh; Plls) (1 + E0(1 + &)1 + &),

showing for ¢ small enough the result of Theorem 5.3.
Applying the above arguments with interchanged roles of ||Rfrs( -y 3 DllH®;7,) and nao(-, f) and choosing
o small enough, the claim of Remark 5.8 follows. O
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In view of Proposition 5.8, the proof of Theorem 5.3 is complete once we establish the following equiva-
lent result.

Theorem 5.9. Let b and c be as in Theorem 5.3, and, to control supg.y.t diam(K), let o be sufficiently small.
Then, for all 9 € (0, 1], there exist r € N, v = v(9) < 1 with the following property: whenever for T € T and
f € EY, the set of marked elements M = M((#5, w5, 9) < T is such that

Moy (@5, Whs ) = na(@l, whs f), (5.15)
then for the refinement T = T(T, M, r) according to Definition 5.1, it follows that
no(@d, wl;f) < vna(@y, whs . (5.16)

The remainder of this section is devoted to the proof of Theorem 5.9. We are going to show that for some
constants 9’ > 0 and v' < 1, thus independent of T (subject to ¢ being sufficiently small), for M as in (5.15)
there exists an M c M with

Ny (@5, W3 ) = 9y (@, whs ), (5.17)

and that for any K’ € M,

: =0 -0 ! =6 06
e o T B = 0 W= w3 f) < (B, W5 . (5.18)
u,w)eU?% :supp u, supp wc
T

In other words, for the cells in M one can correct the current approximation cell-wise to reduce the corre-
sponding error indicator. An elementary calculation shows that then these two properties imply (5.16) with
constant v := 1/(99)2(v')2 + 1 - (99')2 < 1.

5.3.1 Reduction of the Local Mesh-Independent Error Indicator

In this subsection we work towards the verification of (5.18) for those K’ € M that satisfy certain conditions.
Then in the following two subsections, for two possible scenarios we will construct subsets M ¢ M of K’
that satisfy these conditions, and for which (5.17) is satisfied. This will then prove Theorem 5.9 and hence
Theorem 5.3.

We recall that the reaction coefficient ¢ is assumed to be a non-negative constant over each K' € 7. We
introduce the shorthand notations

g:= abv'vg+cﬂ‘%—f, e:= ﬂ‘%—v‘vg, (5.19)
so that
R R AT B 2
Nio (g —u, wo = w3 f) = le = (U= W)L, gy + 18 = bW + W)L, 0y
Fixing B € (O, %), we refer to the K’ € M for which

le + cgllZ, &)

>p (Type-(I)),
1812, oy + el o

as Type-(I) and for the remaining ones as Type-(II). Accordingly, we decompose M into the Type-(I) and
Type-(1I) elements writing M = M; U M.

Type-(I) Elements. We start with showing that for K’ € M, (5.18) can be already established by a correction
of the u-component.

Lemma 5.10. Assume that | - || is induced by the inner product -, -) of some Hilbert space H and let g, e € H
be arbitrary but fixed. For any scalar c and u € H let

Q) := e —ul? + g - cull.
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Then oc
Umin := arg min Q(u) = —f,
ueH 1+c
Q(u) - Q(umin) = (1 + cH)llu - uminll7;,
Q(0)
||umin||2 < Tcz’
le + cgl?
min) = (1 - 0).
Qtum) = (1= 5103 ey ) 2©)

Proof. The first two statements follow from
Q(u+h) - Q) = 2(h, (¢* + Du — (e + cg)) + (1 + )| h|*.

The third statement is a consequence of

Viel” +Tgl> _ Q(0):
V1 + c? ViteZ

e+cg 1

C
< el + <
< T lel +

luminll = 1

The last statement follows from

Q(0) - Qumin) (L +AITEN’ -
Q(0) gl + el

Corollary 5.11. For r sufficiently large, only dependent on the polynomial degrees m,, my, and my, and on an
upper bound for |cx|, for all K' € My it holds that

i i i B 2 (=6 =6
lnf rlz (u5 _u,WE;f)S(]_——)rl (u , W ;]‘).
{(u,0)€0’, : suppuck’} K= J 2(1 + C%(,) K\ Wy

Proof. Lemma 5.10 says that umi, = % minimizes Q(u) := ni,(afr -u, v‘vf};f) over L,(K"), and that
I'G
_ B
Q(umin) < (1- 5 Q(0).
1+ ¢k

The function up;, is a polynomial on K’ and can therefore be approximated with relative accuracy
\B/(2(1 + c%(,)) by a piecewise polynomial & on a sufficiently refined mesh. This follows from the usual
combination of direct and inverse estimates. The proof is completed by

B B

2||umin||]%2(Kr) S 201+ C%{I)

Q)

Q@) - Qttmin) = (1 + )i ~ minl, o <

by applications of the statements from Lemma 5.10. O

Type-(ll) Elements. It remains to discuss K’ € My. For those elements we need to find suitable corrections
for the component va — in brief the w-component.
We will search for a (0, w) € lD'f.T with supp w ¢ K’ such that

lg - Wl e < 812 .

