
Comput. Methods Appl. Math. 2019; aop

Research Article

Wolfgang Dahmen and Rob P. Stevenson*

Adaptive Strategies for Transport Equations
https://doi.org/10.1515/cmam-2018-0230
Received September 7, 2018; revised Februar 21, 2019; accepted April 30, 2019

Abstract: This paper is concerned with a posteriori error bounds for linear transport equations and related

questions of contriving corresponding adaptive solution strategies in the context of Discontinuous Petrov

Galerkin schemes. After indicating our motivation for this investigation in a wider context the first major part

of the paper is devoted to the derivation and analysis of a posteriori error bounds that, under mild condi-

tions on variable convection fields, are efficient and, modulo a data-oscillation term, reliable. In particular, it

is shown that these error estimators are computed at a cost that stays uniformly proportional to the problem

size. The remaining part of the paper is then concernedwith the questionwhether typical bulk criteria known

from adaptive strategies for elliptic problems entail a fixed error reduction rate also in the context of transport

equations. This turns out to be significantly more difficult than for elliptic problems and at this point we can

give a complete affirmative answer for a single spatial dimension. For the general multidimensional case we

provide partial results which we find of interest in their own right. An essential distinction from known con-

cepts is that global arguments enter the issue of error reduction. An important ingredient of the underlying

analysis, which is perhaps interesting in its own right, is to relate the derived error indicators to the residu-

als that naturally arise in related least squares formulations. This reveals a close interrelation between both

settings regarding error reduction in the context of adaptive refinements.

Keywords: Discontinuous Petrov Galerkin Formulation of Transport Equations, Optimal and Near-Optimal

Test Spaces, Stability
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1 Introduction
Motivation and Goals. Adaptive solution concepts form an important component in strategies for ever

advancing computational frontiers by generating discretizations whose solutions have a desired quality

(e.g. in terms of accuracy) at the expense of a possibly small problem size, viz. number of degrees of free-

dom. Guaranteeing a certain performance and certifying the solution quality poses intrinsic mathematical

challenges that have triggered numerous investigations.

It is fair to say that themost workable starting point for an adaptivemethod is a variational formulation of
the problem at hand that allows one to relate errors – involving the unknown solution – to residuals – involv-

ing only known quantities. A little wrinkle lies in the fact that these residuals have to be typically evaluated

in dual norms that are not straightforward to compute. A first important goal is therefore (A) to evaluate or

approximate these residual quantities in a tight fashion, see e.g. the fundamental work of Verfürth [10]. By

tightwemean in what follows that modulo a data oscillation term the a posteriori bounds are reliable as wells
as efficient, i.e., up to moderate constant multiples provide upper as well as lower bounds for the error plus

*Corresponding author: Rob P. Stevenson, Korteweg-de Vries Institute for Mathematics, University of Amsterdam,
P.O. Box 94248, 1090 GE Amsterdam, The Netherlands, e-mail: r.p.stevenson@uva.nl
Wolfgang Dahmen,Mathematics Department, University of South Carolina, Columbia, SC 29208, USA,
e-mail: dahmen@math.sc.edu

Authenticated | dahmen@math.sc.edu author's copy
Download Date | 6/15/19 9:25 AM



2 | W. Dahmen and R. P. Stevenson, Adaptive Strategies for Transport Equations

data oscillation. This by itself is important since it allows one to quantify the solution accuracy for a given

discretizationwithout a priori knowledge about the solution such as norms of its derivatives. Aside frommin-

imizing the size of discrete problems for a given target accuracy via adaptive strategies based on such error

bounds, the availability of certified bounds is essential in a nested iteration context which is sometimes the

only viable strategy for obtaining quantifiable results within a given computational budget.

As part of an adaptive strategy a second, often mathematically even more demanding goal (B) is to con-

trive a suitablemesh refinement strategyderived from the a posteriori residual quantities and to understand its

convergence and complexity properties. The first step in this regard is to show that each step of such a refine-

ment does decrease the current error by a fixed factor. In many works on adaptive methods this last issue is

often ignored or taken for granted when using a “plausible” refinement strategy based on a posteriori indica-

tors. However, in the context of highly convection dominated convection diffusion problems it is shown in [5]

that an error reduction can be delayed until full resolution of boundary layers is established, despite the fact

that robust efficient and reliable error estimators are used.

Once a fixed error reduction rate is established one then estimates in a second step the increase of degrees

of freedom caused by the refinement.

Background. Both steps (A) and (B) are so far best understood for problems of elliptic type and their close

relatives, see e.g. [1, 8, 9]. By this we mean, in particular, variational formulations involving isotropic func-
tion spaces that are essentially independent of problemparameters.Moreover, these variational formulations

appear more or less in a natural way and lead to problems that are well conditioned (on the continuous

infinite-dimensional level) in a sense to bemade precise later. This luxury is lost abruptly already when deal-

ing with simple linear transport equations. Our particular interest in the seemingly simple model of first

order steady state linear transport equations stems from the following points. First, classical techniques

for transport equations do typically not come with tight a posteriori error bounds, let alone a rigorously

founded adaptive solution strategy. Second, linear transport equations form a core constituent of impor-

tant kinetic models whose treatment would benefit from the availability of tight a posteriori error bounds

because theywouldwarrant a rigorous control of nested source term iterations avoiding the inversion of large

linear systemswhich are densely populated due to global scattering operators. Last but not least, linear trans-

port equations can be viewed as a limit case of convection dominated convection diffusion equations. Thus,

appropriate variational formulations are instructive for the singularly perturbed versions as well. We are

content here with the time-independent formulations since corresponding variational formulations would

immediately offer space-time formulations for the time dependent case where initial conditions enter as

“inflow-boundary conditions”.

The classical footing for rigorous a posteriori bounds is a variational formulation of the underlying

(infinite-dimensional) problem for which the induced operator is an isomorphism from the trial space onto

the dual of the test space. This means errors in the trial metric are equivalent to residuals in a dual test-norm

which at least in principle contains only known quantities and hence is amendable to a numerical evalua-

tion. For transport equations, the lack of any diffusion is well known to cause standard Galerkin formulations

being extremely ill-conditioned. This results in notoriously unstable schemes which precludes the availabil-

ity of obvious tight lower and upper a posteriori error bounds. Instead, suitable variational formulations

that could give rise to tight residual a posteriori bounds need to be unsymmetric, i.e., trial and test metrics

differ from each other. In this regard the Discontinuous Petrov Galerkin (DPG) concept offers a promising

framework to accommodate problem classes that are not satisfactorily treated by conventional schemes, i.e.,

they help identifying and numerically accessing suitable pairs of trial and test spaces. A concise discussion

of DPG methods involves two stages: first, in contrast to ordinary DG methods it is important to start from a

mesh dependent infinite-dimensional variational formulation which has to be shown to be uniformly inf-sup

stable with respect to the underlying meshes. The proper choice of function spaces for the bulk as well as

skeleton quantities is crucial. Second, the optimal test spaces that inherit for a given finite-dimensional trial
space the stability of the infinite-dimensional problem are not practical. A computational version requires

replacing local infinite-dimensional test-search spaces by finite-dimensional ones whose size, however,

determines the computational cost. There are to our knowledge only a few results guaranteeing uniform
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fully discrete stability. In the DPG context, this concerns on the one hand problems of elliptic type and their

close relatives in the sense that the involved functions spaces are isotropic [4, 7]. On the other hand, we have

studied in [2] an essentially different problem class, namely first order linear transport problems. There,

we have proposed a fully discrete DPG scheme for linear transport equations with variable convection fields

that is shown to be uniformly inf-sup stablewith respect to hierarchies of shape regular meshes. The perhaps

most noteworthy obstruction encountered in this context is the fact that the involved function spaces are

anisotropic and depend on the convection field in an essential way. This means, for instance, that when

perturbing the convection field the test spaces not only vary with respect to the norms but even as sets. This

affects, in particular, the issue of data oscillation. Therefore, the case of variable convection fields is rather

delicate and requires a very careful organization of perturbation arguments, see [2]. The present work builds

on the findings in [2].

Objectives, Results, Layout of the Paper. The central objectives of this paper concern both goals (A) and (B)
for linear first order transport equations. In Section 2 we briefly recall the basic DPG concepts the remaining

developments will be based upon. This includes the notion of projected optimal test spaces as well as the
principal elements of error estimation with the aid of lifted residuals.

In Section 3 we detail the ingredients of the transport problem and recall from [2] a corresponding DPG

scheme. The level of technicality observed there is in our opinionunavoidable and stems from the three stages

of the DPG concept mentioned above. To ease accessibility of the material and fix notation we recall from [2]

some relevant results which the subsequent discussion will build upon.

Section 4 is devoted to goal (A) the derivation of efficient and reliable (in brief “tight”) a posteriori error

bounds. DPG schemes are often perceived as providing “natural” local error indicators ready to use for adap-

tive refinements. Of course, once the uniform well-posedness of the infinite-dimensional DPG formulation

has been established the error in the trial metric is indeed equivalent to a Riesz-lifted residual which is in

fact a sum of local terms. However, in exactly the same way as for optimal test-functions, these quantities

require solving local infinite-dimensional Galerkin problems. Again, one has to develop a practical variant

using appropriate finite-dimensional test-search spaces. To ensure a proper complexity scaling, these spaces

should again have a fixed uniformly bounded finite dimension. An improper choice of such test-search spaces

could result in gross under-estimation of the actual error. Thus, the central issue here is to rigorously ensure

that the so called “practical” versions using localized test-search spaces of fixed finite dimension do actu-

ally capture the true infinite-dimensional residual well enough to quantitatively reflect the error plus a data

oscillation term. This is done in Section 4 for variable convection fields under the same moderate regularity

conditions as used for the uniform inf-sup stability. Again, a central issue here is a very subtle perturbation

strategy that is eventually able to cope with the essential dependence of the test spaces on the convection

field and the fact that the perturbations are only meaningful on the finite-dimensional level.

Finally, in Section 5 we address goal (B). As indicated earlier, the situation differs in essential ways from

the keymechanisms thatwork for elliptic problems. A key obstruction, sharedwith least-squaresmethods for

other problem types, is the fact that the error indicators do not explicitly contain any power of the localmesh-

size. Hence, it is now far from obvious that a fixed local refinement actually reduces the error indicator or the

error itself. Thismeans establishing a fixed error reductionbeing guaranteed by a concrete refinement strategy

becomes themain issue. In fact, we anticipate that, once error reduction is in place the analysis of the overall

complexity will then follow again along more established paths. Therefore, we concentrate in Section 5 on

error reduction. Themain tools are carefully exploiting what may be called “Petrov–Galerkin orthogonality”,

and local piecewise polynomial approximations. The central focus point emerging from related attempts,

however, is the fact that the tight a posteriori error indicators are actual equivalent to an entirely mesh-
free indicator of least squares type. In fact, this latter indicator may be viewed as a certain “limit” of the

DPG-indicators resulting from different approximate Riesz-lifts. This connection is in our opinion of interest

in its own right. Using these concepts, we rigorously prove that refinement strategies based on a standard

bulk criterion imply error-reduction in a single spatial dimension. For several space dimensions we formu-

late an analogous result for collections of marked cells which in certain cases are enriched in downstream

direction. The necessity of such enrichments is, however, open.
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Since the focus of thiswork is on revealing the intrinsic theoreticalmechanisms,wedispensewithnumer-

ical tests but hope that our findings offer new insight and will prove useful for eventually extending the

current state of the art. We present in Section 6 some concluding remarks addressing, in particular, the

relation between DPG and least squares schemes.

We sometimes write a ≲ b to express that a can be bounded by a fixed constant multiple of b where the
multiplicative factor is independent of the relevant parameters a and bmaydepend on. Likewise a ≂ bmeans

that both a ≲ b and b ≲ a hold.

2 Abstract Setting and Preliminary Observations
Transport dominated problems are prominent instanceswhere symmetric variational formulations – trial and

test space coincide – fail to provide well-conditioned problems already on the continuous level. This section

serves two purposes. First, we briefly recap some preliminaries about unsymmetric Petrov–Galerkin formula-

tions which, in particular, Discontinuous Petrov Galerkin (DPG) schemes are based upon. Second, we collect

some general basic facts that will be used later in the a posteriori error analysis.

2.1 Petrov–Galerkin Formulation with Projected Optimal Test Spaces

Let𝕌,𝕍 beHilbert spaces and b : 𝕌 ×𝕍→ ℝ a continuous bilinear form, i.e., |b(u; v)| ≤ Cb‖u‖𝕌‖v‖𝕍, u ∈ 𝕌,
v ∈ 𝕍. This means that (Bu)(v) := b(u; v) induces a bounded linear operator from𝕌 to 𝕍󸀠, the normed dual

of 𝕍, endowed as usual with the norm ‖z‖𝕍󸀠 := supv∈𝕍:‖v‖𝕍=1 z(v). Moreover, let us assume that B is an iso-

morphismwhich we express by writingB ∈ Lis(𝕌,𝕍󸀠). It is well known that this latter property is equivalent
to the validity of the inf-sup conditions

inf

u∈𝕌
sup

v∈𝕍

b(u; v)
‖u‖𝕌‖v‖𝕍

≥ γ, inf

v∈𝕍
sup

u∈𝕌

b(u; v)
‖u‖𝕌‖v‖𝕍

≥ γ, (2.1)

for some γ > 0. One consequence of the entailed stability is the relation

C−1b ‖f −Bw‖𝕍󸀠 ≤ ‖uex − w‖𝕌 ≤ γ−1‖f −Bw‖𝕍󸀠 , w ∈ 𝕌, (2.2)

where uex = B−1f is the exact solution of the problem: find u ∈ 𝕌 such that

b(u; v) = f(v), v ∈ 𝕍. (2.3)

Clearly, (2.2) is anatural startingpoint for deriving aposteriori bounds. The tightness of suchboundsdepends

on the condition (number)

κ𝕌,𝕍󸀠 (B) := ‖B‖L(𝕌,𝕍󸀠)‖B−1‖L(𝕍󸀠 ,𝕌) ≤ Cbγ
of problem (2.3) which can equivalently be expressed as the operator equationBu = f .

When trying to approximate uex by some element in a finite-dimensional trial space𝕌δ ⊂ 𝕌 (“δ” refers
to “discrete”) the choice of the test space becomes a central issue. A by now well-established mechanism is

to choose a so called test search space 𝕍̄δ ⊆ 𝕍 of dimension typically larger than dim𝕌δ, for which

γ̄δ := inf

0≠u∈𝕌δ
sup

0≠v∈𝕍̄δ

b(u; v)
‖u‖𝕌‖v‖𝕍

> 0. (2.4)

Clearly, 𝕍̄δ = 𝕍wouldyield γ̄δ = γ so that the size of 𝕍̄δ canbeviewedas the “invested stabilization”.Defining
then the trial-to-test map tδ = tδ(𝕍̄δ) ∈ L(𝕌, 𝕍̄δ) by

⟨tδu, v⟩𝕍 = b(u; v) (v ∈ 𝕍̄δ), (2.5)

we obtain that the function tδu is the 𝕍-orthogonal projection onto 𝕍̄δ of the optimal test function R−1Bu,
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where R−1 : 𝕍󸀠 → 𝕍 is the inverse Riesz map (or Riesz lift). The space

𝕍δ = 𝕍δ(𝕌δ , 𝕍̄δ) := ran tδ|𝕌δ

is called projected optimal test space because tδu is the 𝕍-orthogonal projection onto 𝕍̄δ of the optimal test
function. Also note that

b(u; tδu)
‖tδu‖𝕍

= ‖tδu‖𝕍 = sup

0≠v∈𝕍̄δ

b(u, v)
‖v‖𝕍

,

so𝕍δ gives the same inf-sup constant as 𝕍̄δ. Once (2.4) has been established for 𝕍̄δ, the problem of finding

the Petrov–Galerkin solution uδ = uδ(f,𝕌δ ,𝕍δ) ∈ 𝕌δ of

b(uδ; v) = f(v) (v ∈ 𝕍δ) (2.6)

is for any f ∈ 𝕍󸀠 well posed. Moreover, the solution of (2.6) yields, up to a factor Cb/γ̄δ (bounding κ𝕌,𝕍󸀠 (B))
the best approximation toB−1f from𝕌δ. Here and below we use the superscript δ to refer to a discretization
or better finite-dimensional problems.

In summary, it would of course be highly desirable to guarantee uniform stability in δ, i.e., γδ ≥ γ > 0
in (2.4), while keeping the computational work proportional to the dimension dim𝕌δ of the trial spaces,
viz. the number of degrees of freedom. This requires a uniform bound for the test-search spaces of the form

dim 𝕍̄δ ≲ dim𝕌δ. In [2] this has been shown for linear transport problems with variable convection fields

which the present work will heavily build on, see also Section 3.

