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Abstract: With the significant growth in the use of non-metallic composite materials, the demands for
new and robust non-destructive testing methodologies is high. Microwave imaging has attracted a lot
of attention recently for such applications. This is in addition to the biomedical imaging applications
of microwave that are also being pursued actively. Among these efforts, in this paper, we propose
a compact and cost-effective three-dimensional microwave imaging system based on a fast and
robust holographic technique. For this purpose, we employ narrow-band microwave data, instead
of wideband data used in previous three-dimensional cylindrical holographic imaging systems.
Three-dimensional imaging is accomplished by using an array of receiver antennas surrounding the
object and scanning that along with a transmitter antenna over a cylindrical aperture. To achieve
low cost and compact size, we employ off-the-shelf components to build a data acquisition system
replacing the costly and bulky vector network analyzers. The simulation and experimental results
demonstrate the satisfactory performance of the proposed imaging system. We also show the effect of
number of frequencies and size of the objects on the quality of reconstructed images.
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1. Introduction

Recently, microwave imaging (MWI) is gaining significant attention, and its applications
are growing fast due to the penetration of microwave inside many optically opaque materials.
Nowadays, MWI is widely employed to do nondestructive testing (NDT) [1], through-the-wall
imaging [2], biomedical imaging [3], etc. One of the most successful applications is the use of MWI in
security screening [4,5]. There, direct holographic MWI is employed to measure magnitude and phase
of the back-scattered fields over a wide band. Then, fast Fourier-based reconstruction is employed to
provide three-dimensional (3D) images. In ref. [4,5], far-field approximations have been employed to
derive the 3D image reconstruction process. However, different from concealed weapon detection,
microwave imaging techniques for nondestructive testing (NDT) and biomedical applications are
mainly applications in near-field regions.

Plastic or newly-developed non-metallic composite materials are widely used in the industrial field
these days due to concerns associated with the corrosion of metallic parts. Traditional detection methods
such as eddy current testing [6], magnetic flux leakage [7], and magnetic particle testing [8] cannot
be applied to detect defects on nonmetallic materials. Aside from NDT for imaging of nonmetallic
materials, microwave imaging has been also widely developed for biomedical applications [9–12] which
are also considered as near-field applications. This is due to the non-ionizing nature of microwave
radiation and its ability to differentiate normal and malignant tissues with different dielectric properties
in the human body. Example applications that are being pursued actively include early stage breast
cancer detection [3] and brain stroke detection [13].
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To address the above-mentioned needs for fast and robust near-field microwave imaging,
holographic imaging techniques have been adapted for such applications. In near-filed holographic
microwave imaging, back-scattered signals are collected over rectangular [14–16] or cylindrical [17,18]
apertures and reconstruction can be performed to volumetrically image the dielectric bodies. A summary
of near-field microwave holographic imaging techniques can be found in ref. [19]. In ref. [17], it has been
shown that using a cylindrical setup leads to higher quality of images due to the fact that scattered data
is collected over all possible angles around the object. To deal with the periodicity of functions along
the azimuthal direction in a cylindrical setup, circular convolution theory has been employed along
with Fourier transform (FT), solution to linear systems of equations, and inverse Fourier transform
(IFT) to reconstruct images. Two-dimensional (2D) images are reconstructed over cylindrical surfaces
at multiple radii distances. The stack of these 2D images provides a 3D image.

In ref. [18], wideband data is required to perform 3D imaging in a cylindrical setup.
However, a wideband system suffers multiple drawbacks in certain applications including: (1) Data
acquisition hardware including antennas and circuitry becomes complex, costly, and bulky. (2) Compact
and low-cost data acquisition techniques such as modulated scatterer technique (MST) [20] cannot
be implemented easily and efficiently for wideband systems. (3) Additional errors may occur due
to dispersive properties of media which may not be modeled accurately in a wideband system.
(4) Sweeping scattering (S) parameters over a wideband takes time and this may hinder imaging in
applications, in which imaging time is critical such as object tracking or medical imaging (patient
movement during data acquisition may generate artifacts). Due to these drawbacks, in ref. [21],
near-field holographic 3D MWI has been proposed using single frequency microwave data and an
array of receiver antennas in a rectangular scanning setup. Only simulations results were presented in
ref. [21].

Here, for the first time, we extend the narrow-band near-field holographic 3D MWI to a cylindrical
setup while we employ an array of receiver antennas to collect the scattered data. This allows for
benefitting from the advantages of a cylindrical system in providing high quality images while
mitigating drawbacks of a wideband system numerated above. Besides, employing narrow-band
data in the proposed imaging system allows for building a cost-effective data acquisition circuitry
replacing the commonly used vector network analyzer (VNA). In other words, instead of using
VNA which is bulky and costly, in this paper, a data acquisition system composed of commercial
off-the-shelf microwave components is proposed for near-field 3D holographic MWI. Recently, low-cost
microwave measurement systems have been proposed mainly to be used with time-domain microwave
imaging systems such as delay and sum (confocal) [22], and multiple signal classification (MUSIC) [23]
techniques. Here, we propose the construction of a cost-effective system used with frequency-domain
near-field holographic MWI. To allow for collection of sufficient data, a microwave switch is employed
along with an array of receiver antennas moving together with a transmitter antenna to scan over a
cylindrical aperture.

