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ABSTRACT

Vehicular Edge Computing (VEC) is a distributed computing para-
digm that utilizes smart vehicles (SVs) as computational cloudlets
(edge nodes) by virtue of their inherent attributes such as mobility,
low operating costs, flexible deployment, and wireless communi-
cation ability. VEC extends edge computing services by expand-
ing computing coverage and further improving quality-of-services
(QoS) for devices. Due to limited onboard energy and computation
capabilities of SV-mounted cloudlets, a single vehicle might not be
able to execute a large number of tasks and guarantee their desired
QoS. To address this problem, the overloaded vehicle can fulfill its
overwhelming workload by offloading its tasks to other available
connected vehicles. However, data privacy and accessibility are of
critical importance that need to be considered for offloading. In
this paper, we propose privacy-by-design offloading solutions for
VEC to facilitate latency requirements of user demands and reduce
energy consumption of vehicles. We formulate the Data pRotection
Offloading Problem (DROP) as an Integer Program and prove its
NP-hardness. To provide computationally tractable solutions, we
propose three distributed algorithms by leveraging graph theory to
solve this problem. We evaluate the performance of our proposed
algorithms by extensive experiments and compare them to the opti-
mal results obtained by IBM ILOG CPLEX. The results demonstrate
the flexibility, scalability, and cost efficiency of our proposed algo-
rithms in providing practical privacy-by-design offloading solutions
enabling edge services along the cloud-to-thing continuum.
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1 INTRODUCTION

The ubiquitous penetration of smart connected devices (Internet
of Things) into everyday life is projected to reach 50 billion by
2020 [23]. The growth of IoT will continue as users enjoy the con-
venience of mobility and with the emergence and progress of new
technologies such as wearable devices, autonomous vehicles/drones,
and collaborative augmented/virtual reality. To enable these IoT
applications and scale over the number of participants and large
geographical areas, computational capabilities of IoT devices are
not sufficient due to being restricted by weight, size, battery life,
and heat dissipation. To handle this challenge, offloading compu-
tation to clouds to remotely execute IoT applications is one of the
promising solutions. As data proliferation increases exponentially,
however, sending data from IoT devices to the cloud is not feasible
for time-sensitive applications.

Edge Computing (EC) has been introduced as a new paradigm [21]
that optimizes cloud computing systems to provide a distributed
computing solution at the edge of the network, where IoT devices
utilize the computing resources, called cloudlets, in their vicinity.
Edge computing can be leveraged to bridge the gap between the
increasing computational demand of IoT devices and their limited
computational capabilities [24]. However, deploying cloudlet in-
frastructure at the edge of the network is costly and may not be
feasible in many situations (e.g., disaster situations, emergency res-
cue, unexpected surge in user demand) and regions with sparse or
no infrastructure of wireless access points such as remote rural ar-
eas [1]. Moreover, a single cloudlet has finite computing resources,
which makes it hard to fulfill demand spikes (e.g., a massive number
of offloading requests from IoT devices).

To overcome these problems, Vehicular Edge Computing (VEC)
has recently been introduced as an emerging edge platform [4,
16, 17, 30], where smart vehicles (SVs) such as Unmanned Aerial
Vehicles (UAVs) and Connected and Autonomous Vehicles (CAVs)
are considered as computational cloudlets by virtue of their inherent
attributes such as mobility, low operating costs, flexible deployment,
and wireless communication ability. SV-mounted cloudlets can
expand edge computing services and further improve quality-of-
services (QoS) for IoT devices.

While VEC can bring many opportunities to avoid QoS viola-
tions and balance the load, these SV-mounted cloudlets have of-
ten limited computing capacities and energy budgets. To expand
the computational capacity and coverage of a single SV-mounted
cloudlet, especially when serving large computational demands,
autonomous cooperation and coordination among multiple SVs are
needed to form an interconnected computing system and improve
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quality of edge services [11, 12, 22]. Such a perspective, on the other
hand, opens new research challenges on account of the current lack
of efficient data protection mechanisms for task offloading. In par-
ticular, the major categories are considered privacy and accessibility
restrictions defined as follows:

Privacy restrictions: If some tasks are offloaded to the same
SV, they can reveal sensitive information, which could harm IoT
user privacy [15, 18] (e.g., in finance and healthcare data).

Accessibility restrictions: There are often some restrictions in
offloading a task to a specific SV due to lack of trust, reliability, or
system compatibility/preferences [14, 27] (e.g., cannot provide a
proper type of VM for a task). In addition, there may exist some en-
forced policies that do not allow a third party to access confidential
user data.

