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ABSTRACT

A body of research by Russell Greenberg, Glenn Tattersall, and their colleagues has proposed a
corollary of Allen’s Rule: that in freshwater-limited environments, bill surface area increases
with temperature. Increases in both population density and sexual dimorphism, however, could
also explain increases in bill surface area. After controlling for the effects of a hybrid zone, we
tested whether temperature or population density in the Saltmarsh Sparrow (4dmmospiza
caudacuta), a sexually monomorphic estuarine specialist, explained greater variance in bill
surface area. This allowed us to examine multiple potential selective mechanisms underlying the
Greenberg-Tattersall Corollary. We found that Saltmarsh Sparrows follow the general pattern of
the Corollary (larger bills in warmer summer climates) but only after controlling for population
density. The relationship between bill surface area and temperature varied inversely with
population density. We discuss the relative abilities of sexual selection and ecological
competition to explain these results.

Key words: Ammospiza caudacuta, Ammospiza nelsoni, competition, sexual selection,
thermoregulation, character displacement
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INTRODUCTION

Bird bills are evolutionarily labile and are known to evolve quickly for a variety of
purposes. Traditionally, bird bills have been thought of primarily as adapted for ecological
competition, specifically foraging efficiency (van Valen 1965, Selander 1966, Schluter et al.
1985, Freed et al. 1987, Benkman 1993, Grant and Grant 2006; reviewed by Rubega 2000).
More recently, however, bills have been shown to be shaped by other selective forces, such as
thermoregulation (reviewed by Tattersall et al. 2017). Birds can regulate blood flow to the bill
through vasodilation and vasoconstriction, thereby increasing or decreasing heat lost to
conduction and convection across the bill surface (Lucas and Stettenheim 1972). This process
was demonstrated initially in waterfowl (Hagan and Heath 1980, Scott et al. 2008) and toucans
(Tattersall et al. 2009), but has since been shown in songbirds (Greenberg et al. 2012a). Also,
bill size correlates with temperature gradients across a wide diversity of bird orders (Symonds
and Tattersall 2010). As such, it appears that bird bills may be yet another example of Allen’s
rule that the size of body appendages is correlated with temperature (Allen 1877).

In passerine songbirds in particular, vasomodification in the bill appears to be important
in freshwater-limited environments and has been characterized by a body of research (Tattersall
et al. 2009, 2017; Symonds and Tattersall 2010; Luther and Greenberg 2011, 2014; Greenberg
and Danner 2012, 2013; Greenberg et al. 2012a, b; Luther and Danner 2016). Specifically,
Russell S. Greenberg (1953-2013; Koenig and Marra 2013), Glenn Tattersall, and their
colleagues have amassed evidence across diverse avian taxa showing a corollary pattern to
Allen’s Rule, whereby bill surface area is positively correlated with temperatures in freshwater-
limited environments (hereafter the “Greenberg-Tattersall Corollary”). They hypothesized that

this pattern is produced as a result of selection not only for thermoregulation, as is generally
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considered with Allen’s rule, but for water conservation as well (but see Tattersall et al. 2017 for
additional examples of large-billed birds in warm environments that are not water limited, and
Gardner et al. 2016 for how humidity also impacts the effect of evapotranspiration and Allen’s
rule on bill size).

Bird bills are covered in keratinized tissue (Van Hemert et al. 2012), which is
impermeable to water. As such, dilation of the bill vasculature allows for heat loss without
evaporative water loss, which would otherwise occur through thermoregulatory mechanisms
such as increased blood flow to the skin surface or panting (Wolf and Walsberg 1996). In a dune
and salt-marsh specialist subspecies of the Song Sparrow (Melospiza melodia atlantica),
individuals dissipate up to 33 percent more heat than their smaller-billed inland conspecifics (M.
m. melodia) while reducing water loss by up to 7.7 percent (Greenberg et al. 2012a). A positive
correlation between bill surface area and summer maximum temperatures has been observed in a
variety of freshwater-limited ecosystems: tidal marshes (Greenberg et al. 2012b), mangrove
swamps (Luther and Greenberg 2011, 2014), coastal dune communities (Greenberg et al. 2012a),
marine-scrub islands (Greenberg and Danner 2012), and arid woodlands (Campbell-Tennant et
al. 2015). Furthermore, this pattern of increased bill size does not appear, or is weaker, for
related taxa in less water-limited environments (Greenberg and Olsen 2010) or where
temperatures are too high to allow for effective conductive cooling (Greenberg and Danner
2012). Among five Australian parrot species, bill size increased over the last century
concomitant with increases in temperature in all but one taxon. The one exception exists in the
area with the highest rainfall among the five species (Campbell-Tennant et al. 2015), while the

remainder can be found largely in areas that receive less than 30 cm of rain annually. While
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hypotheses regarding the importance of water conservation remain largely untested
experimentally (but see Greenberg et al. 2012a), the pattern is compelling.