The validity of the proposed imaging system is first demonstrated via simulation data.
We also show the effect of number of frequencies and size of the objects on the quality of images.
Then, the construction of a compact and cost-effective imaging system will be explained followed by
showing some experimental results.

2. Theory

Figure 1 illustrates the proposed microwave imaging setup including a transmitter antenna to
illuminate objects and an array of NA receiver antennas that scans the scattered fields. The transmitter
antenna and the array of receiver antennas scan a cylindrical aperture with radius of rA and height
of zA. The scattered field is recorded at Nφ angles along the azimuthal direction φ (within [0, 2π])
and at Nz positions along the longitudinal direction z. The complex-valued scattered field Esc(φ, z) is
measured, at each sampling position, at Nω frequencies within the narrow band of ω1 to ωNω , by each
receiver. The image reconstruction process then provides images over cylindrical surfaces with radii ri,
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where i = 1, . . . , Nr and ri is within (0,rA). It is worth noting that the imaging system is assumed to be
linear and space-invariant (LSI). The use of Born approximation for the scattering integral leads to the
linear property of the imaging system [15].
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Figure 1. The proposed microwave imaging setup in which a transmitter antenna scans a cylindrical
aperture together with an array of receiver antennas. The images are then reconstructed over cylindrical
surfaces with radii r = ri.

For implementation of the holographic imaging, first, the responses Esc,co due to small objects
called calibration objects (COs) placed at (ri,0,0), i = 1, . . . , Nr, are recorded. CO is the smallest object
with the largest possible contrast with respect to the background medium that can be measured by
the system. It approximates an impulse function (Dirac delta function) as an input for the imaging
system. The scattered response recorded for a CO placed at (ri,0,0) is denoted by Esc,co

i (φ, z) which
approximately represents the point-spread function (PSF) of the imaging system. PSF is the impulse
response of the system, i.e., the response collected for a point-wise object (here, named CO) which
approximates an impulse function as an input for the imaging system. Then, the response due to
objects under test (OUT) Esc(φ, z) can be written as the sum of responses due to objects at cylindrical
surfaces r = ri, i = 1, . . . , Nr. The object response at each cylindrical surface, in turn, can be written,
according to the convolution theory, as the convolution of the collected PSF for that cylindrical surface
Esc,co

i (φ, z) with the contrast function of the object over that surface fi(φ, z). This is written as:

Esc(φ, z) =
Nr∑
i=1

Esc
i (φ, z) =

Nr∑
i=1

Esc,co
i (φ, z) ∗φ ∗z fi(φ, z) (1)

In Equation (1), PSF functions Esc,co
i (φ, z) are known due to the measurement or simulation of the

CO responses. This indicates that a database of PSFs is built a priori for the relevant background medium
and imaged surfaces inside them by placing a CO at on that surface and recording the responses
over the aperture. Such a database can be created either through measurements or simulations.
Then, the recorded PSFs will be employed in the imaging of unknown objects. Besides, Esc(φ, z) is
known due to the recording of the response for the OUT. The goal is then to estimate the contrast
functions of objects fi(φ, z). To provide more data for image reconstruction, measurements can
be implemented at multiple frequencies (over a narrow-band), ωn, n = 1, . . . , Nω and multiple
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receivers, am, m = 1, . . . , NA. Thus, for each receiver am, Equation (1) can be re-written at all the
frequencies to provide the following system of Equations:

Esc
am(φ, z,ω1) =

Nr∑
i=1

Esc,co
i,am

(φ, z,ω1) ∗φ ∗z fi(φ, z)

...

Esc
am(φ, z,ωNω) =

Nr∑
i=1

Esc,co
i,am

(φ, z,ωNω) ∗φ ∗z fi(φ, z)

(2)

We can get such systems of equations for each receiver am, m = 1, . . . , NA, and then combine all these
systems of equations since they share the same unknown parameters fi(φ, z), i = 1, . . . , Nr. In order to
solve the system of equations we transform the equations to the spatial frequency domain. In ref. [14],
doing such transformation is straight-forward along x and y directions. However, here, the functions
are periodic along φ direction. This necessitates modification of the processing.