These restrictions eliminate the privacy-breach problem and en-
able privacy-by-design solutions. Many studies have been conducted
to protect outsourced data by designing steganography and encryp-
tion [9]. However, these algorithms have limitations, especially in
edge computing domain, due to requiring additional processing
before offloading. Moreover, encryption may dramatically increase
the amount of data. Privacy by design is a suitable approach for
offloading in VEC, by incorporating privacy principles as early as
in the design phase of systems—a proactive rather than reactive to
risk.

In this paper, we consider a set of SV-mounted cloudlets coop-
erating to provide edge computing services for IoT devices. They
are capable of both communicating with the devices and offloading
computation to other SVs via the wireless communication tech-
nology in order to fulfill the overwhelming demand. We focus on
the critical problem of offloading tasks from an overloaded SV to
minimize computation overhead in terms of energy consumption
and processing time while satisfying privacy and accessibility re-
strictions. We first design an optimal offloading mathematical model
for this Data pRotection Offloading Problem (DROP), and we theo-
retically prove that this is an NP-hard problem. We then propose
three distributed algorithms by virtue of graph theory to obtain
efficient and computationally tractable solutions in order to mini-
mize the total computation overhead of the offloading. We finally
evaluate the performance of our proposed solutions in extensive
experiments. To the best of our knowledge, this is the first work
that provides privacy-by-design offloading solutions among a set of
cooperative SVs.

Organization. The rest of the paper is organized as follows. In Sec-
tion 2, we discuss the state-of-the-art research in this domain. In Sec-
tion 3, we introduce the problem of optimal task offloading among
cooperative SVs considering the privacy and accessibility restric-
tions, and we mathematically formulate the problem. In Section 4,
we present our proposed computationally tractable algorithms. In
Section 5, we evaluate our proposed algorithms by extensive exper-
iments. In Section 6, we summarize our results and present possible
directions for future research.

2 RELATED WORK

The key challenges of DROP lie in the combinatorial nature of of-
floading decisions, the necessity of data protection requirements,

and the limited capacities of SVs. Due to the dynamics and un-
planned deployment of SV-mounted cloudlets, centralized opti-
mization approaches for task offloading may not be efficient in such
a distributed environment. Moreover, they require each IoT user to
report his/her own information including the capacity of the IoT
device and the size of each task to a centralized entity, e.g., cloud,
which decides the offloading decisions accordingly. Therefore, extra
concerns such as high computational complexity, tremendous com-
munication overhead, and massive data transfers, are unavoidable
in centralized optimization. All these points accelerate the emer-
gence of efficient offloading schemes by designing decentralized
approaches.

Recently, a few studies [12, 13, 16], devised distributed approaches
to optimize the offloading problem in EC by exploiting multi-player
noncooperative games. Messous et al. [16] presented a game-
theoretic approach to address the intensive computation offloading
problem for multiple UAVs, and they showed that the formulated
game admits a Nash equilibrium. Ma et al. [12] investigated the
feasibility of offloading computational tasks in a network of ca-
pacitated UAV-mounted cloudlets in order to minimize the energy
consumption of UAVs while satisfying QoS requirements of the
tasks. They devised an efficient decentralized approach based on
potential games. Ma et al. [13] proposed a distributed computation
offloading approach for multiple users to offload their tasks to a
single cloudlet via multiple access points. However, the game theo-
retic approaches present some drawbacks [5]. For example, finding
the best response of each player usually requires the knowledge
of other players’ actions at each round, which instead increase the
computational complexity of the solution. Furthermore, to find an
equilibrium of a game, the objective function requires a specific
structure.

With the rapid proliferation of smart vehicles, the task offload-
ing problem in VEC has received considerable attention. Zhang
et al. [29] proposed a contract-based offloading and computation
resource allocation scheme in VEC. Zhang et al. in [28] studied the
feasibility of combining vehicular cloudlets with the centralized
cloud and proposed a flexible offloading strategy to explore under-
utilized resources via task migration. Yu et al. in [26] proposed
a coalitional game model for cooperation among cloud service
providers in cloud-enabled vehicular networks in order to share
and utilize idle resources.

Nevertheless, none of the existing work investigated both data
privacy and cloudlets accessibility in a multi-cloudlet cooperative
computing system.

3 PRIVACY-BY-DESIGN OPTIMIZATION
FORMULATION

In this section, we introduce the system model and the data protec-
tion offloading problem.

3.1 System Model

In this subsection, we describe the system model with a set of SVs
acting as mobile computational cloudlets that provide edge com-
puting services to IoT devices. We consider that an overloaded SV
has to offload its overwhelming computation to other SVs in order
to fulfill its demands and guarantee the desired QoS of its workload.



The objective is to minimize the overhead cost of offloading while
satisfying the aforementioned privacy and accessibility restrictions.
This is an offloading decision-making problem that requires an
efficient and proactive data protection offloading solution.

