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Abstract
We consider several models of state dependent delay differential equations
(SDDEs), in which the delay is affected by a small parameter. This is a
very singular perturbation since the nature of the equation changes. Under
some conditions, we construct formal power series, which solve the SDDEs
order by order. These series are quasi-periodic functions of time. This is
very similar to the Lindstedt procedure in celestial mechanics.Truncations of
these power series can be taken as input for a posteriori theorems, that show
that near the approximate solutions there are true solutions. In this way, we
hope that one can construct a catalogue of solutions for SDDEs, bypassing
the need of a systematic theory of existence and uniqueness for all initial
conditions.

Keywords: retarded potentials, series expansions, quasi-periodic solutions

1. Introduction

In special relativity, when we can ignore the effect of emitted radiations, [1-4], the motion of
N charged particles can be described as solutions of the equation
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qj(xi(t) — x{(7i)))
[xi(t) — x ()P

MG =Gy T , (L1)
J#E

where M is the relativistic mass, which in the one dimensional case is defined as

2\ —3/2 N\ —1/2
o m1- ) 1)
c c

m;, q; are the rest mass and the charge of the ith particle respectively, ¢ is the speed of light
and G is a physical constant. (In the higher dimensional case, the relativistic mass is a matrix).
More importantly, 7 is the time that a signal emitted from particle j takes to reach particle 7,
and it is given by the implicit equation

1
Tij=1-— Pxi(t) — x(7ij)|. (1.2)

It is not difficult to show that if all the particles move with speed less that the speed of light,
the solution of (1.2) is a unique function of ¢.

In Physics, it is common to consider € = % as a small parameter and to try to predict the
motion as a formal power series; see for instance [5]. It is important to observe that, if we
consider x; as given, we can find an asymptotic expansion of the solutions of (1.2). Indeed we
can write

1
Tij=1— ;|xi(t)—xj(t)\ +0(1/c%) (1.3)

The functional equation (1.1) is not a differential equation because 7;; is in general not equal
to ¢, hence the positions x; in the rhs are evaluated at different times. If we take the approxima-
tion (1.3) for the delay, we obtain a state dependent delay equation (SDDE) because the delay
is an explicit function of the state. The problem in (1.1), without making the simplification
(1.3) is an of a more complicated nature since 7;; depends implicitly on the whole trajectory of
x;, xj. After we develop enough theory for SDDE, we will see in section 6 that the same ideas
apply to the full model.

Other scientific problems, such as the dynamics in some population models with density
dependent fertility age, are also naturally modeled with SDDEs; see for instance [6—8] and
references therein for more examples.

In this paper we will study several models of delay equations (mainly state dependent delay
equations.

Note that when the delay is a given constant 7, there is a rather developed mathematical
theory [9—11]. Precisely, if one prescribes as initial data a function defined on [0, T'], under
the standard regularity assumptions for classical ODEs, one can obtain a rather satisfactory
theory of existence, uniqueness, dependence on parameters and initial data, which constitutes
the first step to developing a qualitative theory. However, when the delay depends on the state
of the system (a fortiori on the whole trajectory) the situation is much more delicate and the
theory of existence uniqueness and dependence on parameters and initial conditions is much
more restricted [6]. There are indeed many examples of surprising behaviors which indicate
that a systematic existence, uniqueness and regularity theory for SDDE will be significantly
more complicated than the one for constant delay equations.

The goal of this paper is mathematically modest. We do not try to develop a general theory
of existence and uniqueness. We only try to study special solutions for some type of SDDEs.
Furthermore, we only try to study these solutions as formal power series.
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Once we specify the class of solution we are looking for (mainly quasi-periodic’) we express
the SDDE:s as functional equations on the space of quasi-periodic functions, and we call such
functional equation the invariance equation. In particular, we will consider SDDEs involving
a small parameter €, and obtain approximate solution of the invariance equation as a formal
power series in €.

One motivation for our study is that quasi-periodic solutions of (1.1) play an impor-
tant role in chemistry since they are the basis for the ‘old quantum theory’. For € = 0, the
quasi-periodic solutions of (1.1) satisfying the Bohr—Sommerfeld conditions have quantum
analogues.

This is the background we mainly have in mind, and thus it motivates us to look for
expansions in ¢ = 1/c of quasi-periodic solutions for (1.1).

Thus, we will show that, under some mild non-degeneracy condition, it is possible to write
systematically a formal power series expansions for the quasi-periodic solutions. Furthermore
we will show that, if we trucate such expansions to a finite order, we obtain functions that,
when substituted in the invariance equation, satisfy it up to a very small error.

