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Abstract

Many physical equations have the form J(x) = L(x)E(x) − h(x) with source h(x) and
fields E and J satisfying differential constraints, symbolized by E ∈ E , J ∈ J where E , J
are orthogonal spaces. We show that if L(x) takes values in certain nonlinear manifolds
M, and coercivity and boundedness conditions hold, then the infinite body Green’s
function (fundamental solution) satisfies exact identities. The theory also links Green’s
functions of different problems. The analysis is based on the theory of exact relations
for composites, but without assumptions about the length scales of variations in L(x),
and more general equations, such as for waves in lossy media, are allowed. For bodies
�, inside which L(x) ∈ M, the “Dirichlet-to-Neumann map” giving the response also
satisfies exact relations. These boundary field equalities generalize the notion of
conservation laws: the field inside � satisfies certain constraints that leave a wide
choice in these fields, but which give identities satisfied by the boundary fields, and
moreover provide constraints on the fields inside the body. A consequence is the
following: if a matrix-valued field Q(x) with divergence-free columns takes values
within � in a set B (independent of x) that lies on a nonlinear manifold, we find
conditions on the manifold, and on B, that with appropriate conditions on the
boundary fluxes q(x) = n(x) · Q(x) (where n(x) is the outward normal to ∂�) forceQ(x)
within � to take values in a subspaceD. This forces q(x) to take values in n(x) · D. We
find there are additional divergence-free fields inside � that in turn generate additional
boundary field equalities. Consequently, there exist partial null Lagrangians, functionals
F(w,∇w) of a vector potentialw and its gradient that act as null Lagrangians when ∇w
is constrained for x ∈ � to take values in certain setsA, of appropriate nonlinear
manifolds, and whenw satisfies appropriate boundary conditions. The extension to
certain nonlinear minimization problems is also sketched.

Keywords: Green’s functions, Exact relations, Inverse problems, Boundary field
equalities, Inhomogeneous media
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1 Introduction
Many important linear equations of physics in an inhomogeneous medium of infinite
extent inRd canbewritten as a systemof second-order linear partial differential equations:
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i=1

∂

∂xi

⎛

⎝
d∑
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m∑

β=1
Liαjβ (x)

∂uβ (x)
∂xj

⎞

⎠ = fα(x), α = 1, 2, . . . , m, (1.1)

for the m-component potential u(x) given the m-component source term f(x). If the
integral of f(x) over Rd is zero, these can be reexpressed as

Jiα(x) =
d∑

j=1

m∑

β=1
Liαjβ (x)Ejβ (x) − hiα(x), Ejβ (x) = ∂uβ (x)

∂xj
,

d∑

i=1

∂Jiα(x)
∂xi

= 0,

(1.2)

where, counter to the usual convention, we find it convenient to let the divergence act on
the first index of J, and to let the gradient in E = ∇u be associated with the first index of
E, and h(x) is chosen so

d∑

i=1

∂hiα(x)
∂xi

= fα(x). (1.3)

Assuming we are looking for solutions where E(x) and J(x) are square integrable in R
d ,

integration by parts shows that
∫

Rd

d∑

i=1

m∑

α=1
Jiα(x)Eiα(x) dx = 0. (1.4)

Thus, E(x) and J(x) belong to orthogonal spaces: E the set of square-integrable fields E(x)
such that E = ∇u for somem-component potential u, and J the set of square-integrable
fields J(x) such that ∇ · J = 0. With these definitions, Eq. (1.2) take the equivalent, more
abstract, form

J(x) = L(x)E(x) − h(x), J ∈ J , E ∈ E , h ∈ H. (1.5)

whereH = E ⊕J consists of square-integrable d×mmatrix-valued fields.Whenm = 1,
we can interpret these equations as conductivity equations, with J as the current field,
f = ∇ · h as a source of current, E = −∇V as the electric field, and V = −u as the
electrical potential. Then the σij(x) = Li1j1(x) are the elements of the conductivity tensor
field σ(x).
As shown in the Appendix (see also [26] Chap. 2, [35] Chap. 1, [27,28] and the appendix

of [29]), this structure (1.5) is suitable for amultitudeof additional linearphysical equations
too, including wave equations. They can be formulated in a Hilbert space H of square-
integrable fields in R

d taking values in some tensor space T , where H can be split into
two orthogonal subspaces E and J , i.e., H = E ⊕ J . This splitting is typically such that
the operator �1 that projects onto E is local in Fourier space, i.e., if E = �1A then the
Fourier components Ê(k) and Â(k) of E and A are related via Ê(k) = �1(k)Â(k) for some
operator �1(k) that projects onto a subspace Ek ⊂ T . The Appendix gives examples of
fields E ∈ E having some components that beside those involving∇u, just involve u alone:
examples are the acoustic, electrodynamic, or elastodynamic wave equations in possibly
lossy (energy absorbing) media [32,34,35] at constant (possibly complex) frequency. The
lossy nature of the moduli at constant frequency ensures the coercivity we need for well
posedness. Also the fields E ∈ E could have higher-order gradients: a classic example is
the Kirchhoff plate equation (see, e.g., [26] Sect. 2.3, and references therein) where one
takesE(x) to be the linearized plate curvatureE = ∇∇u, in whichu(x) is the (infinitesimal)
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vertical deflection of the plate. Furthermore, some components of the fields E ∈ E are
not necessarily derivatives of potentials but could also involve, say, divergence-free vector
fields (and the corresponding components of the fields J ∈ J would then be gradients
of potentials). Such mixed formulations are useful in quasistatic and wave equations in
lossy media when one wants to reformulate the problem so that L(x) is real and positive
definite [7,32,34,35]. Again, examples are given in the Appendix.
To begin we are considering an inhomogeneous medium of infinite extent inR

d , where
the material moduli are contained in a tensor L(x). Some types of boundedness and
coercivity constraints on L(x) are usually needed to ensure that Eq. (1.5) always have a
unique weak solution for E(x) [and hence J(x)] for any given source field h(x) with say
compact support. Later we will consider the equations in a bounded domain �. Then
the concept of weak solution implies that, further throughout the paper, unless more
regularity is specified, the tangential component of the E(x) along the boundary can be
viewed in the H

1
2 sense and the normal component of J(x) over the boundary in the H− 1

2

sense.
In an infinitemedium in the governing Eq. (1.5) the uniquely determined fieldE depends

linearly on the source termh. So assumingE depends continuously onh, as it should in any
physical problem of interest, the Schwartz kernel theorem implies that we can informally
write

E(x) =
∫

Rd
G(x, x′)h(x′) dx′, (1.6)

where the integral kernelG(x, x′) (possibly a generalized function) is the Green’s function
for the problem that depends on both x and x′, and not just on x−x′, because themedium
is inhomogeneous.

Remark 1.1 In general the existence of a continuous Green Function for problem (1.5)
may be difficult to prove. Thus, for the sake of clarity of exposition, further in the paper δ

will denote a smooth approximation of the Dirac delta distribution and G will denote an
approximateGreen function (still called theGreen’s function), i.e., the solution of problem
(1.5) with source δ (i.e., a smooth approximation of the Dirac delta distribution).

The Green’s function can also be considered as a linear map G : H → H, or more
specifically, G : H → E . The main objective in this paper is to show that when L(x) is
constrained to take values in certain nonlinear manifolds M, then the Green’s function
kernel G(x, x′) satisfies some exact identities for every x �= x′. The manifold M, with
dimension k0, need not have codimension one.
When we say T is a tensor space, we mean that there is a natural inner product 〈A,B〉T

between any A,B ∈ T and for every d-dimensional rotation R there exists an associated
linear operatorQ(R) acting on T such that 〈Q(R)A,Q(R)B〉T = 〈A,B〉T for all A,B ∈ T .
Thus, for example, T could consist of vectors that have a combination of scalars, vectors,
second-order tensors, or higher-order tensors (or even tensors of “half integer” order, like
spins in quantum mechanics) as elements. However, the tensorial nature of T is rather
moot in this paper as we are not concerned with the action of rotations on elements of
T . Indeed, (1.2) withm = d could be regarded as the linear elasticity equations with Liαjβ
being the fourth-order elasticity tensor Ciαjβ (that annihilates any antisymmetric compo-
nent of E) and with J(x) and E(x) being the second-order tensor stress and displacement
gradient fields. But mathematically it is the same problemwhen the components of u rep-
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resent different physical scalar potentials, e.g., such as temperature, electrical potential,
and pressure, that are invariant under rotations. Then for any x, J(x) and E(x) are not
second-order tensors, but rather triplets of vector fields.
Our paper also presents a broad theory of boundary field equalities that generalize the

notion of a conservation law. These boundary field equalities imply, for example, that
the “Dirichlet-to-Neumann map” (DtN map) governing the response of inhomogeneous
bodies satisfies certain exact identities when the tensor field L(x) inside � takes values in
a certain nonlinear manifold M. These identities generalize the exact identities satisfied
by the effective tensor L∗ in the theory of exact relations for composites when L(x) inside
the period cell takes values inM.
The classic conservation law says that if a vector field u(x) with d-components satisfies

∇ · u = 0 inside a body �, then the integral of u · n over the surface ∂� of � is zero: here
n denotes the outward normal of �. This naturally leads to the question: can one make
other assumptions about the fields inside a body (still leaving many degrees of freedom
in the choice of these fields) that imply exact “boundary field equalities” among the fields
at the boundary for suitable boundary conditions? Of course, these boundary conditions
should not be such that they trivially imply the boundary field equalities, independent
of any assumption about the fields inside the body. We emphasize that, in general, our
boundary field equalities do not result from integration by parts, but rather arise through
algebraic properties of the underlying operators. Thus, it is an entirely new idea to obtaining
identities satisfied by the boundary fields.
A divergence-free field satisfies a differential constraint, but additional algebraic con-

straints are also possible.An example of the latter type of boundary field equality, discussed
in [35] Sect. 1.5, and implicit in the work ofMilgrom [23] (see also [26] Chap. 6, and refer-
ences therein) is the following one. Consider in a body� the primary equations (1.2) with
no source term, i.e., hij(x) = 0 for all i, j, andwithLiαjβ (x) = δijAαβ (x). Assume that� con-
tains just two phases in any configuration where them×mmatrix-valued fieldA(x) takes
the valueA(1) in phase 1 andA(2) in phase 2, inwhichA(1) andA(2) are real, symmetric, pos-
itive definitematrices. Associated with this problem are boundary fields: the vector poten-
tial u(x) on ∂� (that may be obtained by integrating over the surface the tangential values
of E(x)) and the vector-valued flux n · J. The key observation is that there exists a congru-
ence transformation that simultaneously diagonalizes A(1) and A(2), i.e., a matrixW such
that WA(1)WT and WA(2)WT are simultaneously diagonal. To do this we choose W =
Q(A(2))−1/2 whereQ satisfyingQQT = I is taken to diagonalize (A(2))−1/2A(1)(A(2))−1/2.
Then one obtains an equivalent set of decoupled conductivity equations:

J̃iα(x) = σα(x)̃Eiα(x), Ẽiα(x) = ∂ũα(x)
∂xi

,
d∑

i=1

∂̃Jiα(x)
∂xi

= 0, (1.7)

indexed by α = 1, 2, . . . , m, with

J̃(x) = J(x)WT , Ẽ(x) = E(x)W−1, ũ(x) = (WT )−1u(x),

σα(x) = {Q(A(2))−1/2A(1)(A(2))−1/2QT }αα for x in phase 1 ,

= 1 for x in phase 2. (1.8)

It is then clear that if the boundary values ofu(x) are prescribed so that ũ(x) = (WT )−1u(x)
only has one nonzero component, then certainly the fluxn·̃J(x) = n·J(x)WT will only have
onematchingnonzero component. Inotherwords thefluxn·J(x) is of the formα(x)vwhere
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only the scalar α(x) varies on the surface of�. These constraints on the flux n · J(x) for the
prescribed u(x) are an example of a boundary field equality. Another example of a bound-
ary field equality is that given in [48] for an elastic body containing two isotropic elastic
phases having the same shearmodulus, where the boundary field equality involves the vol-
ume fraction (and thus may be used in an inverse way to determine this volume fraction).
These simple examples serve to give an idea of boundary field equalities, but the general

theory developed here goes far beyond them. Rather than say considering inside � the
constitutive law J(x) = L(x)E(x) with the constraint that L(x) ∈ M, we may eliminate
L(x) and just view these relations as a nonlinear local constraint on the fields. Then, we
obtain results like the following. Suppose we are given a d × s matrix-valued field Q(x)
such that ∇ · Q = 0 [so each column of Q(x) represents a single divergence-free vector
field]. Let q(x) = n(x) ·Q(x) be the associated s-component flux q(x) = n(x) ·Q(x) at the
boundary of � [where n(x) is the outward normal on ∂�]. WithQ(x) constrained to take
values in a subset B of some r-dimensional nonlinear manifold [where B does not depend
on x], we find conditions on B and nonlocal linear constraints on the boundary flux q
(specified in Sect. 8) which forces the nonuniquely determined field Q(x) inside � to lie
in a subspaceD and hence which forces q(x) to lie in n(x) · D [where n(x) · D is obtained
by applying n(x)· to each element of D]. Of course, it should not be the case that B ⊂ D,
since otherwise the result would be trivial.
Alternatively, we may express Q in terms of the elements gradient of t-component

potential w, and we obtain results like the following. Suppose ∇w(x) ∈ A for all x, where
A is a subset of a nonlinear manifold (that does not depend on x), then we find conditions
on A and nonlocal linear constraints on the surface potential w(x), x ∈ ∂�, (specified in
Sect. 8) which forces the nonuniquely determined field∇w(x) inside� to lie in a subspace
C , and this then places restrictions on the tangential derivatives of the surface potential.
Again, it should not be the case that A ⊂ C, since otherwise the result would be trivial.
To better understand the significance of the constraint that inside �, ∇w(x) ∈ C, letN be
any d × t matrix normal to the space C , i.e., such that Tr(CNT ) = 0 for all C ∈ C . Then
Tr[∇w(x)NT ] = 0 which implies ∇ · [Nw(x)] = 0, i.e., Nw(x) is a divergence-free field.
We deduce that∫

