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Scattering methods make it possible to compute the effects of renormalized quantum fluctuations on
classical field configurations. As a classic example of a topologically nontrivial classical solution, the
Abrikosov-Nielsen-Olesen vortex in U(1) Higgs-gauge theory provides an ideal case in which to apply
these methods. While physically measurable gauge-invariant quantities are always well behaved, the
topological properties of this solution give rise to singularities in gauge-variant quantities used in the
scattering problem. In this paper we show how modifications of the standard scattering approach are
necessary to maintain gauge invariance within a tractable calculation. We apply this technique to the vortex
energy calculation in a simplified model, and show that to obtain accurate results requires an unexpectedly
extensive numerical calculation, beyond what has been used in previous work.
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I. INTRODUCTION

Topological vortex configurations appear in many field
theory models in the form of axially symmetric U(1) vector
potentials pointing in azimuthal direction. Although physi-
cally measurable quantities remain well defined, in these
models the field profiles, which depend on the gauge
choice, necessarily have a singular structure. This structure
hampers many computations that go beyond the (static)
mean-field approach, particularly the quantum correction to
the classical static energy density per unit length. At one-
loop order this quantity is given by the vacuum polarization
energy (VPE), the renormalized shift in the sum of the zero
point energies of the quantum fluctuations. Calculations of
the VPE often use auxiliary quantities like Feynman
diagrams and/or expansion schemes for scattering data
[1]. These quantities are not necessarily gauge invariant and
thus the singular structure matters. Throughout this paper
we use the term singular for the gauge field configuration,
keeping in mind that the magnetic field describing the
vortex is nonsingular.

The classic example of a topological string solution is
the Abrikosov-Nielsen-Olesen (ANO) vortex [2,3]. In this
paper we use a simplified model that contains all the
relevant subtleties and obstacles of the full Nielsen-Olesen
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model, but is computationally simpler. As in the full model,
we consider a complex scalar field (representing a Higgs
boson in particle physics or a Cooper pair condensate in
condensed matter physics) coupled to the U(1) gauge field
of electromagnetism. However, we consider only fluctua-
tions of the scalar field; adding the gauge field fluctuations
requires a calculation that numerically is significantly more
costly, but will follow the same formalism [4].

The quantum fluctuations propagate in a combined
potential generated by both the gauge and scalar field
backgrounds. Typically the latter provides the dominant
contribution, but the correct identification and renormali-
zation of the ultraviolet divergences requires a detailed
analysis of the interaction with the vortex background.

Formally, calculating the leading quantum correction to
any classical quantity requires computing the functional
determinant of the quantum fluctuations in the background
of the classical configuration. To our knowledge the only
full calculation of the renormalized quantum correction in
the full Nielsen-Olesen model, as is made possible by the
approach we will describe, is that of Refs. [5,6]. While
Ref. [5] estimates the instanton transition rate, Ref. [6]
indeed focuses on the quantum correction to the classical
energy (per unit length of the vortex). The wave equations
solved in these two papers are similar to those we will
integrate. However, our approach will differ in several
interconnected ways from Ref. [6]: We carry out the
calculation directly for the total energy, rather than as an
integral over the energy density; we use analytic continu-
ation to carry out the integral over the wave number k on
the imaginary axis; and, most importantly, we express the
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calculation in a way that avoids superficial divergences
originating from the singular gauge field profile. This
process eliminates the need for the arbitrary additional
interaction vertex that was added (and, correspondingly,
subtracted back out) in Ref. [6]. We will see that formidable
numerical challenges remain even after these simplifica-
tions, which suggests that the previous results are numeri-
cally unreliable within a realistic computational budget.
Our analytic continuation approach also sheds light on a
puzzle first exhibited in Ref. [7], which showed that
calculations of quantum effects in a vortex background
appear artificially convergent when computed on the real k
axis; by carrying out the computation in the complex k
plane from the outset, we will see how the appropriate
divergences emerge from the analytic structure of the
scattering data associated with the quantum fluctuations.
The complications that our method is capable of
addressing can be particularly acute in heat kernel methods,
which are typically combined with {-function regulariza-
tion, that have also been applied to vortex systems [8—10].
Not only do these methods involve complicated recursion
relations for the heat kernel coefficients that need to be
truncated, but the {-function regularization also makes the
implementation of standard, perturbative renormalization
conditions difficult up to the point that gauge variant
counterterms are required [8]. For certain geometries,
however, these methods have analytic solutions [11].
This paper is structured in eight short sections.
Following this introduction, we introduce the model in
Sec. II and collect the relevant ingredients to compute the
VPE using spectral methods for configurations that are
translationally invariant in (at least) one spatial variable
in Sec. IIl. In Sec. IV we apply this method to regular
configurations that couple to a (complex) scalar quantum
field. In Sec. V we show how the ultraviolet divergences of
Feynman diagrams relate to the asymptotic behavior of
the scattering data that enter the VPE calculation. This
analysis ensures the correct identification of the ultraviolet
divergences on the scattering side of the calculation. We
also discuss obstacles to computing the Feynman diagrams
when the background configuration is singular. Section VI
gives the main analytic calculation: We show how to
modify the standard approach for singular configurations
for which the ingredients of the standard approach are not
well defined. In Sec. VII we perform numerical experi-
ments for this modification and demonstrate that the
numerical simulation requires a sophisticated computation
to match the asymptotic behavior of the scattering data as
given by the analysis of the Feynman diagrams. We
consider Feynman diagrams and scattering data in parallel
because (i) both represent or can be expanded to represent
the contribution to the VPE of a specific order of the
potential generated by the vortex and (ii) Feynman dia-
grams provide important consistency checks on the large
momentum behavior of scattering data. Finally, in Sec. VIII

we summarize our findings and provide an outlook on how
they affect the VPE calculation in the full model that also
includes gauge field loops.