Note that this is a very different procedure from the one followed sometimes in the physics
literature (predictive mechanics, [12, 13] post-newtonian formalism [5] etc ) in which one tries
to find an ODE (often derived through a Lagrangian) which describes all the solutions. Our
aim is to find expansions only for solutions of a certain type. It is quite possible, with the
formalism developed here, that the perturbation expansions for solutions of different types are
very different.

Note that obtaining a Lagrangian description of the motion of all particles, is forbidden by
the ‘no-interaction’ theorems [14], which state that the only Lagrangian invariant under the
Lorentz transformations are the free particles. Indeed, in general not even formal power series
can be found [15]. The above results are not incompatible with our results, since we obtain the
expansion only for solutions of very specific type. As observed in remark 2.3, our expansions
depend very much in subtle properties of the unperturbed system, so it is quite possible that
the approximate solutions we produce cannot be combined into a globally defined Lagrangian
sytem, which is the only thing forbidden by [14].

The systematic construction of approximate solutions obtained in this paper matches very
well with the recent development in a posteriori theorems, which show that near approximate
solutions of a certain kind there will be true solutions. There are already such a posteriori
results in quasi-periodic perturbations of some simple systems [16, 17] and in [18, 19]. Putting
together these results, we obtain that some of the expansions we construct are asymptotic
expansions of families of true solutions. One can hope that in the near future, the (rapidly
growing) applicability of a posteriori theorems will be extended and more general theorems
of this form will be proved, to cover at least the models considered in this paper. We call atten-
tion to [20] which implemented a very similar program of finding expansions in the delay and
validating them.

Hence, the conjectural picture that emerges is that there are many solutions of the classical
system that survive the inclusion of the delay. The set of solution that persists has a very com-
plicated structure (number theory properties play a role) and the solutions depend in a very
non-uniform way on the frequencies. Indeed we have to impose a condition on the frequency
(see (1.22) or (1.23) below) in order to achieve our results. There is no way to make the solu-
tions that persist fit in a common Lagrangian description, but nevertheless, the set of solutions
that persist is large enough that they can be useful in practical problems.

5Tn section 5 we will consider also solutions converging exponentially to quasi-periodic.
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1.1. Formulation of the problem.

We consider equations of the form

V(1) = f20(0),y(t = er), ..., y(t = er)), (1.4)
or

V) = f2(0), eyt — 1), ..., eyt — o)), (1.5)
where r; = r;(y(#)),j = 1,..., £ are given functions, and the unknown is y(#). In (1.1) the small

parameteris e = 1/c.
Remark 1.1. For ¢ = 0 the resulting equation is an ODE in both cases (1.4) and (1.5).

Remark 1.2. We can think of (1.1) as an equation of the form

(@) = fo(0(), ¥(7)), (1.6)

withy € ROV (positions and velocities), 7 = 7(y(1)) = {m;, j}f-:’j:l is implicitely defined by (1.2),
and ¢ = N(N — 1)/2 is the number of pairs. In particular, for £ = 0 the equation (1.1) has an
Hamiltonian structure.

For the sake of typographical simplicity, in this paper we will present mostly cases in which
¢ =1, and at the end we will make explicit the (typographical) changes needed to deal with
the case ¢ > 2 or the more complicated model of (1.1).

The search of quasi-periodic solutions of (1.4) with some frequency w is equivalent to
looking for a so-called invariant torus, i.e. a torus embedding

K:T!—R" (1.7)
satisfying

(w - 9K)(O) = f-(K(0),K(0 — ewr(K(0)))), (1.8)
in such a way that the dynamics on the model torus T is given by

0=w. (1.9)
Of course if dealing with (1.5), we look for K satisfying

(w - 0pK)(O) = f-(K(0),eK(0 — wr(K(0)))). (1.10)

Observe that the case d = 1 corresponds to periodic solutions. Note also that (1.8) reduces
to

(w- K)(O) = fo(K(0),K(0)), (1.11)
for € = 0, while (1.10) reduces to
(w - OpK)(O) = fo(K(0),0). (1.12)

We emphasize that in (1.8) and (1.10) both K and w are unknown. In [16, 17] only the
simpler case of quasi-periodically forced systems was considered, so that w was externally
fixed.
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Remark 1.3. Note that the solutions of (1.8) or (1.10) are never unique. Indeed if K. is a
solution, for any § € T¢ we have that K -(0) :=K.(0 + w) is also a solution. Hence the solutions
appear as |-parameter family. This lack of uniqueness has a physical interpretation, namely that
the solution admits phase traslations, i.e. it traslates the origin in T¢. A way to obtain uniqueness
is by requesting, besides the invariance, a normalization: the most natural one seems to be

1

(2—7T)‘1/1rdd9DK0(9) -K.(0) =0, (1.13)

first of all because it is very easy to impose, amd moreover because
Having the uniqueness of the solution is a useful property since it allows to compare results
obtained by different methods, and discuss smooth dependence on perturbations.