2.2 Error Estimation

The accuracy of the Petrov–Galerkin solution uδ ∈ 𝕌δ is, in view of (2.2), estimated from below and above

by the residual f −Buδ in𝕍󸀠 whose evaluation would require computing the supremizer

⟨R(uδ; f), v⟩𝕍 = b(uδ; v) − f(v), v ∈ 𝕍,

since ‖R(uδ; f)‖𝕍 = ‖f −Buδ‖𝕍󸀠 . We refer to R(uδ; f) as a lifted residual. The exact computation of R(uδ; f) is,
of course, not possible. However, to obtain a quantity that is at least uniformly proportional to ‖R(uδ; f)‖𝕍
one can proceed as in (2.5).

To that end, let us first suppose that f is contained in a finite-dimensional subspace 𝔽δ of 𝕍󸀠 with
dim𝔽δ ≂ dim𝕌δ. Now let

̄𝕍̄δ ⊂ 𝕍 be a closed subspace, that we call the lifted residual search space, such
that

̄γ̄δ := inf

{(u,f)∈𝕌δ×𝔽δ :Bu≠f}
sup

0≠v∈ ̄𝕍̄δ

b(u; v) − f(v)
‖u −B−1f‖𝕌‖v‖𝕍

> 0. (2.7)

In analogy to (2.5) we then define Rδ = Rδ( ̄𝕍̄δ) : 𝕌 ×𝕍󸀠 → ̄𝕍̄δ by

⟨Rδ(u; f), v⟩𝕍 = b(u; v) − f(v) = b(u −B−1f; v) (v ∈ ̄𝕍̄δ). (2.8)

We call Rδ(u; f) the projected lifted residual since it is the𝕍-orthogonal projection of the exact lifted residual
(2.8) onto

̄𝕍̄δ. For (u, f) ∈ 𝕌δ × 𝔽δ, it holds that
̄γ̄δ‖u −B−1f‖𝕌 ≤ ‖Rδ(u; f)‖𝕍 ≤ ‖B‖L(𝕌,𝕍󸀠)‖u −B−1f‖𝕌. (2.9)

Thus the quantities ‖Rδ(u; f)‖𝕍 provide computable upper and lower bounds for the error ‖u −B−1f‖𝕌
incurred by an approximation u ∈ 𝕌δ to the exact solution uex = B−1f .

Regarding stable DPG formulations of the transport problem, Section 4 is devoted to identifying suitable

lifted residual search spaces

̄𝕍̄δ for which (2.7) will be shown to hold, uniformly in δ. In order to do so, just

as for f we will need that the coefficients of transport problem belong to certain finite-dimensional spaces

with dimensions proportional to dim𝕌δ. Consequently, for general data, i.e. right-hand side f as well as
convection and reaction coefficients, the lower bound in (2.9) will be valid modulo a data oscillation term

that measures the distance between this data and their best approximations from the aforementioned finite-

dimensional spaces.
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2.3 Towards Error Reduction

By replacing both 𝕍̄δ and ̄𝕍̄δ by their sum 𝕍̄δ + ̄𝕍̄δ, from here on we will assume that

̄𝕍̄δ = 𝕍̄δ. Then the

relation

Rδ(u
1
; f) − Rδ(u

2
; f) = tδ(u

1
− u

2
), f ∈ 𝕍󸀠, u

1
, u

2
∈ 𝕌,

follows directly from the definitions of Rδ
and tδ.

For the Petrov–Galerkin solution uδ = uδ(f,𝕌δ ,𝕍δ) ∈ 𝕌δ, Petrov–Galerkin orthogonality

⟨Rδ(uδ; f), tδ(𝕌δ)⟩𝕍 = 0

yields for any u ∈ 𝕌δ,
‖Rδ(uδ; f)‖2𝕍 = ‖Rδ(u; f)‖2𝕍 − ‖tδ(u − uδ)‖2𝕍. (2.10)

Remark 2.1. In particular, uδ minimizes ‖Rδ( ⋅ ; f)‖𝕍 over𝕌δ.

3 A Variational Formulation of the Transport Equation with
Broken Test and Trial Spaces

For the convenience of the reader and to fix notation we briefly recall in this section the results from [2]

to ensure the validity of the stability relations (2.1) and (2.4) which all subsequent developments will be

based upon.

3.1 Transport Equation

We adhere to the setting considered in [2, Section 2] and let Ω ⊂ ℝn be a bounded polytopal domain,

b ∈ L∞(div;Ω), and c ∈ L∞(Ω). Here we set L∞(div;Ω) := W0

∞(div;Ω), where b ∈ Wk
∞(div;Ω) means that

both divb and each bi belong toWk
∞(Ω). As usual the outflow/inflow boundary Γ± is the closure of all those

points on ∂Ω for which the outward unit normal n is well defined and ±n ⋅ b > 0 while Γ
0
= ∂Ω \ (Γ− ∪ Γ+)

stands for the characteristic boundary. We consider the transport equation

{
b ⋅ ∇u + cu = f on Ω,

u = g on Γ−.
(3.1)

To explain inwhich sense u is to solve (3.1), the spaceH(b;Ω) := {u ∈ L
2
(Ω) : b ⋅ ∇u ∈ L

2
(Ω)}, equippedwith

the norm ‖u‖2H(b;Ω) := ‖u‖2L
2
(Ω) + ‖b ⋅ ∇u‖2L

2
(Ω), plays a crucial role. More precisely, we need to work with the

closed subspaces H
0,Γ± (b;Ω) obtained by taking the closure of smooth functions vanishing on Γ±, respec-

tively, under the norm ‖ ⋅ ‖H(b;Ω). In fact, for g = 0 a first canonical variational formulation of (3.1) is to find

u ∈ H
0,Γ− (b;Ω) such that

∫
Ω

(b ⋅ ∇u + cu)v dx = ∫
Ω

fv dx

holds for all smooth test functions v ∈ C∞(Ω̄). Alternatively, after integration by parts one looks for u ∈ L
2
(Ω)

such that

∫
Ω

(cv − div vb)u dx = ∫
Ω

fv − ∫
Γ− gvb ⋅ n dx

holds for all v ∈ H
0,Γ+ (b;Ω), where now the inflow boundary condition enters as a natural boundary condi-

tion. The second summand on the right-hand side vanishes of course for g = 0which is the case wewill focus
on for convenience in what follows, see the discussion in [2].

Accordingly, these formulations induce bounded operators

B : u 󳨃→ b ⋅ ∇u + cu ∈ L(H
0,Γ− (b;Ω), L2(Ω)),

B∗ : v 󳨃→ cv − div vb ∈ L(H
0,Γ+ (b;Ω), L2(Ω)).
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We stress that B∗ is the formal adjoint of B. In fact, the “true” adjoint B󸀠 would have to be considered as an
element of L(L

2
(Ω), H

0,Γ− (b;Ω)󸀠). Moreover,B∗ is the “true” adjoint of the transport operator considered as
a mapping in L(L

2
(Ω), H

0,Γ+ (b;Ω)󸀠). In view of these distinctions B and B∗ may in general have different

properties in terms of invertibility.

Sincewe do not strive for identifying theweakest possible assumptions on the problemparameters under

which both mappings are invertible, we adopt this in what follows as an assumption

B ∈ Lis(H
0,Γ− (b;Ω), L2(Ω)), (3.2)

B∗ ∈ Lis(H
0,Γ+ (b;Ω), L2(Ω)), (3.3)

where Lis(𝕌,𝕍) denotes the space of linear isomorphisms from 𝕌 onto 𝕍 and refer to, e.g., [2, 6] for con-

crete conditions on the problem parameters under which these assumptions are valid. Assumption (3.2) is

essential for the stability of the subsequent DPG scheme. Finally, we note that the true adjoint ofB∗, in turn,

belongs to L(L
2
(Ω), H

0,Γ+ (b;Ω)󸀠) and can be viewed as an extension ofB to L
2
(Ω).

3.2 DPG Formulation of (3.1)

For a polyhedral Ω let 𝕋 denote an (infinite) family of partitions T of Ω̄ into essentially disjoint closed

n-simplices that can be created from an initial partition T⊥ by a repeated application of a refinement rule to

individual n-simplices which splits them into two or more subsimplices. For T, T̃ ∈ 𝕋, we write T ⪯ T̃ when

T̃ is a refinement of T. We write T ≺ T̃ when T ⪯ T̃ and T ̸= T̃. For a n-simplex K, let

ϱK :=
diam(K)

sup{diam(B) : B a ball in K}
denote its shape-parameter. WithT denoting the set of all n-simplices in any partition T ∈ 𝕋, we assume that

these simplices (or briefly T) are (is) uniformly shape regular in the sense that

ϱ := sup
K∈T

ϱK <∞.

For each K ∈ T, we split its boundary into characteristic and in- and outflow boundaries, i.e.,

∂K = ∂K
0
∪ ∂K+ ∪ ∂K−,

and, for T ∈ 𝕋, denote by ∂T := ⋃K∈T ∂K \ ∂K
0
the mesh skeleton, i.e., the union of the non-characteristic

boundary portions of the elements.

Denoting by ∇T the piecewise gradient operator, we consider the “broken” counterpart to H(b;Ω)

H(b;T) = {v ∈ L
2
(Ω) : b ⋅ ∇Tv ∈ L2(Ω)},

equippedwith squared “broken” norm ‖v‖2H(b;T) := ‖v‖2L
2
(Ω) + ‖b ⋅ ∇Tv‖2L

2
(Ω), and view the quantities living on

the skeleton as elements of the space

H
0,Γ− (b; ∂T) := {w|∂T : w ∈ H

0,Γ− (b;Ω)},
equipped with quotient norm

‖θ‖H
0,Γ− (b;∂T) := inf{‖w‖H(b;Ω) : θ = w|∂T , w ∈ H0,Γ− (b;Ω)}.

For T ∈ 𝕋, a piecewise integration-by-parts of the transport equation (3.1) leads to the following “mesh-

dependent” (but otherwise ‘´continuous” infinite-dimensional) variational formulation:

Problem 3.1. For𝕌T := L
2
(Ω) × H

0,Γ− (b; ∂T),𝕍T := H(b;T), given f ∈ 𝕍󸀠T, find the solution

(uT , θT) = (uT(f), θT(f)) ∈ 𝕌T
that, for all v ∈ 𝕍T, satisfies

bT(uT , θT; v) := ∫
Ω

(cv − b ⋅ ∇Tv − v divb)uT dx + ∫
∂T

[[vb]]θT ds = f(v).
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8 | W. Dahmen and R. P. Stevenson, Adaptive Strategies for Transport Equations

Here ∫∂T[[vb]]θT ds should read as the unique extension to a bounded bilinear form on H
0,Γ− (b; ∂T) ×𝕍T

(cf. [2, Lemma. 3.4]) of the integral over ∂T of theproduct of [[vb]]and θT,where for smooth v and x ∈ ∂K∩∂K󸀠,
[[vb]](x) := (vb|K ⋅ nK)(x) + (vb|K󸀠 ⋅ nK󸀠 )(x), and [[vb]](x) := (vb|K ⋅ nK)(x) for x ∈ ∂Ω ∩ ∂K. Note the introduc-
tion of the notation (uT , θT) for the exact solution of this variational problem.

In the following, we abbreviate ‖B−1‖L(L
2
(Ω),H

0,Γ− (b;Ω)), ‖(B∗)−1‖L(L2(Ω),H0,Γ+ (b;Ω)), ‖divb‖L∞(Ω), ‖c‖L∞(Ω),
and ‖c − divb‖L∞(Ω) as ‖B−1‖, ‖B−∗‖, ‖divb‖, ‖c‖, and ‖c − divb‖ respectively. The following result roughly
says that Problem 3.1 is uniformly inf-sup stable whenever the operators B,B∗ are isomorphisms on the

respective function space pairs.

Theorem 3.2 ([2, Theorem 3.1]). Assume that b ∈ L∞(div;Ω), c ∈ L∞(Ω) and that conditions (3.2), (3.3) hold.
Then, definingBT : 𝕌T → 𝕍󸀠T by (BT(u, θ))(v) := bT(u, θ; v), one hasBT ∈ Lis(𝕌T ,𝕍󸀠T) with

‖BT‖L(𝕌T ,𝕍󸀠T) ≤ 2 + ‖divb‖ + ‖c − divb‖,
‖B−1T ‖L(𝕍󸀠T ,𝕌T) ≤ √‖B

−∗‖2 + C̃2B,

where C̃B := (1 + ‖B−∗‖(1 + ‖c − divb‖))‖B−1‖(‖c − divb‖ + 1).

The additional independent variable θT introduced in the mesh-dependent variational formulation replaces

the trace uT |∂T which generally is not defined for uT ∈ L2(Ω). If f ∈ L
2
(Ω), however, or, equivalently,

uT ∈ H0,Γ− (b;Ω), then a reversed integration by parts shows that
uT = uex = uex(f) := B−1f, θT = uex|∂T .

3.3 Petrov–Galerkin

For any T ∈ 𝕋, let Ts ∈ 𝕋 be a refinement of T. We set

σ := sup
T∈𝕋

max

K󸀠∈T ( max

{K∈Ts:K⊂K󸀠} diam(K)diam(K󸀠) , diam(K
󸀠)), (3.4)

which later will be assumed to be sufficiently small. We also require that

inf

T∈𝕋
min

K󸀠∈T min

{K∈Ts : K⊂K󸀠} diam(K)diam(K󸀠) ≳ σ. (3.5)

Thismeans that wewill assume that any partition T ∈ 𝕋 is sufficiently fine, and, what is more important, that

Ts ∈ 𝕋 is a refinement of T such that the subgrid refinement factor (or sometimes called subgrid refinement

depth)

1

σ when going from any T to Ts is sufficiently large. In addition to the conditions from Theorem 3.2,

we assume henceforth

b|K ∈ W1

∞(div; K), c|K ∈ W1

∞(K) (K ∈ Ts), |b|−1 ∈ L∞(Ω).
Under these assumptions, we have the following result:

Theorem 3.3 ([2, Theorem 4.8]). Selecting, for some fixed degrees mw ≥ 1, and mu,

𝕌δT := ∏
K󸀠∈T Pmu (K󸀠) × (H0,Γ− (b;Ω) ∩ ∏

K󸀠∈T Pmw (K󸀠))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨∂Ts
⊂ 𝕌Ts ,

𝕍̄δTs
:= ∏

K∈Ts

Pmv (K) ⊂ 𝕍Ts ,

where mv ≥ max(mu ,mw) + 1, for σ > 0 small enough it holds that

inf

T∈𝕋
inf

0≠(u,θ)∈𝕌δ
T

sup

0≠v∈𝕍̄δ
Ts

bTs (u, θ; v)
‖(u, θ)‖𝕌Ts ‖v‖𝕍Ts

> 0,

only dependent on (upper bounds for) mu, mw, ϱ, ‖|b|−1‖L∞(Ω), ‖B−1‖L(L2(Ω),H0,Γ− (b;Ω)), supK∈Ts ‖b|K‖W1∞(div;K),
and supK∈Ts ‖c|K‖W1∞(K).¹
1 In the theorem in [2] the last two expressions read as ‖b‖W1∞(div;Ω) and ‖c‖W1∞(Ω), but an inspection of the proof shows that they
can be replaced by the current ones.
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Consequently, as we have seen in Section 2.1, the Petrov–Galerkin solution (uδT , θδT) ∈ 𝕌δT ⊂ 𝕌Ts of

bTs (uδT , θδT; v) = f(v) (v ∈ ran tδ|𝕌δT ),

where

⟨tδ(u, θ), v⟩𝕍Ts = bTs (u, θ; v) (v ∈ 𝕍̄δTs
),

is a near-best approximation to (uTs , θTs ) = B
−1
Ts
f ∈ 𝕌Ts from𝕌

δ
T .

Since the above stability is ensured by “some” fixed subgrid-refinement depth, the computational work

for computing the test-basis functions remains uniformly proportional to the dimension of the trial space and

in this sense scales optimally.While the actual depth is hard to quantify precisely the experiments considered

in [2] actually suggest that one or even no additional refinement suffice in these examples.

We emphasize that although the bilinear form bTs corresponds to the variational formulation of the trans-

port problemobtained by applying a piecewise integration by partswith respect to the “fine” partitionTs, and
the test search space 𝕍̄δTs

consists of piecewise polynomials with respect to Ts too, the applied trial space con-
sists of pairs of functions that are piecewise polynomial with respect to the “coarse” partition T, or that are

restrictions of such functions to ∂Ts, respectively.

Remark 3.4. Actually, in [2] we established a slightly stronger inf-sup condition. Defining

𝕌̆δT := ∏
K󸀠∈T Pmu (K󸀠) × (H0,Γ− (b;Ω) ∩ ∏

K󸀠∈T Pmw (K󸀠)) ⊂ L2(Ω) × H0,Γ− (b;Ω) =: 𝕌̆,
any (u, θ) ∈ 𝕌δT⊂ 𝕌Ts is of the form (u, w|∂Ts ) for some (u, w) ∈ 𝕌̆δT . In [2] it was shown that

inf

T∈𝕋
inf

0≠(u,w)∈𝕌̆δ
T

sup

0≠v∈𝕍̄δ
Ts

bTs (u, w|∂Ts ; v)
‖(u, w)‖𝕌̆‖v‖𝕍Ts

> 0, (3.6)

which implies Theorem 3.3 because of ‖(u, w)‖𝕌̆ ≥ ‖(u, w|∂Ts )‖𝕌Ts .

