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Abstract—One of the well-known challenges in Edge Comput-
ing is strategic placement of cloudlets. The fundamental goals of
this challenge are to minimize the deployment cost of cloudlets
and to guarantee minimum latency for users of edge services.
However, building cloudlet infrastructure may not be feasible in
many situations and areas (e.g., disaster situations, unexpected
surge in demand, and remote rural areas). Vehicular edge
computing, VEC, introduces mobile cloudlets to augment edge
computing capacity, enhance its coverage, and reduce latency
significantly. However, efficient cloudlet placement is even more
critical in VEC as it is not a long-term decision and needs to be
repeated over time. In this paper, we address this challenge by
designing a generalized cost-aware cloudlet placement approach
that places a set of heterogeneous cloudlets in a region and fully
maps user applications to appropriate cloudlets while ensuring
their latency requirements. We first formulate the problem
as a multi-objective integer programming model in a general
deployment scenario. This is a computationally NP-hard problem.
To tackle its intractability, we then propose a genetic algorithm-
based approach, GACP. We investigate the effectiveness of GACP
by performing extensive experiments on multiple deployment
scenarios based on New York City OpenData. The results show
that GACP obtains close to optimal cost placement in significantly
reduced time.

Index Terms—edge computing; mobile cloudlets; optimization;
genetic algorithm

I. INTRODUCTION

With advances in wireless network technologies and com-
putational capabilities of smart connected devices, it is now
possible to use many innovative applications not feasible be-
fore. For instance, live streaming on social media apps, games
on virtual reality headsets, and more general applications in
domains such as healthcare, connected vehicles, and smart
cities [1]. Despite improvements in hardware capabilities, it
is still a challenge to run computation and data intensive
applications on mobile devices as they are restricted by weight,
size, battery life, and heat dissipation [2]. These restrictions
impose limitations on processing power, memory, and storage
capacities of these devices.

Edge computing, sometimes used interchangeably with the
term Fog computing, has been introduced as a new paradigm
that provides a distributed computing solution at the edge
of the network, where mobile users consume the computing
resources in their vicinity. These resource-rich components
placed closer to the users are called Cloudlets [3], [4].

Therefore, mobile devices can offload their resource-intensive
applications to cloudlets, which is a comparatively economical
solution with significantly reduced latency compared to the
conventional cloud [5], [6]. Since cloudlets are distributed, a
challenge lies in strategically placing them in a service area
to provide low-latency edge services.

Deploying cloudlets is costly and may not be feasible in
many situations (e.g., disaster situations, emergency rescue,
unexpected surge in user demand) and regions with sparse
or no infrastructure of wireless access points such as remote
rural areas [7]. For these situations, an emerging computing
paradigm called Vehicular Edge Computing (VEC) has been
introduced, where smart vehicles (SV) such as Unmanned
Aerial Vehicles (UAVs) and Connected and Autonomous Vehi-
cles (CAVs) are considered as computational cloudlets due to
their inherent attributes such as mobility, low operating costs,
flexible deployment, and wireless communication ability [8],
[9]. SV-mounted cloudlets can augment edge computing ca-
pacity, enhance its coverage, and improve latency by executing
the offloaded applications. While VEC can bring many op-
portunities, efficiently placing cloudlets brings new research
challenges as it is a dynamic decision to balance the load and
improve latency.

In this paper, we address the placement challenge by design-
ing a generalized cost-aware cloudlet placement approach. We
first formulate a general representation of the cloudlet place-
ment problem considering a set of heterogeneous cloudlets
and multiple user devices. Our objectives are to minimize the
cloudlet placement cost and to ensure the placed cloudlets can
cover all the users’ requests guaranteeing minimum latency.
Furthermore, an essential part of our problem is to find a
complete mapping of devices to the placed cloudlets.

The placement problem is known to be NP-hard [10], and
an efficient way to solve large-scale placement problems is
by using heuristic and meta-heuristic approaches [11]. In
particular, Genetic Algorithm (GA) is a discrete technique
that is suitable for combinatorial problems such as grouping,
ordering, and assignments. This meta-heuristic approach uses
population-based search by relying on bio-inspired operations
such as mutation, crossover, and selection [12]. With a well-
designed fitness function, diverse initial population, and suit-
able termination, a genetic algorithm is known to find high-



quality solutions in a short amount of time. The design of
genetic operations is also flexible and allows parameter tuning
to find better results. Moreover, since covering the end devices
is crucial in our problem, GA is a suitable approach that can
lead to high coverage [13].