The theory for the solutions of (1.8) is far from being a general theory for the solutions of
(1.4) for all initial data. The goal of this paper is to show that if we have K and w solving (1.8)
for ¢ = 0 and we assume some mild non-degeneracy conditions, then we can systematically
compute formal power series

K5:ZEjKj w5:Zijj (1.14)

JZ0 j=z0

solving (1.8) in the sense of formal power series. In other words, if we denote
N N
KISM = ZSJK/ wisM = Zsjwj (1.15)
j=0 Jj=0

we have that the function

VSV = KISV (wIsMp) (1.16)
satisfies
d
aySN] — f- BNy, y SV sr(ySN](r))))' < CyeVth. (1.17)

For (1.10) the analogue of (1.17) is

%y&w — f- (M0, M - r(y£<N]<r>>>)‘ < Cyet. (L18)
Expansion of the form (1.14) are called ‘Lindstedt series’ and the search of solutions for
an ODE in the form of a Lindstedt series has been widely used in astronomy since the 19th
century [21] and even before. Such expansions have been used also in delay equations; see for
instance [22, 23] or [24] for further developement. The paper [20] includes also validation.
An important role will be played by the linearized equation around € = 0. Postponing many
details which we will make explicit later, a key result of this paper is the following meta-result.

Meta-lemma 1.4. Denote by D, D, the derivative w.r.t. the first and second argument of f;
respectively. If given R it is possible to find ¢ ‘small enough’ and u such that

wo - Ogu — (D1 fo(Ko(8), Ko(0)) + D> fo(Ko(0), Ko(0))) u = R + 69y Ko(0),
(1.19)
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then we can determine the coefficients of the series (1.14) solving (1.8) to all orders.
Similarly, if it is possible to find § ‘small enough’ and u such that

wo - Ogu — (D1 fo(Ko(0), 0) + D> fo(Ko(0), 0)) u = R 4 695Ko(0), (1.20)

then we can determine the coefficients of the series (1.14) solving (1.10) to all orders.

It is important to note that the the equations (1.19) and (1.20) only involve the unperturbed
undelayed equation and that the same equations appear to all orders. Hence, some geometric
properties of the solutions of the ODE, guarantee that we can get expansions to all orders in «.

Proof. The proof is quite straightforward and we shall show the details only for the case
(1.8). We start by simply observing that

f= (Ko(0), K(0 — ewr(K.(0)))) =fo(Ko, Ko) + €Dy fo(Ko(6), Ko(0)) - K1(0)
+ eD; fo(Ko(6), Ko(0)) - K1 () + - - -

Thus, by a formal expansion in €, we see that the terms O(¢") have the form

(D1 fo(Ko, Ko) + D2 fo(Ko, Ko)) K,
+R, (Ko, Ku-1,DKo, ... .DK,1,.... D" 'Ko,..., D"'K, 1) (1.21)

where R, is a polynomial in its variables, i.e. matching the coefficients at order " both in K
and in w we obtain an equation of the form (1.19).

Of course the statement of meta-lemma 1.4 above is only formal since it does not specify
the precise meaning of ‘solve’. Such precise meaning entails the specification of the spaces in
which the solution and the reminder lie; moreover we will need conditions on the frequency
wo-

In the following we will present various cases in which the equation (1.19) (or (1.20)) is
solvable. For each of the cases we formulate precisely the meaning of ‘solvability’ and the
result on the existence of the Lindstedt series. The cases we will consider are well known to
dynamicysts since they are also cases where one can prove persistence of the structure under
the change of the differential equation, and they are the following.

Case 1: The manifold Ky(T¢) is a normally hyperbolic invariant manifold (NHIM) and wq
satisfies a Diophantine condition.

Case 2: The linearized evolution is reducible to constant coefficients and the eigenvalues of
this constant coefficients matrix satisfy some Diophantine condition w.r.t. wy.

Case 3: The unperturbed system is Hamiltonian, Ko(T¢) is a Lagrangian torus (i.e. the
phase space has dimension 2d), it satisfies a twist condition and w satisfies some
Diophantine condition.

Case 4: The unperturbed system is a two dimensional ODE which has a limit cycle.

Case 5: The ‘electrodynamics case’ of (1.1) (The delay depends not only on the state, but
also on the whole trajectory).

Here and henceforth we impose the standard Diophantine condition

lwo - k| = ﬁ for all k € Z4\{0}, (1.22)

where, with abuse of notation, we denoted by | - | both the absolute value of a number and the
/1-norm of a d-dimensional vector.
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Some result can be obtained also in the case of subexponential Diophanitne wy, i.e.