Let us first consider the spatially-sampled versions of Esc
am(φ, z,ωn), Esc,co

i,am
(φ, z,ωn), and fi(φ, z)

denoted by Esc
am(nφ, nz,ωn), Esc,co

i,am
(nφ, nz,ωn), and fi(nφ, nz), nφ = 1, . . . , Nφ and nz = 1, . . . , NZ,

with spatial and angular intervals denoted by ∆z and ∆φ, respectively. Thus, the convolutions
in Equation (1) can be written in spectral domain as [24]:

DTFTz,φ{Esc
am(nφ, nz,ωn)} =

Nr∑
i=1

DTFTz,φ
{
Esc,co

i,am
(nφ, nz,ωn)

}
DTFTz,φ

{
fi(nφ, nz)

}
(3)

where DTFTz,φ denotes discrete time FT (DTFT) along azimuthal and longitudinal directions,
respectively. Sequences Esc

am(nφ, nz,ωn), Esc,co
i,am

(nφ, nz,ωn), and fi(nφ, nz) are aperiodic along the
longitudinal direction z. The number of samples along z, namely Nz, is taken sufficiently large such that
the values outside the sampled window are negligible. Their DTFT is, however, a periodic function
versus the spatial frequency variable kz (corresponding to z), with period of 1/∆z. Besides, these DTFTs
are periodic sums of the FT of their corresponding continuous functions. Thus, the value of the
continuous FT of these functions (with negligible aliasing from the adjacent terms) can be obtained
from DTFT values within the range [−1/(2∆z),+1/(2∆z)], provided that ∆z is sufficiently small. The
DTFTs with respect to z are denoted by Ẽsc

am(nφ, kz,ωn), Ẽsc,co
i,am

(nφ, kz,ωn), and f̃i(nφ, kz). Since these
functions are periodic along φ, the convolution along that direction can be considered as a circular
convolution [24]. Then, the DTFTs for the Nφ-periodic sequences along φ are computationally
reduced to discrete Fourier transforms (DFT) of these sequences [24]. The DFTs with respect to the
φ variable for sequences Ẽsc

am(nφ, kz,ωn), Ẽsc,co
i,am

(nφ, kz,ωn), and f̃i(nφ, kz) are denoted by ˜̃E
sc
am(kφ, kz,ωn),

˜̃E
sc,co
i,am (kφ, kz,ωn), and ˜̃f i(kφ, kz), where kφ is an integer from 0 to Nφ − 1.

Using the transformations discussed above at all the frequencies for each receiver am leads to the
following system of equations at each spatial frequency pair κ = (kφ, kz):

˜̃E
sc
am(κ,ω1) =

Nr∑
i=1

˜̃E
sc,co
i,am (κ,ω1)

˜̃f i(κ)

...

˜̃E
sc
am(κ,ωNω) =

Nr∑
i=1

˜̃E
sc,co
i,am (κ,ωNω)

˜̃f i(κ)

(4)

After combining the systems of equations for all the NA receivers, the following system of
equations is obtained at each spatial frequency pair κ = (kφ, kz):

˜̃E
sc
= ˜̃D F (5)
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where

˜̃E
sc
=


˜̃E

sc
1
...

˜̃E
sc
NA

 ˜̃D =


˜̃D1
...

˜̃DNA

 ˜̃F =


˜̃f 1(κ)

...
˜̃f Nr

(κ)

 (6)

And

˜̃E
sc
am

=


˜̃E

sc
am(κ,ω1)

...
˜̃E

sc
am(κ,ωNω)

, ˜̃Dam
=


˜̃E

sc,co
1,am (κ,ω1) · · ·

˜̃E
sc,co
Nr,am(κ,ω1)

...
. . .

...
˜̃E

sc,co
1,am (κ,ωNω) · · ·

˜̃E
sc,co
Nr,am(κ,ωNω)

 (7)

These systems of equations are solved at each spatial frequency pair κ = (kφ, kz) to obtain the

values for ˜̃f i(κ), i = 1, . . . , Nr. Then, inverse DTFT along longitudinal direction z and inverse DFT
along azimuthal direction φ can be applied to reconstruct images fi(nφ, nz) over all cylindrical surfaces
r = ri, i = 1, . . . , Nr. At the end, the normalized modulus of fi(nφ, nz),

∣∣∣ fi(nφ, nz)
∣∣∣/M , where M is the

maximum of
∣∣∣ fi(nφ, nz)

∣∣∣ for all ri, is plotted versus φ and z to obtain 2D images of the objects at all Nr

cylindrical surfaces. By putting together all 2D images, a 3D image of the objects is obtained. We call
this process normalization of the images.

3. Simulation Results

In this section, we present the imaging results obtained from applying the proposed holographic
imaging technique on the data simulated in FEKO which is a high frequency electromagnetic simulation
software [25]. For 2D imaging, we conduct the simulations to collected data when the transmitter
and receivers antennas rotate 360

◦

around the objects. For 3D imaging, in addition to the azimuthal
rotation as mentioned above, the transmitter and receivers antennas scan together along z direction as
well. Further details are mentioned in the following subsections. First, we show the performance of
the technique in 2D imaging and study the effect of number of frequencies and object size. Then, we
demonstrate the satisfactory performance of the technique by 3D imaging examples.