We propose a GA-based cloudlet placement approach,
which allows a smooth trade-off between the objectives to
obtain close to optimal solutions at a markedly lower running
time. We ensure that the devices are covered by the placed
cloudlets considering the cloudlet capacities and latency re-
quirements of the applications. We perform extensive exper-
iments to show the effectiveness of our proposed approach
in finding close to optimal cloudlet placements in different
deployment scenarios and different degrees of freedom in
placing them. Our experiments are designed based on real data
containing WiFi hotspot locations and usage statistics obtained
from NYC OpenData [14].

Related Work. To realize the vision of edge computing, ef-
ficient approaches for placing cloudlets are needed. In the
literature, different approaches have been used to tackle the
cloudlet placement problem. Wang et al. [10] and Jia et al. [15]
proposed clustering-based approaches to place cloudlets. The
focus of the former study is to balance workload and reduce
access delay. The latter study focuses on cloudlet placement
using density-based clustering and k-means clustering of users
in order to minimize response time. Zeng et al. [16] pro-
posed a greedy-based algorithm that minimizes the number
of cloudlets to be placed considering latency requirements. A
greedy heuristic approach is proposed in [17] to reduce access
delay for users being served from access points. Li et al. [18]
proposed energy-aware placement of cloudlets using swarm
optimization, while assuming users are mapped to cloudlets
through base stations. All of these studies do not directly
consider placement cost of cloudlets, and they also assume
all available cloudlets need to be placed.

A few studies concentrate on placing edge computing re-
sources for one specific application such as big data process-
ing [19] or virtual reality [20]. Fan and Ansari [19] considered
the placement for big data processing to reduce cost and
delay, and they proposed an integer programming model while
relying on CPLEX to solve it. Veith et al. [21] presented
a study on application placement for data stream analytics
at edge, and proposed placement configurations to improve
the response time of such applications. Bastug et al. [20]
discussed edge server placement for augmented and virtual
reality applications. None of these studies investigates a gen-
eral heterogeneous deployment scenario. It is also important
to emphasize that they consider cloudlet placement as a long
term decision, i.e., the placed cloudlets stay at their locations
permanently. To the best of our knowledge, this is the first
study to design a genetic algorithm approach for the mobile
cloudlet placement problem.

Another point to consider is that these studies ran their
experiments on randomly generated networks. Only [10], [18],
and [15] have used scenarios based on real datasets in their

experiments. Wang et al. [10] and Li et al. [18] used base
station dataset to validate their respective approaches. Jia et
al. [15] used transportation network data under the assumption
that a WiFi network would be similarly distributed. Finally,
none of these studies considers the mapping of individual users
or devices to cloudlets.

Organization. The rest of the paper is organized as follows. In
Section II, we introduce the cloudlet placement problem and
provide a mathematical optimization model. In Section III, we
present our proposed GA-based approach, GACP, in detail.
In Section IV, we evaluate the performance of GACP by
extensive experiments. In Section V, we summarize our results
and present possible directions for future research.

II. CLOUDLET PLACEMENT PROBLEM

We aim to efficiently place mobile cloudlets to specific loca-
tions in a region to serve the demands of all the end (mobile)
devices that require edge services. We model the region as a
two-dimensional space (grid), where cloudlets and end devices
can exist. The end devices could be at any point in the space.
On the other hand, we assume only a set of candidate points
within the grid are available where the cloudlets can be placed
and the devices can be best served. The candidate points are
selected based on the load of user requests and the location
of user demands over a long period. The cloudlet placement
itself is not a long-term decision and is repeated over time.

The set of candidate points is defined as P = {ρ1, ρ2, . . . ,
ρn}, where each refers to a location in the grid (in coordinate
axes). A set of cloudlets is denoted by C = (c1, c2, . . . ,
cw). The cloudlets are heterogeneous and each cj ∈ C is
represented by a 4-tuple cj = {Πj , Mj , Sj , rj} denoting its
attributes: VM specifications (including processor capacity Πj

(in GHz), RAM Mj (in GB), and storage capacity Sj (in GB))
and coverage radius rj (Euclidean distance units).