1
lim — log —— =0 (1.23)
oo [K] 8 T - K]
or equivalently

Ve >03c=c(e) such that|wy-k| > c(e)e ¥ Vi e Z4\{0}.

It is remarkable that the Diophantine condition (1.22) is precisely one of the two main
hypotheses of the celebrated KAM theorem.
Throughout the paper we shall use the following standard notations.

e Given £ > 0 we denote by Tg the set
T¢ = {0 € (C/Z)! : Re(Fp) € T, Im(@B)| <& j=1...., d}.

e We denote by A, the space of functions u : 'JI‘? — R" such that

lalle:= > e ™| < oo (124)
kezd
where we denoted by #y the kth Fourier coefficient of u and by || - || the standard Euclidean

norm of an n-dimensional vector.
e For a function f of class C" we denote its C"-norm as || f || cr. O

2. The case of quasi-periodic solutions which are also normally hyperbolic
invariant manifolds

2.1. Basic definitions.
We recall that M C R” a C' manifold is an NHIM for a C” vector field fwithr > 2if
(a) fix) e TM forallx e M
(b) Forevery x € M there is a splitting
R"=T.M ® E ® EY, (2.1)
such that there are positive constants C, p4, p_ so that, denoting by F; the time- flow, one
has
||DF,‘EM ||C" < CE/)*!, t é 0
IDFy, e < Ce ™', 120
Note that if M is not compact, one needs to assume that the C" properties of the manifold
are uniform, and in this case the theory of [25-27] carries through; see also [28].
Here M is Ko(T?) which is a compact manifold, so that we do not have to deal with the
subtleties appearing in the case of non-compact manifolds.
We assume that the dynamics restricted to M is conjugated to a rotation. In such a case,
the theory of [25] shows that if fy € C”, then M is a C" submanifold and the splitting is C"~'.

The analytic case is more delicate, but it was proved in [29] that if wg is Diophantine and f; is
analytic, then M and the splitting are also analytic.

7
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2.2. Solvability of the linearized equation.

Denote by IT}, IT}, II{ the projectors onto E, E¥, E¢ = T, M corresponding to the splitting (2.1).
Denoting

vy =TIgv,
F*(Ko(0)) = (D1 fo (Ko(0), Ko(0) + D> fo(Ko(0), Ko(D))|eg, = s,u,c,
2.2)
the linearized equation (1.19) takes the form
wp - Ogv* — FY(Ko(O))v™* =R, o =s,u
(2.3)

wo - Opv° — F(Ko(@)v° = RS — w,.

We need to show how to solve (2.3).
First of all we note that for o = s, u it sufficies to use the Duhamel formula. Indeed if A (7)
satisfies

d
a 0 (1) = F(Ko(0 + wot)AG (1) (2.4)

5(0) =1
then we can set

0

v*(0) = / h thg_wO,(t)Rf(e —wpt), V(0= / dr. Z_WO,(t)R"(G — wopl).
0

(2.5)
Since we have
|Aj(D)] < Ce P+, Vi>0 |Aj(n| < Ce’', Vi< 0
then the integral appearing in (2.5) is convergent, so v(0) is well-defined.
Lemma 2.1. Iffy € C"and R* € C"' for o = s,u, then v* € C"~" and one has
[o%[cr v < CIR[r 1 (2.6)

Proof. First of all note that since fy € C" then the bundles E*, E*, TM are C~'. Moreover,
since fj is of class C", then F is of class C""!, and hence Ay(7) solving (2.4) depends ona ™!
way on 6 and the derivatives do not grow with 7. This implies that we can take derivatives w.r.t.
0 under integral sign in (2.5) and thus the bound (2.6) follows. O

To deal with the center direction, since the manifold is normally hyperbolic we can write
v(0) = DKy(0)w(0),
so that the equation for w is
woy - Ogw = (DKy(0)) 'R°(0) + w,. 2.7)
Note that (2.7) is the standard cohomology equation appearing in KAM theory.

8
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In order to solve (2.7), we can expand w(f) in Fourier series

w(®) = Z WX 0 (2.8)

kezd

so that, expanding also

8(0) = (DKy(0)"'R°(0) = ) _ gre™™’ (2.9)

kezd

and integrating both sides w.r.t. f, we see that (2.7) reads

Wy = _<g(0)>
1 . (2.10)
g k#0.

~

Wk = 7
2mwy - k

In particular in the analytic case, under the hypothesis (1.23) we obtain w(f) an analytic
function defined in a domain 'H‘g, forany £’ < €.