II. THE MODEL

In rescaled variables, the Lagrangian for this model reads

m2

£ =10, - ia)dP ="

B> —1)%. (1)
The background vortex is translationally invariant along an
axis that we choose to be the z axis. In terms of polar
coordinates p and ¢ in the perpendicular plane, the vortex is
characterized by two radial functions:

fe(p)
P

o = fH(P)ei&/) and A=-¢

(2)

The ANO string [2,3,12] emerges as the stationary solution
when L is supplemented by the gauge kinetic term
—(1/4)(8,A, — 9,A,)*. The boundary conditions for the
classical scalar field in the vortex configuration are always
given by lim,_ f(p) =0 and lim,_,, fy(p) = 1. A non-
trivial topology requires lim,_, f(p) —lim,_ o, fc(p) # O,
but the specific values depend on the choice of gauge. That
choice affects the scalar field via £ = 1—1lim,_, f(p).
Calculating the VPE will require the Fourier transforms of
the classical vortex field configurations. In particular for the
vector potential we have

A(p) = / PP A (x) = 21, / ® dpf o)1 (D).
3)

where @, is the azimuthal unit vector in momentum space
and J(z) is a Bessel function. The integral on the right-
hand side is well defined only when lim,_ ., fs(p) = 0.
Hence computing the VPE requires us to choose the so-
called singular gauge with lim,_, fs(p) = 0, meaning
that lim,_, f(p) # O for a configuration with nontrivial
topology. In Sec. V we will actually see that even with this
particular condition on the gauge profile, special care is
needed when using Eq. (3) to compute Feynman diagrams.

We introduce small amplitude fluctuations about the
classical scalar field via ¢ = ¢y + n and derive their field
equations in the harmonic approximation,

m2

21 1 3m?
oF—V2 +;f0(l’)aqz +p7f%;(ﬂ) - Tf%—l(p) + S|

=0. (4)

The partial wave-decomposition 1 = e "> 5,(p)ei’®
yields
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1 2 1
k2 ==0,p0, +——= +f5(p)+V
P pp P /)2 png(/)) psz(/)) H(p)
xn¢(p) =0, (5)

with the dispersion relation @® = k? + m* and the abbre-
viation Vy(p) = 3—’2"2( 2(p) — 1) for the scalar potential.
We see that the singular gauge boundary conditions
described above turn Eq. (5) into a free radial differential
equation at spatial infinity. As a result, we can see explicitly
that the Green’s function constructed from 7, will asymp-
totically approach its noninteracting counterpart so that the
vacuum energy density associated with the fluctuations
vanishes at spatial infinity. This is another reason for
choosing the singular gauge. Then the singular behavior
as p — 0 is unavoidable meaning that the textbook [13]
proof of analyticity of the scattering data cannot be applied.
We will develop a procedure to remedy that obstacle.

III. SCATTERING DATA AND VACUUM
POLARIZATION ENERGY

Equation (5) defines a potential scattering problem for
which we can obtain phase shifts and bound state energies
in each partial wave. Spectral methods use these scattering
data to compute the VPE [1]. In this approach, we first
write the vacuum expectation value of the energy density
operator in the presence of the background fields in terms
of the Green’s function, which we can then write as a sum
over the full set of solutions to Eq. (5). After subtracting the
analogous contribution without the background and inte-
grating over space, we obtain an expression for the total
energy in terms of an integral over the wave number k and a
sum over partial waves Z. In this expression, the essential
element, which encodes the dynamical information, is the
momentum derivative of the logarithm of the Jost function.
For real momenta, this result can be expressed in terms of
the phase of the Jost function, i.e., the phase shift [14]. For
numerical purposes, this momentum derivative is typically
treated via integrating by parts. Our calculation will take
advantage of the freedom to add an arbitrary constant to this
logarithm without changing the VPE in order to maintain
its analytic properties. In particular, we will show that by
introducing a uniquely determined constant, which does
not affect the calculation on the real k axis, we are able to
calculate the integral by continuing to imaginary wave
number ¢ = ik. There are then two ingredients to the inte-
gral. One arises from the discontinuity of In (m? — %) and
the other from the poles of the logarithmic derivative. These
poles emerge at the bound state wave numbers, thereby
canceling the bound state contribution to the VPE [15].
Furthermore, on the imaginary axis functions that oscillate
for real momenta [7] are replaced by their exponentially
damped counterparts, making the calculation numerically
more efficient. Finally, as we will see below, it is on the

imaginary axis that we are able to recognize the full
divergence structure of the theory.

The interface formalism [16] provides an extension of
the scattering approach to compute the VPE in cases where
the background potential is translationally invariant in one
or more spatial coordinates. To implement this formalism in
our Higgs-gauge vortex model, we first define

)], = Jim 3 (0], (6)
=-L

where v,(t) is the logarithm of the Jost function associated
with orbital angular momentum #. The subscript n denotes
a suitable subtraction, typically in the form of the Born
approximation, such that the integral in

1 oo n
Evpg = Z/ tdtlv(t)], + EI(~7D> + Ect (7)

is finite. The lower limit of the integral is the mass of the
quantum fluctuations, which for the current conventions is
the scalar mass m, and the integral runs along the branch cut
discontinuity mentioned above. The subtractions in Egs. (6)
and (7) are added back as (dimensionally) regularized

Feynman diagrams EI(J'B; when combined with the counter-
term contributions (Ect), the regulator may be removed in a
renormalizable theory. In the current study we are primarily
interested in the structure of [v(7)],, in particular with
regard to a singular vortex background. Therefore we leave
the details of Egg and Ecp with on-shell renormalization
conditions [17] to the forthcoming manuscript [4], which
computes the VPE in the complete Nielsen-Olesen
model.