A set of heterogeneous end devices requiring edge comput-
ing services is denoted by E = (e1, e2, . . . , ev). Each ei ∈ E
is represented by a 4-tuple ei = {πi, mi, si, λi} denoting its
attributes, where πi is the processing demand (in GHz), mi is
its memory demand (in GB), si is its storage demand (in GB),
and λi represents the location of the device (in coordinate
axes). In addition, we define a distance function d(a, b) for
calculating the Euclidean distance between points a and b.

The incurred cost of placing cloudlet cj ∈ C at a candidate
point ρk ∈ P on the grid is defined by a cost function Φ(cj , ρk)
(simply, φjk). The cost may include procurement cost, space
(rented, public) cost, mobility cost, and maintenance costs.

End devices may experience delays in receiving their com-
puting services based on the availability of bandwidth and
distance metrics [22]. To capture that, we define a latency
function L(ei, ρk) (simply, lik) that represents the latency
when end device ei ∈ E is serviced from a cloudlet placed at
candidate point ρk ∈ P of the grid.

Our goal is to minimize the cost of deploying cloudlets
in the region and simultaneously minimize the the latency in
accessing edge services, while provideing the services to all



end devices (full coverage). This is a bicriteria optimization
problem and computationally NP-hard [10]. We next provide
the mathematical optimization model of this problem.

A. Optimal Cloudlet Placement

We now formulate the cloudlet placement problem as a bi-
criteria optimization model. We define the following decision
variables:

yjk =

{
1 if cloudlet cj is placed at candidate point ρk,
0 otherwise,

and

aik =

{
1 if device ei is served from candidate point ρk,
0 otherwise.

We mathematically formulate the optimal cloudlet placement
(OCP) as an Integer Program (IP) as follows:{

min
∑w

j=1

∑n
k=1 φjkyjk

min
∑v

i=1

∑n
k=1 likaik

(1)

Subject to:
w∑

j=1

n∑
k=1

yjk ≤ |C| (2)

d(λi, ρk)aik ≤
w∑

j=1

rjyjk ∀ei ∈ E, ρk ∈ P (3)

v∑
i=1

miaik ≤
w∑

j=1

Mjyjk ∀ρk ∈ P (4)

v∑
i=1

siaik ≤
w∑

j=1

Sjyjk ∀ρk ∈ P (5)

v∑
i=1

πiaik ≤
w∑

j=1

Πjyjk ∀ρk ∈ P (6)

aik ≤
w∑

j=1

yjk ∀ei ∈ E, ρk ∈ P (7)

w∑
j=1

yjk ≤ 1 ∀ρk ∈ P (8)

n∑
k=1

yjk ≤ 1 ∀cj ∈ C (9)

n∑
k=1

aik = 1 ∀ei ∈ E (10)

yjk ∈ {0, 1} ∀cj ∈ C, ρk ∈ P (11)
aik ∈ {0, 1} ∀ei ∈ E, ρk ∈ P (12)

The objective functions shown in Eq (1) minimize the total
cost of placing the cloudlets and the total latency suffered by
the end devices. Constraint (2) ensures that the total number
of cloudlets placed in the grid does not exceed the number
of available cloudlets. Constraints (3) guarantee that each end

Fig. 1: Optimal Cloudlet Placement Scenario

device must be within coverage range of some cloudlet. Con-
straints (4-6) satisfy supply and demand in terms of memory,
storage, and processing requirements. Constraints (7) guaran-
tee that an end device can be served from a candidate point
only if at least one cloudlet is placed there. Constraints (8)
ensure that at most one cloudlet is placed at any candidate
point. Constraints (9) ensure that a cloudlet can only be placed
at a single candidate point. Constraints (10) guarantee that all
end devices must be served, and each is served from exactly
one candidate point. Finally, constraints (11-12) ensure the
integrality requirements of the decision variables.