Overall we thus obtained the following result.
Theorem 2.2. Suppose that f;y is analytic (resp. C™), Ky is analytic on ']T‘g (resp. C*) and wy
is subexponential Diophantine (resp. Diophantine). Then there exists Lindstedt series solving
(1.8) to all orders; in particular the coefficients K, are analytic on ’H“g, for any £ < & (resp.
C™). Moreover the Lindstedt series can be made so that (1.13) holds; with such normalization
the series is unique.

Note that the C" case is much trickier to work out. Indeed the solution of the linearized
equation loses derivatives and the composition to justify the derivatives requires justification.
Our guess is that one gets K, € C""'" and of course one obtains only finitely many terms in
the expansion.

Remark 2.3. We say that wy is Liouville if (1.23) fails, i.e. there is a sequence k, with
|k,| — oo such that |wp - k,| < c()e™| In this case it is not possible to solve the cohomology
equation (2.7), i.e. we cannot find a Lindstedt series for the solution of the invariance equation.
This gives some insight on why the Postnewtonian formalism (which is global) fails. Indeed a
global theory should work also for Liouville vectors.

We finally mention that, under some further technical assumptions (that could possibly be
removed), one can apply the results of [16] and get validation for theorem 2.2, namely the
existence of a true solution nearby. The discussion in [16] is very technical and goes whay
beyond the scope of the present paper.

3. The reducible case

For linear equations with quasi-periodic coefficients, it is natural to consider linear quasi-
periodic changes of variables. If one is dealing with an equation of the form

d
Frih A0 + wot)v (3.1)

a change of variables of the form

o(f) = M0 + wew(t) (3.2)
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for some M, transforms the equation (3.1) into
=M '[~wp - WM + AM1(0 + wot)w(H). 3.3)
We say that the equation (3.1) is reducible if it is possible to find
M :T¢{ — GL(n,C), A € GL(n,C)
such that
M [—wy - OpM + AM](0 + wi) = A

so that (3.3) has constant coefficients. Of course, without loss of generality we can look for A
in Jordan normal form.

The question of reducibility has been considered extensively in many papers, both pertur-
batively [30, 31] and nonperturbatively [32, 33], in the sense that the smallness condition does
not depend on the frequency; a good survey on the subject can be found in [34].

What is relevant to us is that, after a change of variables as in (3.2) we get that (1.19)
becomes

d
aw(z) = Aw 4+ M 1O + wot)Ry + M (0 + wot) DKo(0 + wot)w,, (3.4)
It is clear that, since

d
$Ko(9 + wpt) = fo(Ko(e + wopt), Ko(e + wpt)) 3.5)

deriving (3.5) w.r.t. f on both sides we obtain

%DKO(G + wot) = (D1 fo(Ko(0), Ko(0)) + D> fo(Ko(8), Ko(6))) DKo(0 + wot).

(3.6)

We can interpret (3.6) by saying that the vectors 9y, Ko(6) are eigenvectors of the linearized
equations.

Since K is a torus embedding satisfying (1.9), there must be d zero-eigenvalues of A. An
important assumption that needs to be made is that there are exactly d zero-eigenvalues of A,
while the others are Diophantine w.r.t. wy; see definition 1 below. It is also important to note
that the term Ry is in the range of DK((6). In other words we can split any vector u as

u=Tu+ T u

where I is the projection onto the range of DK and II* is the projection onto the comple-
mentary space. Then the invariance equation restricted to the range of DK takes the form

wo - OpITw = TI(M 'R + wy), (3.7)

where, with abuse of notation we are denoting by w, R the corresponding torus embedding.
This is again a standard cohomology equation of the same type of (2.7), so we can solve it by
imposing

w, = —((DKy)"'R)

10
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and assuming that wy is Diophantine.
On the other hand on the Kernel of DK we see that (3.7) is equivalent to the system

wo - I wi(0) = p, I w; + TT-(M'R);, (3.8)

where ft,—g, . . . 1, are the non-zero eigenvalues of A.

Note that, because of the previous calculation and the assumption of having no zero-
eigenvalues except for the range of DK, w, does not appear in (3.8).

Similarly to the case of an NHIM, we can now pass to Fourier series as in (2.8) and we see
that (3.8) is equivalent to

2mi(wo - )iy = iy + MRz (3.9)

This motivates the following definition.

Definition 3.1. We say that y; is (v, 7)-Diophantine w.r.t. wy if

i — 2mi(wo - K| = % Yk € z4\{0}. (3.10)

We say that y; is subexponentially Diophantine w.r.t. wy if

1
lim — log |p; — 2mi(wo - k)| = 0. (3.11)
ko0 |&]

Clearly if y; is (v, 7)-Diophantine w.r.t. wy (or subexponentially Diophanitne w.r.t wg) we
can set

—

— MR
11 — 27i(wo - k) .