We consider u as the overloaded SV and U = {uy,...,um} as
the set of m SVs with available computational resources. The set
of tasks at SV ug to be offloaded is denoted by K = {k1,...,kn},
where n > 1 is the number of tasks (ug has at least one task to be
offloaded). Let F; be the CPU frequency (i.e., CPU cycles per second)
of u;, and e; denotes its energy consumption per CPU cycle. The
capacity of u; is denoted by uicap = (Cl.wp, Dfap), where Cl.cap is the
number of idle computational cycles of u; and Dfap is the available
memory size of u;. Each task k; € K has some requirements defined
by (Cj, D;), where C; represents the number of computational cycles
required to obtain the outcome of k; and D; denotes its data size.
Similar to previous studies in mobile wireless networks [2, 7], for
tractability, we assume that the locations of SVs remain fixed during
the offloading decision making. More details are presented in the
following subsections.

SV ug does not have enough computational resources to com-
plete all its incoming tasks with their required QoS, and hence
this overloaded SV has to offload these tasks to other SVs. As we
described in the Introduction Section, there are two restrictions to
be considered when offloading tasks to other SVs: (i) the privacy
restrictions, specifying that some tasks cannot be offloaded to the
same SV; (ii) the accessibility restrictions, specifying that a task can-
not be offloaded to a specific SV. To model these two restrictions, we
visualize them in the form of a conflict graph and searching matrix,
respectively.

We model the privacy restrictions using a conflict graph G(V,
E), where V = {vy,...,v,} is a set of vertices representing the
tasks in K ! and E is a set of edges (i, j) representing a conflict
between task k; and kj, where i,j € {1,...,n}. Specifically, if
tasks k; and k; cannot be offloaded to the same SV, an edge (i, j) is

1We use the terms task and vertex interchangeably.
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Figure 1: VEC architecture: an overloaded SV u, offloads its
tasks to other SVs

added between v; and v; in the graph. If there is no edge between
two vertices, their corresponding tasks can be offloaded to the same
SV. Therefore, G is an undirected graph, and E is symmetric.

We model the accessibility restrictions by a m X n matrix 7, n =
(tij), where the ith row represents SV u; € U and the jth column
represents task k; € K. In particular, if SV u; is accessible to task kj,
we set tj; = 1; otherwise, t;; = 0.

Fig 1 shows an overloaded SV offloads its overwhelming tasks
to other SVs with enough computational resources via vehicle-to-
vehicle (V2V) communications, while considering the data protec-
tion restrictions.

3.2 Data Protection Offloading Problem

In this subsection, we introduce the optimal mathematical model
for the data protection offloading problem. We first describe the
communication, energy consumption, and latency models, and we
then present our optimization model.

1) Communication Model.

To avoid generating severe interference during offloading tasks, we
consider the overloaded SV applies a Frequency-Division Multiple
Access scheme (FDMA) to transmit tasks to other SVs. In FDMA,
each channel between ug and u; € U is unique, and ug can hence
offload tasks to other SVs simutaneously without co-channel in-
terference. As a result, the transmission rate of ug to u; is defined
as [20]:

P
R0j=Bj10g(l+ Oh ),
No 0j

where Bj is the total bandwidth of u;, Py denotes the transmission
power of ug, and dy; is the distance between ug and u;. In addi-
tion, Ny and h represent the background noise and the path-loss
factor, respectively.

2) Energy Consumption Model.

The total energy consumption for completing a task via offloading
(e.g., from ug to u;j, where u; € U) consists of three components:
the transmission energy consumption from ug to uj, the execution
energy consumption at u;, and the backhaul energy consumption
of the outcomes of computation from u; to up. Similar to many
studie [2, 6, 12], the backhaul energy consumption can be ignored,
since the size of output is generally much smaller than the size of
input. As a result, the total energy consumption for completing
task k; via offloading from ug to u; is calculated as:

~ _ DiPy

Ej(l) = Rl— + Ciej. (1)
0

The first term represents the transmission energy, and the second

term represents the energy consumption of executing the task at u -

3) Latency Model.
Likewise, the total delay of completing task k; by offloading (from ug
to uj) is calculated as:

& + 9, (2)

Ti(i) =
70 Ryj



where the first term represents the total transmission time of k;
from uy to u;, and the second term represents the total execution
time of k; at u;.

4) Optimization Model.

Both latency and energy consumption are important factors in
offloading among SVs. One of the main limitations of SVs is their
restricted battery lifetime. On the other hand, most IoT applications
are sensitive to delay such as video streaming and real-time games.
We hence consider an overhead cost as a combination of both
latency and energy consumption. According to (1) and (2), the
overhead cost of offloading task k; to u; in terms of the energy and
latency is calculated by:

Zj(i) = i Ej(i) + BiT;(0), ©)
where 0 < ;,; < 1 represent the relative weights of energy
consumption and latency of the objectives, and «; + f; = 1. This
provides rich modeling flexibility to prioritize the objectives (en-
ergy and latency) according to the required QoS of the applications
and the current battery status of the SVs. For instance, when a
task is delay-sensitive and the SVs are at a high-battery state, more
weight is assigned to the latency (i.e., higher f;). In practice, the
proper weights can be determined by exploiting multiple criteria de-
cision making (MCDM) and multi-attribute utility theory (MAUT)
approaches [25].