OCP finds the optimal placement of the cloudlets mini-
mizing both deployment cost and service latency. Our goal
is to solve OCP in the presence of trade-offs between the two
conflicting objectives. Next, using an example we show the
relaxation approach for solving our multi-objective problem.
This approach relaxes one of the objectives each time and
solves the corresponding IP in order to find a set of Pareto-
optimal solutions, where none of the objective functions can
be improved in value without degrading the other objective
value.

B. Optimization Example

Figure 1 represents a scenario with 20 grid points, 7 candidate
points, 25 end devices, and 5 cloudlets to be placed such that
the optimization criteria of OCP are met. In this figure, the

TABLE I: Specifications of Cloudlets

Type Processing Memory Storage Coverage radius

Large 200 200 200 3
Medium 100 100 100 2
Small 50 50 50 1

TABLE II: Specifications of Devices

Type Processing Memory Storage

High-Demand 20 20 20
Low-Demand 10 10 10



(a) Optimal Cost Placement (b) Optimal Latency Placement

Fig. 2: Optimal Cloudlet Placement Scenarios

candidate points are denoted by dotted circles with their re-
spective index. Likewise, low-demand devices are represented
by squares and high-demand devices are shown as triangles.
For this example, the specifications of cloudlets and devices
are provided in Table I and Table II, respectively.

In this example, among the 5 available cloudlets, 1 is large
(indexed by a), 3 are medium (b), and 1 is of small size (c),
according to their resources and coverage. The cost associated
with placing each cloudlet at a specific candidate point is based
on its size. In this regard, the small cloudlet has the cost value
(ηa) = 1, the medium (ηb) = 2, and the large (ηc) = 5. We
assume the locations ρ2, ρ4, and ρ5 are premium candidate
points and would cost more. We calculate the placement cost
of cloudlet cj of type x (i.e., a, b, or c) using the following
equation:

Φ(cj , ρk) =

{
ηx + 1 if ρk is premium,
ηx otherwise.

(13)

The latency on the other hand is related with distance and
bandwidth. In this example, we assume a constant bandwidth
across the grid. Therefore, just the distance determines the
latency. Equation (14) provides the latency values for each
possible device location when served from a cloudlet at a
specific candidate point:

L(ei, ρk) = dd(λi, ρk) ∗ 10e (14)

In the next two sub-sections, we discuss the optimal cloudlet
placement for this example based on cost and latency, respec-
tively.

1) Minimizing Cost (OCP-Cost): Figure 2a shows the per-
spective of only minimizing the cost (i.e., latency is relaxed in
making placement decisions). In the figure, the large cloudlet
is shown as red, medium as different shades of yellow, and
the small as green. The end devices assigned to each cloudlet
are denoted by the respective colors. The figure shows that
only three (2 medium, 1 large) cloudlets are placed to serve
all the devices, and the minimum cost is 9. However, this
solution does not lead to the minimum latency for the users
(the obtained latency is 340).

2) Minimizing Latency (OCP-Latency): Figure 2b depicts
the perspective of only minimizing the latency (i.e., cost is
relaxed). The color codes in the example are the same as
described in the previous subsection. It is noteworthy that
unlike the solution of OCP-Cost, the optimal solution of
OCP-Latency consists of all available cloudlets. The minimum
latency is 190.

3) Sensitivity Analysis: We now investigate how the solu-
tions obtained using the relaxation method will change when
specifying a hard constraint (a threshold) on the relaxed objec-
tive. Note that this threshold becomes an additional constraint
in OCP.

For our analysis, we start with the optimal solution of a
relaxed version (e.g., OCP-Cost) and find the value of the
relaxed objective (e.g., latency). We use this value as the
initial threshold, that is an upper bound on latency in the
added constraint. We then gradually decrease the threshold
value until there is no solution to OCP-Cost, that means we
reach the optimal solution of the relaxed objective (latency).
This is shown in Figure 3. When the minimum cost obtained
by OCP-Cost is 9, the best value of latency is 340 (see red
“x”). By adding a new hard constraint on latency (e.g., 300),
the best achievable cost increases to 10. If we further decrease
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the latency constraint to 190 (optimal latency), the best cost
becomes 14 (see green “x”).

All of these suggest a clear trade-off between cost and
latency, and optimizing one does not give the best value for
the other. It is even more challenging when the problem size is
large since the trade-off range becomes larger. We discuss our
proposed approach to address this challenge in the upcoming
sections.