~

Wy =

It is straightforward to see that if g; #~ 0 and it is (y, 7)-Diophantine w.r.t. wy we have
lwllaey < 0~ THOIMTIR] 4,

In the case that A has a non-trivial Jordan block with eigenvalue A and multiplicity m we
obtain a system of equations

wo Ot = At —wt — W =R", i=1,...,m

which can be solved recursively starting from order m and going in decreasing order.
Therefore we have the following result.

Theorem 3.2. Assume that

e fy is analytic (resp. C™).

e The equation is reducible.

e The matrix A has exactly d eigenvalues and the rest of the eigenvalues of A is subexpo-
nentially Diophantine w.r.t. wy.

Then there exists a Lindstedt series solving (1.8) to all orders. The coefficients K,, are
analytic in Tg, Sforall ' < & (resp. C™)
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4. Lagrangian tori in the Hamiltonian case

If we assume that f is Hamiltonian® then in the neighborhood of an invariant torus there
is a very rigid structure that can be used to compute Lindstedt series. This structure (called
automatic reducibility) was used in [35] to give a computationally efficent proof of the KAM
theorem; we shall use the automatic reducibility to compute Lindstedt series.

Automatic reducibility has also been found in other systems which preserve geometric struc-
tures, such as conformally symplectic systems [36] and volume preserving systems [37]. The
results in this section could also be adapted easily to the other automatically reducible systems.

The key observation is the following result; see [35, 38].

Lemma 4.3. Assume that fy:R" x R" — R" is Hamiltonian and Ky : T — R" satisfies
(3.5). Assume n = 2d. Then the 2d X 2d matrix-valued function

M(9) = [DKo(0),J ' DKy()N(0)]

satisfies

wo - M) = M(0) (83 Léf)) (4.12)

where 04 denotes the d X d zero-matrix and L(0) is an explicit matrix. By [-, -] we denote the
Juxtaposition of two 2d x d matrices to obtain a 2d X 2d matrix.

We refer to [35, 38] for the proof.

Lemma 4.3 has a very clear geometric meaning. The first columns of M have the same inter-
pretation as in section 3. The last d columns are forced by the preservation of the symplectic
structure.

Using (4.12) we see that, under the change of variables

U=MW

by the automatic reducibility the linearized equation becomes

0, A0 0 ~
wo-ang(oj él)>W+( )+Rn

The reason why w,, appears only in the second term is that it appears only in DKy(0)w,,.

Again we obtain w, so that the second term has a solution using the theory of constant
differential equations. Then the second component is determined up to an additive constant
(the constant is uniquely determined if we impose for instance (1.13)).

To summarize, we obtained the following result.

Theorem 4.4. Assume that n = 2d and fy is an analytic (resp. C*°) Hamiltonian vector field.
Then there exists a Lindstedt series solving (1.8) to all orders. The coefficients K,, are analytic
in ']T?, Sforall & < & (resp. C™).

6 i.e. fu = JVH for some function H : R" — R with n even, and J is the matrix of a 2-form Q(«, 8) = (o, J3), which
is symplectic (i.e. d©2 = 0 and non-degenerate).

12
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5. Limit cycles and isochrones

We now consider the case in which, for e = 0, (1.4) or (1.5)) is a two dimensional ODE, which
admits a limit cycle. This model is very common in applications in electronics, where the
classical models of oscillators are limit cycles, but for fast electronics it is useful to include the
delay.

Besides the limit cycle, it is useful to consider the solutions that converge exponentially to
it. They were called isochrones in [39] which explained their physical and biological relevance.
Their relation to stable manifolds was pointed out in [40].

In this section, we will show that there are Lindstedt series both for the limit cycles and for
the isochrones. Furthemore we will mention that this fits very well with the recent develop-
ments in a posteriori theorems [18, 19] and that, in this case, we can prove that the series are
asymptotic in a very strong sense. See theorem 5.6.

We also note that in this case we will develop a method to compute the Linstedt series in a
much faster way. Each step of the algorithm will double the number of computed terms. This
is in contrast with the methods discussed before, in which one step of the algorithm produced
only one more term in the expansion. We may informally describe this method as overloading
the Newton method to power series.

A convenient starting point for our analysis is the result in [41] that in a neighbourhood of
the limit cycle, there is an embedding

W:T! x R — R? (5.13)
so that for every 6 € T and sp € R with |sp| < 1,
¥(t) = W(by + wot, soe™) (5.14)

is a solution of the equation of £ = 0. What we will do is to seek to modify the W, w, A so that
(5.14) is a solution of the delay equation.