∂�

n(x) · [Nw(x)] dS = 0, (1.9)

which implies the additional boundary field equality:
∫

∂�

n(x) ⊗ w(x) dS ∈ C. (1.10)

An explanation of why there exist such subsets B andA of nonlinear manifolds with this
property, and a prescription for obtaining them and the appropriate boundary conditions,
will be given in Sect. 8.
Somewhat related questions have been the focus of attention in the homogenization

community. Luc Tartar [45] raised (in amore general setting) essentially this fundamental
question: if one has a sequence of fields uε(x) such that∇uε(x) takes values in a setA, then
what is the range of values that the weak limits of ∇uε(x) can take? [Alternatively, if one
has a sequence of fluxes Qε(x) such that ∇ · Qε(x) = 0 and Qε(x) takes values in a set B
and converges weakly toQ0(x), then what is the range of values thatQ0(x) can take?]. For
a sample of work addressing this thorny problem, see, for example, the papers [12,37,51]
and references therein. Here we are tackling the question of whether, for certain sets A,
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one can deduce additional constraints on each element ∇uε(x) in the entire sequence,
namely that ∇uε(x) ∈ C, when uε(x) satisfies appropriate boundary conditions. This is
important as the homogenization approach is not suitable in applications where there is
no separation of length scales. In cases where it is applicable, we deduce the nontrivial
result that the weak limit of ∇uε(x) lies in C (that is, essentially, a corollary of the theory
of exact relations for composites). We emphasize that our boundary field equalities are
generally not simply an application of integration by parts, not even at a qualitative level.
Rather they follow from algebraic identities.
Wemention too that beyond boundary field equalities there are boundary field inequali-

ties and some of these go beyond just using convexity and the divergence theorem [27,28].
Althoughwe do not explicitly address this in the paper, wemention here that our results

on boundary field equalities enable us to introduce and give examples of what we call
“partial null Lagrangians.” Null Lagrangians include, for example, functions F (x,w,∇w)
for which the corresponding integral

W(w) =
∫

�

F (x,w(x),∇w(x)) dx, (1.11)

has the property that W(w0 + φ) = W(w0) for any choice of φ ∈ C∞
0 (�) and for any

choice of w0 ∈ C1(�). Null Lagrangians of this form have been completely characterized
by Olver and Sivaloganathan [41]. It is well known (see the references in [41]) that when
F (x,w,∇w) = 	(∇w), then 	(∇w) is a null Lagrangian if and only if it is an affine
combination of subdeterminants of ∇w of all orders. Other classes of null Lagrangian
have been characterized by Murat [38–40] (see also Pedregal [42]). Null Lagrangians are
also instrumental in the construction of polyconvex functions and play a fundamental
role in the calculus of variations and in establishing the existence and uniqueness of
minimizers to large classes of “energy functions” (see, for example, [3], the recent review
[5], and references therein). Additionally, they are an important tool for establishing
bounds on the effective moduli of composite materials, through the “translationmethod,”
or equivalently, the method of “compensated compactness” (as summarized in the books
[1,6,26,47,49]). In the liquid crystal community it is well known that if a t-component
vector field w(x) takes values in A, where A consists of vectors of unit length, so that
|w(x)| = 1, then (∇w) · w = ∇(w · w) = 0. For any given d-component vector field a(x),
the function F (x,w,∇w) = a(x) · (∇w) ·w is then an example of what we call a partial null
Lagrangian: its integral can be exactly computed under the constraint that w(x) ∈ A for
all x ∈ � once one knows the boundary fields (and, in this example, the integral is zero
and independent of the boundary fields).
More generally, we call F (x,w,∇w) a partial null Lagrangian on a subsetA (independent

of x) of a nonlinear manifold in the space of pairs of t-component vectors and d × t
matrices, if for every φ ∈ C∞

0 and w0 ∈ C1(�) satisfying

(w0(x),∇w0(x)) ∈ A, (w0(x) + φ(x),∇(w0(x) + φ(x))) ∈ A, ∀x ∈ �, (1.12)

andwith the surface fieldsw0(x), x ∈ ∂�, satisfying appropriate nonlocal boundary condi-
tions, one hasW(w0 + φ) = W(w0). WithA, and the boundary conditions on w0 chosen
so it forces ∇(w0 + φ) to lie in a subspace C, we obtain functions F (w,∇w) that are partial
null Lagrangians, but not null Lagrangians. Specifically, since Nw(x) is a divergence-free
field [see the text preceeding (1.9)], an obvious partial null Lagrangian is any component
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of the t-component function,

F(w,∇w) = [Nw] · ∇w, (1.13)

and we have∫

�

F(w(x),∇w(x)) dx =
∫

∂�

[n(x) · Nw(x)]w(x) dS. (1.14)

In two dimensions, if N1 and N2 are two 2 × t matrices normal to the space C, then the
fact that ∇ · [N1 · w(x)] = 0 allows us to find a potentialW1(x) such that

R⊥N1 · w(x) = ∇W1, R⊥ =
(

0 1
−1 0

)
. (1.15)

Furthermore, n(x) · [N1w(x)] gives us the tangential derivatives of ∇W1(x) , which when
integrated gives the surface potentialW1(x), x ∈ ∂�. Then

F (x,w,∇w) = [N2w(x)] · R⊥N1w(x) (1.16)

is a partial null Lagrangian and we have
∫

�

F (w(x),∇w(x)) dx =
∫

∂�

[n(x) · N2w(x)]W1(x) dS. (1.17)

We remark that, in the context of this paper, the constraint thatQ(x) ∈ B, or equivalently
that ∇w ∈ A, is automatically satisfied when there are appropriate materials inside �

with a bounded and coercive tensor field L(x) ∈ M for all x ∈ �. Then, if the appropriate
boundary conditions are satisfied, the partial null Lagrangians place integral constraints
on the fields inside �.
As our work has as its basis the theory of exact relations for composite materials, let us

briefly review this.

2 A brief review of exact relations in composites
In this setting, one typically starts with a tensor field L(y) that is periodic in y and which
is a linear map from T to T , where T is some q-dimensional inner product space. Here
L(y) may represent the conductivity tensor, dielectric tensor, elasticity tensor, or a wealth
of other physical tensor fields (see, for example, [26] Chap. 12). In homogenization theory
one often considers a body� filled by amaterial having tensor field L(x/ε) and in the limit
ε → 0 the body often responds to external fields (that are independent of ε) as if it were
filled with a homogeneous medium with tensor L∗ that is known as the effective tensor
of the medium. In many problems the problem of determining L∗ can be formulated as
a problem in the abstract theory of composites. The setting is a Hilbert space H, say of
periodic fields that are square integrable in the unit cell of periodicity and which take
values in T . It has a splitting into three orthogonal spacesH = U ⊕ E ⊕ J . For example,
in the conductivity problem q = d, U is the space of d-dimensional vector fields that are
constant (independent of y, where y can be thought of as a microscale spatial coordinate)
and E represents gradients of periodic scalar-valued potentials, while J denotes those
periodic fields that have zero divergence and zero average value over the unit cell. To
determine the effective tensor L∗ one prescribes a field E0 ∈ U and solves the equations

J0 + J = L(E0 + E), with J0 ∈ U , E ∈ E , J ∈ J , (2.1)

where the action of L : H → H is defined by B = LA with B(y) = L(y)A(y) (i.e., L acts
locally in space). Of course L needs to be such that these equation have a unique solution



19 Page 8 of 36 Milton and Onofrei ResMath Sci (2019) 6:19

Fig. 1 The central goal of the general theory of exact relations for composites is to identify manifoldsM in
tensor space such that if a periodic tensor field L(x) ∈ M for all x , (and L(x) satisfies boundedness and
coercivity conditions that ensure the effective tensor L∗ exists), then necessarily L∗ ∈ M. Such manifolds are
stable under homogenization, and hence under lamination. In particular, if one takes two materials with
tensors L1 , L2 ∈ M, and layers them together in direction n then the resultant effective tensor L∗ must also lie
in the manifoldM. Varying the volume fractions occupied by the two materials gives a trajectory that must
be confined toM. The figure shows four trajectories associated with four different directions of lamination:
n = n1 , n2 , n3 , and n4. The figure, adapted from Fig. 4.1 of [15](“©IOP Publishing. Reproduced with
permission. All rights reserved”), shows the manifoldM associated with 2 × 2 symmetric matrices having
constant determinant, corresponding to the Dykhne [10] exact relation for two-dimensional conductivity

for E (hence uniquely giving J0 and J) for any E0 ∈ U . Clearly J0 depends linearly on E0
and it is this linear relation that defines the effective tensor: J0 = L∗E0. This formulation
which stems from ideas in [9,19] was crystallized in [24,25], see also [26] Chap. 12.
In the field of composites there are a myriad of results on what are known as exact

relations: microstructure independent formulae satisfied by effective moduli. A canonical
example is Dykhne’s result [10] for 2D conductivity that if the determinant of the local
(anisotropic) conductivity tensor L(x) = σ(x) is constant, then the effective conductivity
tensor L∗ = σ∗ has the same determinant. More generally, as illustrated in Fig. 1, in
the theory of exact relations, one wants to find nonlinear manifolds M (of dimension
less than q2) in the space L(T ) of linear maps T → T such the effective tensor L∗ lies
in M whenever L(y) lies in M for all y (and generally L(y) also satisfies some sort of
boundedness and coercivity properties necessary to ensure that L∗ exists and is unique).
In the two-dimensional conductivity exampleM consists of 2 × 2 symmetric matrices σ

such that det(σ) = c, where c is a constant parameterizing the manifold.
The general theory of exact relations was founded by Grabovsky [13], and his insight is

summarized in Fig. 2. He realized that if an exact relation held for all composites, then it
must certainly hold for layered geometries. For lamination with a vector n perpendicular
to the layers, so that L(y) is just a function of the single variable n · y, it is convenient to
introduce the fractional linear transformation provided by [25,52]

Wn(L) = [I + (L − L0)�(n)]−1(L − L0), (2.2)
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a

b

c
d

e

Fig. 2 Quick summary of the argument of Grabovsky [13]. The transformationWn(L) defined in a reduces
lamination in direction n to a linear average. Therefore in K -space, for lamination in direction n, one has b that
K ∗ = 〈K 〉, and so the setK0 = Wn(M) must be convex with no interior (asM has no interior). Thus,K0

must be a linear space (or a convex subset of a linear space). Choosing L0 ∈ M guarantees that this linear
space passes through the origin 0 = Wn(L0)—thus,K0 is a subspace, as in d, e. It also must remain a
subspace if we choose a different lamination directionm. In d and e lamination in the directions n andm are
represented by the red and blue trajectories in the subspaceK0: these trajectories are straight lines on the
surfacesWn(M) andWm(M), respectively. The subspaceKmust be rather special in thatWm[W−1

n (K0)] is a
linear subspace, even though the transformationWm[W−1

n (K )] is a nonlinear transformation. This observation
leads to the algebraic constraints onK0 that are necessary and sufficient to ensure that the setM is stable
under lamination. The hyperbolic surfaceM is reproduced from Fig. 4.1 of [15] (“©IOP Publishing.
Reproduced with permission. All rights reserved”)

in which �(n) is a certain tensor dependent on L0 and the lamination direction n.Wn(L)
applied to the local tensor fieldL(y) and effective tensorL∗ gives a new tensor fieldKn(y) =
Wn(L(y)) and K∗

n = Wn(L∗) that are related simply by a linear average K∗
n = 〈Kn〉 (where

the angular brackets denote a volume average of Kn(y) over its unit cell of periodicity).
Thus, the relation

L∗ = W−1
n (〈Wn(L)〉), (2.3)

determines the effective tensor L∗. Furthermore, noting thatWn(L0) = 0, one can take L0
to be on themanifoldM to ensure thatWn(M) passes through the origin. (There are other
linear lamination formula [2,46], but it is unclear if the general theory of exact relations
can be developed using them, or their generalizations). Therefore the exact relation in
these new coordinates must be a linear relation: K∗

n ∈ Kn when Kn(y) ∈ Kn where the
tensor subspace Kn defines the exact relation: M = W−1

n (Kn). Thus, Kn has the same
dimension k0 as M. As Kn remains linear as n is varied one sees that Kn must have
the property that Wm[W−1

n (Kn)] = Km for all unit vectors m and n. As Wm[W−1
n (·)] is

a nonlinear transformation, the image of a linear subspace under the transformation is
generally a “curved” manifold, so Kn has to be rather special for its image to be a linear
subspace rather than a “curved” manifold. Through perturbation analysis withm close to
n, Grabovsky established that Kn must be independent of n, Kn = K0 for all n, and he
established thatK0 must satisfy the algebraic constraint that for every unit vectorm ∈ R

d

one has

B�(m)B ∈ K0, for all B ∈ K0, (2.4)

where the left-hand side of (2.4) is to be regarded as the composition of three linear maps
eachmapping T to T (or as the product of three q×qmatrices if one takes a basis in T and
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represents eachmap by amatrix acting on the basis element), and�(m) : T → T depends
on L0 and the differential constraints on the fields relevant to the physical problem under
consideration. Explicitly, �(m) is given by