III. GENETIC ALGORITHM-BASED CLOUDLET
PLACEMENT

In this section, we propose a novel Genetic Algorithm-based
method, called GACP, to find a close to optimal solution for
the cloudlet placement problem.

GACP, given in Algorithm 1, receives the input param-
eters: C, E, P , Φ, L, δ, R, Xp, Mp, where δ is a
device coverage threshold, R represents the initial size of
the placement set, Xp is a crossover probability, and Mp

is a mutation probability. GACP uses an estimated value of
cost (ÔPT ) and initial number of cloudlets needed (ŵ) by
calling the LP relaxation of OCP-Cost, LP-OCP-Cost()
(line 2). This is a pre-processing step to obtain a lower-
bound on cost and initial number of cloudlets in polynomial
time to be used in the fitness function and to produce initial
placements, respectively. GACP creates a set of R random
cloudlet placements to the candidate points, called Cloudlet
Candidate Placement (CCP ), where each has ŵ cloudlets
(line 3). The goal of GACP is to improve this set iteratively
through generation of genetic operations to find a better
solution. To keep track of intermediate solutions, GACP uses
an initially empty set B representing the Best Placement Set
obtained at the end of each iteration. The iterations continue
until GACP finds at least R assignments in B from which
the best one is selected. GACP finds an initial assignment of
the devices to the candidate points, called Device Candidate
Assignment (DCA) (line 4). In doing so, each device ei
is initially assigned to its closest candidate point to receive
a computing service, that is min d(ei, ρk), ∀ρk ∈ P . This
approach helps in minimizing latency and also in providing
a consistent benchmark for calculating device coverage for a
cloudlet placement.

In each iteration, GACP selects two least cost cloudlet
placements from the priority queue Q (formed of placements
in CCP ) as parent placements (lines 9-10). GACP then
crossovers these placements with probability Xp by calling
Crossover() function (line 12, detailed in Algorithm 2) to
obtain their two offspring placements. Crossover() function
also validates the two offspring using function Validate() to
ensure that the offspring placements satisfy the requirements
(do not exceed the available number of cloudlets of each type).
If an assignment is not valid, extra cloudlets are removed
randomly. Then, GACP mutates the two offspring placements
(lines 15-16, detailed in Algorithm 3). Generally, crossovers
happen more frequently and mutations very rarely.

To obtain a lower-cost placement, our fitness function is
defined to select a placement that its cost is closer to the

Algorithm 1 GACP

1: Input: C, E, P , Φ, L, δ, R, Xp, Mp

2: (ÔPT , ŵ)← LP-OCP-Cost()
3: CCP ← RandPlace(R, ŵ)
4: DCA ← InitDeviceAssign()
5: repeat
6: Q ← PriorityQueue(CCP )
7: B = ∅
8: while |B| ≤ R do
9: y1 ← Q.pop()

10: y2 ← Q.pop()
11: if (rand(0,1) <= Xp) then
12: O1, O2 ← Crossover(y1, y2)
13: else
14: O1, O2 ← y1, y2
15: O1 ← Mutate(O1)
16: O2 ← Mutate(O2)
17: FP = min(Fitness(y1), (Fitness(y2))
18: FO = min(Fitness(O1), (Fitness(O2))
19: VP = min(Coverage(y1), Coverage(y2))
20: VO = min(Coverage(O1), Coverage(O2))
21: if (FO < FP ) or (FO = FP and VO ≥ VP ) then
22: for O ∈ {O1, O2} do
23: if Coverage(O) ≥ δ then
24: B ← B ∪ {O}
25: else
26: for y ∈ {y1, y2} do
27: if Coverage(y) ≥ δ then
28: B ← B ∪ {y}
29: CCP ← B
30: Y ∗ ← SelectLeastCost(CCP )
31: DCAnew ← DeviceAssign()
32: until DCAnew != ∅
33: Output: Y ∗, DCAnew

optimal placement cost. Since the optimal cost is not known
due to NP-hardness, GACP uses ÔPT to reduce the optimality
gap. The Fitness() function for a cloudlet placement y is
calculated as (detailed in Algorithm 4):