We define an indicator variable b;;, Vi € {1, ..., nhVje{l,...,m},

that characterizes the accessibility relationship between task k; and
SV u; as follows:

1
bij={ 0

This indicates whether SV u; is accessible to task k; or not. We then
define a decision variable x;; as follows:

1
Xij = 0

This specifies whether task k; is offloaded to SV u; or not. We now
formulate the data protection offloading problem (DROP) as an
Integer Program (IP), called IP-DROP, as follows:

if task k; can be offloaded to u;,
otherwise.

if task k; is offloaded to u;,
otherwise.

Minimize Z = > " Z;(i)x;; )

i=1 j=1
Subject to:

n
Cixi: < CS%
Z Xy =ty
i=1
n
Dixi; < D%
Z; iXij s Ui ©s
i=

m
Z bijxij =1,
Jj=1

Xpj + Xpj <1,
xij € {0,1},

Vie{l,....m}, (5

Vie{l,....m}, (6)

Vie{1,...,n}, (7)

V{v,v'y € E,¥je{1,...,m}, (8
Vie{l,...,n},Vje{1,...,m}. (9)
The objective function (4) is to minimize the overhead cost of

offloading all tasks in K. Constraints (5)-(6) ensure that the as-
signment of the offloaded tasks to each SV does not exceed the

available computational cycles and memory size of that SV, respec-
tively. Constraints (7) ensure that each task is offloaded to exactly
one SV obeying the accessibility restrictions. Constraints (8) ensure
the privacy restrictions such that any two conflicted tasks cannot
be offloaded to the same SV. Finally, Constraints (9) guarantee that
the decision variables are binary.

3.3 Computational Complexity of DROP

To verify the computational complexity of DROP, we first introduce
the related preliminaries from graph theory.

Definition 1. Given a graph G(V, E) and a set of colors, a proper
coloring is an assignment of colors to vertices such that no two
adjacent vertices have the same color.

Definition 2. Given a graph G(V,E) and a list of colors L(v)
for v € V, a proper list coloring is a choice function c(-) that maps
every vertex v € V to a color in the list L(v) such that ¢(v) € L(v)
and c(i) # c(j) if (i,j) € Eforalli,j e V.

We now define DROP as a list coloring problem (LCP) considering
G(V,E) and 7, . Each task v € V, represented by a vertex, is given
a list of accessible SVs (permissible colors) ? based on Ty, ,. For
our analysis, we let each task v € V have a list of permissible SVs
L(v) C {u1,uz,...,um}, where m is the total number of SVs. We
then sort SVs in L(v) based on their corresponding overhead cost
in ascending order. We define the sorted list of permissible SVs of
task v as L°(v) and its corresponding sorted overhead cost list is
defined as Z*(v).

Lemma 1. If all tasks have the same requirements (computation C;
and data size Dj, for all tasks k; € K) and considering consistent pri-
orities for the objectives (a;, i remains the same), then the offloading
cost Zj(i) to any uj is the same for all tasks k; € K.

Proor. Since the offloading scenario in DROP is that an over-
loaded SV ug offloads n tasks K = {kj,...,k,} via FDMA scheme
to m SVs, the parameters Py, No, h, y, Bj, Fj, doj with respect to any
SV u; are hence constant. Therefore, if any two tasks ky, kw € K
have the same requirements C, = C,,,Dy; = D,, while a;, =
Qw, Pu = Pw, according to Eq. (1-3), for these tasks we have
Zj(u) = Zj(w),Vj € {1,...,m}. ]

In graph theory, a sum coloring of a graph is a labeling of its ver-
tices by natural numbers (positive integers), with no two adjacent
vertices having equal labels, that minimizes the sum of the labels.
The minimum sum that can be achieved is called the chromatic sum
of the graph.

Definition 3. The chromatic sum Y, G of graph G is the smallest
sum of labels (colors) among all proper colorings with natural
numbers.

The chromatic sum problem is NP-complete [10]. We now prove
the computational complexity of DROP. The following lemma con-
structs the decision version of DROP by imposing a bound on the
cost value and proves its NP-completeness.

2From now, we use the terms SV and color interchangeably.



Lemma 2. The decision version of DROP, called D-DROP, is NP-
complete: Given G(V, E), T, n, and a value F, is there a complete
assignment such that the overhead cost of all tasks, called Z, does
not exceed F (ie., Z < F)?