In order to show that this reduction is not lost by a similar increase by the replacement of ||e||%2 (K" by
lle - WIIfZ(K,), we will make use of the fact that for K’ € My, the term |e|| L,(k") is controlled by a multiple
of |gl, ) depending only on |c|r(q):

Lemma 5.12. For K' € My, it holds that

e 1
lelz, ||Lz(’”<2|c,<,| +1, (5.20)

K = OR 8 gl e
2

and thus
N @5, Whs H? < (Qlere ] + 12 + 1)lgl7 -

Authenticated | dahmen@math.sc.edu author's copy
Download Date | 6/15/19 9:25 AM



DE GRUYTER W. Dahmen and R. P. Stevenson, Adaptive Strategies for Transport Equations =— 27

Proof. Recall that K' € My means that

le +cgllZ, &)

g1, e + el e

<B, (5.21)

so that in particular g # 0. Substituting |le|l.,«") = @k gL, &, (5.21) implies

lwir = e 1] < B(L + wir?),

which gives

1 1
wgr < |cgr| + \/B+ \/EG)K’ <lcg|+ 5 + EwK’
by our assumption that § < % This confirms the first and so the second claim. O

Our argument for handling Type-(II) elements requires the following further preparations. For every s € 0K’
let as before r(s) denote length of the line segment emanating from s € 0K’ and ending in 0K’,. One observes
then that a function Q on K’ can be written as

Q = Opz, ZlaK’_Uc)KL =0, (5.22)

if and only if each of its line averages in direction b° := % vanishes, i.e.,
r(s)
As(Q) :=r1(s)™! j Q(s+th’)dt=0, sedK_.
0

In fact, then
t
2(s + th?) = [b| ™! J Qs + 'b°) dt’
0
satisfies (5.22).
For g asin (5.19), the function G = G(g), defined on each K’ € T by
G(x) = As(g) forx=s+tb’, sedK_, te[0,r(s)], (5.23)
is obviously constant along b and
As(g-G)=0 foreverys e oK.

Hence, for zg, defined by
t
Zg(s + th°) := [b| ™ J(g —G)(s+t'b)dt forte[0,r(s)],
0

we have
g-0pzg = G.

Thanks to g — G L,y G, we have
||G"%2(KI) = "g"iZ(KI) - ”g - GI'I%Z(K’)’

and so in particular ||GllL, ) < 18Iz, x")-
Under the condition that ||Gll., k) < lIgllL,x"), one infers from ||zgllL, k') < bl tdiam K'||g — Gllr,«&’) by
Poincaré’s inequality, in combination with (5.20) that for diam K’ being sufficiently small,

256 o6 256 6
N0y, Wy - zg; f) < ng(Ug, wa; ).

When proceeding to the natural next step to approximate z, with functions of type (0, w) € IDfI with
suppw c K, a difficulty is that z is continuous piecewise polynomial with respect to a partition of K’ into
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subsimplices that can have arbitrarily bad aspects ratios. To tackle this problem, we first approximate z by
an “isotropic” function z, for which ||g — dpZllz, (k") is at most slightly larger than ||g — dnzellL, k"):

Lemma 5.13. Let Gl
L,(K')
aArr = A 1( ) =7
K K8 Igllz,

Then there exists a z, € Hy(K') n H3(K') such that for any s < %,
|Zglms () < (diam K') ™ |ZgllL, ) (5.24)

(depending on upperbounds for ag and px), and

1+ag
> IglL, -

Proof. Forn =1, zZg = zg satisfies the conditions. Nowletn > 1. Letp € C*°with0 < p <1, p(x) = Oforx < %,
and p(x) = 1 for x > 1, and let py(x) := p(x/n).