�(m) = 〈�(n)〉n − �(m) (2.5)

where the angular brackets 〈·〉n denote a possibly weighted average over the sphere |n| = 1
(for example, one could take a weighting concentrated at n = n0, giving 〈�(n)〉n = �(n0))
and �(k) is given by

�(k) = [�1(k)L0�1(k)]−1�1(k), (2.6)

and the inverse is to be taken on the subspace Ek onto which �1(k) projects.
As a simple example, for two-dimensional conductivity with L0 = σ0I as our reference

tensor, one sees that the 2 × 2 matrix

�(m) = (I − 2mmT )/2σ0 (2.7)

is trace free and symmetric. We can then take K0 as the subspace of trace-free and
symmetric 2 × 2 matrices. These have the property that the product of three of them
(but not just two of them) is again trace free and symmetric: assuming without loss of
generality that one matrix is diagonal, we have

(
a 0
0 −a

) (
b c
c −b

) (
d e
e −d

)
=

(
abd + ace abe − acd
abe − acd −abd − ace

)
, (2.8)

which is again trace free and symmetric, and thus, the algebraic condition (2.4) is satisfied.
Then the associated manifoldM = W−1

n (K0) consists of 2 × 2 symmetric matrices with
determinant σ 2

0 , and this is the manifold corresponding to the Dykhne [10] exact relation.
Grabovsky’s pioneering work, developed further with Sage in [18], provided essential

clues that led to the breakthrough result [17] establishing conditions that guarantee an
exact relation holds for all composites, and not just laminates. Using carefully devised
perturbation expansions that had their basis in [31] Sect. 5, coupled with analytic contin-
uation arguments, one sees [17] that finding exact relations which hold for all composite
geometries is tied with identifying tensor subspaces K such that for all Fourier vectors
k �= 0 one has

B1�(k)B2 ∈ K, for all B1,B2 ∈ K, (2.9)

where �(k) only depends on k/|k|, i.e., �(k) = �(m) with m = k/|k| and �(m) is the
same operator as in (2.5). The spaceK0 then could beK or it may be just those symmetric
or Hermitian matrices in K. (Previously in [26] Chap. 17, K0 and K had been labeled as
K and K, respectively. We choose to drop the overline in K to simplify notation, as this
space will be the focus of our analysis). Recently, Grabovsky [16] found a relation that
holds for laminate geometries but not more general composites, so the condition (2.4) is
not sufficient to guarantee that an exact relation holds for all microstructures: one needs
to use (2.9).
The general theory of exact relations is very rich and Grabovsky and collaborators have

systematically explored, and with tremendous effort, exact relations for a wide variety
of physically important problems, including conductivity with the Hall effect, elastic-
ity, piezoelectricity, thermoelasticity, and thermoelectricity: [15] gives a comprehensive
review; see also [26] Chap. 17, and [14]. To simplify the algebra, they assume K has
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Ω

a b

Fig. 3 The theory of exact relations for composites itself hints that there should be exact relations satisfied
by the Dirichlet-to-Neumann map. Consider say a two-phase composite for which an exact relation holds.
The theory of exact relations for composites implies not only that L∗ ∈ M but also that suitably defined
“polarization fields” P(x) take values in the subspaceK for all x . Consider then the region � outlined by the
dashed lines in a and enlarged in b. It does not know that it is part of a periodic composite. Rather, the
boundary fields on ∂� must be such to force P(x) within � to take values inK. One of the goals of this paper
is to identify these special boundary conditions

rotational invariance properties, so removing this assumption may yield a plethora of
additional exact relations. The theory of exact relations encompasses links between effec-
tive tensors: an example of such a link, for an isotropic two-phase composite, is Levin’s
result [22] that the effective thermal expansion coefficient is known once the effective bulk
modulus is measured.
Now one may ask: is there something deeper and more general behind these exact

relations? Indeed, it is the purpose of this paper to reveal that there is something deeper.
As indicated by the argument presented in Fig. 3, exact relations should apply not only
to effective tensors L∗ of periodic composites, but also to Dirichlet-to-Neumann maps of
bodies containing inhomogeneous media with inhomogeneities that are not necessarily
small compared to the dimensions of �. We formulate the problem slightly differently: in
place of fields in U are source terms, and we no longer require the subspaces E and J to
be comprised of periodic fields, but rather fields that are square integrable over Rd .

3 Functional framework
Definition 3.1 Let H = J ⊕ E be a tensor space of functions with R

d as domain (e.g.,
L2(Rd) ⊗ T , for a corresponding tensor space T ) such that the projection �1 onto E acts
locally in Fourier space, i.e., if E = �1A then the Fourier components Ê(k) and Â(k) of
E and A are related via Ê(k) = �1(k)Â(k) for some operator �1(k) that projects onto a
subspace Ek ⊂ T .

In the case of the primary equations (1.2), E can be taken as the set of square-integrable
fields E(x) such that E = ∇u for some m-component potential u, J can be taken as the
set of square-integrable fields J(x) such that ∇ · J = 0, Ek consists of rank-one d × m
matrices of the form k⊗a, where a ∈ C

m, and consequently the action of�1(k) is given by
�1(k)Â(k) = k⊗(k·Â(k))/|k|2 for k �= 0 and�1(k)Â(k) = 0when k = 0. Forwider classes
of partial differential equations, involving higher-order derivatives, an explicit formula for
�1(k) is given, for example, in Sect. 12.2 of [26], and in [27,28].
Let q denote the dimension of T , and letL be the space of linear operatorsA : H → H.

Consider L,L0 ∈ L defined as L(R)(x) = L(x)R(x) and, respectively, L0(R)(x) = L0R(x),
for R ∈ H where L(x),L0 ∈ L∞(Rd) ⊗ L(T ) with L0 denoting a given constant tensor.
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(Thus, L acts locally in space while L0 acts locally both in space and in Fourier space).
Assume thatL is self-adjoint, bounded, and coercive, i.e., there exist constantsβ0 > α0 > 0
such that

β0I ≥ L(x) ≥ α0I > 0, for all x ∈ R
d, (3.1)

where the inequalities hold in the sense of the associated quadratic forms. We emphasize
that many physical problems where L is not self-adjoint, including those where L is com-
plex and symmetric with a positive definite imaginary part, can be converted to equivalent
problems taking the required form (1.5), where the new L is self-adjoint, bounded and
coercive (see, [7,25] Sect. 18, [6] Chap. 13, [26] Sect. 12.11, [32,35] Sect. 5.2). We will next
consider linear PDEs admitting a formulation in the following canonical form (see [35]),

J = LE − h, with J ∈ J , E ∈ E , h ∈ (L − L0)H. (3.2)

This is a restricted form of (1.5) since in general L−L0 may be singular and thus (L−L0)H
does not equal H. The boundedness and coercivity conditions (3.1) ensure that problem
(3.2) has aunique solution for everyh ∈ (L−L0)H. Sinceh ∈ (L−L0)Hwecanequivalently
let h = −(L − L0)s with s ∈ H and consider the equation

J = LE + (L − L0)s, with J ∈ J , E ∈ E , s ∈ H. (3.3)

Definition 3.2 Following [26] let us introduce the following operator � : H → H,
defined by �A = E if and only if E ∈ E and A − L0E ∈ J . These equations are easily
solved by going to Fourier space and one sees that � is univalued, with action in Fourier
space given by the following lemma:

Lemma 3.1 The operator � introduced in Definition 3.2, is self-adjoint and acts locally in
Fourier space. Explicitly, if E = �A then the Fourier components Ê(k) and Â(k) of E and
A are related via Ê(k) = �(k)Â(k), where �(k) is defined by (2.6).

To establish the lemma, suppose E ∈ E and A − L0E ∈ J . This, and the orthogonality
of E and J , implies that for all k the Fourier components Ê(k) and Â(k) − L0Ê(k) lie in
Ek and its orthogonal complement, respectively. Recalling that �1(k) projects onto Ek, we
obtain

0 = �1(k)[Â(k) − L0Ê(k)] = �1(k)Â(k) − [�1(k)L0�1(k)]�1(k)̂E(k), (3.4)

and this is easily solved for Ê(k), yielding Ê(k) = �(k)Â(k), where �(k) is defined by (2.6).
The expression for �(k) can equivalently be rewritten as

�(k) = �1(k)[�1(k)L0�1(k)]−1�1(k), (3.5)

(where the inverse is to taken on the space Ek) which is evidently self-adjoint, as �1(k)
and L0 are self-adjoint. Note also that L0�(k) can also be interpreted as a nonorthogonal
projection onto L0E along J .
Let M : T → T be a self-adjoint positive semidefinite operator. Using the definitions

of L ∈ L and L0 ∈ L, we define the operator K : H → H as K(R)(x) = K(x)R(x) with

K(x) = WM(L(x)) = [I + (L(x) − L0)M]−1(L(x) − L0) ∈ L(T ). (3.6)

It follows from Grabovsky’s Definition 3.17 and Lemma 3.18 [15] that I + (L(x) − L0)M
is invertible whenML0M ≤ M, and so under this assumption the fractional linear trans-
formationWM : L(T ) → L(T ) given by (3.6) is well defined.
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For λ ∈ [0, 1] consider the sequence of operators Lλ : H → H defined by

Lλ = L0 + λ[I + (1 − λ)(L − L0)M]−1(L − L0), (3.7)

and note that Lλ=1 =L and Lλ=0 =L0. We also point out that Lλ is just a homothety by
λ in theW variables, i.e.,WM(Lλ) = λWM(L). In particular, in the context of composites
Lλ with M = �(n) is in fact the effective tensor of a laminate in direction n of L and L0
with a volume fraction λ of L.
Herewe assume these operatorsLλ arewell defined (which is a consequence of Theorem

4.2 under some restrictions on L and L0). Let � ∈ L, be defined by � = M− �. As � acts
locally in Fourier space, if B = �A, then the Fourier components B̂(k) and Â(k) of B and
A satisfy a local relation B̂(k) = �(k)Â(k) with �(k) = M − �(k) taking values in L(T ).
Assume there exists a subspace K ⊂ L(T ) such that for all k

K�(k)K .= {B1�(k)B2, for B1,B2 ∈ K} ⊂ K, (3.8)

in which B1�(k)B2 is the composition of the three maps B2 : T → T , �(k) : T → T ,
and B1 : T → T . If (3.8) holds for all k, then it clearly holds if �(k) is replaced by any
tensorA in the subspaceA spanned by the �(k) as k varies. Hence, (3.8) can be rewritten
as

KAK .= {B1AB2, for B1,B2 ∈ K, A ∈ A} ⊂ K. (3.9)

Spaces K having this property have been called an associative A-multialgebra by
Grabovsky [15]. Instead of testing that (3.8) holds for all �(k) as k varies, it suffices to
test it for a basis ofA.
Next, let us denote by e1, e2, . . . , eq a basis of T . For given q functions s1, s2, . . . , sq ∈ H,

consider the following linear map S : T → H defined by

Sei = si, for all i ∈ {1, . . . , q}. (3.10)

We let S(x) denote the associated field taking for each x values in L(T ) such that S(x)ei =
si(x) for all i. This field can be considered to lie in the spaceH = L2(Rd)⊗L(T ), endowed
with the inner product

〈A,B〉H =
q∑

i=1
〈Aei,Bei〉H. (3.11)

Note that any linear operator F : H → H, such as K or �, has a natural extension to an
operator on H: we define

FA = B iff F(Aei) = Bei for all i, (3.12)

where, to simplify notation, we use the same symbol for the operator acting on H as for
the operator acting onH.