ProoF. The first step is to prove that D-DROP is in NP by show-
ing that given a complete assignment X, it can be decided in polyno-
mial time that X is a solution to the problem or not. This is easy to
show since a nondeterministic program guesses a complete assign-
ment X for all vertices and checks it in polynomial time whether
this assignment is feasible and Z < F.

The second step is to find a polynomial-time reduction from
the decision version of the chromatic sum problem (denoted here
by CSP-D), a well known NP-complete problem [10], to D-DROP.
The CSP-D problem is defined as follows: Given graph G(V,E)
and an integer F, is there a feasible coloring c of graph G such
that 37y, ¢(v) < F? We construct an instance of D-DROP as fol-
lows: We use a one-to-one mapping between G(V, E) and G(V, E),
and considering F. We let each task v € V have a list of permis-
sible SVs L(v) = {u1,uz, ..., um}, where m is the total number of
SVs. Following Lemma 1, we assume all tasks k; € K have the
same required computational cycles and data size for simplicity.
Therefore, all tasks have the same L*(v) and Z%(v). The Yes/No
answer to the D-DROP instance corresponds to the same answer as
for the CSP-D instance. Is there a feasible complete assignment
L = {l(v)|l(v) € L(v)} such that 3, Zjy(v) < F, where
Z)(v)(v) € Z%(v) is the overhead cost that task v is offloaded to
its permissible SV I(v)? Obviously, the new constructed problem
is equivalent to the CSP-D, and this construction is done in poly-
nomial time. Therefore, we have the CSP-D <p D-DROP. In other
words, we can transform the decision version of the chromatic sum
problem to a special case of D-DROP in polynomial time.

Therefore, the D-DROP is NP-complete. ]

The decision version of a problem is easier than (or the same
as) the optimization version. We now prove the computational
complexity of the optimization version of DROP.

Theorem 1. The optimization version of DROP (O-DROP) for finding
the minimum overhead cost of offloading all tasks is NP-hard.

ProorF. The proof is by contradiction. If a polynomial-time al-
gorithm can be found to solve O-DROP, it implies that we can
obtain Z in polynomial time. Then, we just need to check if there
is a solution for D-DROP considering Z as F. Obviously, this com-
parison is done in polynomial time, and thus, the D-DROP can be
solved in polynomial time, which contradicts Lemma 2. Since the
D-DROP is NP-complete, then the O-DROP is NP-hard (D-DROP
<p O-DROP).

]

4 DISTRIBUTED SOLUTIONS

In this section, we propose three algorithms for solving DROP. The
reason we prefer distributed algorithms is due to their robustness
and scalability. Since DROP is NP-hard, optimal solutions may only
be obtained when the problem size is relatively small (a few vehicles
and tasks). We design proper distributed offloading algorithms that

Algorithm 1 DIST-RAND-DROP

: S0 /*oftloading decisions*/

2: repeat

3 Smin < ming, cx |L(k;)|

4 Vmin — {ki € K,|L(ki)| = Smin}

5: each task k; € Vy,in receives a unique random number r;
in [1, |(me|]

6: if k; has the highest r; among its neighbors in G then
7: ki selects SV u* with minimum overhead cost
8: S(ki) « u*
9: k; multicasts (k;, u*) to all its neighbors
10: else
11 task k; € V that is adjacent to kj receives (kj, u™)
12: v=V \ {kj}
13: T (u*, ki) «— NaN
14: until all tasks are assigned
15: Return S

are computationally tractable in finding complete assignments with
small overhead cost for privacy-by-design task offloading.

4.1 Distributed Randomized Algorithm

In this subsection, we design an iterative randomized distributed
algorithm called DIST-RAND-DROP in which the offloading will
be based on a uniform distribution. In each round, tasks with the
highest value among their neighbors (i.e., conflicting tasks) select
their SVs for offloading. Then, each of these tasks, called a winning
task, multicasts its offloading information to all its neighbors in
which the selected SV will be removed from their permissible list.
Next, these winning tasks are removed, and the remaining tasks
that lose this contention update their own sets for the next round.

DIST-RAND-DROP, given in Algorithm 1, works as follows. It
defines integer sy, to be the minimum number of permissible SVs
for any task k; € K. Then, a list of tasks with minimum number of
permissible SVs, s;ip, is added to Vi, ipn. Each task in Vi iy, receives
a unique random number uniformly from [1, |Vjyin|] without any
replacement. Within one round, if one task has the highest random
number among all its neighbors, it wins the contention and selects
its permissible SV with minimum overhead cost. Then each winning
task multicasts offloading information to all its neighbors in which
the selected SV will be removed from their permissible SVs lists (by
setting it to NaN or not available). Next, these winning tasks are
removed from V and the remaining tasks that lose the contention
update their own U, G(V,E), T (m, n). The algorithm continues
to the next round.