To numerically compute v,(z), we first write 7,(p) =
K4(tp)iis(p), where K, is a modified Bessel function. This
produces the differential equation

1 B _ 1 _ _
;8@08/;771? = 2tZ,(tp)0,7i, + e & — 2616l + Vuie

. K2 |7
with Zf(z)—m—?.

(8)

We then integrate this differential equation with the boun-
dary conditions lim,_, . 7,(p) = 1 and limp_,oo{%ﬁf(p) =0,
and extract v,(t) = lim,_In(7,(p)). The Born series,
which is the standard tool to remove the divergences in
Egs. (6) and (7) [1], expands the solutions of Eq. (8) in
powers of the strength of the background potential
Vg = ;12 [f& —2¢f] + Vy. This expansion produces a
series that approximates the scattering data well at large
momenta. Hence subtracting the leading terms of this series
from v(t) renders the integral in Eq. (7) finite.
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(2) (b) © (d)

FIG. 1.

(a) (b)

Quadratically divergent one-loop diagrams.

(© (@

FIG. 2. Logarithmically divergent one-loop diagrams with external photon lines only.

(@) (b)

(c) @

FIG. 3. Logarithmically divergent one-loop diagrams with at least one insertion of the Higgs potential V, = % (f3 - 1).

In contrast to the phase shift, which is the imaginary part
of v, for real momenta, the Jost function on the imaginary
momentum axis is not a gauge invariant quantity. Hence we
cannot rely on gauge invariance when investigating the
divergence structure associated with v,.

IV. STANDARD TREATMENT FOR REGULAR
VECTOR POTENTIALS

Before addressing singular configurations, we review the
standard treatment for a regular gauge profile that vanishes
at the origin and spatial infinity, in order to properly
identify the quantum field theory divergences in Eq. (7).
Because there are cancellations of divergences between
various contributions at different orders of Vp, it is
appropriate to consider insertions of f%/p* —2£f¢/p*
and Vy separately. The first two of these terms originate
from the A,A* and A,0" interactions, respectively,' in
Eq. (1) and correspond to vertices with one or two external
photon lines, while the third corresponds to vertices with
one or two external scalar lines. The full VPE can then be
written as the sum of one-loop Feynman diagrams with (the
Fourier transforms of) the profiles emerging as external
lines, combined with the corresponding contributions of
renormalization counterterms to the low-order diagrams to

'Note that we work in a gauge where the vortex profile obeys
d,A" = 0.
W

form a convergent result. In our simplified model, only the
complex scalar field is quantized and appears within loops
in the diagrams.

In the covariant formulation, Feynman diagrams are
generated by expanding the effective action for a complex
scalar field

Aep = iTrlog [0> +m? + V] 9)

with respect to the components of

3m? . = <
V= T(|¢0|2 - 1) -AA" +i(A*0, + 0,A%), (10)

where the arrow indicates the direction of differentiation
to be applied in the functional trace, Eq. (9). Here we
have written the effective action for a general interaction.
For the vortex configuration we will replace V by Vg
defined above.

In Figs. 1-3 we display all one-loop diagrams that are
divergent by power counting. There are considerable
simplifications arising from relationships between the
divergent parts of different diagrams, but not all of them
can be straightforwardly implemented in Eq. (7). First we
note that the divergences from diagrams with an odd
number of gauge fields, Figs. 1(d), 2(b), 2(c), and 3(b)
will have coefficients that are spatial integrals involving
BﬂA” = 0 for the vortex, which will vanish. Hence we
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do not need to consider these diagrams any further.
Actually diagrams 1(d) and 2(b) are identically zero for
the vortex.

Figure 1 shows the Feynman diagrams that superficially
are quadratically divergent. Due to gauge invariance, the
quadratic divergences of 1(a) and 1(b) cancel, so that the
only remaining quadratic divergence is the tadpole graph
with a single insertion of V in 1(c). This diagram is local,
i.e., independent of the incoming momentum, and propor-
tional to [ dxVy. Therefore it can be fully removed from
the VPE by an appropriate no-tadpole renormalization
condition.

Again by gauge invariance, the logarithmic divergences
in Figs. 2(a) and 2(d) cancel, as do those of Figs. 3(a)
and 3(c). Thus all we need to subtract in Eq. (7) are the
divergences associated with the diagrams of Figs. 1(a)-1(c)
and 3(d). The treatment of 1(c) and 3(d) is straightforward
using spectral methods. We merely need to subtract the Jost
functions obtained from iterating Vp in the differential
equations

pa po i) = 21Z,(1p)d, i) + vy and

)

; 00, = 224 (1p)0,1C + Vil (11)

Integrating these differential equations with the boundary
0 and hmp_,OOdp;y(f )(p) =0,
we obtain the subtracted result

conditions lim,,_, o, nf (p)

. _ _(1 _(2 —(1)\2
o030 = timd ) =7 -2 + 367 | 12

1 T l T | T
08 —
0.6 fH —
04 —
L . f, -
02+ 1// ™~ A —

/ S
Li7 Sl J
/ \\\\\\\\\

/ | l | T

O 1 1 1
0 1 2 3 4

Next we explain how to complete a full set of sub-
tractions corresponding to the remaining divergences.
However, in the next section we will show a shortcut that
will bypass these subtractions in favor of a simpler limiting
function, which we will then use in the context of the sin-
gular vortex background in Secs. VI and VIIL. Diagram 1(a)
has a single insertion of (f;/p)? and the corresponding
order of the Jost solution is given by the differential
equation