4 The central theorem
Define S as a subspace of L(T ) such thatAS ⊂ K for allA ∈ K. For example, (3.8) implies
S could be taken asQ = AK, defined as the space spanned by�(k)K as k varies. A natural
choice for S is the largest subspace with the property that AS ⊂ K, although it is then
not clear how easily that subspace can be computed. The central theorem of this paper
states:
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Theorem 4.1 Consider problem (3.2) and let L0,M,L satisfy all the conditions presented
in the previous section. Assume that the following conditions hold:

K(x) = WM(L(x)) ∈ K for all x, (4.1)

Lλ is bounded and coercive onH for all λ ∈ [0, 1], (4.2)

s1, s2, . . . , sq ∈ H are such that S(x) ∈ S for all x. (4.3)

where Lλ was defined at (3.7) and WM was defined at (3.6). Next, consider the set of q
sources hi = (L − L0)si , i = 1, 2, . . . , q, and let (Ei , Ji) (i = {1, .., q}) denote the unique
solution of the problem (3.2) for each of the sources h1,h2, . . . ,hq respectively. For each
solution pair (Ei , Ji) define the corresponding polarization field via Pi = Ji − L0Ei and
introduce the operator P : T → H defined by

Pei = Pi, for all i ∈ {1, . . . , q}. (4.4)

Associated with P is the field P(x) taking values for each x in L(T ) such that P(x)ei = Pi(x)
for all i. Then

P(x) ∈ K for all x. (4.5)

Proof Our proof of this result has much in common with the proof establishing sufficient
conditions for an exact relation to hold for all composite geometries (see [17,26] Sect.
17.3, [15] Sect. 4.5, and [16]). From (4.2) we have that for any given h ∈ (L − L0)H there
exists unique Eλ ∈ E and Jλ ∈ J that solve (3.2) with L = Lλ. We choose to define the
polarization field Pλ as,

Pλ = Jλ − L0Eλ = (Lλ − L0)Eλ − h. (4.6)

[Note that the polarization field Pλ is not (Lλ −L0)Eλ]. Then from Definition 3.2 we have
that

�Pλ = �(Jλ − L0Eλ) = −Eλ. (4.7)

Indeed, (4.7) follows from−Eλ ∈ E and Jλ −L0Eλ −L0(−Eλ) = Jλ ∈ J . Hence, we obtain

[I + (Lλ − L0)�]Pλ = Pλ − (Lλ − L0)Eλ

= (Lλ − L0)Eλ − h − (Lλ − L0)Eλ

= −h. (4.8)

Thus, from (4.8) together with the uniqueness of Eλ, Jλ, we have that, for all λ ∈ [0, 1],

[I + (Lλ − L0)�]−1 : (L − L0)H → H is a well-defined linear operator. (4.9)

With λ = 1, this result is Grabovsky’s corollary 3.19 [15] but this follows in our case from
different arguments than in his book. Next, for λ = 1 in (4.8) we obtain

P = −[I + (L − L0)�]−1h, (4.10)

where in (4.10) and in what follows we use P instead of Pλ=1. This may be equivalently
rewritten as follows (see [17] Sect 3.2, or [26] Sect. 14.9, for a similar approach)

P = −[I + (L − L0)�]−1h

= −[I + (L − L0)M + (L − L0)(� − M)]−1h

= [I − [I + (L − L0)M]−1(L − L0)(M − �)]−1[I + (L − L0)M]−1(L − L0)s

= (I − K�)−1Ks, (4.11)
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where h = −(L−L0)s,K ∈ Lwas introduced at (3.6), and� = M−�was defined at (3.8).
Using the notation introduced immediately after (4.4), equality (4.11) can be equivalently
written as

P = (I − K�)−1KS, (4.12)

where S : T → H was defined at (3.10). We choose to regard S and P as fields in H and
regard K and � in (4.12) as operators acting in H, defined according to (3.12). Similarly
we can define fields E(x) and J(x) via

E(x)ei = Ei(x), J(x)ei = Ei(x), (4.13)

and the governing equations become

J(x) = L(x)E(x) + (L(x) − L0)S(x), with E ∈ E, J ∈ J, (4.14)

in which E is comprised of fields E such that Eei ∈ E for all i, while J is comprised of
fields J such that Jei ∈ J for all i.
Consider the following sequence of related fields:

Pλ = (I − λK�)−1λKS. (4.15)

For small λ the Neumann series for λK� is convergent, and we have

Pλ = (I − λK�)−1λKS

=
∞∑

j=0
λj+1(K�)jKS. (4.16)

It is to be emphasized that in this expansionK and� are operators: they act on thefield inH
to the right of them. Related expansions in the theory of composites were first introduced
in [31], Sect. 5, for the conductivity problem, and their convergence properties, allowing
for possibly nonsymmetric conductivity tensors, were studied in [8]. They also form the
basis of accelerated iterative Fast Fourier transform (FFT) techniques for evaluating the
fields in composites and the associated effective tensors [11] (see also [26] Sects. 14.9
and 14.10) that generally converge faster than the iterative FFT techniques first proposed
in [36]. However, the application that motivates their introduction in our paper is their
essential role in the theory of exact relations in composites [17].
To provePλ(x) takes values inKwhen S(x) takes values inS , one proceeds by induction.

Define the partial sums

P
m
λ =

m∑

j=0
λj+1(K�)jKS, Q

m
λ = �

m∑

j=0
λj+1(K�)jKS. (4.17)

Clearly these fields, which are in are H, are related by

P
m+1
λ = λKQm

λ + λKS, Q
m
λ = �P

m
λ . (4.18)

Assume for some m that for every x, Pm
λ (x) ∈ K. This is clearly true when m = 0 by

the definition of S . Then the Fourier components of Pm
λ also lie in K. It follows that the

Fourier components ofQm
λ , and hence also the values ofQ

m
λ (x), lie inQ, defined (as in the

beginning of this section) as the space spanned by �(k)K as k varies. Then sinceAQ ⊂ K
for all A ∈ K, we deduce that Pm+1

λ (x) lies in K for all x.
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We conclude that there exists λ0 > 0 such that for λ < λ0, Pλ(x) defined by (4.15) lies
in K for all x. This implies that for small enough λ we have

fF(λ) = 〈(I − λK�)−1λKS,F〉H = 0, for all F ∈ H with F(x) ∈ K⊥ for all x,

(4.19)

in which K⊥ is the orthogonal complement of K in the space L(T ) with respect to the
inner product defined (analogously to (3.11)) by

〈A,B〉L(T ) =
q∑

i=1
〈Aei,Bei〉T for all A,B ∈ L(T ). (4.20)

Next we will prove that (I−λK�)−1λKS is analytic on an open setD ⊂ Cwith [
λ0
2
, 1] ⊂

D. Indeed, note that the operator function (I−λK�)−1 : C → L is analytic for λ such that
1
λ

∈ ρ(K�) (where ρ(K�) denotes the resolvent set of K�) and therefore the function
(I − λK�)−1λKS will be analytic on this set of λ values (see [21] Chap. 17).
Thus, we observe that using the openness of ρ(K�) it is enough to show that [1,

2
λ0

]⊂
ρ(K�), as this will imply that there exists an open set D1 (bounded above and below by
positive numbers) with [1,

2
λ0

] ⊂ D1 ⊂ ρ(K�) and in turn this will give the existence of

an open setD ⊂
{
λ,

1
λ

∈ D1

}
with [

λ0
2
, 1] ⊂ D such that (I−λK�)−1KS is analytic onD.

We have that

(I − λK�)−1λK = [I − λ[I + (L − L0)M]−1(L − L0)�]−1λK

= [I + (L − L0)M − λ(L − L0)(M − �)]−1[I + (L − L0)M]λK

= λ[I + (1 − λ)(L − L0)M + λ(L − L0)�]−1(L − L0)

= λ[I + λ[I + (1 − λ)(L − L0)M]−1(L − L0)�]−1[I

+(1 − λ)(L − L0)M]−1(L − L0)

= [I + (Lλ − L0)�]−1 (Lλ − L0), for λ ∈ (0, 1], (4.21)

Then, using the fact that by definition, for λ �= 0, we have

Lλ − L0 = λ[I + (1 − λ)(L − L0)M]−1(L − L0), (4.22)

or equivalently,

(Lλ − L0) = λ(L − L0) − (1 − λ)(L − L0)M(Lλ − L0), (4.23)

which implies

Lλ − L0 = (L − L0)[λI − (1 − λ)M(Lλ − L0)]. (4.24)

We see that (Lλ − L0)H ⊂ (L − L0)H and this together with (4.9) gives

(I − λK�)−1λK ∈ L for all λ ∈ [0, 1], (4.25)

and this implies

(I−λK�)−1λK� ∈ L ⇒ −I + (I − λK�)−1 ∈ L ⇒ (I − λK�)−1 ∈ L for λ ∈ (0, 1].

The last result above implies that [1,∞)⊂ρ(K�) which in turn as explained above implies
that there exists an open setDwith [λ0/2, 1] ⊂ D such that (I−λK�)−1KS is analytic onD.
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This together with (4.19) and by analytic continuation in the complex plane implies that

fF(1) = 〈(I − K�)−1KS,F〉H = 0, for all F ∈ H with F(x) ∈ K⊥ for all x.

(4.26)

Thus, as desired, we conclude that P = (I−K�)−1KS takes values inK when S(x) ∈ S
for all x. ��

The fundamental algebraic property (3.8) is clearly an algebraic property of the subspace
K comprised of operators K mapping T to T and is independent of what basis ei, i =
1, 2, 3, . . . , q, for T we may choose. Up to now we could apply our theory when the field
S(x) took values in S . Suppose instead that, for some nonsingular mapping D : T → T ,
S(x)D−1, regarded as the composition of the two maps D−1 : T → T and S(x) : T → T ,
took values in S . In this case we can introduce a new basis

e′
i = Dei, i = 1, 2, 3, . . . , q, (4.27)

and define S′(x) as that field taking values in L(T ) such that

S
′(x)e′

i = si = S(x)ei = S(x)D−1e′
i, (4.28)

implying S′(x) = S(x)D−1. Accordingly, we need to introduce the field P
′(x) as that field

taking values in L(T ) such that

P
′(x)e′

i = Pi = P(x)ei = P(x)D−1e′
i, (4.29)

implying P′(x) = P(x)D−1. Our theorem says that P′(x) takes values inK when S
′(x) takes

values in S , and so we conclude that for all nonsingular D : T → T and for any x ∈ R
d ,

P(x)D−1 ∈ K when S(x′)D−1 ∈ S for all x′, (4.30)

or equivalently that

P(x) ∈ KD when S(x′) ∈ SD for all x′, (4.31)

where

SD = {A ∈ L(T ) | A = SD for some S ∈ S},
KD = {A ∈ L(T ) | A = KD for some K ∈ K}. (4.32)

It is not immediately clear when the assumption of the central theorem that Lλ is
bounded and coercive for all λ ∈ [0, 1] is satisfied. The following theorem gives a simple
condition onM that guarantees this.

Theorem 4.2 LetM be such thatML0M ≤ M, and assume that L,L0 are coercive. Then
Lλ defined at (3.7) is bounded and coercive for all λ ∈ [0, 1].

Proof The boundedness of Lλ can be seen to be a corollary of Grabovsky’s Definition 3.17
and Lemma 3.18 [15]. Then we remark that condition ML0M ≤ M implies the fact that
the family of self-adjoint operators Lλ is continuous in λ ∈ [0, 1]. Therefore, eigenvalues
of Lλ depend continuously on λ.
When λ = 1, or λ = 0, we have Lλ = L and, respectively, Lλ = L0 which are bounded

and coercive by hypothesis.
Thus, if there exists a λ for which Lλ is not coercive, then there exists λ ∈ (0, 1) so that

at least one of the eigenvalues of Lλ is zero, which in turn will imply that Lλ is a singular
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matrix. Hence, to prove coercivity for the family Lλ for all λ ∈ (0, 1) it is sufficient to show
that Lλ is invertible for all λ ∈ (0, 1).
In this regard, if we consider

L′
λ = L−1/2

0 LλL−1/2
0 , L′ = L−1/2

0 LL−1/2
0 , M′ = L1/20 ML1/20 , (4.33)

(3.7) becomes

L′
λ = I + λ[I + (1 − λ)(L′ − I)M′]−1(L′ − I), (4.34)

where the condition ML0M ≤ M is rewritten for M′ as (M′)2 ≤ M′ and we also have
L′ > 0.Then invertibility ofLλ is equivalent to invertibility ofL′

λ which in turn is equivalent
to the invertibility of

F = [I + (1 − λ)(L′ − I)M′]L′
λ = (1 − λ)(I − M′) + L′(λI + (1 − λ)M′). (4.35)

The eigenvalues ofM′ are between 0 and 1 and therefore the eigenvalues of λI+ (1−λ)M′

will always be between λ and 1. Thus, invertibility of F is equivalent to the invertibility of

F′ = D + L′, D = (1 − λ)(I − M′)(λI + (1 − λ)M′)−1. (4.36)

The eigenvalues of the self-adjoint operator D are clearly nonnegative, and therefore, the
operator D + L′ is positive definite and hence invertible. ��
Remark 4.3 Here we show that the condition (3.8) simplifies in the case where for k �=
0, �(k) only depends on k/|k|, and that M can be eliminated from the condition. By
subtracting the conditions implied by (3.8) that

K(M − �(n))K ⊂ K, K(M − �(m))K ⊂ K, (4.37)

we get that K(�(n) − �(m))K ⊂ K for all unit vectors m and n. Hence, if (4.37) holds
it will still hold if M is replaced by 〈�(n)〉n where the angular brackets 〈·〉n denote a
possibly weighted average over the sphere |n| = 1. The formula (2.6) for �(k) implies
0 ≤ �(n) ≤ L−1

0 . So with the choiceM = 〈�(n)〉n we have thatM ≤ L−1
0 which asM ≥ 0

then implies the condition that ML0M ≤ M. Other choices of M may be useful too, as
givenK, bothM and L0 determine the manifoldM = W−1

M (K0), whereK0 consists of all
self-adjoint maps in K.