Example 1 (Infeasible assignment). This algorithm can re-
sult in infeasible assignments. Consider a privacy-restriction con-
flict graph shown in Fig. 2, where all tasks have the same size of
permissible SVs list (here 2) and all SVs have adequate capacity.
According to the property of DIST-RAND-DROP, a unique random
number is assigned to each task (shown in green). Task 2 has the
highest number among all its neighbors, thus it selects the first
SV in its list (i.e., u1) and multicasts it to other tasks to update
their lists for the next rounds. This selection results in an infeasible
assignment, since both tasks 3 and 4 have only SV u3 for offloading
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Figure 2: Infeasible assignment

while they conflict with each other and cannot be offloaded to the
same SV.

This encourages us to design an efficient selection function at
each round to improve the probability of finding a complete assign-
ment.

4.2 Distributed Clique Algorithm

In this subsection, we introduce our second algorithm called DIST-
CLIQUE-DROP, shown in Algorithm 2, that considers feasibility of
assignments in cliques.

Given the conflict graph G(V, E), accessibility matrix 7y, n, and
SVs capacity TP, the algorithm first calculates s;,i, and Vi ip. It
then arbitrarily selects a task k; € Vpin, and sorts its permissible
SVs in ascending order of their overhead cost, denoted by L¥(k;).
Next, this task checks whether a selected SV from the list L*(k;)
leads to a feasible assignment. This step is done using cliques. First,
all cliques containing any adjacent task k; € V to k;, where (i, j) €
E are found. If the number of unique SVs in each of these cliques is
larger than or equal to the clique size itself, then there is a feasible
assignment. Task k; investigates if choosing the first SV from the
list L%(k;) (minimum cost) leads to a feasible assignment for all
neighboring tasks. Otherwise, it chooses the next SV in the list and
check the feasibility. This is a backtracking search approach, and it
is halted when all the neighboring tasks are assigned to some SVs.

Task k; sends its offloading information to all its neighbors to
remove its selected SV from their permissible SVs list. Finally, this
task is removed from V and the remaining tasks update their own
U, G(V,E), T (m, n). The algorithm continues to next round it-
eratively. If none of the SVs are selected for k;, that means the
algorithm could not find a complete solution and it starts the next
iteration with another task. Note that only one task is processed
within one round through the algorithm.

Since there are multiple restrictions and constraints in DROP,
including privacy and accessibility restrictions, and SVs capacities,
we devise the next algorithm based on a proactive renew rule to
enhance performance in finding efficient solutions.

4.3 Distributed Renew Algorithm

In this subsection, we present the distributed renew algorithm based
on a proactive renew rule to increase the probability of finding a
complete assignment.

The distributed renew algorithm, given in Algorithm 3, is called
with § = 0. It first collects tasks with the minimum number of
permissible SVs. If any of these tasks has a conflict with another
task in the set, the task with the minimum degree is selected. In case
of a tie, the task is selected randomly. Otherwise, if no edge exists

Algorithm 2 DIST-CLIQUE-DROP

: S0 /*oftloading decisions*/

2 Smin < ming, ex |L(k;)|

3t Vmin « {ki € K, |L(k;i)| = smin}

4: k; <« atask from Vy,in

5: L¥(k;) < sort SVs in L(k;) in ascending order of cost

6: C9%  calculate all cliques containing any adjacent task k; €

V to k;

7: repeat

8: u* « min cost unchecked SV in L5 (k;)

9: ki checks whether to select SV u*

10: u* is temporarily removed from the permissible SVs list
of all neighbors of k;

11: Flag < True

12: for every clique ¢; € C*Y do

13: fi <« the number of unique permissible SVs of

tasks in clique ¢;

14: if fi <|ci| then

15: /*Infeasible assignment”/

16: Move to the next unchecked SV

17: Flag « False

18: break

19: if Flag then

20: /*feasible assignment™/

21: ki multicasts offloading information to all its

neighbors

22: S(ki) « u*

23: for each task k; € V that is adjacent to k; do

24: Receive (kj, u*)

25: V=V\{k}

26: T (u*,kj) < NaN

27: break

28: until Flag or there is no unchecked SV in L’ (k;)
29: if Flag is False then

30: No complete solution

31: V=V\{k}

32: Continue to the next iteration from line 2

33: Return S

among the tasks in Vj,ip, a task with the minimum degree (not
including tasks with degree of zero) is selected. The selected task
chooses an SV from its permissible SVs list which has the minimum
overhead cost. Then, it multicasts the offloading information to
all its neighbors in order to remove the selected SV from their
own permissible SVs list. Finally, the remaining tasks update their
U, G(V,E) accordingly. This procedure continues iteratively.
With defining these priorities for offloading, the above procedure
can largely reduce the chance of finding infeasible solutions. To
further boost the probability of finding a complete assignment, we
then design a proactive renew rule as shown in Algorithm 4. In doing
so, a task k; € V is selected randomly and the first SV in L% (k;) will
be selected for offloading of task k;. If a complete solution is not
obtained by DIST-RENEW-DROP, the proactive renew rule updates
the offloading decision of task k; to the next SV in L%(k;). After
checking all permissible SVs of a task if the proactive renew rule