3.1. 2D Imaging with Single-Frequency Data

Figure 2 shows the FEKO simulation setup consisting of one transmitter antenna and eight
receiver antennas rotating together on a circle of radius R = 60 mm. The antennas are resonant dipoles.
The azimuthal angle between the receiver antennas is ∆φa = 20

◦

Properties of the background medium
are εr = 22 and σ = 1.25 S/m. We perform imaging over three circles with radii of r1 = 24 mm,
r2 = 36 mm, and r3 = 48 mm. The objects are cubes of size D = 3 mm. There are two objects at r1 with
angular separation of ∆φ1 = 40

◦

, one object at r2, and two objects at r3 with angular separation of
∆φ3 = 60

◦

. The properties of objects are εr = 55 and σ = 4 S/m. Data is collected at 181 samples along
the azimuthal direction (every 2

◦

) and at 1.7 GHz.
The reconstructed images over three circles with radii of 24 mm, 36 mm and 48 mm are shown

in Figure 3. On the circle with radius r3 = 48 mm, two high-level peaks are observed at ±20
◦

which
means that two cubes on the outer circle can be reconstructed well. On the middle circle with radius
of r2 = 36 mm, one high-level peak is observed at 0 degree correctly representing an object at that
position. However, many high-level artifacts are present compared to the reconstructed image on the
outer circle. The reconstructed image on the inner circle with radius of r1 = 24 mm shows no distinct
high-level peaks representing the objects.
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Figure 2. (a) Angled view of the FEKO simulation setup, and (b) Top-view of the setup consisting of
one transmitter antenna and eight receiver antennas rotating together on a circle of radius R = 60 mm.
The properties of the background medium are εr = 22 and σ = 1.25 S/m. The properties of the objects
are εr = 55 and σ = 4 S/m.
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Figure 3. Normalized 2D reconstructed image of the objects with side of D = 3 mm on three imaging
circles with radii of 48, 36, and 24 mm using single frequency data collected by eight receiver antennas.

3.2. 2D Imaging with Double Frequency Data

In order to improve the quality of the reconstructed images, double frequency data is collected by
eight receiver antennas. With more frequency information, better reconstructed images are expected.

Figure 4 shows the reconstructed images when using double frequency data at 1.5 GHz and
1.9 GHz. Compared to the images shown in Figure 3, it is observed that when using double frequency
data, the reconstructed image on the circle with radius of r3 = 48 mm has better quality showing two
distinct peaks representing the presence of the two objects on that circle and lower level of artifacts.
The reconstructed image on the middle circle also shows lower level of artifacts compared to those in
Figure 3 and the high-level peak representing the object on that circle has better quality.
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Figure 4. Normalized 2D reconstructed image of objects with side of D = 3 mm on three imaging circles
with radii of 48, 36 and 24 mm using double frequency data collected by eight receiver antennas.

On the inner circle with a radius of r1 = 24 mm, two peaks are observed at ±30
◦

. This indicates
that the two cubes on the inner circle can be reconstructed when double frequency data is collected
although we still observe some high level of artifacts on this circle.

3.3. 2D Imaging of Larger Objects

In order to see the effect of size of the objects on the quality of the reconstructed images, we
increase the size of objects in Figure 2 to D = 5 mm and 10 mm. The images in this section are
reconstructed with data collected at 1.5 GHz and 1.9 GHz.

The reconstructed images for object sizes of D = 5 mm are shown in Figure 5. By comparing
these results with those in Figure 4, we conclude that the quality of the reconstructed images is better,
in particular, for the imaged circle with radius of r1 = 24 mm. The levels of the artifacts on the imaged
circles with radii of r1 = 24 mm and r2 = 36 mm get much lower than those in Figure 4.
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Figure 5. Normalized 2D reconstructed image of objects with a side of D = 5 mm on three imaged
circles with radii of 48, 36 and 24 mm using double frequency data collected by eight receiver antennas.
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Next, we increase the size of objects to D = 10 mm. Figure 6 shows the reconstructed images
for this case. Compared to the reconstructed images of objects with D = 5 mm, the quality of the
reconstructed images gets worse. On the imaged circle with radius of r2 = 36 mm, two peaks are
observed which might be the shadow of objects on the imaged circle with radius of r3 = 48 mm. On the
imaged circle with radius of r1 = 24 mm, the objects at ±30

◦

are not reconstructed well and the image
includes many spurious peaks. The degradation of the imaging quality is mainly due to the use of
Born approximation in holographic imaging which indicates that the image reconstruction quality
deteriorates for larger or higher contrast objects [15].
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Figure 6. Normalized 2D reconstructed image of objects with a side of D = 10 mm on three imaged
circles with radii of 48, 36 and 24 mm using double frequency data collected by eight receiver antennas.