We are going to construct a modification of z, that is zero on subsimplices that have very bad aspect
ratios. With Fy, ..., Fpy1 denoting the faces of K’, for 1 <i < n+ 1 let dg, be the orthogonal projection of
the inward pointing normal to F; onto the plane b'. For each i, we choose a Cartesian coordinate system
y@ = TOx + z) such that the first coordinate direction is S—:l, the origin equals one of the vertices of F;,
and all other vertices of F; have a non-negative first component. Now for some € > 0, we define Zg by

g — OvZglr, k) <

n+1
OnZg = (€ - G) [ | pediamr (TP - +20)1),  Zglogr vox: =O.
i=1
Since (TY(- + th)); = (TV(-))1, As(dbZs) = 0 and the function Zg is well defined.

Since x — ]'[?:11 Pediam k' ((TYX)1) vanishes on all subsimplices that have very bad aspect ratios (relative
to €) in the partition of K’ with respect to which z, is a continuous piecewise polynomial, a homogeneity argu-
ment shows that Z, satisfies (5.24), with a constant depending on €. Moreover, also Z, vanishes on a possible
characteristic boundary of K'.

Writing

n+1

8§-0pZg =G+ (1 - HPediamI('((T(i)')1)>(g -0),

i-1
and using that | GllL, ") = ax' gL, ), and

n+1
”(1 - Hpgdiamm((ﬂ”-)l))(g -6)

i=1

<

Ly(K")

lg - Gl «x)
Ly(K")

n+1l
(1 - prdiamK'((T(i)')1)>

i=1
< VelK'| 218l k) < Ve lglL, ),

which holds again by a homogeneity argument, the proof is completed by taking ¢ sufficiently small, depen-
dent on ag:. O

Corollary 5.14. For K' € My let ag < 1. Then for o sufficiently small, and r sufficiently large, only dependent
on upperbounds for my, my, my, o, |b|™%, ax, o, and |ck|, it holds that
1+agr
. 5 1 15 +epl+1 5 -
inf }nf(,(ug,wg—w;f) < (— + —2—)nf<,(u57,w57;f).

{w:suppwckK’, (O,W)Elﬁfsﬁ_ 2 2 1l+|epl+1

Proof. Let
. diam K

G=0(r):= max ———.
(keT:kck'y diam K’
By taking w with (0, w) € @g to be the Scott-Zhang interpolant of Zg from Lemma 5.13, for s € (1, 3) we have
IZg — Wilz, k) + [b| ™' diam K’ | 9p (Zg — W)L,y < (0 diam K')®|Zg s iy
< 0°1ZgllL, ) < 6°[b| ™ diam K' [ 0pZgllL, k')

< 6°|b|™" diam K'lIgllL, k),
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where we used Poincaré’s inequality. We obtain that

- N l+ag _o_
g = obWlr, k) < g = ObZglL, k) + 10b(Zg = WL, &) < < >t o° 1)||g||L2(K’),
and
le + wllL, &y = lellz, iy < 1ZgllL, ) + 12g — Wi,y < (Il diam K + 6°[b| ™ diam K')lIg |z, k-
. . _ _ lell
Recalling that maxg ey diam K’ < 0, n2, (@S, w5; ) = ||g||i2(K,) + ||e||iZ(K,), and wy' = ﬁ < 2lcxr| + 1, the
assertion follows. O

In summary, for K’ € M; completely local u-corrections on refinements of fixed depth suffice to reduce nx
by a constant factor v/ < 1. For K’ € My an analogous statement, this time by means of a local w-correction,
holds provided that there exists a constant a < 1 such that

NGl VG, 8,k

= = <a. (5.25)
Igllz, gz,

ag

5.4 Selection of N ¢ M That Satisfy Both (5.18) and (5.17)

In case
Mg, @5, W5 P2 < nog, (85, W5 )2, (5.26)

equation (5.17) is valid with M= Mjand 9' = % V2, whereas (5.18) follows from the reduction of the ng for
K' € M; by Corollary 5.11. We conclude that Theorem 5.9 is valid for both n = 1 and n > 1 (even without the
additional downwind refinements described in Definition 5.1).

It remains to investigate the case where (5.26) does not hold. It is only for this case that we have to
establish (5.25) for sufficiently many K’ € My. It will require ‘global’ arguments, already announced in the
abstract, that make use of the fact that (ai}, v‘vg) is the minimizer of rlé(u, w; f) over IU@.

Lemma 5.15. Suppose there exists a constant a < 1 such that validity of

Moty (@5, Whs D205, @5, W53 )7 (5.27)
implies
Y UG, oy <@ Y 18I, k- (5.28)
K'eMy K'eMy
Then Theorem 5.9 is valid.