Algorithm 3 DIST-RENEW-DROP(S)

1: repeat

2: Smin < ming, ek |L(k;)|

30 Viin < {ki € K, |L(ki)| = Smin}

4: F « all tasks k; € Vjin that has an edge with
any kj € Vimin

5: if F is non empty then

6: Select an unchecked k; € F with the minimum
degree

7: else

8: Select an unchecked k; € Vi with the minimum
non-zero degree

9 u* « min cost SV in L%(k;)

10: k; selects SV u*

11: k; multicasts (k;, u*) to all its neighbors

12: S(ki) « u*

13: for each task k; € V that is adjacent to k; do
14: Receive (k;, u™)

15: V=V\{k}

16: T (u*,kj) < NaN

17: until all tasks in Vi, are assigned

18: Return S

Algorithm 4 PR-rule: Proactive Renew Rule

1: for task k; € V selected randomly do

2 L5(k;) « sort SVs in L(k;) in ascending order of cost

3 for each SV u* € L*(k;) do

4 S0 /*offloading decisions™/

5 k; checks whether to select SV u*

6 u* is temporarily removed from the permissible
SVs list of all neighbors of k;

7: ki is temporarily removed from V

8: S(ki) « u*

9 S’ « DIST-RENEW-DROP(S)

10: if |S’| = n then

11: break

12: if |S’| = n then

13: break

14: Return S’

cannot find a complete solution, it halts and moves to the next
task that is randomly selected. Note that the proactive renew rule
only applies when Algorithm 3 cannot achieve a complete solution.
Our experimental results demonstrate that the proactive renew rule
greatly improves the probability of finding a complete assignment.

5 EXPERIMENTAL RESULTS

In this section, we comprehensively evaluate the performance of
our proposed algorithms from three aspects: finding a complete
assignment, the overhead cost, and execution time. For a bench-
mark, we obtain the optimal solution, called DROP-OPTIMAL, using
IBM ILOG CPLEX Optimization Studio for Academics Initiative
(Python API). The proposed algorithms and DROP-OPTIMAL are

Table 1: Parameters

Parameter Value Description

fe 40 x 10> Megacycles mean of CPU cycles of SVs

Hs 5MB mean of memory size of SVs

1y 5.0 MHz mean of transmission bandwidth of SVs

Hr 5.0 GHz mean of CPU frequency of SVs

Ha 100 m mean of distance between uy and other SVs
% 1.0 x 10728 effective switched capacitance of SV

Ci [1000 — 4000] Megacycles  computational cycles of task k;

D; [100 — 500] KB data size of task k;

Py 0.1 Watts transmission power of ug

h 3.4 path-loss factor

No 4% 1071 Watts background noise power

implemented in Python 3.6, and the experiments are conducted on
2.3GHz Intel Core i5 with 16GB of RAM.

5.1 Experimental Setup

We consider a set of ten SVs are scattered across an area in which
they can communicate with ug. As a result, we consider the dis-
tance dyp; between uy and u; obeys Gaussian distribution with
mean yy and standard deviation o4 = 0.25u,4. Moreover, the CPU
frequency of SVs obeys Gaussian distribution with mean yr and
standard deviation o = 0.30p.

For the wireless access, we set the transmission bandwidth B;
obeys Gaussian distribution with mean pj, and standard devia-
tion o, = 0.30y;. We consider diffrenet number of tasks n =
{20, 30, 40, 50, 60, 70, 80} at ug. For the computational tasks, sim-
ilar to the previous studies [16, 19], we set (Cj, D;) of task k;
uniformly selected from [1000, 2000, 3000, 4000] Megacycles and
[100, 200, 300, 400, 500] KB, respectively. To experiment with a set
of heterogeneous SVs, CPU cycles Cicap and memory Dfup of u;
obey Gaussian distribution with mean p, s and standard deviation
oc = 0.30p¢, 05 = 0.30p;, respectively. In addition, e; is calculated
using ej = yF]? [8], where y is the effective switched capacitance.

To enable tractable analysis and useful insights, we assume that
the energy cost and delay cost are equally important for each
tasks kj, ie, @i = f; = 0.5. The main parameters used in the
experiments are summarized in Table 1.