3.4. Study of the Imaging Quality

In this section, we study the quality of the imaging process when using single frequency data,
double frequency data, and when a single object with sizes of 3 mm, 5 mm, and 10 mm is placed
on circles with radii of r1 = 24 mm, r2 = 36 mm, and r3 = 48 mm. To evaluate the quality of the
reconstructed images, we define a reconstruction error ET parameter as:

ET =

Nr∑
i=1

∥∥∥| fi(nφ, nz)|/M− fi,ideal(nφ, nz)
∥∥∥ (8)

where fi,ideal(nφ, nz) is the ideal image for which the values are all 0 except being 1 at the true positions
of the objects.

Form Tables 1 and 2, it is observed that the quality of the imaging degrades for inner circles.
This has been notified in the previous works as well (e.g., see ref. [18]). Also, it is observed that the
quality of the imaging improves when using double frequency data compared to single frequency data.

Table 1. Reconstruction error when using single frequency data.

Size r = 48 mm r = 36 mm r = 24 mm

D = 3 mm 7.62 9.12 10.73
D = 5 mm 9.52 9.64 11.83
D = 10 mm 10.55 13.15 13.52
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Table 2. Reconstruction error when using double frequency data.

Size r = 48 mm r = 36 mm r = 24 mm

D = 3 mm 6.41 6.91 8.86
D = 5 mm 6.44 8.52 8.90
D = 10 mm 8.08 8.85 9.23

3.5. 3D Imaging with Double Frequency Data and Eight Receivers

Figure 7 shows the FEKO simulation model for the first 3D imaging example.
The transmitter-receivers configuration, number of antennas, properties of the background and
objects are similar to those in Figure 2. The objects are two cuboids with square cross-section of size
S = 4 mm and height of L = 67.5 mm. The angular separation between the cuboids is ∆φ = 40

◦

and they
are placed at radius of r = 36 mm. In order to have a realistic study, we add White Gaussian noise with
signal-to-noise ratio (SNR) of 30 dB to the simulated data. Scanning step along the azimuthal direction
is the same as in the 2D imaging simulations. Along z axis scanning is performed at 21 steps over −5λ
to 5λ, where λ is the wavelength at center frequency 1.7 GHz. Data is collected at 1.5 GHz and 1.9
GHz. Image reconstruction is implemented over three cylindrical surfaces at r1 = 24 mm, r2 = 36 mm,
and r3 = 48 mm. Sample raw responses for the 4th receiver (in the middle), at frequency of 1.5 GHz,
and for PSFs for r1 = 24 mm, r2 = 36 mm, and r3 = 48 mm for object response are shown in Figure 8.
Figure 9 shows the reconstructed images. Two cuboids on the middle surface are reconstructed well.
Two bright lines are observed at ±20◦ on the middle surface and the extent of them along the z axis
is consistent with the actual height of the objects. This clearly shows the capability of the proposed
imaging technique in reconstruction of 3D images using narrow-band microwave data.
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Figure 7. FEKO simulation model for the first 3D imaging example. The transmitter-receivers
configuration, number of antennas, properties of the background and objects are similar to those
in Figure 2. The objects are two cuboids with square cross-section of size S = 4 mm and height of
L = 67.5 mm. The angular separation between the cuboids is ∆φ = 40

◦

and they are placed at radius of
r = 36 mm.
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Figure 9. Normalized 3D reconstructed image of the objects shown in Figure 7 on three imaged surfaces
at radii of 48, 36, and 24 mm using double frequency data collected by eight receiver antennas.

Figure 10 shows the FEKO simulation model for the second 3D imaging example.
The transmitter-receivers configuration, number of antennas, properties of the background medium
and objects are similar to those in Figure 2. There is an X-shaped object with square cross-section of size
S = 4 mm and length of arms L = 56.25 mm. It is placed at radius of r = 36 mm with its arms rotated
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45
◦

with respect to the x and z axes. Similar to the previous example, in order to have a realistic study,
we add White Gaussian noise with signal-to-noise ratio (SNR) of 30 dB to the simulated data. Scanning
step along the azimuthal direction is the same as in the 2D imaging simulations. Along z axis scanning
is performed at 21 steps over −5λ to 5λ, where λ is the wavelength at center frequency 1.7 GHz. Data
is collected at 1.5 GHz and 1.9 GHz. Image reconstruction is implemented over three cylindrical
surfaces at r1 = 24 mm, r2 = 36 mm, and r3 = 48 mm. Figure 11 shows the reconstructed images.
The X-shaped object is reconstructed well at the middle-imaged surface confirming the satisfactory
performance of the proposed imaging technique.
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Figure 10. FEKO simulation model for the second 3D imaging example. The transmitter-receivers
configuration, number of antennas, properties of the background and objects are similar to those in
Figure 2. There is an X-shape object with square cross-section of size S = 4 mm and length of each arm
of L = 56.25 mm. It is placed at radius of r = 36 mm with its arms rotated 45