1 G
p@ PO I’[f = 2th(tp)8p77f ( ) . (13)
To obtain the Jost solution representing diagram 1(b),
which has two distinct insertions of 2£f;/p?, we need
to solve a set of coupled differential equations

1

;,,pa W —2th(tp)8 ) fG and

1 _

p ,P0, i —2th(tp)8pnfﬂ —?fcn/- (14)

Again, these differential equations are solved subject

to the boundary conditions lim,_, 1'7,(/,3’4'5) (p) =0 and
lim/,_,oc,dip‘?"“s)(p) = 0. Putting things together, the

integral in Eq. (7) is rendered finite by using

_ L e 3
b (0], = hm{ln@) i =i + 5@ -7

p—0

(15)

0.01

S

0.001

0.0001

(&3
o TrrTg
=
(=]
oo
(=]

t/A

FIG. 4. Left: regular vortex background profile functions; right: double logarithmic plot of >, [7,(7)], from this background
compared to a power behavior, both with the horizontal axis expressed in units of A = m//2.
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Note that we have included 7];4> in the subtraction even

though > %, 77(;) = 0 because it may be advantageous
numerically by avoiding summing large numbers.

Before discussing results, a remark on the numerical
simulation is in order. Scattering calculations with radial
symmetry separate the regular and irregular solutions at
the origin. In the # = 0 channel, the irregular solution
diverges like a logarithm, while the regular one is con-
stant. Numerically these two behaviors are difficult to
disentangle. We therefore integrate the differential equa-
tions for £ =0 down to various values in the regime
Pmin = 10720...107%/m and fit ¢y + ¢;/ In|pyin/m] +
¢>/ In?[pyin/m]. We then make sure that the final result,
cp, 1s stable under further variation of p;,.

In Fig. 4 we display both a sample regular vortex
background and the resulting integrand »_, [1.(1)], for
the VPE. Obviously, that integrand quickly approaches
zero like 1/¢*, which suffices to make the integral in Eq. (7)
converge. Hence we have correctly implemented the
divergence structure deduced from the Feynman diagrams
in the scattering calculation.

Surprisingly

L
. . 3y ~@ -6y 1 _@.2
Lhm hm{n(f)—kn,(f)—i-?](f)——(ﬂ(f))
—>oof: Lp—>0 2

o
- [T Lr0) wi-w, (16)
0o P

signaling a quadratic divergence. The integral is the
coefficient of the quadratic divergence arising when the
regularization procedure is not gauge invariant, which here
is a consequence of the fact that the Jost function is not
gauge invariant. We will describe how to fix this problem in
the discussion below.

V. FOURIER TRANSFORMS AND
FEYNMAN DIAGRAMS

As far as the gauge field part of the background is
concerned, we have argued above that even though there
are many divergent diagrams, only the divergences from
1(a) and 1(b) will remain once all divergent diagrams are
combined with a gauge invariant regularization.

Let us first comment on the origin of Eq. (16). In a
covariant, but not necessarily gauge invariant regulariza-
tion, diagrams 1(a) and 1(b) contribute

/ d*xA,(x)A,(x) / (;1;4

y g 1 4pp
P—m?+i0" 2(2—m?+i0")?

(17)

as the leading divergence in the effective action. In dimen-
sional regularization the two terms cancel. However, using
a sharp cutoff A in Euclidean space yields

Q, AP
D A%+ m?

A TP d 1 2 D+
-Q dl|—— = 18
D/O [D dl <12+m2> +D(12 —|—m2)2] (18)

times ¢ for the loop momentum integral, where Q, is the
D-dimensional solid angle. The integrand indeed vanishes
for any D, but the surface term does not vanish for D > 2 as

the regulator is removed.” With A, (x)A*(x) = —(%6)2 we
observe that the quadratic divergence for D = 2 is propor-
tional to the coefficient given in Eq. (16).

In dimensional regularization (with D space time dimen-

sions) the diagrams 1(a) and 1(b) contribute

e =r(1-3) (%) 7 (1) [ e

A(-p) Al dx{l - [1 +x(1=x) 5;]1)/2_1}

(19)

to the VPE of the vortex per unit length. The derivation of
Eq. (19) used that 0,A* = 0 translates into p -A(p) =0.
The renormalization scale p will eventually be eliminated
by appropriate renormalization conditions. The pole at
D = 2, corresponding to the superficial quadratic diver-
gence, has zero residue and we may thus analytically
continue to D = 4 — 2¢ without adding a counterterm for
this divergence. The logarithmic divergence in Eq. (19)
becomes

@, __ 1 Ep sz A
EVPE‘diV. - 66(477:)2/ (271_)217 A(p) A( p)
1

_ 2 v

= 126(4”)2/51 xF,, F*. (20)
Using the inverse Fourier transformation to write a coor-
dinate space integral is actually essential. As we will see
later, momentum space integrals above may not be well
defined for a singular vector potential, while the field
strength tensor only contains the magnetic field, which is
nonsingular. In a full theory the ultraviolet divergence in
Eq. (20) is compensated by wave-function renormalization
of the dynamical gauge field. We therefore refer to this
divergence as wave-function renormalization.