Knowing (3.6), the uniform boundedness of ‖BTs‖L(𝕌Ts ,𝕍
󸀠
Ts )

shows that ‖(u, w)‖𝕌̆ ≂ ‖(u, w|∂Ts )‖𝕌Ts

on 𝕌̆δT . In particular, this means that (u, w|∂Ts ) determines (u, w) ∈ 𝕌̆δT uniquely, so that equally well we can

speak of the Petrov–Galerkin solution (uδT , wδ
T) ∈ 𝕌̆

δ
T of

bTs (uδT , wδ
T |Ts ; v) = f(v) (v ∈ ran tδ|𝕌̆δ

T
), (3.7)

where, of course, tδ(u, w) := tδ(u, w|∂Ts ).

Remark 3.5. The trial spaces 𝕌̆δT are nested whenever the underlying partitions are nested. This plays an

important role for conceiving adaptive strategies.

Remark 3.6. Since a polynomial of degree ≥ 3 is not uniquely determined by its values on the boundary of

a triangle, the inf-sup stability (3.6) can apparently only hold for mw ≥ 3 when Ts is a true refinement of T.

In the latter formulation involving the lifted versionw of the skeleton quantity θ, the schemeprovides two

approximations for the solution of the transport problem, namely uδT ∈ L2(Ω) and a second onewδ
T ∈ H(b;Ω).

Remark 3.7. For a function in ∏K󸀠∈T Pmw (K󸀠) to be in H(b;Ω), it has to be continuous at any intersection

of an in- and outflow face of any K󸀠 ∈ T. To realize this condition, an obvious approach is to consider in the
definition of 𝕌̆δT or𝕌δT the spaceH

0,Γ− (b;Ω) ∩ C(Ω) ∩∏K󸀠∈T Pmw (K󸀠) instead ofH0,Γ− (b;Ω) ∩∏K󸀠∈T Pmw (K󸀠).
Obviously with this modification, Theorem 3.3 and Remark 3.4 remain valid, and so does the whole further

exposition.

4 A Posteriori Error Estimation
The central goal in this section is to establish the validity of (2.7) for locally uniformly finite-dimensional test

search spaces of the same form as used in Theorem 3.3. We will be able to do so modulo a data oscillation
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term. The principal difficulty lies in an intrinsic sensitivity of essential problemmetrics with respect to pertur-

bations in the convection field. To exploit the fact that we can identify optimal test spaces for locally constant

convection comes at the price of an elaborate perturbation analysis to be carried out in this section. In fact, it

involves two levels of perturbation, namely passing from general data b, c, f to piecewise polynomial ones,

and then to piecewise constant b on a subgrid. The passage to piecewise polynomial data is accounted for by

data oscillation terms. The piecewise polynomial structure of the datawith respect to the (coarser) trial gridT,

in turn, is needed to control the effect of the reduction to piecewise constant convection on the discrete level.

4.1 Main Results

Theorem 4.1. Assume (3.2), and let f ∈ L
2
(Ω). For T ∈ 𝕋, assume that for K󸀠 ∈ T, one has b|K󸀠 ∈ W1

∞(K󸀠)n,
c|K󸀠 ∈ W1

∞(K󸀠), and let b̃, c̃, ̃f denote the best piecewise polynomial approximations to b, c, f of degrees mb,
mc, and mf with respect to T in L∞(Ω)n-, L∞(Ω)-, or L2(Ω)-norm, respectively. Let

oscT(b, c, f) := max(‖f − ̃f ‖L
2
(Ω), (‖c − c̃‖L∞(Ω),max

K󸀠∈T diam(K󸀠)−1‖|b − b̃|‖L∞(K󸀠))‖f‖L
2
(Ω))

and
mv ≥ max(mw +max(mc , 1,mb − 1),mu +max(mc , 1),mf ). (4.1)

Then, with 𝕌̆δT and 𝕍̄δTs
as defined before, for fixed sufficiently small σ > 0 in (3.4), and for any (u, w) ∈ 𝕌̆δT for

whichmax(‖u‖L
2
(Ω), ‖w‖L

2
(Ω)) ≲ ‖f‖L

2
(Ω) (which, on account of (3.6), is valid for the Petrov–Galerkin solution),

it holds that
‖Rδ

Ts
‖𝕍Ts ≲ ‖(u

ex

, uex) − (u, w)‖𝕌̆ ≲ ‖Rδ
Ts
‖𝕍Ts + oscT(b, c, f), (4.2)

where Rδ
Ts
∈ 𝕍̄δTs

is defined by

⟨Rδ
Ts
, v⟩𝕍Ts = bTs (u, w|∂Ts ; v) − ∫

Ω

fv dx (v ∈ 𝕍̄δTs
) (4.3)

(cf. (2.8)). The constants absorbed by the ≲-symbols in (4.2) depend only on the polynomial degrees and on
(upper bounds for) ϱ, ‖|b|−1‖L∞(Ω), supK󸀠∈T ‖b‖W1∞(K󸀠)n , supK󸀠∈T ‖c‖W1∞(K󸀠), and ‖B−1‖L(L2(Ω),H0,Γ− (b;Ω)).
Note that for given degrees mu and mw, then, for sufficiently large mb, mc, and mf (and thus mv) and piece-

wise smooth b, c and f , oscT(b, c, f) can be reduced at a better rate in terms of #T than generally can be

expected for ‖(uex, uex) − (uδT , wδ
T)‖𝕌̆.

The proof of Theorem 4.1 will be based on the following proposition.

Proposition 4.2. In the situation of Theorem 4.1, let

b̃Ts (u, w; v) := ∑
K∈Ts

b̃K(u, w; v),

where
b̃K(u, w; v) := ∫

K

(c̃u + b̃ ⋅ ∇w)v + (w − u)(v div b̃ + b̃ ⋅ ∇v) dx.

Then, for any (u, w, ̃f ) ∈ 𝔻T := ∏K󸀠∈T Pmu (K󸀠) × Pmw (K󸀠) × Pmf (K󸀠), it holds that

‖w − u‖L
2
(Ω) + ‖b̃ ⋅ ∇Tw + c̃w − ̃f ‖L

2
(Ω)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=:ET(u,w, ̃f )

≲ sup

0≠v∈𝕍̄δ
Ts

b̃Ts (u, w; v) − ∫
Ω

̃f v dx
‖v‖𝕍Ts

, (4.4)

only dependent on the polynomial degrees and on (upper bounds for) ϱ, ‖|b|−1‖L∞(Ω), supK󸀠∈T ‖b‖W1∞(K󸀠)n , and
supK󸀠∈T ‖c‖W1∞(K󸀠).
Remark 4.3. In a strict sense the quantities Rδ

Ts
, defined in (4.3) can, for general coefficients b, c, not be

computed exactly. Under the presumption that the accuracy of quadrature can be adjusted, this issue is usu-
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ally neglected, as we did in (4.2) above. Since quadrature is in essence based on replacing the integrand by

a local polynomial approximation, anaturalwayof incorporating this issuehere is toworkwith the analogous

projected lifted residuals with respect to the perturbed data

⟨R̃δ
Ts
, v⟩𝕍Ts = b̃Ts (u, w|∂Ts ; v) − ∫

Ω

̃f v dx (v ∈ 𝕍̄δTs
),

which can be computed exactly. Under the assumptions of Theorem 4.1 one then obtains the following

estimates:

‖R̃δ
Ts
‖𝕍Ts ≲ ‖(u

ex

, uex) − (u, w)‖𝕌̆ + oscT(b, c, f) ≲ ‖R̃δ
Ts
‖𝕍Ts + oscT(b, c, f). (4.5)

Sections 4.2–4.4 will be devoted to the proof of Proposition 4.2. In the course of these developments it will

be seen that the residual ET(u, w, ̃f ) is actually equivalent to ‖R̃δ
Ts
‖𝕍Ts and may therefore also be used as

error indicator.

Assuming for the moment the validity of Proposition 4.2, we can give the proof of Theorem 4.1 and

Remark 4.3.

Proof of Theorem 4.1. Applications of the triangle inequality show that

‖(uex, uex) − (u, w)‖𝕌̆ ≂ ‖u − w‖L2(Ω) + ‖uex − w‖H(b;Ω),

and it holds that

‖uex − w‖H(b;Ω) ≤ ‖B−1‖L(L
2
(Ω),H

0,Γ− (b;Ω))‖Bw − f‖L2(Ω).
By using the inverse inequality on piecewise polynomials of degree mw, and ‖w‖L

2
(Ω) ≲ ‖f‖L

2
(Ω), we infer

that

󵄨󵄨󵄨󵄨‖Bw − f‖L2(Ω) − ‖b̃ ⋅ ∇Tw + c̃w − ̃f ‖L2(Ω)
󵄨󵄨󵄨󵄨 ≲ oscT(b, c, f).

An application of Proposition 4.2 gives

‖w − u‖L
2
(Ω) + ‖b̃ ⋅ ∇Tw + c̃w − ̃f ‖L

2
(Ω) ≲ sup

0≠v∈𝕍̄δ
Ts

b̃Ts (u, w; v) − ∫
Ω

̃f v dx
‖v‖𝕍Ts

.

Weshownext that the right-hand sidedeviates from theanalogousunperturbedquantity onlybyoscT(b, c, f).
To that end, it holds that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

fv dx − ∫
Ω

̃f v dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ‖f − ̃f ‖L

2
(Ω)‖v‖L

2
(Ω),

and

󵄨󵄨󵄨󵄨bTs (u, w|∂Ts ; v) − b̃Ts (u, w; v)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∑
K∈Ts

∫
K

((c − c̃)u + (b − b̃) ⋅ ∇w)v + (w − u)(v div(b − b̃) + (b − b̃) ⋅ ∇v) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≲ oscT(u, w, f)‖v‖L
2
(Ω),

where we used that for K󸀠 ∈ T,

‖b − b̃‖W1∞(K󸀠)n ≲ diam(K󸀠)−1‖b − b̃‖L∞(K󸀠)n (4.6)

(cf., e.g., [3] for the argument); ‖∇v‖L
2
(K)n ≲ diam(K)−1‖v‖L

2
(K) for K ∈ Ts; and diam(K)−1 ≲ diam(K󸀠)−1 for

K ⊂ K󸀠 by (3.5). We conclude that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
sup

0≠v∈𝕍̄δ
Ts

b̃Ts (u, w; v) − ∫
Ω

̃f v dx
‖v‖𝕍Ts

− sup

0≠v∈𝕍̄δ
Ts

bTs (u, w; v) − ∫
Ω

fv dx
‖v‖𝕍Ts

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≲ oscT(b, c, f).

From

‖Rδ
Ts
‖𝕍Ts = sup

0≠v∈𝕍̄δ
Ts

bTs (u, w; v) − ∫
Ω

fv dx
‖v‖𝕍Ts

≲ ‖(uex, uex) − (u, w)‖𝕌̆,

the assertion of Theorem 4.1 follows. The above argument also shows that ‖R̃δ
Ts
− Rδ

Ts
‖𝕍Ts ≲ oscT(b, c, f)

which confirms (4.5) as well.
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Remark 4.4. Estimate (4.6) together with ‖b − b̃‖L∞(K󸀠)n ≲ diam(K󸀠)|b|W1∞(K󸀠)n implies that

|b̃|W1∞(K󸀠)n ≲ |b|W1∞(K󸀠)n
which, as the analogous |c̃|W1∞(K󸀠) ≲ |c|W1∞(K󸀠), will be often used in the following.
4.2 Lifting Modified Residuals

As in [2] the verification of uniform inf-sup stability (4.4) relies on judiciously perturbing exact Riesz lifts

corresponding to certain perturbed bilinear forms. To describe this, given T ∈ 𝕋, let we define for K ∈ Ts ∪ T,
the constants

b̆K := |K|−1 ∫
K

b̃ dx, d̆K := |K|−1 ∫
K

div b̃ dx

and for T ∈ 𝕋, let b̆ ∈ L∞(Ω)n be given by

b̆|K := b̆K (K ∈ Ts).

On 𝕌̆δT × 𝕍̄
δ
Ts

we introduce yet anothermodified bilinear form

b̆Ts (u, w; v) := ∑
K∈Ts

b̆K(u, w; v), (4.7)

where the summands b̆K(u, w; v) are defined by

b̆K(u, w; v) := ∫
K

(b̃ ⋅ ∇u + c̃u + d̆K(w − u))v dx + ∫
∂K

b̆K ⋅ nK(w − u)v ds. (4.8)

Note that b̆ and d̆ are piecewise constant with respect to Ts, whereas b̃ and c̃ are piecewise polynomial with

respect to T. This form is only introduced for analysis purposes since, as it turns out, it allows us to determine

local lifted residuals exactly. Their use requires then yet another layer of perturbation arguments.

Remark 4.5. The particular form of the modified bilinear form (4.7)–(4.8), in particular the integrand in the

boundary integral over ∂K, is to ensure that v 󳨃→ b̆K(u, w; v) is in H(b̆K; K)󸀠.

The proof of Proposition 4.2 is based on the following steps:

(I) We will construct an

̆R̆ = ̆R̆Ts (u, w; ̃f ) ∈ 𝕍̄δTs
such that

b̆Ts (u, w; ̆R̆) − ∫
Ω

̃f ̆R̆ dx ≳ ET(u, w, ̃f )‖ ̆R̆‖𝕍Ts ,

of course, uniformly in T ∈ 𝕋 and (u, w, ̃f )∈ 𝔻T .

(II) Starting from the simple decomposition

b̃Ts (u, w; ̆R̆) − ∫
Ω

̃f ̆R̆ dx = b̆Ts (u, w; ̆R̆) − ∫
Ω

̃f ̆R̆ dx + b̃Ts (u, w; ̆R̆) − b̆Ts (u, w; ̆R̆),

we will show for the second summand that

|b̃Ts (u, w; ̆R̆) − b̆Ts (u, w; ̆R̆)| ≤ δET(u, w, ̃f )‖ ̆R̆‖𝕍Ts

holds for a sufficiently small δ > 0, depending on the inf-sup constant for the first summand.

As the construction of the modified bilinear form b̆Ts from b̃Ts builds on the approximation of b̃ by b̆, the
space H(b̆;Ts) = ∏K∈Ts H(b̆K; K), equippedwith the corresponding product norm ‖ ⋅ ‖H(b̆;Ts)

, will play its role

as a space “nearby”𝕍Ts = H(b;Ts). In the next proposition, we equip H(b̆K; K)with an equivalent Hilbertian
norm that, as we will see, gives rise to a local Riesz lift H(b̆K; K)󸀠 → H(b̆K; K) of the residual of the modified

bilinear form that can be determined explicitly.
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Proposition 4.6 ([2, Remark 4.5]). For diam(K) ≤ |b̆K |, andwith r(s) denoting the distance from s ∈ ∂K− to ∂K+
along b̆K , the scalar product

⟨⟨v, z⟩⟩H(b̆K ;K) := ⟨∂b̆K v, ∂b̆K z⟩L2(K) + ∫
∂K− v(s)z(s)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
b̆K
|b̆K |
⋅ nK)(s)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
r(s) ds

gives rise to a (uniform) equivalent norm ||| ⋅ |||H(b̆K ;K) on H(b̆K; K).

The corresponding global versions read

⟨⟨ ⋅ , ⋅ ⟩⟩H(b̆;Ts)
= ∑

K∈Ts

⟨⟨ ⋅|K , ⋅|K⟩⟩H(b̆K ;K),

and so ||| ⋅ |||H(b̆;Ts)
:= √∑K∈Ts ||| ⋅|K |||

2

H(b̆K ; K).

For the next observation it is convenient to use the shorthand notations

μ := w − u, λ := ∂b̃w + c̃w − ̃f , γ := λ − (∂b̃μ + c̃μ + d̆Kμ),

so that, in particular, γ = ∂b̃u + c̃u − ̃f − d̆K(w − u). Note also that

ET(u, w, ̃f )2 ≂ ∑
K∈Ts

‖μ‖2L
2
(K) + ‖λ‖2L

2
(K).

For smooth u, w, and ̃f on K, the solution R̆K = R̆K(u, w; f) ∈ H(b̆K; K) of the variational problem

⟨⟨R̆K , v⟩⟩H(b̆K ;K) = b̆K(u, w; v) − ∫
K

̃f v dx (v ∈ H(b̆K; K)), (4.9)

is the (strong) solution of

{{{{
{{{{
{

−∂2
b̆K
R̆K = γ on K,

∂b̆K R̆K − r|b̆K |−1R̆K = μ on ∂K−,
∂b̆K R̆K = μ on ∂K+.