◦

with respect to the x and
z axes.
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3.6. Resolution along Azimuthal and Longitudinal Directions

Figure 12 shows the normalized 1D slices along φ and z directions for the 3D reconstructed images
of a single object placed at r3 = 48 mm, r2 = 36 mm, and r1 = 24 mm (obtained from three separate
image reconstruction processes). The resolution is evaluated by computing the distance bounded
by two points on the image on opposite sides of the peak and marked by 0.7 times the peak value.
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This corresponds to approximately 6 mm and 14 mm along the azimuthal and longitudinal directions,
respectively, and it is approximately similar for all the radii (only slight degradation in the order
of 1 mm or 2 mm is observed for the smaller radii compared to larger ones). The resolution along
azimuthal direction has been evaluated by ∆φ in radian multiplied by the radius for the corresponding
surface, where ∆φ is the angular width of the 0.7 level discussed above. That is why although the
angular widths of the 0.7 levels look different in Figure 12a–c, they all lead to approximately similar
azimuthal resolutions. Please note that to have a realistic evaluation of the resolution, the data has
been corrupted with noise of SNR = 30 dB.
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Figure 12. Depiction of 1D slices of 3D reconstructed images of a single object placed: (a) at 48 mm,
slice along φ direction, (b) at 36 mm, slice along φ direction, (c) at 24 mm, slice along φ direction,
(d) at 48 mm, slice along z direction, (e) at 36 mm, slice along z direction, (f) at 24 mm, slice along
z direction.

3.7. Study the Effect of Noise

In order to study the effect of noise on the reconstructed images, in this section we present the
results for the 3D imaging example in Figure 10 with the results shown with noise of SNR = 30 dB in
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Figure 11. Here, we decrease SNR to 20 dB and 10 dB. Figure 13 shows the reconstructed images. It is
observed that with SNR = 20 dB, the results are still satisfactory but with SNR = 10 dB the quality of
the images deteriorates significantly.
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4. Experimental Results

In this section, we present the construction of a low-cost microwave data acquisition system
including a transmitter unit, an in-phase quadrature (I/Q) receiver unit, a cylindrical scanning system,
antennas, and computer for controlling and processing. Then, we present the 3D imaging results
demonstrating the satisfactory performance of the system.



Electronics 2019, 8, 1036 14 of 20

4.1. Microwave Measurement System

Figure 14 shows the block diagram of the constructed low-cost and compact 3D microwave
holographic imaging system. For our measurements, we use a Plexiglas container including a
mixture of water (20%) and glycerin (80%). According to ref. [26], this mixture has properties of
approximately εr = 22 and σ = 1.25 S/m within the frequency range of 1.5 GHz to 1.8 GHz which
is the targeted operation range in our experimental study. We confirmed this by dielectric property
measurements using a Keysight Dielectric probe kit (performance probe N1501A) together with the
relevant measurement Software N1500A and a VNA (E5063A from Keysight). The liquid mixture
container has diameter of 120 mm and height of 200 mm. The objects to be imaged are plastic cylinders
with diameter of 18 mm and height of 50 mm covered by thin copper sheets. These objects are held
inside the liquid at the desired positions with thin wooden sticks that are clipped to a cylindrical
foam placed at the top of the liquid container. Imaging will be performed over cylindrical surfaces
(3D imaging) at radii of r1 = 20 mm, r2 = 35 mm, and r3 = 50 mm. Figure 15 shows the imaging
system along with the zoomed view for the main components that will be described in the following.
To reduce electromagnetic interferences (EMI), the data acquisition circuitry and the scanning setup
are placed inside boxes covered by microwave absorbing sheets.

In the data acquisition system, a transmitter module, DC1705C from Analog Devices, with
frequency range from 700 MHz to 6.39 GHz is connected to a 10 MHz precision pocket reference
oscillator, PPRO30–10.000 from Crystek Corporation, which provides a reference frequency. A USB
serial controller, DC590B from Analog Devices, is connected to DC1705C so that the transmitter unit
can be controlled by PC via MATLAB software [27]. The output of the transmitter unit is connected to
a variable gain amplifier (VGA), ADL5330 from Analog Devices, operating from 10 MHz to 3 GHz
which is then connected to a transmitter antenna. In this way, a microwave signal can be transmitted
with variable frequencies and powers to illuminate the imaged medium.