*Dimensional regularization takes D small enough such that
the surface term tends to zero as A — co.
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In the next step we translate the logarithmic divergence
of Eq. (20) into the large t-behavior of v(r). We write, in
terms of an arbitrary mass scale M,

1 . / d*l 1
_— = -1
e(4r)? (27)* (> — M? +i0%)?

div.
1 Pdl
T8 VP My =
so that we may formally identify
E(A) 1 /d2 P 12dl
= —_— X P—— .
Y|y, 967 " P+ M g,
(22)

Hence with only gauge field insertions (i.e., V5 = 0), the
unsubtracted integrand in Eq. (7) has the asymptotic
behavior

[w(n)]o= Am%]%(p) — 1 (1) :[lz%fopdp (@)2
(23)

= 2(%e”)? for the vortex. With

Vy #0, the limiting function (1.f.) should also be
approached when the divergences arising from Vy are
removed, i.e., by using Eq. (12) instead of Eq. (15) and
subtracting the constant of Eq. (16).

We can restate the above analysis of the ultraviolet
behavior by supplementing Eq. (16) with the next-to-
leading order term

as t = oo, wWhere FWF/‘”

0.124 —

0122 —

0.118 —

0.116 [~

0114 — -

t/A

FIG. 5.
expressed in units of 4 = m/v/2.

— 0 1

©dp , 1 / © ’G(p)>2
—>/0 ) a(P) + 5p | Pdﬂ( P (24)
as t — oo. We numerically calculate this asymptotic
expression in Fig. 5. For this calculation we need to
terminate the sum on the left-hand side at some large
but finite value. From the left panel of this figure we see that
the leading terms of the Born series nicely approach the
expected asymptotic form for moderate momenta ?.
However, closer inspection (right panel) shows that even
for values as large as L = 500, the asymptotic form is not
exactly reached. Rather, the difference between the sum
and the asymptotic form increases with ¢. For this reason
we use various (large) values for L and fit an inverse
polynomial

L

N B I T T W)
STim 7 + 7+ 7 - @)
= =0 2

C C
e

SatT T

(25)
so that ¢ is the L — oo extrapolation. Indeed, we see from
the right panel of Fig. 5 that this extrapolation perfectly
matches the asymptotic form extracted from the analysis of
the Feynman diagrams. This result shows that we do not
miss any subleading logarithmic divergences when we
subtract the constant in Eq. (16). For regular profiles, the
numerical effect of this extrapolation is actually very
marginal. However, we will see later that for singular
vortex profiles this extrapolation is essential and its
omission leads to incorrect results.

0.1156 P .

0.1154 .

) L =200 -
0.1152 L =300
—— L=500
T —— extrapol. 1
—— Eq.(24)
0.115— =
| L | 1 | L | 1 |
8 9 10 11 12

7

Comparison of Born approximation and asymptotics extracted from Feynman diagrams, both with the horizontal axis
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In further preparation for the consideration of singular gauge profiles, it is illuminating to consider the finite part in

Eq. (19). In MS renormalization, it reads

m? [

m
2

= —— [ pdpd(p) /01 dx{l +x(1-x) %] In {1 +x(1 - x) 51—22} (26)

871’()

where a(p) = [$° dpfs(p)Ji(pp) (which indeed exists even for a singular background). Straightforward substitution of
Eq. (3) fails for profiles with f;(0) # 0, as can be seen already from the leading p? term. Integration by parts of dip Jo(pp) =
—pJi(pp) and the completeness relation for the Bessel functions yield

Am pdpp*a*(p) Zf%;(o)[)oo pdp+2fc(0)/0oo pdp Moo dpJo(pp)f’c(p)} +Ampd0<@>2- (27)

The first two integrals diverge, while the last term is the correct local integral [ % F,, F* . In order to compute Eq. (26) for a
singular gauge profile, we first note that the Feynman parameter integral in Eq. (26) vanishes for p> = 0, so that

E@E:—(iy / éjgzpz;l(p)-ﬁ(—p) / ldx[’;—;—i-x(l—x)] In [1+x(1—x):1—22] (28)

is well defined. Next we observe that (formally)

d'p -

/ Wp,/\p(p)p"fl”(—p)g(p)

again using d,A* = 0. We then define

4
- %/ CZlﬂI))4 Fﬂy(p)F"”(—p)g(p), (29)

b(p) = - / ™ dpf(0) ol pp) (30)

0

to find

For regular profiles we have numerically verified that
Egs. (26) and (31) yield identical results. However,
Eq. (31) is also well defined for singular vortex profiles.

VI. SINGULAR BACKGROUND

The standard procedure outlined in Sec. IV fails when
fc(0) #0. The situation is even worse than Eq. (27)
suggests because neither the Born approximation nor the
Fourier transform of the radial function [f%; —20f5)/p?
exist. Yet we expect

L—

_ _ _ 1,
{ln(w) — i) = +—(71§3))2}
f=—L 2

- [T (32)

W]y = lim

P=Pmin

2

EG. = —%Aw pdpb(p) Al dx {m—2+x(1 —x)} In {1 +x(1 = x) p—i} (31)

m

|
to approach v, () as ppi, = 0 and ¢ — oo, to properly
produce the logarithmic divergence. Essentially we have
subtracted the ultraviolet divergences associated with the
scalar potential as in Eq. (12) and subtracted the constant,
which formally does not contribute to the VPE, needed to
maintain the analytical properties of the (summed loga-
rithm of the) Jost function. The above analysis refers to the
scattering data for imaginary momenta, but we have also
computed the Jost function for real momenta. In that case
the subtracted constant emerges as the modulus of the Jost
function and thus does not contribute to the VPE which, on
the real axis, involves only the phase of the Jost function
and the bound state energies.