This R̆K is the exact Riesz lift of the local modified residual

v 󳨃→ b̆K(u, w|∂K , v) − ∫
K

̃f v dx ∈ H(b̆K; K)󸀠,

with H(b̆K; K) being equipped with ⟨⟨ ⋅ , ⋅ ⟩⟩H(b̆K ;K).
To identify next R̆K exactly, let (x1, . . . , xn) denote Cartesian coordinates on K with the first basis vector

being equal to

b̆K
|b̆K |

. For x = (x, y) ∈ K, let x±(y) be such that (x±(y), y) ∈ ∂K±, see Figure 1.

b̆ = |b̆|e1

x

y

K

(x−(y), y)
(x−(y), y)

(x+(y), y)
K

(x+(y), y)
(x+(y), y)

(x−(y), y)
(x−(y), y)

(x+(y), y)
Figure 1: x± on a triangle K with two (left) or one (right) inflow boundaries. The enclosing triangle K̄ and ̄x− will get their meaning
in Section 4.3.
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The solution R̆K reads then as

R̆K(x, y) = − |b̆K |−2
x

∫
x−(y)

z

∫
x−(y) γ(q, y) dq dz + (|b̆K |

−1μ(x+(y), y) + |b̆K |−2
x+(y)
∫

x−(y) γ(q, y) dq)(x − x−(y))

+
∫
x+(y)
x−(y) (∂b̆Kμ + γ)(q, y) dq

x+(y) − x−(y)
,

and is seen to be piecewise polynomial over K when γ, μ are polynomial over K.

4.3 Approximate Lifted Residuals

Next we define an approximation

̆R̆K to R̆K by discarding higher order terms. Whereas, for polynomial u, w,
̃f , b̃, and c̃ on K, R̆K is only piecewise polynomial with respect to a partition of K into subsimplices (indicated

by the dotted lines in Figure 1) that depends on the field b̆K, ̆R̆K will always be polynomial on K.
The reason for introducing

̆R̆K is that b̆⊥ ⋅ ∇R̆K can be arbitrarily large, which would not allow us to

performStep (II) onpage12of our proof. This is causedby the fact that the subdivision of K into the aforemen-

tioned subsimplices can have arbitrarily small angles, and thus impedes a useful application of the inverse

(or Bernstein) inequality to R̆K .

To define

̆R̆K, first we construct a polyhedral set K̄ that contains K as follows. The number of inflow faces

of K is between 1 and n − 1, where n is the spatial dimension. Let F be the inflow face whose normal makes

the smallest angle with b̆K, and let v denote the vertex of K that does not belong to F. Finally, let HF denote

the (n − 1)-hyperplane containing F. The “shadow” of K on HF, i.e., F̄ := {x ∈ HF : {x + tb̆K : t ∈ ℝ} ∩ K ̸= 0},
is an (n − 1)-dimensional polyhedron containing F. Let K̄ denote the convex hull of v and F̄, cf. Figure 1 for
n = 2. Then, by construction, K̄ has only one inflow face ∂K̄− := F̄, and K ⊆ K̄ with equality if and only if K
has only one inflow face, namely ∂K− = F.

Forx = (x, y) ∈ K̄ ⊃ K, letx 󳨃→ x̄−(y) ∈ P1
(K) be the linear functionwith (x̄−(y), y) ∈ ∂K̄−, i.e., x̄−(y) agrees

with x−(y) on F. Then we have

diam(K̄) ≲ diam(K), (4.10)

|x̄−|W1∞(K̄) ≲ 1, (4.11)

where both constants depend only on (an upper bound for) ϱK .
We define the approximate lifted local residual ̆R̆K = ̆R̆K(u, w; f) ∈ Pmv (K) (cf. (4.1)) by

̆R̆K(x, y) := |b̆K |−1μ(x̄−(y), y)(x − x̄−(y)) + (λ − (c̃ + d̆K)μ)(x̄−(y), y). (4.12)

Note that ∂b̆K
̆R̆K = μ(x̄−(y), y).

The following lemmas show how

̆R̆K relates on the one hand to the exact Riesz lift R̆K and on the other

hand to the “residuals” μ = w − u, λ = ∂b̃w + c̃w − ̃f on K.

Lemma 4.7. For diam(K) ≤ |b̆K |, it holds that

‖R̆K − ̆R̆K‖H(b̆K ;K) ≲ |b̆K |
−1
diam(K)(‖μ‖H(b̆K ;K̄) + ‖λ‖H(b̆K ;K̄)) + diam(K)‖μ‖H1(K),

with a constant depending only on (upper bounds for) ‖c‖W1∞(K), |b|W1∞(K)n , and ϱK .
Proof. We write R̆K − ̆R̆K as

|b̆K |−2((x − x−(y))
x+(y)
∫

x−(y) γ(q, y) dq −
x

∫
x−(y)

z

∫
x−(y) γ(q, y) dq) (4.13)

+ |b̆K |−1(μ(x+(y), y)(x − x−(y)) − μ(x̄−(y), y)(x − x̄−(y))) (4.14)

+
∫
x+(y)
x−(y) (∂b̆Kμ + γ)(q, y) dq

x+(y) − x−(y)
− (λ − (c̃ + d̆K)μ)(x̄−(y), y). (4.15)
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Writing μ(x+(y), y) as μ(x, y) + |b̆K |−1 ∫
x+(y)
x ∂b̆Kμ(q, y) dq, and similarly for μ(x̄−(y), y), and using that

diam(K) ≤ |b̆K |, one infers that the L2(K)-norm of (4.14) is

≲ |b̆K |−1 diam(K̄)‖μ‖L
2
(K) + |b̆K |−2 diam(K̄)2‖∂b̆Kμ‖L2(K̄)

≲ |b̆K |−1 diam(K)‖μ‖H(b̆K ;K̄),

with a constant only depending on ϱK .
The L

2
(K)-norm of (4.13) in turn is

≲ |b̆K |−2 diam(K)2‖γ‖L
2
(K)

≤ |b̆K |−2 diam(K)2(‖λ‖L
2
(K) + (‖c̃‖L∞(K) + |d̆K |)‖μ‖L2(K) + ‖|b̃|‖L∞(K)|μ|H1(K))

≲ |b̆K |−1 diam(K)(‖λ‖L
2
(K) + ‖μ‖L

2
(K)) + diam(K)|μ|H1(K),

with a constant depending only on (upper bounds for) ‖c̃‖L∞(K) ≲‖c‖L∞(K), and ‖div b̃‖L2(K) ≲ |b̃|W1∞(K)n ≲
|b|W1∞(K)n , where we have used that ‖|b̃ − b̆K |‖L∞(K) ≲ diam(K)|b̃|W1∞(K)n and diam(K) ≤ |b̆K |.

Using that ∂b̆Kμ + γ = λ − (c̃ + d̆K)μ + (b̆K − b̃) ⋅ ∇μ, we find that the L2(K)-norm of (4.15) is bounded by

a constant multiple of

|b̆K |−1 diam(K̄)‖∂b̆K (λ − (c̃ + d̆K)μ)‖L2(K̄) + |b̃|W1∞(K)n diam(K)|μ|H1(K)

≲ |b̆K |−1 diam(K)(‖∂b̆K λ‖L2(K̄) + ‖μ‖H(b̆K ;K̄)) + diam(K)‖μ‖H1(K),

only dependent on (upper bounds for) ‖c̃‖W1∞(K) ≲‖c‖W1∞(K), |b|W1∞(K)n , and ϱK .
Next, we write

∂b̆K (R̆K(x, y) − ̆R̆K(x, y)) = μ(x+(y), y) + |b̆K |−1
x+(y)
∫
x

γ(q, y) dq − μ(x̄−(y), y).

Its L
2
(K)-norm is

≲ |b̆K |−1 diam(K)(‖∂b̆Kμ‖L2(K̄) + ‖γ‖L2(K))

≲ |b̆K |−1 diam(K)(‖μ‖H(b̆K ;K̄) + ‖λ‖L2(K)),

only dependent on (upper bounds for) ‖c‖L∞(K), ‖b‖W1∞(K)n , and ϱK . By collecting the derived upper bounds,
the proof is completed.

We end this subsection with another technical lemma which will play a key role to prove Step (I) on page 12.

In fact, using that λ and μ are piecewise polynomial on T, inverse inequalities will allow us to show that the

terms involving first order derivatives can be kept small relative to the other ones by choosing the subgrid

depth sufficiently large. Then the next lemma in conjunction with the previous Lemma 4.7 already hints at

the fact that ET(u, w, ̃f ) provides a lower bound for ‖R̆‖H(b̆;Ts)
. It then remains to switch to the correct norm

to establish Step (I), see Corollary 4.9 below.

Lemma 4.8. For diam(K) ≤ |b̆K |, it holds that

‖ ̆R̆K‖2H(b̆K ;K)
+ diam(K)2(|μ|2H1(K̄) + |λ|

2

H1(K̄)) ≳ ‖λ‖
2

L
2
(K) + ‖μ‖2L

2
(K),

where the constant depends only on (upper bounds for) ‖c‖L∞(Ω), |b̃|W1∞(Ω)n , and ϱK .
Proof. By diam(K̄) ≲ diam(K) ≤ |b̆K |, similarly as in the proof of Lemma 4.7, one infers that

‖ ̆R̆K − λ‖L
2
(K) ≲ ‖μ‖L

2
(K) + diam(K)(|μ|H1(K̄) + |λ|H1(K̄))

and

‖∂b̆K
̆R̆K − μ‖L

2
(K) ≲ diam(K)|μ|H1(K̄),

with constants depending only on (upper bounds for) ‖c‖L∞(Ω), |b̃|W1∞(Ω)n , and ϱK .
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By two applications of Young’s inequality, we infer that

‖ ̆R̆K‖2L
2
(K) + ‖∂b̆K

̆R̆K‖2L
2
(K) ≥ (1 − η)‖λ‖2L

2
(K) − (η−1 − 1)‖ ̆R̆K − λ‖2L

2
(K) +

1

2

‖μ‖2L
2
(K) − (2 − 1)‖∂b̆K

̆R̆K − μ‖2L
2
(K).

By selecting the constant η ∈ (0, 1) sufficiently close to 1, the proof is completed.

4.4 Proof of Proposition 4.2

So far we have not used that u, w, ̃f , b̃, and c̃ are piecewise polynomial with respect to T, whilst b̆Ts ( ⋅ , ⋅ ) is
a “broken” bilinear formwith respect to a sufficiently refinedpartitionTs, and furthermore that |b|−1 ∈ L∞(Ω).
These facts are going to be used in the following.

Setting

D := sup
K∈T

sup

0≠b∈W1∞(K)n
‖|b̆K − b|‖L∞(K)

diam(K)|b|W1∞(K)n (<∞),
let

σ̄ > 0

be such that for σ ∈ (0, σ̄] and T ∈ 𝕋, Ts is sufficiently fine to ensure that

diam(K) ‖|b|−1‖L∞(K)max (1, D|b|W1∞(K)n ) ≤ 1
2

(K ∈ Ts). (4.16)

Then for any K ∈ Ts, we have

|b̆K | ≥ ‖|b|−1‖−1L∞(K) − ‖|b̆K − b|‖L∞(K)
≥ ‖|b|−1‖−1L∞(K) − D diam(K)|b|W1∞(K)n
≥
1

2

‖|b|−1‖−1L∞(K) ≥ max(
1

2

‖|b|−1‖−1L∞(Ω), diam(K)),
where we have used (4.16).

For K ∈ T, and k ≥ ℓ ∈ ℕ
0
, we will make repeated use of the inverse inequality

| ⋅ |Hk(K) ≲ diam(K)−(k−ℓ)‖ ⋅ ‖Hℓ(K) on Pm(K),

where the constant depends only on m, ϱK, and k.

Corollary 4.9. We define R̆ and ̆R̆ by R̆|K := R̆K and ̆R̆|K := ̆R̆K for K ∈ Ts. Then one has for (u, w, f) ∈ 𝔻T ,
σ ∈ (0, σ̄] that
(i) ‖R̆ − ̆R̆‖H(b̆;Ts)

≲ σET(u, w, ̃f ),
(ii) ‖ ̆R̆‖H(b̆;Ts)

≳ ET(u, w, ̃f ), provided that σ ∈ (0, σ0] with σ0 ∈ (0, σ̄] being sufficiently small.
Both constants hidden in the ≲ and ≳ symbols, and the upper bound for σ

0
depend only on the quantities

mentioned in the statement of Proposition 4.2.

Proof. For K󸀠 ∈ T and p ∈ Pm(K󸀠), we have that

∑
{K∈Ts : K⊂K󸀠} |p|2H1(K̄) ≂ ∑

{K∈Ts : K⊂K󸀠} |p|2H1(K) = |p|
2

H1(K󸀠) ≲ diam(K󸀠)−2‖p‖2L
2
(K󸀠), (4.17)

with a constant depending on ϱ and m. By applying this type of estimate to λ and μ, preceded by an applica-
tion of Lemma 4.7 whilst using |b̆K |−1 ≤ 2‖|b|−1‖L∞(Ω) and |b̆K | ≤ ‖b̃‖L∞(K) ≤ 2‖b‖L∞(Ω), we obtain

‖R̆ − ̆R̆‖H(b̆;Ts)
≲ σET(u, w, ̃f ).

By summing the result of Lemma 4.8 over K ∈ Ts and applying (4.17) with p = μ and p = λ, we infer that for
σ small enough, ‖ ̆R̆‖H(b̆;Ts)

≳ ET(u, w, ̃f ).

The next proposition is almost Step (I) on page 12, except that we still have to replace ‖ ̆R̆‖H(b̆;Ω) by ‖ ̆R̆‖𝕍Ts ,

which will be done using the subsequent Lemma 4.11 (b).
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Proposition 4.10. There exist a κ > 0 and a σ
1
∈ (0, σ

0
], that depend only on the quantities mentioned in the

statement of Proposition 4.2, such that for σ ∈ (0, σ
1
], and any (u, w, f) ∈ 𝔻T ,

b̆Ts (u, w; ̆R̆) − ∫
Ω

f ̆R̆ dx ≥ κET(u, w, ̃f )‖ ̆R̆‖H(b̆;Ts)
.

Proof. With R̆|K := R̆K(u, w; f), its definition in (4.9) shows that

b̆Ts (u, w; ̆R̆) − ∫
Ω

f ̆R̆ dx = ∑
K∈Ts

⟨⟨R̆K ,
̆R̆K⟩⟩H(b̆K ;K).

Thanks to the equivalence of norms from Proposition 4.6, an application of Corollary 4.9((i)) shows that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∑
K∈Ts

⟨⟨R̆K − ̆R̆K ,
̆R̆K⟩⟩H(b̆K ;K)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≲ σET(u, w, ̃f )‖ ̆R̆‖H(b̆;Ts)

.

For σ being sufficiently small, an application of Corollary 4.9 (ii) shows that

||| ̆R̆|||2H(b̆;Ts)
≂ ‖ ̆R̆‖2H(b̆;Ts)

≳ ET(u, w, ̃f )‖ ̆R̆‖H(b̆;Ts)
,

by which the proof is easily completed.

Lemma 4.11. For (u, w, f) ∈ 𝔻T , σ ∈ (0, σ0], it holds that
(a) ∑K∈Ts diam(K)

2‖ ̆R̆K‖2H1(K) ≲ σ2‖
̆R̆‖2H(b̆;Ω),

(b) |‖ ̆R̆‖H(b̆;Ts)
− ‖ ̆R̆‖𝕍Ts | ≲ σ‖

̆R̆‖H(b̆;Ts)
,

depending only on the quantities mentioned in the statement of Proposition 4.2.

Proof. (a) For K ∈ Ts, we split ̆R̆K = ̆R̆K,1 + ̆R̆K,2 + ̆R̆K,3 defined by

̆R̆
1,K(x, y) := |b̆K |−1μ(x̄−(y), y)(x − x̄−(y)),
̆R̆
2,K(x, y) := (λ − (c̃ + d̆K󸀠 )μ)(x̄−(y), y),
̆R̆
3,K(x, y) := (d̆K󸀠 − d̆K)μ(x̄−(y), y),

where K󸀠 ∈ T is such that K ⊂ K󸀠. Correspondingly, we split ̆R̆ = ̆R̆
1
+ ̆R̆

2
+ ̆R̆

3
.

Since

̆R̆
1,K vanishes on ∂K̄−, an application of Poincaré’s inequality on each streamline following b̆K

shows that (cf. possibly [2, Proposition 4.3])

‖ ̆R̆
1,K‖L

2
(K̄) ≲ |b̆K |

−1
diam(K̄)‖∂b̆K

̆R̆
1,K‖L

2
(K̄).

From the fact that

̆R̆
1,K is polynomial, diam(K̄) ≲ diam(K), and ∂b̆K

̆R̆
1,K = ∂b̆K

̆R̆K, by an application of the

inverse inequality we obtain

∑
K∈Ts

diam(K)2‖ ̆R̆
1,K‖2H1(K) ≲ ∑

K∈Ts

|b̆K |−2 diam(K)2‖∂b̆K
̆R̆K‖2L

2
(K) ≲ σ2‖ ̆R̆‖2H(b̆;Ω).

Recalling from (4.11) that |x̄−|W1∞(K) ≲ 1, and since λ − (c̃ + d̆K󸀠 )μ is polynomial on K, we have

‖(x, y) 󳨃→ (λ − (c̃ + d̆K󸀠 )μ)(x̄−(y), y)‖H1(K) ≲ ‖λ − (c̃ + d̆K󸀠 )μ‖H1(K).