Fitness(y) = |ÔPT − PLACEMENT COST(y)| (15)

Once the fitness values are calculated (lines 17-18), GACP
finds the device coverage of the parent placements and off-
spring placements (lines 19-20). The coverage() function
(given in Algorithm 5) uses the device assignments and
the current cloudlet placement considering memory, pro-
cessing, storage, and coverage radius constraints (by calling
InRange&Capacity() function) to check whether a device
can be served (covered) by a cloudlet. This function returns a
fraction of covered devices by a cloudlet placement y:

Coverage(y) =
DEVICES COVERED(y)

|E|
(16)

If the offspring have strictly better fitness or equal fitness
with better device coverage than their parents, GACP adds



Algorithm 2 Crossover(y1, y2)

1: mid point = d|y1|/2e
2: for i = mid point to |y1| do
3: swap(y1[i], y2[i])
4: Validate(y1)
5: Validate(y2)
6: return y1, y2

Algorithm 3 Mutate(y)

1: for ci ∈ y do
2: if (rand(0,1) <= Mp) then
3: ci ← int rand(0, |C|)
4: Validate(y)
5: return y

Algorithm 4 Fitness(y)

1: fy = 0
2: for k = 1 to |y| do
3: cj = y[k]
4: fy += φjk
5: fy = |fy − ÔPT |
6: return fy

the offspring to B (lines 21-24). Otherwise, the parents are
added (lines 26-28). Note that the offspring and parents are
only added to B if they satisfy a certain coverage (at least the
specified threshold, δ); otherwise, GACP simply moves to the
next iteration.

At the end of a generation, GACP replaces CCP with
the new generation of the best placements (line 29). The
algorithm chooses the least cost placement (Y ∗) and finds the
actual device assignments (lines 31-32). DeviceAssign()
is a fail-fast device assignment function to validate the full
coverage of the obtained solution. If the function does not
return a solution (line 32), GACP repeats the procedure to
obtain a new generation of best assignments with B from the
last generation is now regarded as CCP . At the end, GACP
outputs the final cloudlet placement and the device assignment.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We perform a set of experiments to investigate the effective-
ness of our proposed approach. For our deployment scenario,
we use parts of New York City as it has been selected by
National Science Foundation (NSF) as a testbed for the new
wave of mobile technology [23]. Also, the presence of NYC
Open Data [14] allows us to access up-to-date information
about implemented hotspot locations and usage statistics. The
primary datasets that we utilize for our experiments are: NYC
WiFi Hotspot Locations and LinkNYC Usage Statistics.

To setup the experiments, we select two neighborhoods in
Upper Manhattan: Central Harlem and East Harlem because
of their reasonable size and sufficient hotspot locations. The

Algorithm 5 Coverage(y)

1: covered = 0
2: for i = 1 to |E| do
3: ρk = DCA[i]
4: cj = y[ρk]
5: if (cj = 0) then /*no cloudlet is placed at ρk*/
6: min dist =∞
7: for k = 1 to |P | do
8: ck = y[ρk]
9: if (ck != 0 &&

10: InRange&Capacity(ei, ck)) then
11: if (d(ei, ρk) < min dist) then
12: min dist← d(ei, ρk)
13: index← k
14: if min dist 6=∞ then
15: covered += 1
16: Πindex -= πi
17: Mindex -= mi

18: Sindex -= si
19: else
20: if InRange&Capacity(ei, cj)) then
21: covered += 1
22: Πj -= πi
23: Mj -= mi

24: Sj -= si
25: return covered/|E|

unique hotspot locations in these neighborhoods are 183
and 81, respectively.

Next, we reduce the overall map of these neighborhoods
into a 2D grid based on geolocations or coordinates of the
hotspots. The reduction preserves the ratio of distance between
two points in the grid with actual distance. Out of the available
hotspot locations, we select only a certain percentage as the
suitable candidate points. As pointed out in Section II, the
candidate points are selected based on the distribution of the
users (load), feasibility of placing cloudlets, and other appro-
priate criteria. The number of devices are selected based on
the population data of the neighborhoods and usage statistics,
and the devices are placed across the grid based on a uniform
distribution.