We have numerically verified that the regulator p,,;, in
that integral must be identical to the end point of the
differential equation. Surprisingly, we also find numerically
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that, with this regularization installed, the sensitivity on
Pmin 1 mitigated.

To construct the limiting function that will allow us to
implement the final logarithmic renormalization, we
require a background potential that has the same logarith-
mic divergence in its second order Born term. For this
purpose we introduce V, = 3—’;’2 (tanh?(p) — 1), which cou-
ples to the scalar quantum fluctuations via Feynman
diagrams like 1(c) and 3(d). All we require are the solutions
to Eq. (11) with V; replaced by V ;. Calling those solutions

4 ;1’2) (p), we find the second order contribution

L
72 (t) = lim

L—-oo

_ 1 -
(2—aﬂ»nm[c?%p>—<¢ﬁkp»2.
g p=0

(33)

Similarly to Eq. (23), it produces the limiting function

1 ©
PA(1) > iy (1) = / pdej% as t — o0. (34)
0

42
Using this quantity we compute the finite scattering data
component of the VPE as

1 [ _
Bt =5, | b0y - o)

! 2
with ¢ __1W (35)
B3 [Rpdpvi

Instead of the wave-function renormalization, Eq. (31), we
have to add back the Feynman diagrams for two scalar field
insertions, both the regular, V, and the auxiliary, Vf. In

MS renormalization they are combined to

—(S 1 58]
E&’QE:E ;

1 p?
x/ dx1In [1+x(1—x)—2]
0 nm

pdplvg(p) + csvi(p)]

whete vy,(p) = [ pdoVr (9)1o(po). (36)
In total, the VPE for the singular background is given by
Evpg = ENip; + Ei}?’E (37)

VII. NUMERICAL EXPERIMENTS

For the numerical simulations we consider a family of
(singular) background profiles

fu(p) = tanh(api) and fg(p) = (@P* (38)

that have shapes similar to the ANO profiles. Here o

is a dimensionless variational parameter and A = m//2
provides a convenient energy (or, equivalently, inverse

length) scale. Though the gauge potential is singular at

p — 0, the profile of the magnetic field, @

limit. To study the relative roles of the scalar and gauge
potentials, we introduce the additional parameter f and
define Vy = (3m?/2)B[f%(p) — 1]. Note that the model
Lagrangian, Eq. (1), implies = 1. However, our main
interest is to compare the scattering results based on Eq. (5)
with the canonical expansion of the effective action,
Eq. (9). Then, e.g., a small value of f is an ideal means
to investigate the role of the singularity in A.

In order to obtain numerically stable results when
integrating differential equations (8), (11), etc. we needed
to develop a long-double precision FORTRAN code for an
adaptive step size control in combination with a fourth order
Runge-Kutta algorithm [18]. The algorithm for computing
the modified Bessel function K| (tp) is an iterative process
in £, which is computationally costly for large . Some of
the simulations that did not require extremely large wave
numbers and angular momenta were cross-checked with
computations in Mathematica. The necessity of this elabo-
rate simulation raises doubts about the numerical results
from the simpler treatment reported in Refs. [5,6].

To begin with, we have to verify that Eq. (32) indeed
approaches the limiting function, Eq. (23), when the
imaginary momentum ¢ becomes large. For this purpose
it is useful to introduce a variant of Eq. (32) without the
L — oo limit

, has a smooth

L
_ _ _ 1,
i = Y (o) -1 - + 36}
=—L P=Pmin
0 dp
—/ P 12 (p). (39)
Pmin p

We have confirmed that the results are insensitive but not
fully independent of p,,;, once it is taken small enough. That
is, the logarithmic divergences in Eq. (39) cancel. However,
there is an additional mild but not negligible sensitivity on
Pmin also known for regular scattering potentials [19]. It
arises from separating regular and irregular solutions of the
wave equation which for #Z = 0 requires numerically dis-
tinguishing a slowly varying logarithm from a constant,

while otherwise the behavior differs as przrllﬂ. As in Sec. IV
we therefore extrapolate to p;, — 0: For |£] <1 and the
integral in Eq. (39) we take various values for p.., €
[107°,107°] and fit po+ p1/(pmin) + P2/ 0% (Prin)
so that po is our result, which indeed is stable against
further changes.3

The dependence on L is much more intricate. A typical
result is shown in Fig. 6. At first sight (left panel) we

*No problems related with p_;, — O have been reported in
Ref. [6] which adopted the numerical procedure for integrating
the radial differential equations from Ref. [5]. It appears that the
discretization grid was not varied in either reference and that p,;,
was fixed at a value as big as about 0.001.

076006-9



N. GRAHAM and H. WEIGEL

PHYS. REV. D 101, 076006 (2020)

-0.001

-0.0025

L =500
extrapol.
V”-(t) -

difference

-0.005

35 4 45 5
/A

w
©
wn
.