Now using that for T ∋ K󸀠 ⊃ K, λ − (c̃ + d̆K󸀠 )μ is polynomial on K󸀠, an application of (4.17) shows that

∑
K∈Ts

diam(K)2‖ ̆R̆
2,K‖2H1(K) ≲ σ

2ET(u, w, ̃f )2 ≲ σ2‖ ̆R̆‖2H(b̆;Ts)
,

where the last inequality follows from Corollary 4.9 (ii).

Again by |x̄−|W1∞(K) ≲ 1, we have ‖ ̆R̆3,K‖H1(K) ≲ |b̃|W1∞(K󸀠)‖μ‖H1(K), which together with (4.17) yields that

∑
K∈Ts

diam(K)2‖ ̆R̆
3,K‖2H1(K) ≲ ∑

K∈Ts

diam(K)2‖μ‖2L
2
(K) ≲ σ2‖ ̆R̆‖2H(b̆;Ts)

.

by Corollary 4.9 (ii), which completes the proof of (a).
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(b) From the triangle inequality, and ‖|b̆K − b|‖L∞(K) ≤ D diam(K)|b|W1∞(K)n , we infer that
󵄨󵄨󵄨󵄨‖
̆R̆‖H(b̆;Ts)

− ‖ ̆R̆‖𝕍Ts
󵄨󵄨󵄨󵄨 ≲ √ ∑

K∈Ts

diam(K)2| ̆R̆K |2H1(K) ≲ σ‖
̆R̆‖H(b̆;Ω)

by (a), which is (b).

Proposition 4.10 together with Lemma 4.11 (b) complete the proof of

b̆Ts (u, w; ̆R̆) − ∫
Ω

f ̆R̆ dx ≥ κET(u, w, ̃f )‖ ̆R̆‖𝕍Ts

for sufficiently small σ > 0, being Step (I) in our proof of Proposition 4.2.
Step (II) is implied by the next result when we use that ‖u − w‖L

2
(Ω) ≤ ET(u, w, ̃f ).

Proposition 4.12. For (u, w, f) ∈ 𝔻T , σ ∈ (0, σ0] sufficiently small, it holds that

|b̃Ts (u, w; ̆R̆) − b̆Ts (u, w; ̆R̆)| ≲ σ‖u − w‖L2(Ω)‖ ̆R̆‖𝕍Ts .

Both the upper bound for σ and the constant hidden in the ≲-symbol depend only on the quantities mentioned
in the statement of Proposition 4.2.

Proof. For K ∈ Ts and sufficiently smooth u, w, and v, it holds that

b̃K(u, w; v) = ∫
K

(c̃u + b̃ ⋅ ∇u)v dx + ∫
∂K

b̃ ⋅ nK(w − u)v ds,

and so

b̃K(u, w; v) − b̆K(u, w; v) = −∫
K

d̆K(w − u)v dx + ∫
∂K

(b̃ − b̆K) ⋅ nK(w − u)v ds.

With z := (w − u)v, and z̄ := |K|−1 ∫K z dx, recalling that d̆K = |K|−1 ∫K div b̃ dx, an application of the trace

theorem shows that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−∫
K

d̆Kz dx + ∫
∂K

(b̃ − b̆K) ⋅ nKz ds
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−∫
K

d̆K(z − z̄) dx + ∫
∂K

(b̃ − b̆K) ⋅ nK(z − z̄) ds
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≲ ‖div b̃‖L∞(K)‖z − z̄‖L1(K) + ‖|b̃ − b̆K |‖L∞(K)|z|W1

1

(K)

≲ diam(K)|z|W1

1

(K)

≲ diam(K)(‖w − u‖L
2
(K)|v|H1(K) + ‖v‖L

2
(K)|w − u|H1(K)).

By substituting v = ̆R̆K, summing over K ∈ Ts, and applying the Cauchy–Schwarz inequality, we find that

|b̃Ts (u, w; ̆R̆) − b̆Ts (u, w; ̆R̆)| ≲ ‖w − u‖L2(Ω)√ ∑
K∈Ts

diam(K)2| ̆R̆|2H1(K) + ‖
̆R̆‖L

2
(Ω)√ ∑

K∈Ts

diam(K)2|u − w|2H1(K)

≲ σ‖u − w‖L
2
(Ω)‖ ̆R̆‖H(b̆;Ts)

where we have applied (4.17) and Lemma 4.11 (a). Finally, for sufficiently small σ, in the last expression

‖ ̆R̆‖H(b̆;Ts)
can be replaced in view of Lemma 4.11 (b) by ‖ ̆R̆‖𝕍Ts .

Since we have performed Steps (I)–(II) on page 12, the proof of Proposition 4.2 is complete.

5 Effective Mark and Refinement Strategy for
an Adaptive DPG Method

The key common ingredient of an adaptive solution strategy for a PDE is a collection of local error indica-

tors associated with the current partition T underlying the discretization. While an individual indicator does
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not characterize the actual local error the accumulation of all indicators is equivalent to the global current

approximation error. Based on the error indicators one contrives amarking strategywhich identifies a subset
M ⊂ T of marked cells to be refined in the subsequent adaptive step. The perhaps most prominent marking

strategy is based on a bulk criterion, sometimes called “Dörfler Marking” where one collects (a possibly small

number of) cells for which the accumulated combined indicators capture at least a given fixed portion of

the global a posteriori error bound. While this is usually perceived as a heuristically very plausible strategy,

a rigorous convergence and complexity analysis is actually quite intricate. It typically comes in two stages,

namely establishing first that such a strategy reduces the current error by a fixed ratio, and second to esti-

mate the number of new degrees of freedom incurred by the refinement step. This paradigm has been studied

extensively and is by now well understood for problems of elliptic type where the dominating effect is diffu-

sion. The first step of error reduction hinges on (near-)Galerkin orthogonality and is greatly helped by the fact
that the common residual based error indicators contain as an explicit factor a power of the respective cell

diameter. Thus, a refinement does decrease the indicators.

In the current scenario of transport equations the situation looks similar at the first glance. Using

(u, w) ∈ 𝕌̆δT as primal unknowns, we have a hierarchy of nested trial spaces at hand, see Remark 3.5. Due to

the product structure of the test search spaces we have computable local error indicators associated with the

current discretization whose sum is, thanks to Theorem 4.1, modulo data oscillation uniformly equivalent

to the error in the trial metric. This suggests using a similar bulk criterion in a mark-and-refine framework to
drive adaptive refinements which is, in fact our choice in the subsequent discussion.

A closer look reveals, however, some essential distinctions which may actually nourish some doubts

about whether such strategies work in a transport problem just as well as in a diffusion problem. The error

indicators in the form of projected lifted residuals depend of course on themesh defining the DPG scheme but

they do not contain any local mesh size factor that ensures a decay under refinement. In contrast to the usual

way of analyzing residual based a posteriori error estimators we are able to deduce a fixed error reduction rate

only when starting from a Petrov–Galerkin solution using what one may call Petrov–Galerkin orthogonality
in place of Galerkin orthogonality. Moreover, there is actually an infinite family of equivalent a posteriori

bounds obtained for any refinement of the current partition arising from different mesh-dependent Riesz

liftings. A key observation, which we heavily exploit and which may actually be of interest in its own right, is

the interrelation of these error indicators with yet another completelymesh-independent variant representing
the residual for a least squares formulation.

As indicated by these comments the crucial issue for adaptivity in the context of transport equations is

the effectivity of a given mark and refinement strategy in the sense of a guaranteed error reduction rate. The

basic structure of a subsequent complexity analysis can instead be expected to be less problem specific. We

therefore confine the subsequent discussion entirely to the issue of effectivity which we are currently only

able to fully establish in one spatial dimension n = 1.
For n > 1we will employ a downstream enriched refinement strategy where additionally cells downwind

from the marked cells are refined as well. Our derivation of effectivity in this case will partly be based on

a conjecture.

5.1 Setting and Results

In view of the already considerable level of technicality we confine the subsequent discussion to the case

of a constant convection field b, and a piecewise constant reaction coefficient c with respect to the current

partition T for the trial space. In an adaptive setting the latter means that necessarily c is piecewise constant
with respect to the initial partition T⊥, i.e., we always assume that

b(x) ≡ b, c = (cK󸀠 )K󸀠∈T⊥ ∈ P0
(T⊥). (5.1)

Given (u, w) ∈ 𝕌̆δT and f ∈ 𝔽δT, from (4.3) recall the definition of the projected lifted residual

Rδ
Ts
= Rδ

Ts
(u, w; f) = (Rδ

K)K∈Ts ∈ 𝕍̄
δ
Ts
⊂ 𝕍Ts .
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For a collection of marked cellsM ⊂ T, we set

Ts(M) = {K ∈ Ts : K ⊂ ⋃
K󸀠∈M K󸀠}

for the corresponding portion of the test-subgrid with the convention Ts = Ts(T). We use the notation Rδ
Ts(M)

to denote (Rδ
K)K∈Ts(M).

Aside from a partition T and its refinement Ts, we consider a refined partition T̃ with companion refine-

ment T̃s. Note that 𝕌̆δT ⊂ 𝕌̆
δ
T̃
, 𝕍̄δTs
⊂ 𝕍̄δ

T̃s
, and 𝔽δT ⊂ 𝔽

δ
T̃
, see Remark 3.5.

Since in the current setting oscT(b, c, f) = 0, according to (4.2) one has for any (u, w) ∈ 𝕌̆δT,

‖Rδ
Ts
(u, w; f)‖H(b;Ts) ≂ ‖(u, w) − (uex, uex)‖𝕌̆, (5.2)

errors are thus uniformly equivalent to sums of computable local quantities that suggest themselves as

error indicators.

Definition 5.1. For r ∈ ℕ and ν ∈ (0, 1), we say that a strategy of marking M ⊂ T is (r, ν)-effective when for

T̃ = T̃(T,M, r) ∈ 𝕋, obtained from T by r refinements of each K󸀠 ∈M, and for n > 1, of each K󸀠 ∈ T with

K󸀠 ∩⋃K󸀠󸀠∈M, t≥0 K󸀠󸀠 + tb ̸= 0, it holds that

‖Rδ
T̃s
(uδ

T̃
, wδ

T̃
; f)‖H(b;T̃s) ≤ ν‖R

δ
Ts
(uδT , wδ

T; f)‖H(b;Ts),

where (uδT , wδ
T), (uδT̃ , w

δ
T̃
) are the Petrov–Galerkin solutions of (3.7) from 𝕌̆δT , 𝕌̆

δ
T̃
, respectively.

Note that only for n > 1 the refinement includes a downstream enrichment comprised of those cells that are

intersected by rays in direction b emanating from cells inM.

Remark 5.2. A repeated application, starting from some initial partition, of mark followed by the downwind

enriched refinement strategy, described in Definition 5.1, ensures that no mesh can ever become coarser in

the down-stream direction.

Of course, by (5.2), (r, ν)-effectiveness translates for some ν󸀠 ∈ (0, 1) into error decay for the solutions

‖(uex, uex) − (uδ
T̃
, wδ

T̃
)‖𝕌 ≤ ν󸀠‖(uex, uex) − (uδT , wδ

T)‖𝕌,

where now T̃ is to be understood as the result of possibly several but uniformly bounded finite number of

refinements of the above type.

As indicated earlier, our goal is to prove effectiveness for a marking strategy based on a bulk-criterion. To

make this precise for some ϑ ∈ (0, 1], (u, w) ∈ 𝕌̆δT, we let

M =M((u, w), ϑ) ⊆ T be such that ‖Rδ
Ts(M)(u, w; f)‖H(b;Ts(M)) ≥ ϑ‖Rδ

Ts
(u, w; f)‖H(b;Ts). (5.3)

We are currently able to fully establish effectivity of the standard bulk chasing strategy based on refining

just cells inM given by (5.3), only in the one-dimensional case.

Theorem 5.3. We adopt the assumptions of Theorem 4.1 with the additional assumptionmw ≤ mu + 1, and the
specifications (5.1) of b and c. Then, for n = 1 and σ sufficiently small there exist r ∈ ℕ, ν = ν(ϑ) < 1 such that
the marking strategy based on (5.3) is (r, ν)-effective for T ∈ 𝕋, f ∈ 𝔽δT .

Under the forthcoming Conjecture 5.17, the same result holds true for n > 1 (thus with the downwind
enriched refinement strategy).

The remainder of this section is to develop the conceptual ingredients entering results of the above type.

A first natural ingredient for proving Theorem 5.3 seems to be Petrov–Galerkin orthogonality (2.10)

‖Rδ
T̃s
(uδ

T̃
, wδ

T̃
;f)‖2H(b;T̃s)

= ‖Rδ
T̃s
(uδT , wδ

T;f)‖2H(b;T̃s)
− ‖tδ

T̃s
(uδT − uδT̃ , w

δ
T − wδ

T̃
)‖2H(b;T̃s)

(5.4)

in combination with a proof of

‖tδ
T̃s
(uδT − uδT̃ , w

δ
T − wδ

T̃
)‖H(b;T̃s) ≳ ‖R

δ
T̃s
(uδT , wδ

T;f)‖H(b;T̃s).
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A complication, however, is the presence of the “wrong” mesh-dependent lifting Rδ
T̃s
(uδT , wδ

T;f) instead
of Rδ

Ts
(uδT , wδ

T;f) in the first term on the right-hand side of (5.4). To tackle this problem, in the next sub-

section we construct mesh-independent error indicators. (The appearance of the “wrong” norm ‖ ⋅ ‖H(b;T̃s)
instead of ‖ ⋅ ‖H(b;Ts) does not cause any problems because ‖Rδ

Ts
(uδT , wδ

T;f)‖H(b;T̃s) = ‖R
δ
Ts
(uδT , wδ

T;f)‖H(b;Ts).)

5.2 A Mesh-Independent Error Indicator and Related Least Squares Problems

In the light of the remarks at the end of the previous subsection we quantify next the interrelation of various

equivalent error indicators arising from different liftings as well as from different equivalent inner products.

A pivotal role is played by the following “domain-additive” quantity. For any subdomain Ω

󸀠 ⊆ Ωwe introduce

η2
Ω

󸀠 (u, w; f) := ‖u − w‖2L
2
(Ω󸀠) + ‖∂bw + cu − f‖2L

2
(Ω󸀠). (5.5)

Accordingly, for a collection O of subdomains, we define

η2O(u, w; f) = ∑
Ω

󸀠∈O η2
Ω

󸀠 (u, w; f) = η2⋃{Ω󸀠∈O}(u, w; f).
Note that for f ∈ L

2
(Ω) and Ω

󸀠 = Ω both components (u, w) of the minimizer of (5.5) over L
2
(Ω) × H(b;Ω)

agree with the minimizer w ∈ H(b;Ω) of the least squares functional

‖Bw − f‖2L
2
(Ω) = ‖∂bw + cw − f‖2L

2
(Ω󸀠),

see the comment in Section 5.3.1 below.

As indicated above it will be crucial to relate these mesh-independent quantities to the following quanti-

ties each of which being useful for different purposes: Besides the projected lifted residual from (4.3), recall

first the definitions of the lifted residual

RTs = RTs (u, w; f) = (RK)K∈Ts ∈ 𝕍Ts = H(b;Ts),

determined by ⟨RTs , v⟩H(b,Ts) = bTs (u, w|∂Ts ; v) − ∫
Ω

fv dx (v ∈ 𝕍Ts ). In a similar spirit as in the analysis of

test functions we need to make use of the lifted modified residual (cf. (4.9))

R̆Ts = R̆Ts (u, w; f) = (R̆K)K∈Ts ∈ 𝕍Ts ,

and the piecewise polynomial approximate lifted modified residual (cf. (4.12))

̆R̆Ts =
̆R̆Ts (u, w; f) = ( ̆R̆K)K∈Ts ∈ 𝕍̄

δ
Ts
.

In the current setting of b being a constant, and so dK ≡ 0 and bTs = b̆Ts , the lifted residual and the lifted

modified residual differ only in the sense that R̆K is the lift of the local residual with respect to the alternative

inner product ⟨⟨ ⋅ , ⋅ ⟩⟩H(b;K) on H(b; K).
The advantage of the latter quantity is its simple explicit analytic expression fromwhich one can actually

see the connection with (5.5) as the “limit case” with respect to increasing subgrid depth. In fact, for K󸀠 ∈ T
we will show that

‖ ̆R̆Ts(K󸀠)‖2H(b;Ts(K󸀠)) → η2K󸀠 (u, w; f)
for the subgrid-depth

1

σ of the test-search spaces tending to ∞. Since ̆R̆Ts is constructed as a piecewise

polynomial approximation for R̆Ts , we also have that

‖ ̆R̆Ts(K󸀠)‖2H(b;Ts(K󸀠)) → ‖R̆Ts(K󸀠)‖2H(b;Ts(K󸀠)) when

1

σ →∞.