Note that in this case, we are not looking for a torus embedding as in (1.8) or (1.10), but we
are also including the exponentially converging orbits. Hence, there are two parameters to be
found, w, the frequency of the torus and J\, the exponential factor of convergence.

Finding solutions of the delay equation (1.4) or (1.5) of the form (5.14) is equivalent to
finding W, w, A satisfying

(W - 0+ SANIIW(B, 5) = f-(W(B, 5), W(O — cwr(W(B, 5)), se~ WDy,

(5.15)
or
(W - Op + sAO)IW (O, 5) = f-(W(B,5),eW(O — wr(W(B, 5)),se Ty,
(5.16)
respectively.
Again we look for a solution (W(#, s5),w, \) of (5.15) as a formal power series, i.e.
A= Zsj)\j, w = Zsjwj
j20 j20
‘ (5.17)
W(O.5) =Y IWi(o.s).
j=0

13
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The case is a particular case of the reducibility case, so we could get the series using the
methods in section 3. In this section, however, we want to describe a different algorithm that
is based on a Newton method and is quadratically convergent. When applied to the problem of
Lindstedt series, we see that the method will double the number of coefficients that we have
computed at every step (the step will be more complicated than in the order by order method).
In this paper, we will not perform a comparision of the computational cost of the Newton
method and the order by order method. In [41] such comparisons are performed in the ODE
case.

Of course the meta-lemma 4 applies in a slightly different form also in this case, so we need
to show that we can solve the linearized equation. Indeed, set

Loy = (;‘;) : (5.18)

denote
DWL, ) = (w - 9y + sAO)W (B, s) (5.19)

and

FoW = f.(W(#,s), WO — cwr(W(0, s)), seNWVEDy)  or
(5.20)
FoW = f.(W(0,s),sW(0 — wr(W(0,s)), se WOy

for (5.15) and (5.16) respectively, and assume that we have an approximate solution (W, w, \)
of (5.15), i.e. such that

DWL,\=FoW+E (5.21)

for some small E. Thus for the Newton scheme we need to find an better approximation
(W+ A,w + a, X+ ) such that the correction (A, a, 3) elimitates the error E at the linear
approximation. This means that indeed we need to solve the linearized equation

DAL, + DWL,3 = (DF o W)A + E. (5.22)
Note that differentiating (5.21) we get

D*WL,,\ + DWDL,, ) = (DF o W)DW + DE (5.23)
s0, since the operator DW is invertible, the idea is to look for A of the form

A = DWA. (5.24)
Substituting (5.24) into (5.22) and rearranging we get

D*WAL,,, + DWDAL, ) — (DF o W) DWA = —DWL, 3 + E. (5.25)
Now, since D’WAL,,, = D*WL,,,A, and using (5.25) we obtain

(DE — DWDL,, ,)A + DWDAL,, , = —DWL, 3 + E.

Due to the fact that the term DEA is ‘quadratically small’, we may drop it so that the equation
for A becomes

—DWDL,, A + DWDAL,,, = —DWL, ; + E. (5.26)

14
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This last step is called quasi-Newton step in the literature; see for instance [41] and references
therein. If we now multiply by DW~! we see that (5.26) reduces to

—DL,)A+DAL,\ = —L,3+E, E:=DW'E,
which in components A = (A, A»), E= (75 I 752), takes the form

(w-0p +sNOHA +a = El
~ (5.27)
(w+ g+ sA0s — NAy + Bs = Ey,

i.e. it is a linear equation with constant coefficients. Equations like (5.27) were studied in [41]
with two methods. Here we follow the analysis based on power series. Indeed, expanding

ApO0.5) =D Y AP h=1,2

kezd p=0

B . . (5.28)
En0.5)=>_ > Ef)s"e™, h=1,2
kezd p=0
we see that (5.27) takes the form
(27w -k + ApAY, =EP) p>1
’ T (5.29)
(27w -k+Ap— NAY) =EY, p=0, p>2,
and
(21w - KA, + o = EY),
. (5.30)
. Al (1
(27w - KA + B = E3)
Thus we can fix
o= By 5-ED,
) 0 ) 30 (5.31)
o _ Lk m _ 2.k k#0
™ Rrw-k) T2* T (27w k)’
and
o E(p)l . i:':(p)
AP = Lk AP = 20 (5.32)

Rrw-k+Xp P 2rw-k+AXp-— 1)

Since A and p are both real, then a subexponential Diophantine wy ensures AP , A(zp) to be
analytic functions of 6. Precisely we proved the following result.
Theorem 5.5. Assume that fy is analytic (resp. C*). Then there exists Lindstedt series

W= ZE"Z s”Wﬁ-”), w= Za"w,, A= ZE"/\,,

n p=0

solving (5.15) (resp. (5.16)) to all orders. The coefficients W;p) are analytic in ']T‘g, for & < &
(resp. C*)

15



J. Phys. A: Math. Theor. 53 (2020) 235202 A Casal et al

We also mention that in this case there is an a-posteriori theory developed in [19],
which takes as principal input the fact that there are approximate solutions that solve very
approximately the equation (5.15) and conclude that there are true solutions.