5 Exact identities satisfied by the Green’s function
Consider a point x0 and take h(x) to be proportional to δ, which as conveyed in Remark
1.1 denotes a smooth approximation of a Dirac delta function localized at x = x0:

h(x) = h0δ(x − x0), with h0 = −(L(x0) − L0)s0, (5.1)

where the amplitude s0 ∈ T is prescribed. We also recall that G denotes in this paper an
approximate Green’s function (see Remark 1.1), and here and in the next two sections, we
assume that L(x) is smooth enough.
Then, with appropriate decay conditions at infinity imposed so that theGreen’s function

(fundamental solution) exists and is unique, (1.6) and (4.6) informally imply

P(x) = (L(x0) − L0)s0δ(x − x0) − (L(x) − L0)G(x, x0)(L(x0) − L0)s0. (5.2)

With the tensor s0 ∈ T replaced by a succession of q tensors s01, s
0
2, …, s0q , each in T ,

and defining the linear map S0 : T → T via S0ei = s0i , we obtain

P(x)ei = (L(x0) − L0)s0i δ(x − x0) − (L(x) − L0)G(x, x0)(L(x0) − L0)s0i
= [(L(x0) − L0)δ(x − x0) − (L(x) − L0)G(x, x0)(L(x0) − L0)]S0ei, (5.3)
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informally implying

P(x) = T(x, x0)S0, (5.4)

with

T(x, x0) = (L(x0) − L0)δ(x − x0) − (L(x) − L0)G(x, x0)(L(x0) − L0). (5.5)

For fixed x and x0, with x �= x0 we can consider T(x, x0) as a map from T to T ,
and given any S0 : T → T we can choose sources s0i such that S0ei = s0i . Define
T(x, x0)S = {T(x, x0)S | S ∈ S} where T(x, x0)S is the composition of the two maps, and
S , as defined at the beginning of Sect. 4, is a subspace of L(T ) such that AS ⊂ K for all
A ∈ K. Then our theorem says that T(x, x0)S ⊂ K for all x, x0, with x �= x0. Alternatively
we can view T(x, x0) as a map from L(T ) to L(T ) defined as B = T(x, x0)A iff bi = Bei
and ai = Aei satisfy bi = T(x, x0)ai for i = 1, 2, . . . , q. Viewed in this way, T(x, x0) maps
S to a subset of K. More generally, (4.31) implies T(x, x0) maps SD to a subset of KD
for all nonsingular D : T → T . Also given any nonsingular S0, we can choose D so that
S0D ∈ S and T(x, x0) will then map this to an element of KD.
To better understand this property of T(x, x0), consider the operator T : H → H,

associated with the integral kernel T(x, x0), given by

T = (L − L0) − (L − L0)G(L − L0) = (I − K�)−1K, (5.6)

where the last identity follows from (4.12). Define the associated sequence of operators

Tλ = λ(I − λK�)−1K =
∞∑

j=0
λj+1(K�)jK, (5.7)

where as K and � are bounded operators the operator expansion converges for small
enough λ. The associated integral kernel Tλ(x, x0) (regarded as a generalized function)
can then be written as a series of convolutions, and the first few terms of which are given
informally by

Tλ(x, x0) = λδ(x − x0)K(x0) + λ2K(x)�̂(x − x0)K(x0)

+λ3
∫

Rd
K(x)�̂(x − y1)K(y1)�̂(y1 − x0)K(x0) dy1

+λ4
∫

Rd

∫

Rd
K(x)�̂(x − y1)K(y1)�̂(y1 − y2)K(y2)

�̂(y2 − x0)K(x0) dy1 dy2 + . . . , (5.8)

in which �̂(x), is the Fourier transform of the operator �(k) associated with the operator
�. Clearly �̂(x) lies in the space spanned by the�(k), and therefore (3.8) implies that each
successive term in the expansion (5.8) lies inK and hence Tλ(x, x0) ∈ K for small enough
λ, assuming the convergence of the series is pointwise not just in the L2 -sense implied
by the boundedness of K and �. As the properties of T(x, x0) must be such as to account
for the Central Theorem 4.1, there presumably must be some analytic continuation or
other arguments which allow us to deduce that T(x, x0) ∈ K for each x and x0. We make
the assumption that such arguments will be found. By definition, S is a subspace of L(T )
such that AS ⊂ K for all A ∈ K. So as T(x, x0) takes values in K we immediately see that
T(x, x0) maps S to a subset ofK, as expected. It appears that the converse need not be true
as an operator in L(T ) that maps S to a subset ofK, generally need not lie inK. Thus, the
assertion that T(x, x0) ∈ K for each x and x0 appears to contain more information than
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that covered by the central theorem 4.1. However, observe that if we consider S to be the
largest set such thatAS ⊂ K for allA ∈ K then S becomes a unit algebra. Then, since our
theorem implies T(x, x0)S ∈ K for all S ∈ S , by choosing S = I we obtain T(x, x0) ∈ K.
If L is a self-adjoint operator then so too is G. Indeed, supposing that E′ = Gh′ and

E = Gh then (3.2) implies

J = LE − h, J′ = LE′ − h′ with J, J′ ∈ J , E,E′ ∈ E , (5.9)

and using the orthogonality of E and J we have

〈Gh,h′〉H = 〈E,LE′ − J′〉H = 〈E,LE′〉H = 〈LE,E′〉H = 〈LE − J,E′〉H = 〈h,Gh′〉H.

(5.10)

which implies G is self-adjoint. In terms of T(x, x0) this says that

T(x, x0) = T†(x0, x), (5.11)

where T†(x0, x) is the adjoint of T(x0, x) on the space T . The extension of T†(x0, x) to an
operator (going by the same name) acting on L(T ) is also the adjoint, with respect to the
inner product (4.20), of the extension of T(x, x0) that acts on the space L(T ). To see this,
we have

〈
A,T†(x0, x)B

〉
L(T ) =

q∑

i=1

〈
Aei, [T†(x0, x)B]ei)

〉
T =

q∑

i=1

〈
Aei,T†(x0, x)(Bei)

〉
T

=
q∑

i=1

〈
T(x, x0)Aei,Bei

〉
T = 〈

T(x, x0)A,B
〉
L(T ). (5.12)

Our theorem then implies T†(x0, x)SD ⊂ KD for all x, x0, with x �= x0, and for all
nonsingular D : T → T . By swapping x and x0 we see that T(x, x0)SD and T†(x, x0)SD
are both subsets of K. The latter implies that for all B ∈ SD and A ∈ (KD)⊥ that

0 = 〈A,T†(x, x0)B〉L(T ) = 〈T(x, x0)A,B〉L(T ). (5.13)

So we see that T(x, x0) maps not only SD to a subset ofKD, but also (KD)⊥ to a subset
of (SD)⊥, in which (SD)⊥ is the orthogonal complement of SD in the space L(T ) with
respect to the inner product (4.20).
Further insight into the relation between the operatorT defined by (5.6) and theGreen’s

operator G can be gained by applying the operator (L − L0)� to both sides of

J − L0E = (L − L0)E − h, J ∈ J , E ∈ E , (5.14)

where we now only require that h ∈ H. This gives

− (L − L0)E = (L − L0)�(L − L0)E − (L − L0)�h, (5.15)

and hence

(L − L0)E = [I + (L − L0)�]−1(L − L0)�h. (5.16)

As E = Gh we see that the Green’s function G satisfies

(L − L0)G = [I + (L − L0)�]−1(L − L0)�

= (I − K�)−1K�

= T�, (5.17)

where we have made use of (4.21) (with λ = 1). Instead of (4.14), we may write
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J(x) = L(x)E(x) − H(x), with E ∈ E, J ∈ J, (5.18)

andwe see that if�H takes values inSD, then (L−L0)E takes values inKD. The constraint
that �H takes values in SD is of course a nonlocal constraint on H(x) and therefore not
as easy to check as the constraint that S(x) ∈ SD (assuming H = −(L − L0)S for some
S ∈ H).

6 Links between Green’s functions of different physical problems
In the same way that the theory of exact relations for composites easily provides links
between effective tensors, so too does our theory easily provide links between the Green’s
functions of different physical problems. The treatment here adapts the theory of links
for composites, given in [17] Sect. 4.3, to Green’s functions.
Consider m different physical problems, each described by an equation that can be

expressed in the form (1.5):

J(i)(x) = L(i)(x)E(i)(x) − h(i)(x), with J(i) ∈ J (i), E(i) ∈ E (i), h(i) ∈ H(i), (6.1)

where i = 1, 2, . . . , m indexes each different problem, and each field J(i)(x), E(i)(x) and
h(i)(x) takes values in a tensor space T (i) for every x ∈ R

d . The projection �
(i)
1 onto E (i) is

assumed to act locally in Fourier space, i.e., if E(i) = �
(i)
1 A(i) then the Fourier components

Ê(i)(k) and Â(i)(k) of E(i) and A(i) are related via Ê(i)(k) = �
(i)
1 (k)Â(i)(k) for some operator

�
(i)
1 (k) that projects onto a subspace E (i)

k ⊂ T .
We can rewrite this set of equations in the equivalent form

⎛

⎜⎜⎜⎜⎝

J(1)(x)
J(2)(x)

...
J(m)(x)

⎞

⎟⎟⎟⎟⎠

︸ ︷︷ ︸
J(x)

=

⎛

⎜⎜⎜⎜⎝

L(1)(x) 0 . . . 0
0 L(2)(x) . . . 0
...

...
. . .

...
0 0 . . . L(m)(x)

⎞

⎟⎟⎟⎟⎠

︸ ︷︷ ︸
L(x)

⎛

⎜⎜⎜⎜⎝

E(1)(x)
E(2)(x)

...
E(m)(x)

⎞

⎟⎟⎟⎟⎠

︸ ︷︷ ︸
E(x)

−

⎛

⎜⎜⎜⎜⎝

h(1)(x)
h(2)(x)

...
h(m)(x)

⎞

⎟⎟⎟⎟⎠

︸ ︷︷ ︸
h(x)

, (6.2)

where J(x), E(x) and h(x) take values in T = T (1) ⊕ T (2) ⊕ . . . ⊕ T (m), and satisfy

E ∈ E , J ∈ J , h ∈ H, (6.3)

in which J and E consist of all those fields J(x) and E(x), respectively, taking the form
indicated in (6.2) with component fields J(i) ∈ J (i) and E(i) ∈ E (i), for i = 1, 2, . . . , m, and
H is defined byH = E ⊕ J . The Green’s function for the system of uncoupled Eqs. (6.2)
and (6.3) takes the form

G(x, x0) =

⎛

⎜⎜⎜⎜⎝

G(1)(x, x0) 0 . . . 0
0 G(2)(x, x0) . . . 0
...

...
. . .

...
0 0 . . . G(m)(x, x0)

⎞

⎟⎟⎟⎟⎠
, (6.4)

in which G(i)(x, x0) denotes the Green’s function for the “i-th” problem. We introduce a
constant reference tensor L0 and a constant tensor M that are both assumed to be block
diagonal:

L0 =

⎛

⎜⎜⎜⎜⎝

L(1)0 0 . . . 0
0 L(2)0 . . . 0
...

...
. . .

...
0 0 . . . L(m)

0

⎞

⎟⎟⎟⎟⎠
, M =

⎛

⎜⎜⎜⎜⎝

M(1) 0 . . . 0
0 M(2) . . . 0
...

...
. . .

...
0 0 . . . M(m)

⎞

⎟⎟⎟⎟⎠
. (6.5)
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Then associated with the decoupled system (6.2) and (6.4) is an operator

�(k) =

⎛

⎜⎜⎜⎜⎝

�(1)(k) 0 . . . 0
0 �(2)(k) . . . 0
...

...
. . .

...
0 0 . . . �(m)(k)

⎞

⎟⎟⎟⎟⎠

︸ ︷︷ ︸

=

⎛

⎜⎜⎜⎜⎝

M(1) − �(1)(k) 0 . . . 0
0 M(2) − �(2)(k) . . . 0
...

...
. . .

...
0 0 . . . M(m) − �(m)(k)

⎞

⎟⎟⎟⎟⎠

︸ ︷︷ ︸

, (6.6)

in which
�(i)(k) = [�(i)

1 (k)L(i)0 �
(i)
1 (k)]−1�(i)

1 (k), (6.7)
where �

(i)
1 (k) is the projection onto E (i)

k and the operator inverse is taken on E (i)
k .

As before, we search for subspaces K ⊂ L(T ) having the property (3.8) and associated
subspaces S ⊂ L(T ) that are subspaces having the property that AS ⊂ K for all A ∈ K.
Due to the special algebraic structure of the problem, the search for such subspaces
simplifies: see Sect. 4.3 of [17] and pages 5–3 to 5–11 of [15]. The exact relation then
implies that

(L(x) − L0)G(x, x0)(L(x0) − L0)+L0 − L ∈ K for all x, x0, with x �= x0, (6.8)
and if L(i)(x) is self-adjoint for all i we have additionally that for all nonsingular D → D,

((L(x) − L0)G(x, x0)(L(x0) − L0)+L0 − L)(KD)⊥ ⊂ (SD)⊥ for all x, x0, with x �= x0,
(6.9)

in which (KD)⊥ and (SD)⊥ are the orthogonal complements ofKD and SD on the space
L(T ), with respect to the inner product (4.20).
For these exact relations to a generate a link between the Green’s functions of the

different problems, it is necessary that K not be separable. It is separable if after some
reordering of the indices i = 1, 2, . . . , m labeling them problems there exists a subdivision
of the problems such that the exact relation decouples. In other words, there exists a p,
1 < p < m, such that there are subspaces K1 ⊂ L(T1), and K2 ⊂ L(T2), where

T1 = T (1) ⊕ T (2) ⊕ . . . ⊕ T (p), T2 = T (p+1) ⊕ T (2) ⊕ . . . ⊕ T (m), (6.10)
with K1 and K2 each having the algebraic properties of an exact relation, and any block
diagonal tensor

B =

⎛

⎜⎜⎜⎜⎝

B(1) 0 . . . 0
0 B(2) . . . 0
...