As we will see, the norms ‖ ⋅ ‖H(b;K) and ||| ⋅ |||H(b;K) on H(b; K) are not only equivalent but even converge to

each other when

1

σ →∞, which will yield

‖R̆Ts(K󸀠)‖2H(b;Ts(K󸀠)) → ‖RTs(K󸀠)‖2H(b;Ts(K󸀠)) when

1

σ →∞.
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Finally, since Rδ
K is the best approximation to RK from Pmv (K), we have that

‖RK − Rδ
K‖H(b;K) ≤ ‖RK − ̆R̆K‖H(b;K) → 0 when

1

σ →∞.

The details of this roadmap are as follows.

Proposition 5.4. For v ∈ H(b; K), we have

󵄨󵄨󵄨󵄨‖v‖2H(b;K) − |||v|||2H(b;K)
󵄨󵄨󵄨󵄨 ≤ |b|

−1
diam(K)‖v‖2H(b;K).

Proof. Without loss of generality,we consider the case that

b
|b| = e⃗1. Given x⃗ ∈ K, let s (t) denote the projection

of x⃗ on ∂K− (∂K+) along the x1-direction. Applying

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
hz(0) −

h

∫
0

z(x) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−

h

∫
0

x

∫
0

z󸀠(y) dy dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ h

h

∫
0

|z󸀠(y)| dy,

we find that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
r(s)v(s)2 −

t
1

∫
s
1

v(x)2 dx
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
2r(s)
|b|

t
1

∫
s
1

|v(x)∂bv(x)|dx1.

Integrating now this estimate over x
2
, . . . , xn, using that ds = |b|

|b⋅nK(s)|dx2 . . . dxn, and finally applying

Cauchy–Schwarz’ inequalities confirms the claim.

As a consequence, lifted and modified lifted residuals become closer with increasing subgrid depth.

Corollary 5.5. For ((u, w), f) ∈ 𝕌̆δT × 𝔽δT and K ∈ Ts, we have

‖RK − R̆K‖H(b;K) ≲ |b|−
1

2
diam(K) 12 ‖R̆K‖H(b;K).

Proof. Inside this proof we drop the subscript H(b; K) from the norms and inner products. Note that for any

v ∈ H(b; K), it holds by definition that ⟨⟨R̆K , v⟩⟩ = ⟨RK , v⟩.
With

τ := sup

0≠v∈H(b;K)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
|||v|||2
‖v‖2 − 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(≲ |b|−1 diam(K)),

we find that

󵄨󵄨󵄨󵄨⟨RK , RK − R̆K⟩
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨‖RK‖2 − |||R̆K |||2

󵄨󵄨󵄨󵄨 ≤ τ‖RK‖2. (5.6)

From

‖RK‖2 = sup

0≠v∈H(b;K)

⟨RK , v⟩2
‖v‖2 = sup

0≠v∈H(b;K)

⟨⟨R̆K , v⟩⟩2
‖v‖2 = sup

0≠v∈H(b;K)

⟨⟨R̆K , v⟩⟩2
|||v|||2

|||v|||2
‖v‖2 ,

and

sup

0≠v∈H(b;K)

⟨⟨R̆K , v⟩⟩2
|||v|||2 = |||R̆K |||2,

|||v|||2
‖v‖2 ∈ [1 − τ, 1 + τ],

we infer that

󵄨󵄨󵄨󵄨‖RK‖2 − |||R̆K |||2
󵄨󵄨󵄨󵄨 ≤ τ|||R̆K |||2. Now from ⟨R̆K , RK − R̆K⟩ = |||R̆K |||2 − ‖R̆K‖2 and (5.6), we arrive at

‖RK − R̆K‖2 ≤ τ(|||R̆K |||2 + ‖RK‖2) ≤ τ(2 + τ)|||R̆K |||2, which gives the result.

Corollary 5.5 is one of the ingredients to prove the mutual closeness of the various error indicators.

Proposition 5.6. For (u, w) ∈ 𝕌̆δT , f ∈ 𝔽δT , K󸀠 ∈ T, we have

∑
K∈Ts(K󸀠) ‖Rδ

K − (∂bw + cu − f)‖2L
2
(K) + ‖∂bRδ

K − (w − u)‖2L
2
(K) ≲ σ2η2K󸀠 (u, w; f), (5.7)

and
󵄨󵄨󵄨󵄨‖Rδ

Ts(K󸀠)(u, w; f)‖2H(b;Ts(K󸀠)) − η2K󸀠 (u, w; f)󵄨󵄨󵄨󵄨 ≲ σ η2K󸀠 (u, w; f),
only dependent on the involved polynomial degrees, and on (upper bounds for) |b|−1, ‖c‖L∞(K󸀠) and ϱ.
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Proof. Applications of the triangle inequality show that

∑
K∈Ts(K󸀠) ‖Rδ

K − (∂bw + cu − f)‖2L
2
(K) + ‖∂bRδ

K − (w − u)‖2L
2
(K)

≤ 2‖Rδ
Ts(K󸀠) − ̆R̆Ts(K󸀠)‖2H(b;Ts(K󸀠)) + 2 ∑

K∈Ts(K󸀠) ‖ ̆R̆K − (∂bw + cu − f)‖2L
2
(K) + ‖∂b ̆R̆K − (w − u)‖2L

2
(K). (5.8)

We estimate now the terms on the right-hand side of (5.8). For each K ∈ Ts(K󸀠), from ̆R̆K ∈ Pmv (K) and
Rδ
K being the H(b, K)-orthogonal projection of RK onto Pmv (K), we have

‖Rδ
K −
̆R̆K‖H(b;K) ≤ ‖Rδ

K − RK‖H(b;K) + ‖RK − ̆R̆K‖H(b;K)

≤ 2‖RK − ̆R̆K‖H(b;K)

≤ 2‖RK − R̆K‖H(b;K) + 2‖R̆K − ̆R̆K‖H(b;K),

which yields

‖Rδ
Ts(K󸀠) − ̆R̆Ts(K󸀠)‖2H(b;Ts(K󸀠)) ≤ 8‖RTs(K󸀠) − R̆Ts(K󸀠)‖2H(b;Ts(K󸀠)) + 8‖R̆Ts(K󸀠) − ̆R̆Ts(K󸀠)‖2H(b;Ts(K󸀠). (5.9)

Using that for K ∈ Ts(K󸀠), diam(K) ≤ σ diam(K󸀠) ≤ σ2, an application of Corollary 5.5 shows that

‖RTs(K󸀠) − R̆Ts(K󸀠)‖2H(b;Ts(K󸀠)) ≲ |b|−1σ2‖R̆Ts(K󸀠)‖2H(b;Ts(K󸀠)). (5.10)

Lemma 4.7 shows that for K ∈ Ts(K󸀠),

‖R̆K − ̆R̆K‖H(b;K) ≲ diam(K)(‖u − w‖H1(K) + ‖∂bw + cw − f‖H1(K)),

dependent on (upper bounds for) ϱ, |b|−1, and ‖c‖L∞(K󸀠). Squaring, summing over K ⊂ K󸀠, and using inverse
inequalities yields

‖R̆Ts(K󸀠) − ̆R̆Ts(K󸀠)‖2H(b;Ts(K󸀠)) ≲ σ2η2K󸀠 (u, w; f). (5.11)

It remains to estimate the terms in the sum in the right-hand side of (5.8). For each K ∈ Ts(K󸀠), we have

‖ ̆R̆K − (∂bw + cu − f)‖L
2
(K) ≲ |b|−1 diam(K){‖w − u‖L

2
(K) + |b|−1 diam(K)‖∂b(w − u)‖L

2
(K)}

+ |b|−1 diam(K)‖∂b(∂bw + cu − f)‖L
2
(K),

by applications of Poincaré’s inequality in the streamline direction (cf. the second paragraph in the proof of

Lemma 4.11). Similarly

‖∂b ̆R̆K − (w − u)‖L
2
(K) ≲ |b|−1 diam(K)‖∂b(w − u)‖L

2
(K).

Squaring and summing over K ∈ Ts(K󸀠), and using inverse estimates yields

∑
K∈Ts(K󸀠) ‖ ̆R̆K − (∂bw + cu − f)‖2L

2
(K) + ‖∂b ̆R̆K − (w − u)‖2L

2
(K) ≲ σ2η2K󸀠 (u, w; f), (5.12)

only dependent on (upper bounds for) ϱ, |b|−1 and the involved polynomial degrees.

By combining (5.8)–(5.12), one infers (5.7).

Now using that for vectors a⃗, b⃗,

󵄨󵄨󵄨󵄨‖a⃗‖2 − ‖b⃗‖2
󵄨󵄨󵄨󵄨 ≤ ‖a⃗ − b⃗‖‖a⃗ + b⃗‖ ≤ ‖a⃗ − b⃗‖(2‖b⃗‖ + ‖a⃗ − b⃗‖) ≤ ‖b⃗‖2

‖a⃗ − b⃗‖
‖b⃗‖
(2 +
‖a⃗ − b⃗‖
‖b⃗‖
)

and, when a⃗ is of the form (‖fi‖)i and b⃗ = (‖gi‖)i, furthermore

‖a⃗ − b⃗‖
‖b⃗‖
≤
√∑i ‖fi − gi‖2

√∑i ‖gi‖2
,

from (5.7) we conclude that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∑
K⊂K󸀠 ‖Rδ

K‖
2

L
2
(K) + ‖∂bRδ

K‖
2

L
2
(K) − ∑

K⊂K󸀠 ‖∂bw + cu − f‖2L2(K) + ‖w − u‖2L2(K)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≲ σ2 ∑
K⊂K󸀠 ‖∂bw + cu − f‖2L2(K) + ‖w − u‖2L2(K).

which, in compact notation, is the second statement to be proven.
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5.3 A Companion Mesh-Independent Least Squares Formulation of
the Transport Problem

For (u, w) ∈ 𝕌̆, it holds that

η2
Ω

(u, w; 0) = ‖∂bw + cu‖2L
2
(Ω) + ‖u − w‖2L

2
(Ω) ≳ ‖∂bw + cw‖2L

2
(Ω) + ‖u − w‖2L

2
(Ω)

≳ ‖B−1‖−2
L(H

0,Γ− (b;Ω),L2(Ω))‖w‖2H(b;Ω) + ‖u − w‖2L2(Ω)
≳ ‖(u, w)‖2

𝕌̆
≳ η2

Ω

(u, w; 0).

Therefore, for f ∈ L
2
(Ω) and any closed subspace of 𝕌̆, the problem of minimizing η2

Ω

( ⋅ , ⋅ ; f) over that sub-
space is well posed.

Proposition 5.7. For T ∈ 𝕋, let
(ūδT , w̄δ

T) := argmin

(u,w)∈𝕌̆δ
T

η2
Ω

(u, w; f). (5.13)

Then, for σ small enough, it holds that

‖(uδT , wδ
T) − (ūδT , w̄δ

T)‖
2

𝕌̆
≲ σ‖(uex, uex) − (uδT , wδ

T)‖
2

𝕌̆
,

where (uδT , wδ
T) ∈ 𝕌̆

δ
T is the Petrov–Galerkin solution of (3.7)

Proof. “Galerkin orthogonality” shows that for any (u, w) ∈ 𝕌̆δT,

η2
Ω

(u, w; f) − η2
Ω

(ūδT , w̄δ
T; f) = η2(u − ūδT , w − w̄δ

T; 0) ≂ ‖(u, w) − (ūδT , w̄δ
T)‖

2

𝕌̆
. (5.14)

Since (uδT , wδ
T) minimizes ‖Rδ

Ts
(u, w; f)‖2H(b;Ts)

over (u, w) ∈ 𝕌̆δT, two applications of Proposition 5.6 show

that for some |ξ
1
|, |ξ

2
| ≲ σ,

(1 + ξ
1
)η2

Ω

(uδT , wδ
T; f) = ‖Rδ

Ts
(uδT , wδ

T; f)‖2H(b;Ts) ≤ ‖R
δ
Ts
(ūδT , w̄δ

T; f)‖2H(b;Ts) = (1 + ξ2)η
2

Ω

(ūδT , w̄δ
T; f),

which, together with (5.14), shows that for σ small enough,

‖(uδT , wδ
T) − (ūδT , w̄δ

T)‖
2

𝕌̆
≲ ση2

Ω

(uδT , wδ
T; f) ≂ σ‖(uex, uex) − (uδT , wδ

T)‖
2

𝕌̆
.

In complete analogy we can define effectivity of a mark-and-refine strategy for the least squares scheme

(5.13) based on a bulk criterion for the quantities ηK, denoting the collection of correspondingly marked

cells by M̄ = M̄((ūδT , w̄δ
T), ϑ).

Proposition 5.8. For sufficiently small σ, (r, ν)-effectivity of the above refinement strategy for the DPG scheme
is equivalent to (r, ν)-effectivity of the analogous strategy with the same ϑ for the least squares estimator.

Proof. Using Proposition 5.7, stability of both estimators shows that for anyM ⊂ T,
󵄨󵄨󵄨󵄨‖Rδ

Ts(M)(ū
δ
T , w̄δ

T; f)‖H(b;Ts(M)) − Rδ
Ts(M)(u

δ
T , wδ

T; f)‖H(b;Ts(M))
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨ηM(ūδT , w̄δ
T; f) − ηM(uδT , wδ

T; f)
󵄨󵄨󵄨󵄨

}
}
}
≲ √ση

Ω
(uδT , wδ

T; f).

Now letM ⊂ T be such that ‖Rδ
Ts(M)
(uδT , wδ

T; f)‖H(b;Ts(M)) ≥ ϑ‖Rδ
Ts
(uδT , wδ

T; f)‖H(b;Ts). Then elementary oper-

ations using Propositions 5.6 and 5.7 show the existence of a |ξ| ≲ √σ, and thus for σ small enough, |ξ| ≤ 1

2

,

with ηM(ūδT , w̄δ
T; f) ≥ ϑ(1 + ξ)ηΩ(ūδT , w̄δ

T; f).Now, if the latter implies that for some ν = ν(ϑ) < 1, andwith the
refined mesh T̃ = T̃(T,M, r) from Definition 5.1, it holds that η

Ω
(ūδ

T̃
, w̄δ

T̃
; f) ≤ νη

Ω
(ūδT , w̄δ

T; f), then we have
that for some |ξ

1
|, |ξ

2
|, |ξ

3
| ≤ σ,

‖Rδ
T̃s
(uδ

T̃
, wδ

T̃
; f)‖H(b;T̃s) ≤ ‖R

δ
T̃s
(ūδ

T̃
, w̄δ

T̃
; f)‖H(b;T̃s) = ηΩ(ū

δ
T̃
, w̄δ

T̃
; f)(1 + ξ

1
)

≤ νη
Ω
(ūδT , w̄δ

T; f)(1 + ξ1) = νηΩ(uδT , wδ
T; f)(1 + ξ1)(1 +√ξ2)

= ν‖Rδ
Ts
(uδT , wδ

T; f)‖H(b;Ts)(1 + ξ1)(1 +√ξ2)(1 + ξ3),

showing for σ small enough the result of Theorem 5.3.

Applying the above arguments with interchanged roles of ‖Rδ
Ts
( ⋅ , ⋅ ; f)‖H(b;Ts) and ηΩ( ⋅ , f) and choosing

σ small enough, the claim of Remark 5.8 follows.
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In view of Proposition 5.8, the proof of Theorem 5.3 is complete once we establish the following equiva-

lent result.

Theorem 5.9. Let b and c be as in Theorem 5.3, and, to control supK∈T∈𝕋 diam(K), let σ be sufficiently small.
Then, for all ϑ ∈ (0, 1], there exist r ∈ ℕ, ν = ν(ϑ) < 1 with the following property: whenever for T ∈ 𝕋 and
f ∈ 𝔽δT , the set of marked elements M̄ = M̄((ūδT , w̄δ

T), ϑ) ⊆ T is such that

ηM̄(ūδT , w̄δ
T; f) ≥ ϑηΩ(ūδT , w̄δ

T; f), (5.15)

then for the refinement T̃ = T̃(T, M̄, r) according to Definition 5.1, it follows that

η
Ω
(ūδ

T̃
, w̄δ

T̃
; f) ≤ νη

Ω
(ūδT , w̄δ

T; f). (5.16)

The remainder of this section is devoted to the proof of Theorem 5.9. We are going to show that for some

constants ϑ󸀠 > 0 and ν󸀠 < 1, thus independent of T (subject to σ being sufficiently small), for M̄ as in (5.15)

there exists an

̄
M̄ ⊂ M̄ with

η ̄
M̄
(ūδT , w̄δ

T; f) ≥ ϑ󸀠ηM̄(ūδT , w̄δ
T; f), (5.17)

and that for any K󸀠 ∈ ̄M̄,

inf

{(u,w)∈𝕌̆δ
T̃
: supp u, suppw⊂K󸀠} ηK󸀠 (ūδT − u, w̄δ

T − w; f) ≤ ν󸀠ηK󸀠 (ūδT , w̄δ
T; f). (5.18)

In other words, for the cells in

̄
M̄ one can correct the current approximation cell-wise to reduce the corre-

sponding error indicator. An elementary calculation shows that then these two properties imply (5.16) with

constant ν := √(ϑϑ󸀠)2(ν󸀠)2 + 1 − (ϑϑ󸀠)2 < 1.