Since the main conclusions of theorem 5.5 are precisely that we can construct series that
satisfy (5.15) very accuratey, we can put together theorem 5.5 and the results of [19] and we
obtain the following.

Theorem 5.6. In the assumptipions of theorem 5.5, we can find solutions W.,w . of the
equation (5.15). These W, are finitely differentiable functions for any € > 0.

Furthermore, there exists a function r(e), with lim._ r(€) = oo in such a way that for all
N, there exist numbers Cy such that

[We = WM e < Cye™™!
|we — WSV < CyeMt!
|Ae — ASM| < oyet!

Note that the conclusions are slightly stronger than the usual definition of asymptotic expan-
sions since we conclude that the approximation is happening in stronger norms as € goes to
Zero.

Remark 5.7. The discussion of the present section is restricted to a 2 dimensional case; see
(5.13). In higher dimension unfortunately we do not know how to treat the isochrones. However
the quasi-periodic solution are dealth with in section 2.

6. Systems with more delays and the electrodynamics case

We proved that it is possible to find solutions (in the sense of formal power series) to SDDE
equations of the form (1.4) or (1.5) in various setting when ¢ = 1. It is however clear that
with a slight modification of the discussions above we could cover the case ¢ > 2. Indeed the
only difference is that the vector field f. depends on £ + 1 arguments instead of only two, so it
suffices to replace the operator

D fo(Ko(0), . .., Ko(0)) + D2 fo(Ko(D), . .., Ko(6))
with

l+1

> D, fo(Ko(®), . ... Ko(6))

p=1

where D), denotes the derivative w.r.t. the pth argument.
We now discuss the physical case (1.1). We start by rewriting (1.1) as a dynamical system,
ie.
.5(,' =V
q,(xi(t) — x;(t — el(t) — x;(0)] + O(?))) (6.33)
xi(r) — xj(t — elxi(t) — x;,(0] + O

o= GMw) "y L
i

16
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where we denoted € = 1/c and we also exploited the expansion (1.3). We then look for a torus
embedding

K:T¢ — RN (6.34)
satisfying an equation of the form
w - OpK(0) = F(K(0), K(0 — cwr(K(0)) + O(e?))). (6.35)

By remark 1.2 we see that if d = 3N we are essentially in the same situation as in case 3, i.e.
the case of Lagrangian tori, so we can apply the results of section 4. Unfortunately, for d # 3N
a similar result cannot be achieved.
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Appendix A. Solutions of cohomology equations with frequency given by
formal power series

In all the cases studied in the present paper, the frequencies are given by power series in €.
However we required (1.22) or (1.23) only for the first summand of the series defining w.
Indeed the following is true.

Lemma A.1. Let

w:w5=Z£jwj (A.1)
>0
be an R-valued formal power series. Let
n=> ¢ (A2)
Jj20

be an Ag-valued formal series (recall (1.24)), i.e. n; € A¢ for all j > 0. Assume that wy is
subexponential Diophantine (recall (1.23)). Then for every § > 0 there is a unique A¢_s-valued
formal power series

p=> ey, (A3)
>0
solving
w-Ogp=n (A4)

in the sense of power series. Moreover the solution @ is unique if we impose

1
—_— (@)do =0, j=O0. A5
2 /Wso,( ) J (A.5)
The key observation to prove lemma A.1 is the following (very well known) result.

17
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Proposition A.2. Ifw is of the form (A.1) and wy satisfies (1.23), then given any o € Ag,
for any & < & there is a solution to

Wb = a. (A.6)

Proof. If we Fourier-expand

af) = Z a0 B0) = Z ek,

kezd kezd

then we see that (A.6) is equivalent to
Qriw - k) By = &.
If wy satisfies (1.23) then
lw-k|7' < Ce&=EMH/2.
By Cauchy estimates we have
el < e e,
and hence

1Ble < 3 e M alCe M2 < Cllafle Y e e,
kezd kezd

for some constant E‘, so the assertion follows.
We are now ready to prove lemma A.1 O

Proof. (Lemma A.1) We can rewrite (A.4) as
n
wo - 065071 =M — ij - 864,011—1', (A7)
=1
hence we can use recursively proposition A.2 to find
©n € Agf(lfzf")o‘

so the assertion follows. O
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