FIG. 6. Asymptotic behavior of v; (¢) defined in Eq. (39) using @ = 0.5 and # = 1.0 in Eq. (38). Left: different maximal angular
momenta L; center: fit showing that v, (¢) falls faster than 1/¢% for moderate values of #; right: extrapolation I — oo and limiting
function from Eq. (23), all with the horizontal axis expressed in units of A = m/+/2. Also shown is the difference between the

extrapolated and limiting functions.
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FIG. 7. Asymptotic structure of the angular momentum sum in Eq. (39) for ¢ = 0.5 and f# = 1.0. Four equi-distant L values between

(and including) the explicitly given ones are used to match the right-hand-side as in Eq. (25). Note the different intervals for the

horizontal axes, which are given in units of A = m/ V2.

observe a reasonably convergent function as L becomes
very big. The graphs indicate that the sums indeed
approach zero at large ¢. Yet there are problems with those
curves. The double-logarithmic plot in the center panel of
Fig. 7 strongly suggests that v, (¢) approaches zero much
faster than 1/¢> for moderate ¢. Hence using v, (¢) instead of
[v(1)], in Eq. (7) would produce a finite result without
wave-function renormalization of the gauge field."
Alternatively, we might be missing a subleading logarith-
mic divergence. This, however, would invalidate our results
for regular profiles. Either way, the observed behavior of
vy () looks like a clear contradiction of renormalizability.
Even worse, v; (f) seems to be negative for all values of 7,
while the limiting function, Eq. (23), is positive as we
observed for regular profiles. It is therefore unavoidable to
investigate the large ¢ and large L behavior in more detail.
The right panel of Fig. 6 also shows the result of an

*We remark that a similar behavior was observed for the
fermion VPE of a vortex [7].

extrapolation for v, () as in Eq. (25). We observe that the
difference between the extrapolated and the L = 500
curves increases with 7. Eventually the extrapolated curve
indeed crosses zero and approaches the limiting function
such that the difference decays like 1/#*. We observe this
behavior also when fitting v, (¢) for t/4 € [4,8]. For L =
500 we find vso0(7) = —0.0394% /1 — 0.9664*/1*(0.995),
while the extrapolated function follows v () =~ 0.0234%/
2 — 1.7504*/1*(1.000); the data in parentheses are the
correlation coefficients of the respective fits. For #/1 €
[8,14] we find v (f) ~0.02142/1 — 1.6404*/¢*(1.000),
while vsg () departs from zero for ¢ > 104 and we cannot
reasonably approximate it with a polynomial of inverse
momenta in this regime. Recalling that v, ¢ (¢) ~ 0.0214% />
we conclude that v ¢ (7) is not matched for any finite L and
that the extrapolation to infinitely large angular momenta is
essential.

For any fixed value of L, there is a critical momentum ¢
above which v, (1) deviates from the convergence pattern
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suggested by the left panel of Fig. 6, where it may even
acquire a negative slope as a function of 7. In our numerical
simulation we were able to generate stable results for
L < 600. However, even that many partial waves were not
large enough to obtain any positive result for v; (z) when
using a = 0.5. Said another way, without the extrapolation
we get nowhere near the limiting function. This extrapo-
lation is thus essential for the singular background, because
otherwise v, (f) deviates significantly from the limiting
function at moderate momenta (unlike the case of regular
backgrounds). This deviation will only be overcome at
large imaginary momenta ¢, which in turn requires us to
include extremely large angular momenta.

It is worthwhile to ask whether such large L values are
needed to obtain a reliable extrapolation. The results of the
corresponding simulations are shown in Fig. 7. Obviously,

T T T T T
0.004 — - L=500
——  extrapol.
— Vi ®
0.002 = difference _
—_
Nl -
-
> |
0
-0.002 — -
1 | L | |
4 6 8 10

t/A

L =500
extrapol.
Vie(O

difference

0

t/A

FIG. 8.

of A=m/V/?2.

extrapolations that fit the right-hand side of Eq. (25) in the
vicinity of L = 50 do not match the limiting function and
actually produce an asymptotic behavior that departs from
zero already at moderate momenta. An extrapolation based
on results from L ~ 100 appears to do better, but a closer
inspection also reveals that the extrapolation in the right
panel in Fig. 7 has a maximum at ¢t = 74 and departs from
zero for larger momenta. These results cast doubt on
the numerical simulations of Ref. [6], which employed
L € [25, 35] for the extrapolation. One may argue that the
numerical error that arises from not matching the correct
asymptotic behavior might be negligible and one could
simply omit the contribution to the VPE arising from
moderate and large 7. Note, however, that there is an
additional factor ¢ in the integrand of Eq. (7), and that the
value of ¢ at which that integral may eventually be truncated

L =500
extrapol.
Vie(0

difference

0.004

T

> L =500 |
extrapol.
Vi (0
difference .

Same as right panel of Fig. 6 for several variational parameters, cf. Eq. (38). Top row: # = 1 with a = 0.85 (left) and @ = 1.0
(right). Bottom row: a = 0.85 with = 0.5 (left) and f = 1.5 (right). The horizontal axis

in each case is expressed in units
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TABLE 1. The vacuum polarization energy (VPE) per unit
length (in units of 4> = m?/2) and its components for several
variational parameters, cf. Eq. (38) in the MS renormalization
scheme. Also presented is the second order gauge field contri-
bution of Eq. (31).

« P OER/P B/ Bww/P EGy /R
0.50 1.0 —0.0862 0.0061 —0.0801 —0.0017
0.85 1.0 -0.0184 0.0053 —-0.0131 —0.0051
1.00 1.0 —0.0089 0.0050 —0.0039 —-0.0072
0.85 1.5 —0.0917 0.0127 —0.0790 —0.0051
0.85 0.5 —0.0002 0.0010 0.0008 —0.0051

can only be determined a posteriori. The essential criterion
is that there is a significantly large interval along the ¢ axis
in which the numerical simulation produces a 1/¢* behavior
for the difference between the extrapolation and the limit-
ing function.

We show the asymptotic behavior for different profiles in
Fig. 8. The behavior determined by the ultraviolet analysis
is well hidden when the scalar potential is very attractive,
either by being wide (small ) or deep (large f#). The weaker
the scalar potential, the more closely the extrapolation of
vy (1) follows the limiting function. For none of the
considered cases did we observe that the large but fixed
L result matched the limiting function.