For transmitting and receiving the microwave power, we employ commercial monopole antennas,
Mini GSM/Cellular Quad-Band Antenna-2 dBi SMA Plug from Adafruit Co., covering frequency bands
of 850/900/1800/1900/2100 MHz. Figure 16 shows the measured |S11| (by VNA) for the nine antennas
used as transmitter and receivers. These measurements are performed while the antennas are placed
in a 3D-printed holder around the liquid container. The values of |S11| are mostly below −10 dB over
the targeted operation band of 1.5 GHz to 1.8 GHz.
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The receiver unit of the data acquisition system includes a 14-Bit, 125 Msps Direct Conversion
Receiver, DC1513B-AB from Analog Devices, which has a frequency range from 0.7 to 2.7 GHz.
To control this receiver unit with PC, this unit is connected to a USB data acquisition controller, DC890B
from Analog Devices. The clock source for the receiver board DC1513B-AB is provided by High Speed
ADC Clock Source, DC1216A-C from Analog Devices, with clock speed of 80 MHz.
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One output of the transmitter is connected to a 6 dB attenuator, CATTEN-06R0 form Crystek
Corporation, covering 0 GHz to 3 GHz, and used as referenced signal for the receiver unit. Eight receiver
antennas are connected to an RF SP8T switch, EV1HMC321ALP4E from Analog Devices, that operates
from 0 to 8 GHz. This switch is controlled by an Arduino Uno demo board controlled by MATLAB.
Received signal after the switch is fed to the receiver unit through a wideband low-noise amplifier
(LNA), ZX60-33LN-S+ from Mini-Circuits, operating from 50 MHz to 3 GHz, as well as a bandpass
filter (BPF), VBFZ-1690-S+ from Mini-Circuits, covering 1455 MHz to 1925 MHz The transmitter and
receiver units are powered separately via high-precision lab power supplies. All ground pins are
connected to a common ground pin. The transmitter antenna and the receiver antenna arrays are
placed on opposite sides of the container similar to the simulation setup in Figure 2. The angular
separation between the receiver antennas is also similar to the simulation study, i.e., ∆φa = 20

◦

.
The cylindrical scanning system contains two stepper motors, NEMA 17 from Adafruit, connected,

via an Arduino stepper motor shield board and an Arduino Uno board, to computer to be controlled
via MATLAB. One of the motors moves the container along the longitudinal direction and the other
one moves that along the azimuthal direction from 0

◦

to 360
◦

. The antennas are stationary and placed
on an antenna holder which has been custom-designed and 3D-printed in our lab.

To control the whole system using computer, a MATLAB code has been developed that performs
the following tasks: (1) control the transmitter, (2) control the switch, (3) control the receiver unit and
acquire data, (4) control motors, and (5) implement holographic imaging. In the following we briefly
describe each part.

Transmitter code controls the transmitter unit and generates the signal at two frequencies, 1.5 GHz
and 1.8 GHz. To set two frequencies, the Serial Port Register Contents in the DC1705C board are
written through serial peripheral interface (SPI) bus.

Switch code is used to select which of the eight receiver antennas is connected to the receiver unit
to collect data. Three of the output pins on the Arduino Uno demo board are connected to three control
pins on the switch. By setting the voltage level for each pin according to the truth table of the switch,
one of the antennas can be chosen at a time to collect data.

The main body of the receiver unit code is used to collect data from two channels of the I/Q
receiver unit, one channel providing the real part and another the imaginary part. These two parts
are combined in MATLAB to form a complex number. Thus, at each sampling position, we collect
two complex numbers corresponding to two frequencies of 1.5 GHz and 1.8 GHz for each antenna.
Also, to make the measurements more robust to noise, we collect 4096 samples for each channel (real
and imaginary channels), per position, per frequency, and per antenna. Since the local oscillator (LO)
and the radio frequency (RF) inputs of the receiver unit have the same frequency, the I/Q output signals,
i.e., the intermediate frequency (IF) outputs of the receiver unit are DC signals.

Motor code controls the motors to move along the longitudinal axis and the azimuth axis from 0
◦

to 360
◦

in a desired speed and direction. The number of sampling positions can be changed.
The imaging code is used to implement holographic imaging. Imaging is performed over

cylindrical surfaces (3D imaging) at radii of r1 = 20 mm, r2 = 35 mm, and r3 = 50 mm.

4.2. Experimental 3D Imaging Results

The container including the objects is scanned by the transmitter and receiver antennas over
a cylindrical aperture. At each longitudinal position z, scanning is performed along the azimuthal
direction φ in 100 steps to cover 360

◦

. Scanning along the longitudinal direction is performed over
one half of a cylindrical aperture with length of 80 mm and in 10 steps. Then, due to approximate
symmetry of the structure along the longitudinal direction, the other half is acquired by flipping and
combining that with the first half. The complex-valued data collected by the eight receiver antennas
are then processed using the 3D holographic imaging technique. In the first experiment, we place
two objects on the outer surface r3 = 50 mm with, approximately, one object at φ = 0

◦

and another
one at φ = 180

◦

. Figure 17 shows the reconstructed images. It is observed that the two objects can
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be reconstructed well at r3 = 50 mm with the images at the other surfaces showing small artifacts.
We use the reconstruction error parameter defined in Equation (8) to evaluate the quality of image
reconstruction. The computed reconstruction error for this experiment is 17.92.