...
. . .

...
0 0 . . . B(m)

⎞

⎟⎟⎟⎟⎠
(6.11)

is in K if and only if

B1 =

⎛

⎜⎜⎜⎝

B(1) 0 . . . 0
0 B(2) . . . 0
...

...
. . .

...
0 0 . . . B(p)

⎞

⎟⎟⎟⎠ ∈ K1 and B2=

⎛

⎜⎜⎜⎝

B(p+1) 0 . . . 0
0 B(p+2) . . . 0
...

...
. . .

...
0 0 . . . B(m)

⎞

⎟⎟⎟⎠ ∈ K2.

(6.12)
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When we say K1 and K2 have the properties of an exact relation, we specifically mean
that for all k ∈ R

d one has

A1�j(k)A2 ∈ Kj , for all A1,A2 ∈ Kj , j = 1, 2, (6.13)

in which

�1(k) =

⎛

⎜⎜⎜⎜⎝

�(1)(k) 0 . . . 0
0 �(2)(k) . . . 0
...

...
. . .

...
0 0 . . . �(p)(k)

⎞

⎟⎟⎟⎟⎠
and

�2(k) =

⎛

⎜⎜⎜⎜⎝

�(p+1)(k) 0 . . . 0
0 �(p+2)(k) . . . 0
...

...
. . .

...
0 0 . . . �(m)(k)

⎞

⎟⎟⎟⎟⎠
. (6.14)

7 Exact identities satisfied by the DtNmap and boundary field equalities: a
generalization of conservation laws
This section generalizes the ideas developed in [48], where it was shown how Hill’s exact
relation in the theory of composites, could be used to derive exact identities satisfied by the
“Dirichlet-to-Neumann map” of a body � containing two elastically isotropic materials
with the same shear modulus: in particular, these identities allow one to exactly deduce
the volume fractions occupied by the phases from boundary measurements. The key idea
was to apply (nonlocal) boundary conditions on the boundary tractions and displacements
on the boundary ∂� of� in such a way that they mimic the body placed in an appropriate
infinite medium with appropriate sources outside. The exact relations satisfied by the
fields in the latter problem imply that the fields inside � satisfy these exact relations too,
and this in turn allows one to obtain additional information about the boundary fields:
the boundary field equalities.
We recall the conventions of Remark 1.1, and our assumption made in the beginning

of Sect. 5 that L(x) is smooth enough. We also mention that here and in the next section
we assume � is sufficiently smooth and we restrict attention to those equations (having
the required canonical form) for which the response of a body filled by inhomogeneous
material and devoid of sources inside is governed by a “Dirichlet-to-Neumannmap” (DtN
map) ��. Symbolically we may write

∂J = ��(∂E), (7.1)

where ∂E informally denotes the boundary information associated with the field E, and ∂J
informally denotes the boundary information associated with the field J. In the context of
the primary Eq. (1.2), ∂E represents the value of the potential field u(x) at the boundary
∂� of � and ∂J represents the value of the flux vector field n · J(x) at the boundary ∂�,
where n is the outward normal to the surface ∂� (assumed smooth). (Equivalently, for the
primary equations, ∂E can be taken as the tangential values of E(x) since integrating these
over the surface yields the boundary values of u(x), up to an additive constant vector).
The Appendix gives further examples of boundary fields ∂J and ∂E that are associated
with various physical equations, in particular quasistatic equations. Beyond (1.2) and the
equations in the Appendix we avoid giving a precise definition of the fields ∂E and ∂J.
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Specifying ∂E determines a unique E (and hence J) that solve

J(x) = L(x)E(x), J ∈ J �, E ∈ E�. (7.2)

where J � and E� are the closures of the spaces J� and E� comprised of those fields
J(x) and E(x) defined in � which can be extended outside � in such a way that with their
extensions they lie inJ and E , respectively. Note thatJ � and E� are not orthogonal, nor
even nonintersecting. Associated with J(x) is the boundary field ∂J. As it depends linearly
on ∂E, this linear relation defines the DtN map (7.1).
We make a side remark that, as shown in [35], Chap. 3 (7.2) can be reformulated as an

equation in the abstract theory of composites,

L−1/2
0 J(x)

︸ ︷︷ ︸
J̃

= [L−1/2
0 L(x)L−1/2

0 ]
︸ ︷︷ ︸

L̃

L1/20 E(x)
︸ ︷︷ ︸

Ẽ

, J̃ ∈ Ũ ⊕ Ẽ = L−1/2
0 J �, Ẽ ∈ Ũ ⊕ Ẽ = L1/20 E�,

(7.3)

where L0 can be any positive definite self-adjoint tensor (the “reference tensor”), and

Ũ ≡ (L1/20 E�) ∩ (L−1/2
0 J �), J̃ = L−1/2

0 J 0
�, Ẽ = L−1/2

0 E0
�, (7.4)

in whichJ 0
� and E0

� consist of those fields inJ and E , respectively, that vanish outside�.
TheDtNmap is then associatedwith the “effective operator”L∗ mapping Ũ to itself. Fields
in Ũ can be uniquely characterized either by the associated value of ∂E or by the associated
value of ∂J: given ∂E there is a map 	 to a field Ũ = 	(∂E) in Ũ , and given L∗Ũ ∈ Ũ there
is map � to ∂J = �L∗Ũ = �L∗	(∂E). This provides the connection between L∗ and
the DtN map: �� = �L∗	 . A similar reformulation of (7.2) as a problem in the abstract
theory of composites was made independently by Grabovsky (see [15], Chap. 2) who takes
L0 = I and refers to fields in U as “harmonic functions” (as they are indeed harmonic
functions in the conductivity problem). We thank Yury Grabovsky for pointing out the
need for replacing J� and E� by their closures J � and E� in (7.2), unless, of course, they
are already closed.
Boundary field equalities may be viewed as exact identities satisfied by the DtN map

that are independent of the precise microstructure inside the body. For the boundary field
equalities derived here we need only assume that L(x) ∈ M and satisfies the coercivity
condition (3.1) for all x ∈ �.
Specifying ∂E is one of many possible boundary conditions that uniquely determine the

fields inside �. Another frequently used one is specifying ∂J. A different sort that we use
here is providing some type of mixed nonlocal boundary condition that mimics surround-
ing the body by infinite homogeneous medium with tensor L1 with appropriate sources
placed outside the body. Sources outside the body can be considered as a superposition of
localized delta function sources. So let us define �C ≡ R

d \ � and consider a single delta
function source at x0 ∈ �C .
Then in �C the equations informally take the form

J(x) = L1E(x) + (L1 − L0)s0δ(x − x0), J ∈ J�C , E ∈ E�C , (7.5)

where J�C and E�C are comprised of those fields J(x) and E(x) defined outside � which
can be extended inside � in such a way that with their extensions they lie in J and E ,
respectively. Now one can easily (numerically if not analytically) solve for the problem of
a point source in an infinite homogeneous medium having moduli L1:

J0(x) = L1E0(x) + (L1 − L0)s0δ(x − x0), J0 ∈ J , E0 ∈ E . (7.6)
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Alternatively, the analysis of this section will go through if we replace the delta function
with any square-integrable source that is compactly supported outside�, say with s0δ(x−
x0) replaced by s0r(x) where the scalar-valued function r(x) is square integrable and
r(x) = 0 inside �.
Subtracting (7.6) from (7.5) gives informally

J̃(x) = L1Ẽ(x), J̃ ∈ J�C , Ẽ ∈ E�C , J̃(x) = J(x) − J0(x), Ẽ(x) = E(x) − E0(x).

(7.7)

The boundary information ∂̃J and ∂Ẽ associated with the fields J̃ and Ẽ are linked by the
exterior DtN map ��C : ��C (∂Ẽ) = ∂̃J. As the material outside � is homogeneous, ��C

is in principle computable and will be assumed known. Since the fields outside and inside
the body must be compatible, i.e., share the same boundary information ∂J and ∂E, we see
that ∂E and ∂Jmust be such that informally

∂J − ∂J0 = ��C (∂E − ∂E0), i.e., ∂J − ��C (∂E) = ∂J0 − ��C (∂E0), (7.8)

in which ∂J0 and ∂E0 denote the boundary information associated with J0 and E0. Some
care needs to be taken. For example in the conductivity problem in which J(x) is the
current, ∂J represents the flux J · n where n is the outward normal to �. So in defining
��C it is important that it maps to the flux J · n where again n is the outward normal to
�, not the outward normal to �C .
Equation (7.8) provides the needed boundary conditions that constrain ∂J and ∂E. They

are not so pleasant as they are nonlocal and involve ��C . Instead of specifying ∂E or
∂J, one specifies ∂J − ��C (∂E). Supposing that the DtN map �� entering (7.1) has been
experimentally measured, or numerically calculated, then (7.8) provides the explicit equa-
tion

��(∂E) − ��C (∂E) = ∂J0 − ��C (∂E0) (7.9)

that can be solved for ∂E. The question arises as to whether a solution exists, and if so, is
it unique? However, it is exactly the same as solving the governing equations (1.5) for the
body � surrounded by homogeneous medium with tensor L1 and with the source term
h(x) = (L1 − L0)s0δ(x − x0), so uniqueness of E (and hence ∂E and ∂J) is assured.
Now instead of considering a single experiment, one can consider q experiments with

s0 replaced by s01, s
0
2, . . . , s0q , each source remaining at x0. The fields E(x) and J(x) are then

replaced by Ei(x) and Ji(x). Let us define, as previously,

S0ei = s0i , E(x)ei = Ei(x), J(x)ei = Ji(x), P(x) = J(x) − L0E(x), (7.10)

and let ∂E and ∂J represent the boundary information associated with E(x) and J(x),
respectively. If s01, s

0
2, . . . , s0q are chosen so that S0 ∈ SD for some nonsingularD : T → T

then our theorem implies that P(x) ∈ KD for all x ∈ �. If S contains a nonsingular
element S1 then there is no restriction on S0 as we can choose D = (S1)−1S0. This then
constrains J(x) − L0E(x) to lie in KD for all x ∈ �. This should then naturally provide
constraints on the boundary information ∂E and ∂J, thus yielding exact identities satisfied
by theDtNmap. The examples in the next section demonstrate this explicitly. These exact
identities must be satisfied for every choice of nonsingularD : T → T , every choice of x0
outside�, and for every choice of S0 ∈ SD. It seems unlikely that the set of exact identities
produced as x0 varies outside�will all be independent. Rather it is probably the case that
a source at x0 outside � has the same effect as a set of sources around the boundary of �,
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implying that it suffices to take sources restricted to the boundary of �. (Technically, one
should take sources just outside � and let them approach the boundary).
If L(x) is self-adjoint, one has the additional constraint that if S0 ∈ (KD)⊥ then J(x) −

L0E(x) must lie in (SD)⊥ for all x ∈ �, and this then implies additional constraints on the
boundary information ∂E and ∂J.
Depending on the nature of the exact relations, boundary field equalities may involve

the volume fraction of one phase in a body containing two phases and thus allow the
volume fraction to be exactly determined (e.g., see [48]).
Note that the constitutive law inside the body� that J(x) = L(x)E(x) for some L(x) such

that WM(L(x)) ∈ KD for all x [or more generally that J(x) = L(x)E(x) + (L(x) − L0)S(x)
inside � for some L(x) with WM(L(x)) ∈ K and for some S(x) ∈ S] can just be viewed
as a nonlinear constraint on the fields J and E inside �. This constraint, coupled with
the appropriate boundary conditions, allows one to deduce the boundary field equalities
that constrain the boundary information ∂E and ∂J. From this perspective our analysis
immediately applies to a large range of nonlinear problems. This is developed further in
the next section.