For the privacy restrictions, we setup a well-known random graph
model, the Erdés-Rényi model [3], as the conflict graph G(V, E). An
Erdos-Rényi graph (n, P) is a random graph constructed by connect-
ing vertices randomly, where n is number of tasks and any conflict
(edge between any pair of tasks) has a probability of P. Based on the
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Figure 5: Overhead Cost: Sensitivity Analysis

value of P € [0, 1], we can obtain a sparse or complex conflict graph.
For the accessibility restrictions, the probability associated with SVs
for each task (column) in matrix 7 is Py; (the probability of gen-
erating 1 using the Bernoulli distribution). In our experiments, we
study the performance of the proposed algorithms with different
values of n, P, and Py;.

5.2 Analysis of Results

In this subsection, we evaluate the performance of the proposed
algorithms in finding complete assignments, obtained overhead
cost, and execution time.

We first analyze the assignments to find out the percentage of
offloaded tasks in the obtained solutions of our algorithms. We
fix (n, P, Py1) = (80,0.12,0.4) in which both of the privacy and
accessibility restrictions are constricted. As shown in Fig. 3, even
though our proposed algorithms cannot always ensure complete
assignments, the obtained results in 100 experiments show that
the algorithms are able to achieve close to complete assignments,
where at least 95.0% of tasks are offloaded.

To further verify the performance of the proposed algorithms
in finding complete assignments, we perform sensitivity analysis
on the number of tasks n, value of P, and Py; (results are shown in
Fig. 4). In each set of experiments, we fix the other two parameters.
We present the complete assignment ratio defined as the number
of experiments with complete assignments over the total number

of experiments. Fig. 4a shows the performance of the algorithms
with different number of tasks, considering P = 0.12 and Pp; = 0.4.
The complete assignment ratio is at least 90.0% by DIST-RAND-
DROP in 100 experiments. Fig. 4b shows the performance of the
algorithms with different values of P, considering n = 80 and
Po1 = 0.4. The results show that the proposed algorithms are able
to achieve a high complete assignment ratio as the probability of
having conflicts increases. Fig. 4c presents the performance of the
algorithms with different values of Py, considering n = 80 and
P = 0.12. Similarly, the proposed algorithms obtain high complete
assignment ratio as Py (SVs accessibility) increases. Overall, DIST-
RENEW-DROP outperforms the other two proposed algorithms in
terms of complete assignment ratio due to the fact that it executes
a proactive renew rule once an unfeasible solution happens. DIST-
RAND-DROP, however, performs the worst compared to the other
two algorithms. Since it does not consider an iterative rule for
improving the probability of obtaining a complete assignment.
We then analyze the performance of the proposed algorithms in
terms of the obtained overhead cost compared to the optimal cost
obtained by DROP-OPTIMAL. As shown in Fig. 5, the proposed
algorithms obtain near optimal solutions with respect to different
values of N, P, and Py;. Specifically, the dashed lines represent the
average cost obtained by the proposed algorithms, and the red line
indicates the average optimal cost obtained by DROP-OPTIMAL.
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Figure 6: Execution Time: Sensitivity Analysis

Moreover, the standard deviation of the obtained solutions is pre-
sented in shaded error bands (semi-transparent areas). The results
show that the the standard deviation is low and the average op-
timality gap remains small in all experiments. This is due to the
fact that our proposed algorithms always allocate a proper SV with
minimum cost to the selected task at each round in any experiment.

Finally, we verify the performance of the proposed algorithms
in terms of execution time. Fig. 6a shows that the proposed algo-
rithms obtain the results in a short amount of time and scale well
as the number of tasks increases. Moreover, their execution time
is stable in 100 experiments as the standard deviation is very low
compared to the execution time of the optimal algorithm, DROP-
OPTIMAL, obtained by CPLEX. We also study the performance of
algorithms with different values of P and Py;. Again, Fig. 6b and
Fig. 6¢ show that our proposed algorithms are fast. The execution
time by DROP-OPTIMAL can be very unstable with respect to the
three parameters N, P, and Py; due to its NP-hardness. It can only
be the best choice for solving DROP when the problem size is very
small, which is not practical.

From the above results, we conclude that the proposed algo-
rithms are able to achieve complete assignments with a very high
probability. In case that a complete assignment is not achieved,
the proposed algorithms are still able to offload almost all tasks.
Moreover, the proposed algorithms are scalable and obtain near
optimal overhead cost for offloading in a short amount of time.

6 CONCLUSION

In this paper, we formulated the general Data pRotection Offloading
Problem (DROP) in a network of capacitated SV-mounted cloudlets
and proved its NP-hardness. We proposed three distributed iterative
algorithms based on different updating rules. The experimental
results demonstrate that the proposed algorithms are efficient in
terms of overhead cost and execution time. In addition, they scale
well as the system size grows. In our future work, we will study
the impacts of SVs mobility on task offloading.
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