We then repeat this experiment but, this time, putting the two objects on the middle surface
r2 = 35 mm. Figure 18 shows the reconstructed images over the three cylindrical surfaces for this case.
Again, it is observed that the two objects on the middle surface can be reconstructed well at their true
positions of φ = 0

◦

and φ = 180
◦

. We use the reconstruction error parameter defined in Equation (8) to
evaluate the quality of image reconstruction. The computed reconstruction error for this experiment
is 20.84. Comparing the reconstruction error parameter with the previous example, we observe the
degradation of the image quality. This is mainly due to the fact that the background medium is lossy,
and the responses of the objects are weaker for the objects on the surface r2 = 35 mm compared to
those at r3 = 50 mm.
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5. Conclusions

In this paper, we proposed a microwave imaging system capable of reconstructing 3D images of
objects in the near field of the antennas. The applications are in non-destructive testing of non-metallic
composite materials and biomedical imaging. To achieve low-cost, compactness, and reduce the
component count for a data acquisition system, narrow-band data is acquired as opposed to the
previously proposed 3D cylindrical holographic imaging techniques. An I/Q detection data acquisition
system is built based on the cost-effective off-the-shelf components to replace the expensive and bulky
VNAs. The system is tailored for imaging over a narrow band and this makes it much less expensive,
affordable, and compact.

In this work, we used a mixture of water and glycerin which is very lossy. We selected this mixture
considering both biomedical applications and non-destructive testing of the pipes which may carry
mixtures of water and other substances. For microwave imaging of such media, the optimal frequency
band to provide sufficient penetration while having acceptable resolution is within the range of 1 GHz
to 10 GHz (e.g., see ref. [3,22,23]). This justifies the chosen frequencies in this work.

The reconstructed images using this data acquisition system confirms the satisfactory performance
of this narrow-band system in 3D imaging. To evaluate the quality of the image reconstruction process,
we defined a reconstruction error to compare the images with an ideal image (true image). We observed
that, in general, the reconstruction error increases for reconstructing objects on surfaces farther away
from the antennas. Besides, the reconstruction error decreases when using double frequency data
compared to single frequency data. Furthermore, we observed that increasing the object size improves
the quality of the images but there is a limit for that due to the use of Born approximation in the
holographic imaging.

Although scanning of the objects over a cylindrical aperture takes a few hours, the holographic
imaging technique itself is fast. Here, we provide an estimate of the computational complexity of our 3D
image reconstruction process. The number of samples along φ and z are Nφ and Nz, respectively. The
number of receiver antennas and measurement frequencies are NA and Nω, respectively. The number
of imaged surfaces is Nr. We denote the number of samples of kz by Nkz . The number of samples along
kφ is Nφ. Table 3 summarizes the computational complexity of our approach. The computational
complexity of solving the systems of equations has been provided with the assumption that they are
solved with QR factorization. The total number of flops for the image reconstruction process is the
sum of all the flops in Table 3. The 3D image reconstruction process takes 10 s on a regular PC with
Intel Core i5 CPU at 3.2 GHz and 8 GB RAM.

Table 3. Details of computational complexity of the proposed image reconstruction process.

Operation Number of Flops

FT of the scattered fields NωNAN2
φ

Nz log(Nz)

FT of PSF functions NrNωNAN2
φ

Nz log(Nz)

Solving the systems of equations for all combinations of kφ and kz NφNkz (2NANωN2
r − (2/3)N3

r )

Inverse FT of the contrast function NrN2
φ

Nkz log(Nkz )

To expedite the imaging process and move toward real-time or quasi real-time imaging, an array
of antennas can be employed similar to the setups used for security screening in the airports [4].

As a final note, in this work, the goal was to propose an imaging system which is: (a) more
cost-effective, (b) accessible and affordable outside microwave laboratories in various industrial or
biomedical applications, and (c) compact and portable due to the fact it is tailored for measurement
over a very narrow band and for a specific purpose. VNAs normally are general-purpose equipment
that are capable of performing measurements over a very wideband. This makes them expensive and
bulky which is not suitable for widespread use in various industrial settings. We should emphasize
that the proposed system has been built with a cost of less than $1000 USD and can be made very
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compact by arranging the boards in a small box. The drawback of the proposed system compared to a
regular VNA is lower dynamic range. For a regular modern VNA, the dynamic range at frequencies
around 1 GHz to 2 GHz is around 100 dB while the dynamic range for the receiver used in our proposed
system is 63.5 dB. This limits the sensitivity of the proposed system indicating that the imaged objects
need to be larger to provide measurable signatures in the proposed system compared to a VNA-based
measurement system.
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