8 A alternative view of some boundary field equalities
As an interesting illustration of boundary field inequalities, expressed in a different form,
let us focus on Eq. (1.2) with initially hiα(x) = 0 within �. We will concentrate on cases
d = 2 and d = 3 since these are of greatest practical importance. First, starting in the case
d = 2, and defining new fields, J̃jβ (x), with components given by

J̃1β (x) = −E2β (x), J̃2β (x) = E1β (x), (8.1)

Eq. (1.2) can be rewritten as

J(x) = L(x)R⊥̃J(x), ∇ · J = 0, ∇ · J̃ = 0, (8.2)

withR⊥ being a 4-index tensor with elements

{R⊥}iβjγ = δβγ {R⊥}ij , R⊥ =
(

0 1
−1 0

)
, (8.3)

where R⊥ is the matrix for a 90◦ rotation. Thus, the action of R⊥ on J̃(x) is to rotate its
columns by 90◦, each column being a divergence-free field, to give E(x), each column then
being a curl-free field. We can also consider 2m solutions to (8.2) labeled by an index pair
kν, k = 1, 2, ν = 1, 2, . . . , m, with fields Jkν(x) and J̃ kν(x) each satisfying (8.2), so that the
resulting set of equations can then be rewritten as

J(x) = L(x)R⊥
J̃(x), ∇ · J = 0, ∇ · J̃(x) = 0, (8.4)

where J(x) and J̃(x) are four-index fields with elements

Jiαkν(x) = J kν
iα (x), J̃iαkν(x) = J̃ kν

iα (x), (8.5)

and the divergence acts on the first index of these fields. The constitutive law in (8.4), the
boundedness and coercivity of L, and the fact that L(x) is constrained to take values inM
can be replaced by the constraint thatQ(x), defined to have elements

Qiαkν1(x) = Jiαkν(x), Qiαkν2(x) = J̃iαkν(x), (8.6)

takes values in a set B, where a 5-index tensor Q is defined to lie in B if and only if there
exists a four-index tensor L ∈ M satisfying the boundedness and coercivity constraint
that β0I ≥ L ≥ α0I > 0, and
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Qiαkν1 = LiαjβR⊥
jβ�γQ�γ kν2, (8.7)

where (following the Einstein summation convention) sums over repeated indices are
assumed. If the manifoldM has dimensionm0, then B will be a r-dimensional object (in
a 8m2-dimensional space) with r = 4m2 + m0.
At points x where J(x) is nonsingular this constraint that Q(x) ∈ B is equivalent to

requiring that the fields satisfy the clearly nonlinear constraint,

L(x) ≡ −J(x)[̃J(x)]−1R⊥ ∈ M, (8.8)

and that L(x) thus defined satisfies the boundedness and coercivity condition (3.1). We
can of course lump all the last four indices ofQ(x) into a single index γ taking values from
1 to s = 4m2, and then regard Q(x) as a 2 × s matrix-valued field satisfying ∇ · Q = 0,
i.e., the columns ofQ are then divergence-free vector fields. The mapping of the last four
indices onto γ can be chosen so the first 2m2 columns of Q (are associated with J while
the last 2m2 columns of Q are associated with J̃. We let Q1 and Q2 denote the 2 × 2m2-
matrix-valued fields formed by the first and last set of 2m2 columns, so these are associated
with J and J̃, respectively. Associated withQ(x),Q1(x), andQ2(x) are then also the fluxes
q(x) = n(x) ·Q(x), q1(x) = n(x) ·Q1(x), q2(x) = n(x) ·Q2(x) at the boundary ∂�, where n
is the outward normal. Thus, the first and last 2m2 elements of q(x) give q1(x) and q2(x),
respectively.
The boundary information for Eq. (1.2) is usually taken as the values of the potential u

and flux n · J, where n is the surface normal. However, as noted in the previous section,
specifying the tangential value of ∇u at the surface allows one to recover u (up to a trivial
constant) and thus is an equivalent condition. So we see that instead of using the potential
u as our boundary information one can usen ·̃J. Then (7.8) can be interpreted as a nonlocal,
linear constraint on the boundary flux q. It can be rewritten as

q1 − ��C (q2) = q01 − ��C (q02), (8.9)

whereq01 andq
0
2 are thefluxes across ∂� associatedwith solving the equations in an infinite

homogeneous medium with constant tensor L1 ∈ M with a source S(x) with support
outside � taking values in SD, and with ��C being the exterior DtN map associated
with this medium. Our theorem then forces J(x) − L0E(x) within � to lie inKD and this
constraint can alternatively be written as Q(x) ∈ D implying q(x) ∈ n(x)D . To precisely
define D one can return to the representation where Q is a 5-index tensor. Then Q ∈ D
if and only if Z ∈ KD where Z is the four-index tensor with elements

Ziαsν = Qiαsν1(x) − {L0}iαjβR⊥
jβkγQkγ sν2. (8.10)

The constraint that q(x) ∈ n(x)D for all x ∈ ∂� is a boundary field equality.
We can relax the constraint that S(x) is zero inside �, and given D, L0, α0, β0 redefine

B so that a 5-index tensor Q is in B if and only if there exists an S ∈ SD and a L ∈ M
with β0I ≥ L ≥ α0I > 0, such that

Qiαsν1 + {L0}iαjβSjβsν = Liαjβ [R⊥
jβkγQkγ sν2 + Sjβsν], (8.11)

where sums over repeated indices are assumed. Again our theorem implies that with the
boundary conditions (8.9) we have the boundary field equality that q(x) ∈ n(x)D for all
x ∈ ∂�, whereD is defined as before.
Of course, Q(x) being divergence-free field in a simply connected two-dimensional

region � is equivalent to the existence of a s-component potential w(x) such that

Q(x) = R⊥∇w. (8.12)
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The nonlocal linear constraints on the boundary flux q can then be rephrased as nonlocal
linear constraints onw(x) at the boundary x ∈ ∂�. The result thatQ(x) ∈ D then implies
∇w(x) ∈ C ≡ R⊥D, and this not only constrains the tangential derivatives of the surface
potential, but also implies the additional boundary field equalities (1.10).
Now consider the three-dimensional case. Then a vector field e(x) is the gradient of

a potential u(x) in a simply connected domain � if and only if the 3 × 3 antisymmetric
matrix-valued field

A(x) =
⎛

⎜⎝
0 −e3(x) e2(x)

e3(x) 0 −e1(x)
−e2(x) e1(x) 0

⎞

⎟⎠ , (8.13)

is divergence free. The requirement that A(x) be antisymmetric can be viewed as con-
straining it to lie in a three-dimensional subspace. Knowing the boundary value of the flux
n(x) · A(x) (where n(x) is the outward normal to ∂�) gives the tangential components of
e(x), which can be integrated to give u(x) for x ∈ ∂�. Thus, say, with a constitutive law
J(x) = L(x)E(x) with E = ∇U where U(x) is represented as a 3m2-component potential,
and J(x) is represented as a divergence-free 3 × 3m2 matrix-valued field, we can replace
the 3×3m2 matrix-valued E by a 3×3×3m2 three-index fieldA that is antisymmetric in
the first pair of indices. Then the constitutive relation with the restriction that L(x) ∈ M,
and that L(x) is bounded and coercive, can be replaced by a nonlinear restrictionQ(x) ∈ B
involving a subsetB (independent of x) of a nonlinearmanifold, and a divergence-free 3×s
matrix-valued field Q(x), where s = 12m2 with components comprised of the 3 × 3m2-
components of J(x) and the 3× 9m2-components of A(x). (B is defined so that it ensures
A is antisymmetric in the first pair of indices.) The boundary information is contained in
q(x) = n · Q(x) that is restricted to satisfy a nonlocal, linear, relation of the form (8.9)
where the components of q1 represent the components of n · J and the components of
q2 represent the components of n · A, and when appropriately defined the first 3m2 ele-
ments of q give q1, while the remaining last 9m2 elements of q give q2. Our result that
J(x) − L0E(x) ∈ SD for all x ∈ � then again implies Q(x) ∈ D , for some appropriately
defined subspace D . We thus obtain the boundary field equality that q(x) ∈ n(x) · D .
Similarly, in three dimensions, a current field j(x) satisfying∇ · j(x) = 0 can be expressed

in terms of the curl of some vector potential g(x), or equivalently in terms of the anti-
symmetric part of ∇g. The values of n(x) · j(x) only provide partial information about the
tangential values of ∇g(x) at the boundary of ∂� and these are insufficient to determine,
by integration, g(x) for x ∈ ∂�. However, we can think of prescribing the boundary value
of g(x) for x ∈ ∂�, which then allows one to determine n(x) · j(x). More generally, with
say J(x) = L(x)E(x) where E = ∇U and U(x) is a 3m2-component potential, the 3 × 3m2

matrix-valued field J(x) satisfying ∇ · J = 0 can be replaced by the appropriate compo-
nents of ∇G(x), for some 3 × 3m2 matrix-valued potentialG(x). Instead of a relation like
(8.9), we obtain a restriction on the boundary potentials like

U − ��C (G) = U
0 − ��C (G0), (8.14)

for some appropriately defined exteriorDtNmap��C . Thus, instead of relations involving
the components of a divergence-free 3 × 12m2 matrix-valued fieldQ(x), one can express
everything in terms of ∇w where w(x) is a t-component potential, where t = 12m2,
comprised of the 3m2 elements of U and the 9m2 elements of G(x). The restriction that
Q(x) ∈ B is then equivalent to a nonlinear local restriction ∇w ∈ A. The result that
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Q(x) ∈ D , can be rewritten as ∇w ∈ C for some appropriately defined subspace C, and
the boundary field equality that q(x) ∈ n(x) · D implies restrictions on the tangential
derivatives of w at the surface ∂�, and also implies the additional boundary field equality
(1.10).
Just as in two dimensions, one can redefine B (and hence A) to allow for a weaker

restriction of the form (8.11).

9 Conjectured extension of exact relations to some nonlinear minimization
problems
The canonical equations (1.5) are the Euler–Lagrange equations for the minimizer E = E
of the following minimization problem

inf
E∈E〈LE − 2h,E〉H. (9.1)

Similarly, the extended equations (4.14) are the Euler–Lagrange equations for the mini-
mizer E = E of the following minimization problem

inf
E∈E〈LE + 2(L − L0)S,E〉H, (9.2)

where the inner product on H = E ⊕ J is defined by (3.11). Now for each point x let
G(x) denote a subset of the manifold M that is closed under homogenization. This is
guaranteed if given any y-periodic function L(y) ∈ G(x) for all y ∈ R

d , then the associated
effective tensor L∗ also lies in G(x). (That it suffices to consider periodic functions was
established in [1,43]). We also assume that G(x) varies smoothly with x. Then consider
the following double minimization problem

inf
L

L(x) ∈ G(x), ∀x

inf
E∈E〈LE + 2(L − L0)S,E〉H. (9.3)

Following the ideas of Kohn [20], we switch the order of taking infimums to get the
nonlinear minimization problem:

inf
E∈E

∫

Rd
W (x,E(x)) dx, (9.4)

where for all x ∈ R
d and all B ∈ L(T ),

W (x,B) = inf
A∈G(x)

〈AB + 2(A − L0)S(x),B〉L(T ). (9.5)

One can view the nonlinear “energy function” W (x,B) as being the infimum of a con-
tinuous set of quadratic functions. If S(x) is smooth, one expects the problem (9.4) to
have a smooth minimizer E = E. Otherwise, if a minimizing sequence E j , j = 1, 2, . . .
develops fine-scale oscillations, it would be indicative that any associated sequence of
tensor fields L(x) = Lj(x) that are a minimizing sequence for (9.3) also develops fine-scale
microstructure as j increases. The development of such fine-scale microstructure indi-
cates that composite materials are needed in the construction, having some homogenized
effective tensor L∗(x). However, because G(x) is closed under homogenization we should
be able to just directly use materials in G(x) whose tensor matches that of the desired
effective tensor L∗(x). In this way fine-scale oscillations in Lj(x) and hence E j(x) (with j
large) can be removed.
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This argument strongly suggests that there should be a minimizer of (9.4) and that
minimizer E(x) = E(x) should satisfy the nonlinear Euler–Lagrange equations:

J(x) = ∂W (x,B)
∂B

∣∣∣∣
B=E(x)

, J ∈ J, E ∈ E. (9.6)

Then from (9.5) it follows that there exists some L(x) ∈ G(x) ⊂ M such that

J(x) = L(x)E(x) + (L(x) − L0)S(x). (9.7)

Indeed, a tangent plane to a minimum of a set of quadratic functions must be tangent
to at least one of them. If S(x) entering (9.5) takes values in SD for some nonsingular
D : T → T we conclude that

P(x) = J(x) − L0E(x) (9.8)

necessarily takes values in KD. Also if all tensors in G(x) are self-adjoint for all x, then if
S(x) takes values in (KD)⊥, P(x) necessarily takes values in (SD)⊥.