Proof. In view of the discussion preceding this lemma, it suffices to verify (5.17) and (5.18) for some McM
for the case that (5.27) holds. By the hypothesis of this lemma, (5.28) is then also valid. We define

= _ 1 2
M:={K’€M[1:(XK'S\/ ra }

Then M satisfies (5.18) by Corollary 5.14, and it remains to verify that it satisfies (5.17).
Thanks to (5.27), we have
(a6 8. 02 a6 26,02
rljv[(uj‘! W‘I’f) < ZUMH(U«T, W«J«,f) s
whereas by Lemma 5.12, the right-hand side is bounded by a constant multiple of Y ¢y, | glliz(K,). The
definition of M and (5.28) imply that

2 202
2 2 2
z ) ”g”LZ(KI) < —1 n [XZ z ) "G"L2(K’) < —1 I az Z ”g”Lz(K’)’
K'e M\ M K’ ey \M K'eMy

or, equivalently,
1+a?
2 2
> 18l gy < e Y. 1817, -
K'e My K'eM

The proof of (5.17) follows from ¥, = ||g||%z(K,) < nﬁ(ug, v‘v{f‘T;f)z. O
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5.5 Proof of Theorem 5.9 forn =1

By Lemma 5.15 the proof of Theorem 5.9 for n = 1, and hence of Theorem 5.3, follows as soon as we have
shown that (5.27) implies (5.28). To that end, consider the one-dimensional case n = 1, with Q = (0, 1),
b = 1, and c piecewise constant.
Recalling that
g=w3) +cal -f, e=ul-wl,
the definition of (ﬂ‘;, W‘ST) as minimizer of n§ (-, - ; f) over Ifjg shows that
(Uu-w, e, + W +cu, 80 =0 ((u,w) el5),

or, equivalently,

e+cg L) Pm,(K) (K €7), (5.29)
and
16
ng’ -wedx=0 ((0,w)eU?). (5.30)
Q

Remark 5.16. When m, = my,, (5.29) says that e = —cg which means that all cells are of Type-(II). In partic-

ular, when in addition ¢ = 0, we obtain ﬂf} = va.

For the piecewise constant function

_ Glgr onK' e My,
F= F(G, My) := Ik 1 (5.31)
0 elsewhere,
let z be the solution of
Z =-cz+F on(0,1), z(0) = 0, (5.32)
i.e.,
X
200) = IF(t)e‘ Jlemar g¢.
0
Then

max(||zllL,0,1), 12" lL,0,1) < IFllz,0,1) < \j Z g3, k)
K'eMy
Moreover, z is piecewise smooth with respect to T, and (z|x')" = —c|x (z|x)' (K' € T).
Let (0, w) € Ug be defined by taking w as the continuous piecewise linear interpolant of z with respect
to 7. We have that
Iz - wlL, @ < diam(K")|12' L,y
12" = W'l k) < diam(K")z" Iz, ) < lele | diam (K21, )
Let us first assume that c|g # O for all K’ € 7. Using (5.30), the definition of F, (5.29), my < my + 1,
Flg € Po(K') € P, (K"), and the definition of z, we obtain

Z ||G||f2(K,) = Z J Ggdx - ng’ - wedx

K'eMy K'e My g Q
= Z JFg—gw'+wedx= Z jg(w'—F+cw)dx
K’e‘J’K, K’e‘J’K,
=y JE((w—z)'+C(w—z))dx: y Jf(w—z)’+e(w—z)dx
K’e‘J‘K, ¢ K’e‘J‘K, ¢

: ! ! !
< maxdiam(K') Y llellz,anl2'lz,x) < 0| Y lellf, o 12" IL.0,1)
Ker K'eT K'eT

=6 =06 2 2
<ona(@y, wifH’ <o Y gl g
K’EMH

where the last inequality follows from (5.27) and Lemma 5.12.
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Now consider the case that for one or more K’', c|g = 0. Then on such a K’, z is linear (or even con-
stant when K’ € 7\ M) and so coincides with w. Let z denote the average of z on K'. For such a K’, from

e L Py, (K') we estimate
:Ijzedx J(z—Z)edx

K' K'

IJFg—gW’+wedx

K

< diam(K") 12"l ien el e

and arrive at the same conclusion. For n = 1 this completes the proof that, for ¢ sufficiently small, (5.27)
implies (5.28), and thus of Theorem 5.9. Note that a > 0 could even be stipulated as small as we wish. O

5.6 Theorem 5.9 forn > 1

The above reasoning for n = 1 does not seem to directly carry over to the multi-dimensional case. In fact, it
is not clear how to approximate the solution z to the analog of (5.32) by a w-component in the current trial
space, the difficulty being the non-smoothness of z in the directions orthogonal to b.