5.3.1 Reduction of the Local Mesh-Independent Error Indicator

In this subsection we work towards the verification of (5.18) for those K󸀠 ∈ M̄ that satisfy certain conditions.

Then in the following two subsections, for two possible scenarios we will construct subsets

̄
M̄ ⊂ M̄ of K󸀠

that satisfy these conditions, and for which (5.17) is satisfied. This will then prove Theorem 5.9 and hence

Theorem 5.3.

We recall that the reaction coefficient c is assumed to be a non-negative constant over each K󸀠 ∈ T. We

introduce the shorthand notations

g := ∂bw̄δ
T + cūδT − f , e := ūδT − w̄δ

T , (5.19)

so that

η2K󸀠 (ūδT − u, w̄δ
T − w; f) = ‖e − (u − w)‖2L

2
(K󸀠) + ‖g − (∂bw + cu)‖2L

2
(K󸀠).

Fixing β ∈ (0, 1
4

), we refer to the K󸀠 ∈ M̄ for which

‖e + cg‖2L
2
(K󸀠)

‖g‖2L
2
(K󸀠) + ‖e‖2L

2
(K󸀠) ≥ β (Type-(I)),

as Type-(I) and for the remaining ones as Type-(II). Accordingly, we decompose M̄ into the Type-(I) and

Type-(II) elements writing M̄ = M̄
I
∪̇ M̄

II
.

Type-(I) Elements. We start with showing that for K󸀠 ∈ M̄
I
, (5.18) can be already established by a correction

of the u-component.

Lemma 5.10. Assume that ‖ ⋅ ‖ is induced by the inner product ⟨ ⋅ , ⋅ ⟩ of some Hilbert space H and let g, e ∈ H
be arbitrary but fixed. For any scalar c and u ∈ H let

Q(u) := ‖e − u‖2 + ‖g − cu‖2.
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Then
u
min

:= argmin

u∈H
Q(u) = e + cg

1 + c2 ,

Q(u) − Q(u
min
) = (1 + c2)‖u − u

min
‖2H ,

‖u
min
‖2 ≤

Q(0)
1 + c2 ,

Q(u
min
) = (1 −

‖e + cg‖2
(1 + c2)(‖g‖2 + ‖e‖2))Q(0).

Proof. The first two statements follow from

Q(u + h) − Q(u) = 2⟨h, (c2 + 1)u − (e + cg)⟩ + (1 + c2)‖h‖2.

The third statement is a consequence of

‖u
min
‖ = ‖

e + cg
1 + c2 ‖ ≤

1

1 + c2 ‖e‖ +
c

1 + c2 ‖g‖ ≤
√‖e‖2 + ‖g‖2
√
1 + c2

=
Q(0) 12
√
1 + c2

.

The last statement follows from

Q(0) − Q(u
min
)

Q(0) =
(1 + c2)‖ e+cg

1+c2 ‖
2

‖g‖2 + ‖e‖2 .

Corollary 5.11. For r sufficiently large, only dependent on the polynomial degrees mu, mw and mf , and on an
upper bound for |cK󸀠 |, for all K󸀠 ∈ M̄

I
it holds that

inf

{(u,0)∈𝕌̆δ
T̃
: supp u⊂K󸀠} η2K󸀠 (ūδT − u, w̄δ

T; f) ≤ (1 −
β

2(1 + c2K󸀠 ))η2K󸀠 (ūδT , w̄δ
T; f).

Proof. Lemma 5.10 says that u
min
= e+cK󸀠 g

1+c2K󸀠 minimizes Q(u) := η2K󸀠 (ūδT − u, w̄δ
T; f) over L2(K󸀠), and that

Q(u
min
) ≤ (1 −

β
1 + c2K󸀠 )Q(0).

The function u
min

is a polynomial on K󸀠 and can therefore be approximated with relative accuracy

√β/(2(1 + c2K󸀠 )) by a piecewise polynomial ũ on a sufficiently refined mesh. This follows from the usual

combination of direct and inverse estimates. The proof is completed by

Q(ũ) − Q(u
min
) = (1 + c2K󸀠 )‖ũ − umin

‖2L
2
(K󸀠) ≤ β

2‖u
min
‖2L

2
(K󸀠) ≤

β
2(1 + c2K󸀠 )Q(0)

by applications of the statements from Lemma 5.10.

Type-(II) Elements. It remains to discuss K󸀠 ∈ M̄
II
. For those elements we need to find suitable corrections

for the component w̄δ
T – in brief the w-component.

We will search for a (0, w) ∈ 𝕌̆δ
T̃
with suppw ⊂ K󸀠 such that

‖g − ∂bw‖2L
2
(K󸀠) < ‖g‖2L

2
(K󸀠).

In order to show that this reduction is not lost by a similar increase by the replacement of ‖e‖2L
2
(K󸀠) by

‖e − w‖2L
2
(K󸀠), we will make use of the fact that for K󸀠 ∈ M̄

II
, the term ‖e‖L

2
(K󸀠) is controlled by a multiple

of ‖g‖L
2
(K󸀠) depending only on ‖c‖L∞(Ω):

Lemma 5.12. For K󸀠 ∈ M̄
II
, it holds that

ωK󸀠 = ωK󸀠 (e, g) := ‖e‖L2(K󸀠)
‖g‖L

2
(K󸀠) <2|cK󸀠 | + 1, (5.20)

and thus
η2K󸀠 (ūδT , w̄δ

T; f)2 ≤ ((2|cK󸀠 | + 1)2 + 1)‖g‖2L
2
(K󸀠).
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Proof. Recall that K󸀠 ∈ M̄
II
means that

‖e + cg‖2L
2
(K󸀠)

‖g‖2L
2
(K󸀠) + ‖e‖2L

2
(K󸀠) < β, (5.21)

so that in particular g ̸= 0. Substituting ‖e‖L
2
(K󸀠) = ωK󸀠‖g‖L

2
(K󸀠), (5.21) implies

󵄨󵄨󵄨󵄨ωK󸀠 − |cK󸀠 |󵄨󵄨󵄨󵄨 < √β(1 + ωK󸀠2),
which gives

ωK󸀠 < |cK󸀠 | +√β +√β ωK󸀠 < |cK󸀠 | + 1
2

+
1

2

ωK󸀠
by our assumption that β < 1

4

. This confirms the first and so the second claim.

Our argument for handling Type-(II) elements requires the following further preparations. For every s ∈ ∂K󸀠−
let as before r(s) denote length of the line segment emanating from s ∈ ∂K󸀠− and ending in ∂K󸀠+. One observes
then that a function Q on K󸀠 can be written as

Q = ∂bz, z|∂K󸀠−∪∂K󸀠+ = 0, (5.22)

if and only if each of its line averages in direction b∘ := b
|b| vanishes, i.e.,

As(Q) := r(s)−1
r(s)

∫
0

Q(s + tb∘) dt = 0, s ∈ ∂K−.

In fact, then

z(s + tb∘) := |b|−1
t

∫
0

Q(s + t󸀠b∘) dt󸀠

satisfies (5.22).

For g as in (5.19), the function G = G(g), defined on each K󸀠 ∈ T by

G(x) = As(g) for x = s + tb∘, s ∈ ∂K−, t ∈ [0, r(s)], (5.23)

is obviously constant along b and

As(g − G) = 0 for every s ∈ ∂K󸀠−.

Hence, for zg, defined by

zg(s + tb∘) := |b|−1
t

∫
0

(g − G)(s + t󸀠b∘) dt󸀠 for t ∈ [0, r(s)],

we have

g − ∂bzg = G.

Thanks to g − G ⊥L
2
(K󸀠) G, we have

‖G‖2L
2
(K󸀠) = ‖g‖2L

2
(K󸀠) − ‖g − G‖2L

2
(K󸀠),

and so in particular ‖G‖L
2
(K󸀠) ≤ ‖g‖L

2
(K󸀠).

Under the condition that ‖G‖L
2
(K󸀠) < ‖g‖L

2
(K󸀠), one infers from ‖zg‖L

2
(K󸀠) ≲ |b|−1diam K󸀠‖g − G‖L

2
(K󸀠) by

Poincaré’s inequality, in combination with (5.20) that for diam K󸀠 being sufficiently small,

η2
Ω

(ūδT , w̄δ
T − zg; f) < η2Ω(ūδT , w̄δ

T; f).

When proceeding to the natural next step to approximate zg with functions of type (0, w) ∈ 𝕌̆δ
T̃
with

suppw ⊂ K󸀠, a difficulty is that zg is continuous piecewise polynomial with respect to a partition of K󸀠 into
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subsimplices that can have arbitrarily bad aspects ratios. To tackle this problem, we first approximate zg by
an “isotropic” function z̃g for which ‖g − ∂b z̃g‖L

2
(K󸀠) is at most slightly larger than ‖g − ∂bzg‖L

2
(K󸀠):

Lemma 5.13. Let
αK󸀠 = αK󸀠 (g) := ‖G‖L2(K󸀠)

‖g‖L
2
(K󸀠) < 1.

Then there exists a z̃g ∈ H1

0

(K󸀠) ∩ Hs(K󸀠) such that for any s < 3

2

,

|z̃g|Hs(K󸀠) ≲ (diam K󸀠)−s‖z̃g‖L
2
(K󸀠) (5.24)

(depending on upperbounds for αK󸀠 and ϱK󸀠), and
‖g − ∂b z̃g‖L

2
(K󸀠) ≤ 1 + αK󸀠

2

‖g‖L
2
(K󸀠).

Proof. For n = 1, z̃g = zg satisfies the conditions. Now let n > 1. Let ρ ∈ C∞ with 0 ≤ ρ ≤ 1, ρ(x) = 0 for x ≤ 1

2

,

and ρ(x) = 1 for x ≥ 1, and let ρη(x) := ρ(x/η).
We are going to construct a modification of zg that is zero on subsimplices that have very bad aspect

ratios. With F
1
, . . . , Fn+1 denoting the faces of K󸀠, for 1 ≤ i ≤ n + 1 let dFi be the orthogonal projection of

the inward pointing normal to Fi onto the plane b⊥. For each i, we choose a Cartesian coordinate system

y(i) = T(i)x + z(i) such that the first coordinate direction is

dFi
|dFi |

, the origin equals one of the vertices of Fi,
and all other vertices of Fi have a non-negative first component. Now for some ε > 0, we define z̃g by

∂b z̃g = (g − G)
n+1
∏
i=1

ρε diam K󸀠 ((T(i) ⋅ +z(i))
1
), z̃g|∂K󸀠−∪∂K󸀠+ = 0.

Since (T(i)( ⋅ + tb))
1
= (T(i)( ⋅ ))

1
, As(∂b z̃g) = 0 and the function z̃g is well defined.

Since x 󳨃→ ∏n+1
i=1 ρε diam K󸀠 ((T(i)x)

1
) vanishes on all subsimplices that have very bad aspect ratios (relative

to ε) in the partition of K󸀠 with respect towhich zg is a continuous piecewise polynomial, a homogeneity argu-

ment shows that z̃g satisfies (5.24), with a constant depending on ε. Moreover, also z̃g vanishes on a possible
characteristic boundary of K󸀠.

Writing

g − ∂b z̃g = G + (1 −
n+1
∏
i=1

ρε diam K󸀠 ((T(i)⋅)
1
))(g − G),

and using that ‖G‖L
2
(K󸀠) = αK󸀠‖g‖L

2
(K󸀠), and

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(1 −

n+1
∏
i=1

ρε diam K󸀠 ((T(i)⋅)
1
))(g − G)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L
2
(K󸀠) ≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(1 −

n+1
∏
i=1

ρε diam K󸀠 ((T(i)⋅)
1
))
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L

2
(K󸀠)‖g − G‖L∞(K󸀠)

≲ √ε|K󸀠|2‖g‖L∞(K󸀠) ≲ √ε ‖g‖L
2
(K󸀠),

which holds again by a homogeneity argument, the proof is completed by taking ε sufficiently small, depen-

dent on αK󸀠 .
Corollary 5.14. For K󸀠 ∈ M̄

II
let αK󸀠 < 1. Then for σ sufficiently small, and r sufficiently large, only dependent

on upperbounds for mu, mw, mf , ϱ, |b|−1, αK󸀠 , σ, and |cK󸀠 |, it holds that
inf

{w : suppw⊂K󸀠
, (0,w)∈𝕌̆δ

T̃
}
η2K󸀠 (ūδT , w̄δ

T − w; f) ≤ (
1

2

+
1

2

1+αK󸀠
2

+ |cK󸀠 | + 1
1 + |cK󸀠 | + 1 )η2K󸀠 (ūδT , w̄δ

T; f).

Proof. Let
σ̆ = σ̆(r) := max

{K∈T̃:K⊂K󸀠} diam K
diam K󸀠 .

By takingwwith (0, w) ∈ 𝕌̆δ
T̃
to be the Scott–Zhang interpolant of z̃g from Lemma 5.13, for s ∈ (1, 3

2

)we have

‖z̃g − w‖L
2
(K󸀠) + |b|−1σ̆ diam K󸀠‖∂b(z̃g − w)‖L

2
(K󸀠) ≲ (σ̆ diam K󸀠)s|z̃g|Hs(K󸀠)
≲ σ̆s‖z̃g‖L

2
(K󸀠) ≲ σ̆s|b|−1 diam K󸀠‖∂b z̃g‖L

2
(K󸀠)

≲ σ̆s|b|−1 diam K󸀠‖g‖L
2
(K󸀠),
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where we used Poincaré’s inequality. We obtain that

‖g − ∂bw‖L
2
(K󸀠) ≤ ‖g − ∂b z̃g‖L

2
(K󸀠) + ‖∂b(z̃g − w)‖L

2
(K󸀠) ≤ (1 + αK󸀠

2

+ σ̆s−1)‖g‖L
2
(K󸀠),

and

‖e + w‖L
2
(K󸀠) − ‖e‖L

2
(K󸀠) ≤ ‖z̃g‖L

2
(K󸀠) + ‖z̃g − w‖L

2
(K󸀠) ≲ (|b|−1 diam K󸀠 + σ̆s|b|−1 diam K󸀠)‖g‖L

2
(K󸀠).

Recalling that maxK󸀠∈T diam K󸀠 ≤ σ, η2K󸀠 (ūδT , w̄δ
T; f) = ‖g‖2L

2
(K󸀠) + ‖e‖2L

2
(K󸀠), and ωK󸀠 = ‖e‖L2(K󸀠)‖g‖L

2
(K󸀠) ≤ 2|cK󸀠 | + 1, the

assertion follows.

In summary, for K󸀠 ∈ M̄
I
completely local u-corrections on refinements of fixed depth suffice to reduce ηK󸀠

by a constant factor ν󸀠 < 1. For K󸀠 ∈ M̄
II
an analogous statement, this time by means of a local w-correction,

holds provided that there exists a constant α < 1 such that

αK󸀠 = ‖G‖L2(K󸀠)
‖g‖L

2
(K󸀠) = √⟨G, g⟩L2(K󸀠)

‖g‖L
2
(K󸀠) ≤ α. (5.25)

5.4 Selection of ̄M̄ ⊂ M̄ That Satisfy Both (5.18) and (5.17)

In case

ηM̄
II

(ūδT , w̄δ
T; f)2 < ηM̄I

(ūδT , w̄δ
T; f)2, (5.26)

equation (5.17) is valid with

̄
M̄ = M̄

I
and ϑ󸀠 = 1

2

√2, whereas (5.18) follows from the reduction of the ηK󸀠 for
K󸀠 ∈ M̄

I
by Corollary 5.11. We conclude that Theorem 5.9 is valid for both n = 1 and n > 1 (even without the

additional downwind refinements described in Definition 5.1).

It remains to investigate the case where (5.26) does not hold. It is only for this case that we have to

establish (5.25) for sufficiently many K󸀠 ∈ M̄
II
. It will require ‘global’ arguments, already announced in the

abstract, that make use of the fact that (ūδT , w̄δ
T) is the minimizer of η2

Ω

(u, w; f) over 𝕌̆δT .

Lemma 5.15. Suppose there exists a constant α < 1 such that validity of

ηM̄
II

(ūδT , w̄δ
T; f)2≥ηM̄I

(ūδT , w̄δ
T; f)2 (5.27)

implies
∑

K󸀠∈M̄
II

‖G‖2L
2
(K󸀠) ≤ α2 ∑

K󸀠∈M̄
II

‖g‖2L
2
(K󸀠). (5.28)

Then Theorem 5.9 is valid.

Proof. In view of the discussion preceding this lemma, it suffices to verify (5.17) and (5.18) for some

̄
M̄ ⊂ M̄

for the case that (5.27) holds. By the hypothesis of this lemma, (5.28) is then also valid. We define

̄
M̄ := {K󸀠 ∈ M̄

II
: αK󸀠 ≤ √ 1 + α2

2

}

Then

̄
M̄ satisfies (5.18) by Corollary 5.14, and it remains to verify that it satisfies (5.17).