We finally run three main types of experiments: inves-
tigating cost, latency, and running time. We also perform
sensitivity analysis on the number of candidate points by
choosing different percentages of candidate points, i.e., 10%,
15%, and 20% of hotspot locations on Central Harlem data.
The number of cloudlets available for deployment and the
number of devices remain the same during the sensitivity
analysis.

The optimal results from OCP are found using IBM ILOG
CPLEX Concert Technology API for Java [24]. GACP is
implemented in the same version of Java and the experiments
for both are run on the same JVM on a standalone workstation
with Intel Core i7 processor @2.70 GHz and 16 GB of
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(b) Latency
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(c) Running Time

Fig. 4: Experimental Results for Central Harlem Data (10% Candidates)

RAM. Note that we could not compare our results with
other approaches because existing studies either do not have
the same objectives or have different constraints. Hence, any
direct comparisons would be unfair. It is also noteworthy that
CPLEX provides the optimal results for the small cases of the
problem, which is used as a proper benchmark. However, it
is not able to obtain any results as the problem size increases
due to NP-hardness of the problem.

B. Analysis of Results
We first show the results of GACP, OCP-Latency, and OCP-
Cost in terms of obtained cost, latency, and running time for
Central Harlem Data with 10% candidate points. This region
has 18 candidate points, 343 devices, and up to 14 cloudlets.
Since GACP is meta-heuristic, we run the experiments 100
times to see the distribution of cost and latency. The results
are summarized in Figure 4.

Figure 4a shows that the costs obtained by GACP are
very close to the optimal costs (OCP-Cost). GACP costs on
average only 8.8% more than OCP-Cost. Figure 4b shows a
very effective cost-latency trade-off obtained by GACP as the
average GACP Latency is 7.8% less than the OCP-Cost Best
Latency. We also capture the running times for 100 runs of
GACP, OCP-Cost, and OCP-Latency. The results are shown
in Figure 4c. The GACP running time is significantly less
than both optimal approaches. Note that the extreme spikes
in the execution time of the optimal approaches are due to
NP-hardness of the problem.

Next, we run experiments for Central Harlem Data to per-
form sensitivity analysis on different percentages of candidate
points and analyze their impacts on cost and latency. As
Figure 5a shows the effect on cost is negligible when the
number of candidate points increases. This is due to the
fact that the same number of cloudlets are able to meet
user demands. However, Figure 5b shows that spreading the
candidate points makes GACP suffer in terms of latency. This
is because a larger distribution of candidate points makes it
harder to achieve low latency at lower cost. However, GACP
has a slight improvement in the 20% case, which provides an
important insight that designating better candidate points is
more important than having more of them. Figure 5c shows
the running time. While GACP looks linear, OCP-Cost suffers

from a slow running time. For instance, for the 15% candidate
points case, solving OCP-Cost takes more than a minute.

Finally, we run experiments on East Harlem data to in-
vestigate cost and latency changes with a different size and
dimension. Since the populations of Central Harlem and East
Harlem are similar, we keep the same number of devices and
cloudlets as in the first experiment. However, at 20% candidate
point selection, we have just 16 candidate points. Nonetheless,
the results (Figure 6) show that both average GACP Cost
and average GACP Latency are perfectly poised between the
optimal value and the best value for the other objective. Since
GACP is uses cost for fitness, the cost is much closer to the
optimal value than latency.

The above results sufficiently demonstrate that GACP is an
efficient cost-aware cloudlet placement approach for vehicular
edge computing satisfying the desired requirements.

V. CONCLUSION

Latency suffered by the users can be mitigated by placing
resource-rich mobile cloudlets closer to the network edge.
However, strategically placing the cloudlets to both reduce cost
and ensure all users are covered within their latency require-
ments is a major challenge. In this paper, we mathematically
formulated a general system model considering heterogeneous
cloudlets and user devices. However, it is not possible to
optimize both objectives simultaneously. As a result, we pro-
posed a genetic algorithm-based cloudlet placement approach,
GACP, to obtain close to optimal solutions with fast execution
time. The experimental results based on real data showed that
our proposed approach is able to find close to optimal cost
placements by trading-off latency in different scenarios. In
future work, we plan to consider the impact of device mobility
on the cloudlet placement.
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