To deal with this problem, for n > 1 we consider a downwind enriched refinement procedure as specified
in Definition 5.1. Let us assume that nevertheless Theorem 5.9 does not hold. That is, there is a 9 € (0, 1]
such that for any v < 1, r € N, there exist T € T and f ¢ ]P‘S,T with the property that for the marked cells
M = M((@%, w5), 9) and refined triangulation T = T(T, M, r), one still has

na@l, wl; ) > via(@f, wy; f. (5.33)

Splitting M = M; U My as before, as we have seen in Section 5.4 for v sufficiently close to 1 and r
sufficiently large, the case that ng\—,[n(ag, v‘vg; JARES nm(ag, va; H? would, on account of Corollary 5.11,
immediately lead to a contradiction.

So let us focus on the case that

Moty @5, W53 N7 = Ny, @5, Whs )7 (5.34)

Following the analysis of the previous Section 5.5, recall the definitions of g = abwg + cﬂg -f,e= ﬂg - v'va,

and that of G in (5.23) and F in (5.31). From the definition of bulk chasing, (5.34), and Lemma 5.12 we infer
that

S5 -8 V2 -
no(ug, was f) < ?HU{K’GJ\_/EH}(u‘J" was )

V2
< ?\/(ZHC"LOO(Q) +1)2+1 ”g”LZ(U{KIEMII})' (5.35)

Let us now define the quantities g, &, and G in analogy to g, e, and G, but with respect to the least-squares
solution (ﬂf‘r’ v‘vf-r) € K'Jf.r and the refined partition 7. The pair (af.r, Wf’r) being a minimizer of n3 (-, - ; g) over
IU?T is equivalent to

&+ 8 Ly, k) Pm,(K) (K eT), jgabw -wédx =0 ((0,w) e U). (5.36)
Q
As shown next, the assumption that the error indicator has not been reduced much when passing to 7,
implies that g, e must be very close to g, &, respectively. In fact, the orthogonality relation analogous to (5.4)
reads as
ng @, wlsf) = ng @k, wis ) - ng@l - ay, wl - wi; 0).
In combination with estimate (5.35) and our assumption (5.33), this shows that there exists a { = {(v) with
limy11 ¢(v) = O such that

Ig - 8lL,) < alg"LZ(U{K’EMH})’ le - el < a|g”L2(U{K’eMH})' (5.37)

This fact together with an affirmative answer to the following conjecture will allow us to complete the proof
of Theorem 5.9.
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Conjecture 5.17. There exist constants

2 -1
§< (%_\/(zuanm(m F12 1)

and r € N such that there exists a (0, W) € lfJ‘f.T with

oW + cW — Flir,) < éIFlL, > WL, < IFlL, @), (5.38)
where W vanishes outside the union of the cells of T that were refined in T = T(T, M, r).

We postpone supporting arguments for the validity of this conjecture and turn first, for r large enough and
v sufficiently close to 1, to verifying the hypothesis of Lemma 5.15. This lemma then asserts the validity of
Theorem 5.9, which, for v sufficiently close to 1, will contradict (5.33), thereby finishing the proof.

To that end, with w from Conjecture 5.17, using (5.36) we write

2 _ _ ~ -~
11 s = 2 ngdx— Y ngdx+ Y jG(g—g)dx

K'EJ\_/EHKI K’GJ\_/[HKI K'EJ\_/EHK/
- Jngx— Jgabw—wz;dm y J G(g - &) dx
Q Q K’EMHKI
:—J(abv'v+cv'v—F)§dx+ Z G(g—g)dx+j\7v(é+c§)dx.
Q K’GMHK/ Q

The first and second term on the right can be bounded by

< EIFNL, )1 + Olglz, @)

J(abw +cw - F)gdx
Q

V2
< ﬂlG"Lz(U{K’eJ\?[H})(l + O?\/(ZHC"LOO(Q) +1)2+1 IIgIILZ(U{KIEMH}), (5.39)

where we have used (5.37) and (5.35), and

< QG e extun 18N, Uik ety (5.40)