Thanks to (5.27), we have

ηM̄(ūδT , w̄δ
T; f)2 ≤ 2ηM̄II

(ūδT , w̄δ
T; f)2,

whereas by Lemma 5.12, the right-hand side is bounded by a constant multiple of ∑K󸀠∈M̄
II

‖g‖2L
2
(K󸀠). The

definition of

̄
M̄ and (5.28) imply that

∑
K󸀠∈M̄

II
\ ̄M̄

‖g‖2L
2
(K󸀠) < 2

1 + α2 ∑
K󸀠∈M̄

II
\ ̄M̄

‖G‖2L
2
(K󸀠) ≤ 2α2

1 + α2 ∑
K󸀠∈M̄

II

‖g‖2L
2
(K󸀠),

or, equivalently,

∑
K󸀠∈M̄

II

‖g‖2L
2
(K󸀠) < 1 + α2

1 − α2 ∑
K󸀠∈ ̄M̄ ‖g‖

2

L
2
(K󸀠).

The proof of (5.17) follows from∑K󸀠∈ ̄M̄ ‖g‖2L2(K󸀠) ≤ η ̄M̄(ūδT , w̄δ
T; f)2.
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5.5 Proof of Theorem 5.9 for n = 1
By Lemma 5.15 the proof of Theorem 5.9 for n = 1, and hence of Theorem 5.3, follows as soon as we have

shown that (5.27) implies (5.28). To that end, consider the one-dimensional case n = 1, with Ω = (0, 1),
b = 1, and c piecewise constant.

Recalling that

g = (w̄δ
T)
󸀠 + cūδT − f, e = ūδT − w̄δ

T ,

the definition of (ūδT , w̄δ
T) as minimizer of η2

Ω

( ⋅ , ⋅ ; f) over 𝕌̆δT shows that

⟨u − w, e⟩L
2
(Ω) + ⟨w󸀠 + cu, g⟩L

2
(Ω) = 0 ((u, w) ∈ 𝕌̆δT),

or, equivalently,

e + cg ⊥L
2
(K󸀠) Pmu (K󸀠) (K󸀠 ∈ T), (5.29)

and

∫
Ω

gw󸀠 − we dx = 0 ((0, w) ∈ 𝕌̆δT). (5.30)

Remark 5.16. When mu = mw, (5.29) says that e = −cg which means that all cells are of Type-(II). In partic-

ular, when in addition c = 0, we obtain ūδT = w̄δ
T .

For the piecewise constant function

F= F(G, M̄
II
) :=
{
{
{

G|K󸀠 on K󸀠 ∈ M̄
II
,

0 elsewhere,

(5.31)

let z be the solution of
z󸀠 = −cz + F on (0, 1), z(0) = 0, (5.32)

i.e.,

z(x) =
x

∫
0

F(t)e−∫
x
t c(τ) dτ dt.

Then

max(‖z‖L
2
(0,1), ‖z󸀠‖L

2
(0,1)) ≲ ‖F‖L

2
(0,1) ≲ √ ∑

K󸀠∈M̄
II

‖g‖2L
2
(K󸀠).

Moreover, z is piecewise smooth with respect to T, and (z|K󸀠 )󸀠󸀠 = −c|K󸀠 (z|K󸀠 )󸀠 (K󸀠 ∈ T).
Let (0, w) ∈ 𝕌̆T be defined by taking w as the continuous piecewise linear interpolant of z with respect

to T. We have that

‖z − w‖L
2
(K󸀠) ≲ diam(K󸀠)‖z󸀠‖L

2
(K󸀠),

‖z󸀠 − w󸀠‖L
2
(K󸀠) ≲ diam(K󸀠)‖z󸀠󸀠‖L

2
(K󸀠) ≲ |c|K󸀠 |diam(K󸀠)‖z󸀠‖L

2
(K󸀠).

Let us first assume that c|K󸀠 ̸= 0 for all K󸀠 ∈ T. Using (5.30), the definition of F, (5.29), mw ≤ mu + 1,
F|K󸀠 ∈ P

0
(K󸀠) ⊂ Pmu (K󸀠), and the definition of z, we obtain

∑
K󸀠∈M̄

II

‖G‖2L
2
(K󸀠) = ∑

K󸀠∈M̄
II

∫
K󸀠 Gg dx − ∫

Ω

gw󸀠 − we dx

= ∑
K󸀠∈T ∫K󸀠 Fg − gw

󸀠 + we dx = ∑
K󸀠∈T ∫K󸀠

e
c (w
󸀠 − F + cw) dx

= ∑
K󸀠∈T ∫K󸀠

e
c ((w − z)

󸀠 + c(w − z)) dx = ∑
K󸀠∈T ∫K󸀠

e
c (w − z)

󸀠 + e(w − z) dx

≲ max

K󸀠∈T diam(K󸀠) ∑K󸀠∈T ‖e‖L2(K󸀠)‖z󸀠‖L
2
(K󸀠) ≤ σ√ ∑

K󸀠∈T ‖e‖2L2(K󸀠) ‖z󸀠‖L2(0,1)
≲ ση

Ω
(ūδT , w̄δ

T; f)2 ≲ σ ∑
K󸀠∈M̄

II

‖g‖2L
2
(K󸀠),

where the last inequality follows from (5.27) and Lemma 5.12.
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Now consider the case that for one or more K󸀠, c|K󸀠 = 0. Then on such a K󸀠, z is linear (or even con-

stant when K󸀠 ∈ T \ M̄
II
) and so coincides with w. Let z̄ denote the average of z on K󸀠. For such a K󸀠, from

e ⊥ Pmu (K󸀠) we estimate

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
K󸀠 Fg − gw

󸀠 + we dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
K󸀠 ze dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
K󸀠 (z − z̄)e dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≲ diam(K󸀠)‖z󸀠‖L
2
(K󸀠)‖e‖L

2
(K󸀠),

and arrive at the same conclusion. For n = 1 this completes the proof that, for σ sufficiently small, (5.27)

implies (5.28), and thus of Theorem 5.9. Note that α > 0 could even be stipulated as small as we wish. ◻

5.6 Theorem 5.9 for n > 1
The above reasoning for n = 1 does not seem to directly carry over to the multi-dimensional case. In fact, it

is not clear how to approximate the solution z to the analog of (5.32) by a w-component in the current trial

space, the difficulty being the non-smoothness of z in the directions orthogonal to b.
To deal with this problem, for n > 1we consider a downwind enriched refinement procedure as specified

in Definition 5.1. Let us assume that nevertheless Theorem 5.9 does not hold. That is, there is a ϑ ∈ (0, 1]
such that for any ν < 1, r ∈ ℕ, there exist T ∈ 𝕋 and f ∈ 𝔽δT with the property that for the marked cells

M̄ = M̄((ūδT , w̄δ
T), ϑ) and refined triangulation T̃ = T̃(T, M̄, r), one still has

η
Ω
(ūδ

T̃
, w̄δ

T̃
; f) > νη

Ω
(ūδT , w̄δ

T; f). (5.33)

Splitting M̄ = M̄
I
∪̇ M̄

II
as before, as we have seen in Section 5.4 for ν sufficiently close to 1 and r

sufficiently large, the case that ηM̄
II

(ūδT , w̄δ
T; f)2 < ηM̄I

(ūδT , w̄δ
T; f)2 would, on account of Corollary 5.11,

immediately lead to a contradiction.

So let us focus on the case that

ηM̄
II

(ūδT , w̄δ
T; f)2 ≥ ηM̄I

(ūδT , w̄δ
T; f)2. (5.34)

Following the analysis of the previous Section 5.5, recall the definitions of g = ∂bw̄δ
T + cūδT − f , e = ūδT − w̄δ

T ,

and that of G in (5.23) and F in (5.31). From the definition of bulk chasing, (5.34), and Lemma 5.12 we infer

that

η
Ω
(ūδT , w̄δ

T; f) ≤
√2
ϑ η⋃{K󸀠∈M̄

II
}(ūδT , w̄δ

T; f)

≤
√2
ϑ
√(2‖c‖L∞(Ω) + 1)2 + 1 ‖g‖L

2
(⋃{K󸀠∈M̄

II
}). (5.35)

Let us nowdefine the quantities g̃, ẽ, and G̃ in analogy to g, e, and G, but with respect to the least-squares
solution (ūδ

T̃
, w̄δ

T̃
) ∈ 𝕌̆δ

T̃
and the refined partition T̃. The pair (ūδ

T̃
, w̄δ

T̃
) being a minimizer of η2

Ω

( ⋅ , ⋅ ; g) over
𝕌̆δ

T̃
is equivalent to

ẽ + cg̃ ⊥L
2
(K̃) Pmu (K̃) (K̃ ∈ T̃), ∫

Ω

g̃∂bw − wẽ dx = 0 ((0, w) ∈ 𝕌̆δT̃). (5.36)

As shown next, the assumption that the error indicator has not been reduced much when passing to T̃,

implies that g, emust be very close to g̃, ẽ, respectively. In fact, the orthogonality relation analogous to (5.4)
reads as

η2
Ω

(ūδ
T̃
, w̄δ

T̃
; f) = η2

Ω

(ūδT , w̄δ
T; f) − η2Ω(ūδT̃ − ū

δ
T , w̄δ

T̃
− w̄δ

T; 0).

In combination with estimate (5.35) and our assumption (5.33), this shows that there exists a ζ = ζ(ν) with
limν↑1 ζ(ν) = 0 such that

‖g − g̃‖L
2
(Ω) ≤ ζ‖g‖L

2
(⋃{K󸀠∈M̄

II
}), ‖e − ẽ‖L2(Ω) ≤ ζ‖g‖L

2
(⋃{K󸀠∈M̄

II
}). (5.37)

This fact together with an affirmative answer to the following conjecture will allow us to complete the proof

of Theorem 5.9.
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Conjecture 5.17. There exist constants

ξ < (
√2
ϑ
√(2‖c‖L∞(Ω) + 1)2 + 1)−1

and r ∈ ℕ such that there exists a (0, w̃) ∈ 𝕌̆δ
T̃
with

‖∂bw̃ + cw̃ − F‖L
2
(Ω) ≤ ξ‖F‖L

2
(Ω), ‖w̃‖L

2
(Ω) ≲ ‖F‖L

2
(Ω), (5.38)

where w̃ vanishes outside the union of the cells of T that were refined in T̃ = T̃(T, M̄, r).

We postpone supporting arguments for the validity of this conjecture and turn first, for r large enough and

ν sufficiently close to 1, to verifying the hypothesis of Lemma 5.15. This lemma then asserts the validity of

Theorem 5.9, which, for ν sufficiently close to 1, will contradict (5.33), thereby finishing the proof.

To that end, with w̃ from Conjecture 5.17, using (5.36) we write

‖G‖2L
2
(⋃{K󸀠∈M̄

II
})
= ∑

K󸀠∈M̄
II

∫
K󸀠 Gg dx = ∑K󸀠∈M̄

II

∫
K󸀠 Gg̃ dx + ∑K󸀠∈M̄

II

∫
K󸀠 G(g − g̃) dx

= ∫
Ω

Fg̃ dx − ∫
Ω

g̃∂bw̃ − w̃ẽ dx + ∑
K󸀠∈M̄

II

∫
K󸀠 G(g − g̃) dx

= −∫
Ω

(∂bw̃ + cw̃ − F)g̃ dx + ∑
K󸀠∈M̄

II

∫
K󸀠 G(g − g̃) dx + ∫

Ω

w̃(ẽ + cg̃) dx.

The first and second term on the right can be bounded by

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

(∂bw̃ + cw̃ − F)g̃ dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ξ‖F‖L

2
(Ω)(1 + ζ)‖g‖L

2
(Ω)

≤ ξ‖G‖L
2
(⋃{K󸀠∈M̄

II
})(1 + ζ)

√2
ϑ
√(2‖c‖L∞(Ω) + 1)2 + 1 ‖g‖L

2
(⋃{K󸀠∈M̄

II
}), (5.39)

where we have used (5.37) and (5.35), and

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∑

K󸀠∈M̄
II

∫
K󸀠 G(g − g̃) dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ζ‖G‖L

2
(⋃{K󸀠∈M̄

II
})‖g‖L

2
(⋃{K󸀠∈M̄

II
}), (5.40)

respectively.

To proceed let QT̃ denote the L
2
(Ω)-orthogonal projector onto ∏K̃∈T̃ Pmu (K̃), using (5.36) for the third

term, we write

∫
Ω

w̃(ẽ + cg̃) dx = ∫
Ω

((I − QT̃)w̃)(ẽ + cg̃) dx

= ∫
Ω

((I − QT̃)w̃)(ẽ − e + c(g̃ − g)) dx + ∫
Ω

w̃((I − QT̃)(e + cg)) dx.

Thanks to the estimates in (5.37), the first term at the right can be bounded by a constant multiple of

ζ‖G‖L
2
(⋃{K󸀠∈M̄

II
})‖g‖L

2
(⋃{K󸀠∈M̄

II
}). We use next that w vanishes outside the union of the cells of T which have

been refined in T̃ = T̃(T, M̄, r), and that e and g are piecewise polynomial with respect to T. Moreover, by

Remark 5.2, all cells in the support of w̃ are (at least) rth refinements of cells in T underlying e and g. Hence,
the usual combination of direct and inverse estimates shows then that the second term can be bounded by

‖G‖L
2
(⋃{K󸀠∈M̄

II
})η(r)‖g‖L

2
(⋃{K󸀠∈M̄

II
}), where η as a function of r, tends to zero as r →∞. For any constant

α ∈ (ξ
√2
ϑ
√(2‖c‖L∞(Ω) + 1)2 + 1, 1),

the combination of these latter results, (5.39), and (5.40) shows that for r large enough and ν sufficiently

close to 1, ‖G‖L
2
(⋃{K󸀠∈M̄

II
}) ≤ α‖g‖L

2
(⋃{K󸀠∈M̄

II
}), which by Lemma 5.15, for ν sufficiently close to 1, contradicts

(5.33), as required.
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Let us close this section with some brief comments on Conjecture 5.17. First, as mentioned earlier, by

Remark 5.2, the downwind enrichment in the refinement strategy makes sure that the correction w̃ is con-

structed on (an essentially uniform) refined mesh. This certainly helps a relation like (5.38) to be possible

and actually motivated the inclusion of the downwind enrichments. Moreover, the conjecture asks “only” for

a fixed relative accuracy ξ where ξ neednot be arbitrarily small. Given that the data are piecewise polynomials

(which are actually piecewise constants in stream direction), this does not seem to ask for too much.

On the other hand, since we can neither limit a priori the number of polynomial pieces in F nor their

position relative to the direction of b, an argument does not seem to be straightforward. In fact, whereas we

can represent the exact solution of ∂bz + cz = F with zero inflow conditions explicitly along characteristics

ensuring sufficient smoothness in this direction, smoothness in cross-flow direction does not seem to be easy

to control. Nevertheless, the overall variation in cross-flow direction is still highly restrained for data of the

type F.
Finally, wewould like to stress that a possibly T-dependent r such that (5.38) holds true always exists. By

the above arguments this immediately translates into a statement on error reduction based on such a (vari-

able) refinement depth.

6 Concluding Remarks
We have established reliability and efficiency of computable local error indicators for DPG discretizations of

linear transport equations with variable convection and reaction coefficients. For constant (with respect to

the spatial variables) convection fields, arising for instance in kineticmodels, we have determined refinement

strategies based on the a posteriori error indicatorswhich are guaranteed to give rise to a fixed error reduction

rate. The latter results make essential use of a tight interrelation of the DPG schemewith certain least squares

formulations providing insight of its own right. In particular, error reduction for one scheme implies the same

for the other one. Toour knowledge the issue of error reduction for least squaresmethods even for the classical

elliptic case is largely open. In that sense the present results mark some progress in this regard as well.

On the other hand, in view of these findings onemay raise the question as towhy not using the seemingly

simpler least-squares scheme instead of the DPG scheme. However, giving up on the simple interpretation of

the w-component as a second approximation to the exact solution in a stronger norm when f ∈ L
2
(Ω), the

DPG scheme still provides a meaningful approximate solution uδT in L
2
(Ω) to the transport equation even

when f is less regular. But also for L
2
-data f , in the least squares formulation errors are measured solely

in a norm that depends in a very sensitive way directly on the convection field. In the variable convection

case the corresponding space varies essentially (even as a set) under perturbations of this convection field.

Therefore, at this point Proposition 5.7 serves primarily as a theoretical tool.

Among other things a prize for using the interrelation between DPG and least squares formulations is

a remaining lack of quantification of the error reduction results manifesting itself in two ways: the subgrid

depth needed to establish efficiency and reliability of the computable error indicators, similar to establishing

uniform inf-sup stability of the pairs of trial- and test-spaces, is not precisely specified. As indicated by earlier

numerical results in [2] any attempt along the given lines to quantify the subgrid-depth would still be over

pessimistic. The same is expected to be true for the refinement depth r associatedwith themarked cells. These

issues call for further research in this area.

Finally, the refinement strategies that can be shown to guarantee a fixed error reduction involve for

several spatial variables so far a certain downstream enrichment of the marked cells in combination with

a conjecture. It is open whether this enrichment is in general necessary which would establish an essential

difference from the univariate case where it is not necessary.
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