The strong enhancement at small ¢ is well fitted by the
integrable function A; + A, In(=¥) with constants A; , and
1 < m. We associate this behavior with the second order
Born terms that are subtracted in v (¢) for the scalar
potential. It is thus not surprising (and actually it is
required) that we observe a similar behavior for 7(?)(),
as defined in Eq. (34). When computing the VPE, we solve
the relevant differential equations starting at = 1.454 and
fit such a logarithmic function directly to the integrand of
Eq. (35) to obtain the contribution from the interval
t/A € [V/2,1.45]. That interval typically contributes about
5% to the full integral. Finally, we are in the position to give
numerical results for the VPE in Table L.

Though the main purpose of this calculation has been to
show the feasibility of this systematic approach, we also see
that the VPE varies strongly with the strength of the scalar
potential, which dominates the VPE. This result is cor-
roborated by the small contribution of the renormalized
second order Feynman diagrams of Figs. 1(a) and 1(b)
listed in the last column of Table L.

VIII. SUMMARY AND OUTLOOK

We have resolved a number of technical subtleties that
are encountered when applying the efficient spectral
methods to the computation of the one-loop quantum
correction to the energy per unit length of a Abrikosov-
Nielsen-Olesen vortex. Because of the singular (topologi-
cal) structure of this configuration, identifying the

ultraviolet divergences that must be renormalized is non-
trivial. In particular, the standard approach of equating
elements of the Born series for the scattering data with
(dimensionally) regularized Feynman diagrams fails
because neither is well defined. This problem is confined
to the coupling of the vector potential to the scalar (Higgs)
quantum fluctuations, which we have therefore separated
out in this study. As a first step, we considered a regular
vector potential, and used the standard formulation of the
spectral methods to verify that we then obtain the expected
divergences. In doing so, we have identified a constant that
must be subtracted from the angular momentum sum of the
logarithm of the Jost function to maintain its analytic
properties. This constant corresponds to the quadratic
divergence of the loop diagrams with two insertions of
the vector potential, which only cancels in a gauge invariant
regularization. Hence this subtraction merely enforces
gauge invariance. Since the quantum correction to the
energy is an integral that contains the derivative of that sum,
any constant may be subtracted without changing the
result; we then integrate by parts for calculational conven-
ience. We have then verified that no subleading logarithmic
divergence is left over from these diagrams after subtraction
of this constant other than the one eliminated by the
standard wave-function renormalization of the gauge field.
For nonsingular backgrounds, the behavior of the Jost
function corresponding to this divergence sets in at rela-
tively small momenta, for which the angular momentum
sum converges reasonably fast. This situation changes dra-
matically for the singular background of the vortex. Not
only is the onset of the correct asymptotic behavior shifted
to larger momenta, depending on the strength of the scalar
potential, but without proper extrapolation it may emerge
from the sum over partial waves only when the sum is
extended to extremely large values for which, unfortu-
nately, the numerical calculation becomes unstable. For the
generic example that we have studied exhaustively, no
finite truncation of the angular momentum sum produced
the correct behavior and an extrapolation was unavoidable.
Furthermore, large angular momenta were required to
obtain an accurate extrapolation. It may well be that the
numerical effect is small when not matching the correct
large momentum behavior and we could instead omit that
part of the momentum integral when computing the vacuum
polarization energy. Even if so, that can only be justified
a posteriori and matching the asymptotics is essential for
consistently renormalizing the quantum energy.

With these technical obstacles solved, the next step is to
consider the full Higgs-gauge boson model that also treats
the gauge fields quantum mechanically. For the transverse
gauge modes there will be a scalar potential similar to Vg
and a coupling to the scalar quantum fluctuations by a
vertex that connects to the vector potential profile. The
temporal and longitudinal modes will only couple to the
scalar potential. In three space dimensions, a particular
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gauge can be chosen such that the contributions to the
quantum energy from the temporal and longitudinal modes
cancel against those from the ghost fields needed for gauge
fixing [6,20], while in two space dimensions this cancella-
tion does not occur and these modes must be explicitly
included. Of course, the full model calculation will also
require physical on-shell renormalization conditions. Their
implementation requires the momentum space analysis of
Feynman diagrams beyond the ultraviolet divergences. We
have seen how to treat obstacles that in this context arise
from the Fourier transform of the singular vortex back-
ground by expressing such Feynman diagrams as the
Fourier transform of the elements of the (regular) field
strength tensor. This will allow us to compute the VPE of a
superconducting vortex [2].

Ultimately we will be able to compare the quantum
corrections to classical configurations in different topo-
logical sectors by replacing ¢ — ng and f; — nfs with
integer n in Eq. (2). This calculation will provide further
insight into the Skyrme model picture for nuclei, which
estimates the nuclei binding energies as differences of
classical energies in sectors whose topological charge

equals the number of nucleons and energies due to
canonical quantization of rotational modes [21]. With
respect to the 7 counting, these are the leading and
next-to-next-to-leading order contribution, while the
next-to-leading order, the vacuum polarization energy, is
omitted. It does not contribute to the mass differences
within a given topological sector, but may alter the picture
when different sectors are compared.

It will also be feasible to apply the proposed method to
supersymmetric extension of the vortex model because the
techniques to include fermions have already been estab-
lished [22]. There are (mainly analytical) results [20,23]
based on mode number counting. However, such arguments
can require more thorough investigation when renormali-
zation is needed [24].
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