Y |ce-gax
K’EM[[KI

respectively.
To proceed let Q5 denote the L,(Q)-orthogonal projector onto []zc+ ﬂ’mu(f(), using (5.36) for the third
term, we write

j w(e +cg)dx = J (I-Qs)w)(e+cg)dx

Q Q
= J (I-Qp)w)(é-e+c(g-g)dx+ I w((I - Q5)(e + cg)) dx.
Q Q

Thanks to the estimates in (5.37), the first term at the right can be bounded by a constant multiple of
NG, ik emeap 181, i enveyy)- We use next that w vanishes outside the union of the cells of 7 which have
been refined in T = T(T, M, r), and that e and g are piecewise polynomial with respect to J. Moreover, by
Remark 5.2, all cells in the support of w are (at least) rth refinements of cells in T underlying e and g. Hence,
the usual combination of direct and inverse estimates shows then that the second term can be bounded by
IGI LUK’ eneyMIgl LUK €N} where 7 as a function of r, tends to zero as r — co. For any constant

ac€ (5\/75 \/(2||C||Lm(Q) +1)2+1, 1>,

the combination of these latter results, (5.39), and (5.40) shows that for r large enough and v sufficiently
closeto 1, |G| LUK ex}) < allgll LUK’ N} which by Lemma 5.15, for v sufficiently close to 1, contradicts
(5.33), as required. O
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Let us close this section with some brief comments on Conjecture 5.17. First, as mentioned earlier, by
Remark 5.2, the downwind enrichment in the refinement strategy makes sure that the correction w is con-
structed on (an essentially uniform) refined mesh. This certainly helps a relation like (5.38) to be possible
and actually motivated the inclusion of the downwind enrichments. Moreover, the conjecture asks “only” for
a fixed relative accuracy ¢ where & need not be arbitrarily small. Given that the data are piecewise polynomials
(which are actually piecewise constants in stream direction), this does not seem to ask for too much.

On the other hand, since we can neither limit a priori the number of polynomial pieces in F nor their
position relative to the direction of b, an argument does not seem to be straightforward. In fact, whereas we
can represent the exact solution of opz + cz = F with zero inflow conditions explicitly along characteristics
ensuring sufficient smoothness in this direction, smoothness in cross-flow direction does not seem to be easy
to control. Nevertheless, the overall variation in cross-flow direction is still highly restrained for data of the
type F.

Finally, we would like to stress that a possibly T-dependent r such that (5.38) holds true always exists. By
the above arguments this immediately translates into a statement on error reduction based on such a (vari-
able) refinement depth.

6 Concluding Remarks

We have established reliability and efficiency of computable local error indicators for DPG discretizations of
linear transport equations with variable convection and reaction coefficients. For constant (with respect to
the spatial variables) convection fields, arising for instance in kinetic models, we have determined refinement
strategies based on the a posteriori error indicators which are guaranteed to give rise to a fixed error reduction
rate. The latter results make essential use of a tight interrelation of the DPG scheme with certain least squares
formulations providing insight of its own right. In particular, error reduction for one scheme implies the same
for the other one. To our knowledge the issue of error reduction for least squares methods even for the classical
elliptic case is largely open. In that sense the present results mark some progress in this regard as well.

On the other hand, in view of these findings one may raise the question as to why not using the seemingly
simpler least-squares scheme instead of the DPG scheme. However, giving up on the simple interpretation of
the w-component as a second approximation to the exact solution in a stronger norm when f € L,(Q), the
DPG scheme still provides a meaningful approximate solution ug in L,(Q) to the transport equation even
when f is less regular. But also for L,-data f, in the least squares formulation errors are measured solely
in a norm that depends in a very sensitive way directly on the convection field. In the variable convection
case the corresponding space varies essentially (even as a set) under perturbations of this convection field.
Therefore, at this point Proposition 5.7 serves primarily as a theoretical tool.

Among other things a prize for using the interrelation between DPG and least squares formulations is
a remaining lack of quantification of the error reduction results manifesting itself in two ways: the subgrid
depth needed to establish efficiency and reliability of the computable error indicators, similar to establishing
uniform inf-sup stability of the pairs of trial- and test-spaces, is not precisely specified. As indicated by earlier
numerical results in [2] any attempt along the given lines to quantify the subgrid-depth would still be over
pessimistic. The same is expected to be true for the refinement depth r associated with the marked cells. These
issues call for further research in this area.

Finally, the refinement strategies that can be shown to guarantee a fixed error reduction involve for
several spatial variables so far a certain downstream enrichment of the marked cells in combination with
a conjecture. It is open whether this enrichment is in general necessary which would establish an essential
difference from the univariate case where it is not necessary.
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