10 Conclusions
We have laid the foundations of the theory of exact relations for wide classes of lin-
ear partial differential equations, where the coefficients are position dependent and sat-
isfy appropriate nonlinear constraints, and have derived exact relations satisfied by their
Green’s functions. Similar to the theory of exact relations in composites, it all boils down
to finding subspaces K ⊂ L(T ) satisfying (2.9) and associated subspaces S ⊂ L(T ) such
that AS ⊂ K for all A ∈ K. The algebraic search for such subspaces K or, more precisely
the subspaces K0 consisting of symmetric tensors in K, has been intensively studied by
Grabovsky, Sage, and subsequent coworkers in the case when �(k) is only a function of
k/|k|. Their progress is summarized in [14,15]. To apply their results to our setting a
relatively easy task remains, namely to identify the subspaces K and S associated with
each K0. We caution, though, that some of these results are for equations such as ther-
moelasticity where the field E(x) has constant components, independent of x, such as
the temperature increment θ . Then E(x) is not square integrable, and our analysis does
not apply in its current form. It may apply if we expand the constitutive law and treat
those terms involving constant fields as source terms. Thus, for example, consider the
thermoelastic equation

ε(x) = S(x)σ(x) + α(x)θ , ε = [∇u + (∇u)T ]/2, ∇ · σ = 0, (10.1)

where ε(x) is the strain, u(x) is the displacement field, σ(x) is the stress, θ = T − T0
is the change in temperature T measured from some base temperature T0, S(x) is the
compliance tensor (inverse elasticity tensor), and α(x) is the tensor of thermal expansion.
Provided α(x) is square integrable, we can treat h(x) = −α(x)θ as our source term, σ(x) as
the field E(x), and ε(x) as the field J(x). Of course, there could be additional source terms,
not just those arising from the thermal expansion.
For many other equations of interest, such as wave equations in lossy media, �(k) for

k �= 0 has the form

�(k) = 1
q(k)

p∑

j=0
|k|j�j(k/|k|), (10.2)

where q(k) is scalar-valued, and so (2.9) holds for all k �= 0 if and only if for all unit vectors
n, and for j = 0, 1, . . . , p,

A1�j(n)A2 ∈ K, for all A1,A2 ∈ K. (10.3)
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Thus, we are confronted with algebraic questions that are essentially the same as those
investigatedbyGrabovsky, Sage, and subsequent coworkers.Thenext stepwill be to search
for specific examples of physical relevance, beyond those encountered in the theory of
exact relations for composites. Irrespective of whether such exact relations exist for wave
equations in lossy media, it is to be emphasized that the current theory already applies to
many of the examples studied by Grabovsky, Sage, and coworkers as summarized in the
book [15].
We also made large strides in developing the theory of “boundary field equalities” and

provided for the first time a general theory for exact relations satisfied by the DtN map
for bodies containing appropriate inhomogeneous media. Again, examples are needed
to illuminate the theory and bring our results from an abstract setting to practice. Our
boundary field equalities relied heavily on the existence of an appropriate constitutive law
inside the body, or at least by imposing nonlinear constraints on fields so they could be
related by an appropriate constitutive law, where the tensor L(x) entering the constitutive
law depends upon the local fields. An interesting question is: Are there boundary field
equalities, beyond the standard conservation laws, that do not require this of the interior
fields? For example, in the setting of Sect. 8 one may ask about the existence of sets B and
appropriate boundary conditions in the two-dimensional case where Q is a divergence-
free 2 × s matrix-valued field and s is not the square of an even integer, and in the
three-dimensional case where Q is a divergence-free 2 × s matrix-valued field and s/3 is
not the square of an even integer. (Of course, one may add to Q an arbitrary number of
“dummy” divergence-free columns that do not participate in the analysis, so one would
want to exclude such trivial manipulations).
In our analysis we made heavy use of the tensor L0, but the Green’s function G(x, x0)

is independent of L0. We could have replaced L0 by any other tensor L′
0 on the manifold

M = W−1
M (K0) (where K0 consists of all self-adjoint maps in K) and the analysis would

have carried through. This raises the question, which we have not explored, as to whether
this different choice of L0 would yield new constraints on G(x, x0), or just recover those
obtained with the original choice of L0.
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Appendix: Some physical equations that can be expressed in the required
canonical form
Here we give examples of some physical equations that can be expressed in the required
canonical form. The examples are by no means comprehensive: for further examples, see
[26] Chap. 2, [35] Chap. 1, [27,28] and the appendix of [29]. In the equations that followwe
omit the source terms.We emphasize that if one is interested in exact relations satisfied by
the DtNmap and the associated boundary field equalities, then it is not necessary that the
source terms have a physical significance provided they are localized outside the body �.
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The simplest canonical equations are those of electrical conductivity

j(x)︸︷︷︸
J(x)

= σ(x)︸︷︷︸
L(x)

e(x)︸︷︷︸
E(x)

, ∇ · j = 0, e = −∇V = 0, (10.4)

where j(x) and e(x) are the electrical current and electric field and V (x) is the electrical
potential. The boundary fields ∂J and ∂E are the flux n · j(x) and boundary voltage V (x),
respectively, with x ∈ ∂� and n being the outward normal to �. As displayed in the table
at the beginning of Sect. 2.1 in [26] (adapted from one of Batchelor [4]), the equations for
dielectrics, magnetostatics, heat conduction, particle diffusion, flow in porous media, and
antiplane elasticity all take the same form as (10.4) and so any analysis applicable to (10.4)
applies to them as well.
Another important example is that of linear elasticity,

σ(x)︸︷︷︸
J(x)

= C(x)︸︷︷︸
L(x)

ε(x)︸︷︷︸
E(x)

, ∇ · σ = 0, ε = [∇u + (∇u)T ]/2, (10.5)

where σ(x) (not to be confused for the conductivity tensor field) is the stress, ε(x) is the
strain, u(x) is the displacement, and C(x) is the elasticity tensor field. The boundary fields
∂J(x) and ∂E(x) are the tractionn·σ(x) and boundary displacement field u(x), respectively.
It is also possible to have equations that couple fields together, such as the magneto-

electric equations,
(
d
b

)

︸︷︷︸
J(x)

=
(

ε β

βT μ

)

︸ ︷︷ ︸
L(x)

(
e
h

)

︸︷︷︸
E(x)

, ∇ · d = ∇ · b = 0, e = −∇V, h = −∇ψ , (10.6)

where d and b are the electric displacement field and magnetic induction, e and h are
the electric and magnetic fields, V and ψ are the electric potential and magnetic scalar
potential (assuming there are no free currents), ε(x) is the free-body electrical permittivity
(with h = 0), β(x) is the second-order magnetoelectric coupling tensor, μ(x) is the free-
bodymagnetic permeability (with e = 0). The boundary fields ∂J(x) and ∂E(x) are then the
flux pair (n · d(x),n · b(x)) and the potential pair (V (x),ψ(x)), respectively, with x ∈ ∂�.
Thermoelectricity also takes this form, but one has to be careful in defining the fields to

ensure that the associated tensor L(x) is symmetric (see, e.g., Sect. 2.4 in [26]).
Fields that are coupled together need not have the same tensorial rank, an example

being the equations of piezoelectricity,
(

ε

d

)

︸︷︷︸
J(x)

=
(

S D
DT ε

)

︸ ︷︷ ︸
L(x)

(
σ

e

)

︸︷︷︸
E(x)

, (10.7)

where S(x) is the compliance tensor under short-circuit boundary conditions (i.e., with
e = 0),D(x) is the piezoelectric stress coupling tensor, and ε(x) is the free-body dielectric
tensor (i.e., with τ = 0). The strain field ε, electric displacement field d, stress field σ, and
electric field e satisfy the usual differential constraints:

ε = [∇u + (∇u)T ]/2, ∇ · d = 0, ∇ · σ = 0, e = −∇V. (10.8)

Since the stresses and strains are symmetric matrices,D is a third-order tensor that maps
vectors to symmetric matrices. The boundary fields ∂J(x) and ∂E(x) are the displacement,
flux pair (u(x),n · d(x)) and the traction, voltage pair (n · σ, V ), respectively.
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Of course, more than two fields can be coupled together. Thus, by combining a piezo-
electric material and a magnetostrictive material in a composite, we can obtain a material
where there is coupling between electric fields, elastic fields, and magnetic fields.
For fields varying in time at constant frequency ω, with wavelengths and attenuation

lengths much bigger than the size of the body under consideration, the quasistatic equa-
tions are applicable. For dielectrics these take the same form as (10.4):

d(x) = ε(x)e(x), ∇ · j = 0, e = −∇V = 0, (10.9)

where everything is now complex-valued: d(x) and e(x) are the complex-valued electrical
displacement field and electric field, V (x) is the complex-valued electrical potential, and
ε(x) is the complex-valued electrical permittivity. (Thephysical displacement field, electric
field, and potential are the real parts of d(x)e−iωt , e(x)e−iωt , and Ve−iωt , respectively). Let
us set

d = d′ + id′′, e = e′ + ie′′, V = V ′ + iV ′′, ε = ε′ + ε′′, (10.10)

where the primed fields denote the real parts, while the doubled primed fields denote the
imaginary parts. Physically, ε′′(x) is associated with electrical energy loss into heat and
is positive semidefinite. Assuming it is positive definite and that an inverse [ε′′]−1 exists,
substitution of (10.10) in (10.9), followed by suitable manipulation, gives the equivalent
coupled field equations of Gibiansky and Cherkaev [7]:

(
e′′

d′′

)

︸ ︷︷ ︸
J(x)

=
(

[ε′′]−1 [ε′′]−1ε′

ε′[ε′′]−1 ε′′ + ε′[ε′′]−1ε′

)

︸ ︷︷ ︸
L(x)

(
−d′

e′

)

︸ ︷︷ ︸
E(x)

, (10.11)

Clearly L is real and symmetric and by inspection of the quadratic form associated with
L one sees that it is positive definite. Now ∂J consists of the voltage, flux pair (V ′′,n · d′′)
while ∂E consists of the flux, voltage pair (−n · d′, V ′). As Gibiansky and Cherkaev show,
similar manipulations can be done for viscoelasticity in the quasistatic limit where the
equations have the form (10.5), but with all fields being complex. More generally, the
Gibiansky–Cherkaev approach can be applied to equations where the tensor entering
the constitutive law is not self-adjoint, but its self-adjoint part is positive definite, to an
equivalent form where the tensor L(x) entering the constitutive law is self-adjoint and
positive definite [25] (see also Sect. 13.4 of [26]): such manipulations can be applied, for
example, to electrical conduction in the presence of a magnetic field where, due to the
Hall effect, the conductivity tensor σ(x) entering (10.4) is not symmetric.
Wave equations, can be expressed in the form (4.12) with an identity like (4.15) holding.

For example, at fixed frequency ω with a e−iωt time dependence, as recognized in [32] the
acoustic equations, with P(x) the (complex) pressure, v(x) the (complex) velocity, ρ(x,ω)
the effective mass density matrix, and κ(x,ω) the bulk modulus, take the form

(
−iv

−i∇ · v

)

︸ ︷︷ ︸
J(x)

=
(

−(ωρ)−1 0
0 ω/κ

)

︸ ︷︷ ︸
L(x)

(
∇P
P

)

︸ ︷︷ ︸
E(x)

, (10.12)

(and ∂E and ∂J can be identified with the boundary values of P(x) and n · v(x) at ∂�,
respectively). Here we allow for effective mass density matrices that, at a given frequency,
can be anisotropic and complex-valued asmay be the case inmetamaterials [30,33,44,50].
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Maxwell’s equations,with e(x) the (complex) electric field,h(x) the (complex)magnetizing
field, μ(x,ω) the magnetic permeability, ε(x) the electric permittivity, take the form

(
−ih

i∇ × h

)

︸ ︷︷ ︸
J(x)

=
(

−[ωμ]−1 0
0 ωε

)

︸ ︷︷ ︸
L(x)

(
∇ × e

e

)

︸ ︷︷ ︸
E(x)

, (10.13)

(and ∂E and ∂J can be identified with the tangential values of e(x) and h(x) at ∂�, respec-
tively). The linear elastodynamic equations, with u(x) the (complex) displacement, σ(x)
the (complex) stress,C(x,ω) the elasticity tensor, ρ(x,ω) the effectivemass densitymatrix,
take the form

(
−σ/ω

−∇ · σ/ω

)

︸ ︷︷ ︸
J(x)

=
(

−C/ω 0
0 ωρ

)

︸ ︷︷ ︸
L(x)

(
[∇u + (∇u)T ]/2

u

)

︸ ︷︷ ︸
E(x)

, (10.14)

(and ∂E and ∂J can be identified with the values of u(x) and the traction n · σ(x) at ∂�,
respectively). Thepreceeding three equationshavebeenwritten in this formso ImL(x) ≥ 0
when Imω ≥ 0, where complex frequencies have the physical meaning of the solution
increasing exponentially in time. Under assumptions that the material moduli are lossy,
or that the frequencyω is complex with positive imaginary part, one can easily manipulate
them into equivalent forms similar to the Gibiansky–Cherkaev form in (10.11) with a
positive semidefinite tensor entering the constitutive law [32,34]. Of course, the boundary
fields ∂E and ∂J then need to be appropriately redefined.
For thin plates, the dynamic plate equations at constant frequency can be written in the

form
(

iM
∇ · (∇ · M)

)

︸ ︷︷ ︸
J(x)

=
(

−D(x)/ω 0
0 h(x)ωρ(x)

)

︸ ︷︷ ︸
L(x)

(
∇∇v
iv

)

︸ ︷︷ ︸
E(x)

. (10.15)

HereM(x, t) is the (complex) bending moment tensor,D(x) is the fourth-order tensor of
plate rigidity coefficients, h(x) is the plate thickness, ρ(x) is the density, and v = ∂w/∂t is
the velocity of the (complex) vertical deflection w(x, t) of the plate. Note that the matrix
L(x) has positive definite imaginary part when ω has positive imaginary part. ∂E can be
identified with the boundary values of the pair (∇v, v) while ∂J can be identified with the
boundary values of the pair (Mn, (∇ · M) · n), in which n is the outward normal to ∂�.
Again, when the material moduli are lossy, or the frequency ω is complex with positive
imaginary part, this can be manipulated into the Gibiansky–Cherkaev form in (10.11)
with a positive semidefinite tensor entering the constitutive law, and with appropriately
redefined boundary fields.
Further examples of wave equations at constant frequency that can be represented in

the required form are given in the appendix of [29].
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