There is evidence, however, that natural selection on thermal and osmotic homeostasis
may not be the only mechanism behind the Greenberg-Tattersall Corollary; population density
may also contribute. Greenberg and Olsen (2010) show that in populations of both tidal marsh
and oceanic island sparrows where bills are larger, population density is significantly higher than
in inland populations with smaller bills. They further show that this increase in size is
accompanied by increases in bill sexual dimorphism, and suggest that larger, dimorphic bills
might result from an increase in conflict experienced by the more competitive sex under these
conditions. This pattern of increased bill dimorphism in coastal passerellids (family
Passerelidae, sensu Chesser et al. 2017) has since been shown a number of times (Greenberg and
Olsen 2010, Greenberg and Danner 2013, Olsen et al. 2013, Luther and Greenberg 2014). The
same is true for saltmarsh specialist rails compared to their closest freshwater relative (Perkins et
al. 2009), and for toucans (Castro et al. 2003), which have been shown to use their bills as
thermoregulatory organs (Tattersall et al. 2009). Interestingly, among North American
passerellids, the only known non-coastal sparrow with a sexually dimorphic bill is the Black—
throated Sparrow (Amphispiza bilineata), a desert scrub specialist of the arid southwestern US
and Mexico (Greenberg and Olsen 2010) that also exhibits a suite of adaptations to highly
limited freshwater sources (Smyth and Bartholomew 1966). In at least one passerellid taxon,
however, it is the inland, freshwater subspecies that possesses greater bill size and dimorphism
(Neto et al. 2013, 2017), although it is unclear how population density varies with bill size in this

system.
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Multiple authors have hypothesized that the thermoregulatory advantages of a larger bill
allow males to sing more during the heat of the day and thereby compete more effectively for
both territories and mates (Greenberg and Danner 2013, Olsen et al. 2013). Indeed, male Song
Sparrows with larger bills in a beach-dune system sing more frequently than males with smaller
bills (Luther and Danner 2016). While late-day singing can have advantages other than sexual
competition in some songbirds (Gordinho et al. 2015), female Swamp Sparrows of a tidal-marsh
subspecies (M. georgiana nigrescens) prefer the songs of large-billed conspecific males, while
females in the more inland subspecies (M. g. georgiana) do not (Liu et al. 2008; Ballentine et al.
2013a, b). Together, this body of evidence suggests that larger male bills might be more
advantageous than larger female bills in warmer freshwater-limited environments, or that the
increases in population density found in some estuarine birds may drive both an increase in
overall bill size and an increase in bill dimorphism.

Regardless, both sexual and natural selection and their interaction have been suggested as
factors that shape bill-size evolution, but it is unclear how important or necessary any
mechanism is to produce the pattern described by the Greenberg-Tattersall Corollary.
Investigating exceptions to the broad patterns, however, could be illustrative. To date all of the
intraspecific examinations of the Corollary have either been conducted only on males or only in
taxa with sexual dimorphism. As a result, our understanding of the mechanisms producing larger
bills in coastal climates is confounded with the observation of dimorphic bills in warmer climates
with denser populations.

Here, however, we test for environmental correlates of bill size in the Saltmarsh Sparrow
(Ammospiza caudacuta), which is the single saltmarsh specialist bird species known to lack bill

sexual dimorphism (Greenberg and Olsen 2010). This may be unsurprising given that the mating
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system of the saltmarsh sparrow (i.e., “scramble competition” polygamy, where males neither
defend territories nor mate-guard females: Post and Greenlaw 1982, Greenlaw and Post 2012) is
also different from all saltmarsh taxa exhibiting sexual bill dimorphism. They do, however, still
possess larger bills on average than their closest non-tidal-marsh relative (Greenlaw et al. 2018;
Shriver et al. 2011), which is the convergent pattern across a large suite of coastal birds (Grenier
and Greenberg 2005; Luther and Greenberg 2011). Further, the breeding range of the Saltmarsh
Sparrow range is oriented roughly north-south along the northeastern United States (Greenlaw et
al. 2018), spanning a linear, latitudinal cline of climatic conditions. Importantly, however,
Saltmarsh Sparrows also possess variation in breeding density independent of the temperature
cline, as density is highest in the range center (Wiest et al. 2016; Field et al. 2018). This system
is therefore ideal for testing whether sexual dimorphism is a necessary condition to produce
correlations between bill size and temperature and whether either the Greenberg-Tattersall
Corollary or population density are sufficient to explain the convergent increases in bill size
among coastal birds.

We tested three hypotheses regarding intraspecific bill size variation to explain why
Saltmarsh Sparrows have larger bills than their nearest freshwater relative despite lacking sexual
bill dimorphism: 1) bill size is driven by selection from higher temperatures in this freshwater-
limited environment (i.e., the Greenberg-Tattersall Corollary); 2) bill size is driven by population
density and not temperature, as suggested by Greenberg and Olsen (2010); and 3) bill size is
driven by an interaction between temperature and density (i.e., thermoregulatory adaptation that
produces the Greenberg-Tattersall Corollary is dependent on the competitive environment).

The results of these three tests have different implications for the viable mechanism(s)

underlying the Greenberg-Tattersall Corollary. Support for the first hypothesis would indicate
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that bill dimorphism in coastal birds is not necessary to produce the Greenberg-Tattersall
Corollary, as even a species without dimorphism shows a relation between bill size and
temperature. Support for the second hypothesis would suggest that the increased bill sizes of
coastal birds are not, in and of themselves, support for the Corollary, but are related to their
increased population densities and not the increases in temperature. Further, the selective
environment that produces bill dimorphism may be required to produce the reported relationships
between temperature and bill size found in other taxa. Support for the third hypothesis would
indicate that bill dimorphism is not necessary for the Corollary, similarly to the first hypothesis.
Further, it would suggest that, while the competitive environment may be a prerequisite for a
relationship between temperature and bill size, it is not due exclusively to the kinds of mate
competition found within the socially monogamous, territory-defense mating systems that have
been studied heretofore. Increases in population density could alter many forms of competition,
but previous authors who have used bill dimorphism to explain the Corollary have all invoked
male territory-defense behaviors (Greenberg and Danner 2013, Olsen et al. 2013, Luther and
Danner 2016), which saltmarsh sparrows do not exhibit (Greenlaw et al. 2018). We tested these
three hypotheses while controlling for the possible confounding effects of a known hybrid zone
with the smaller-billed Nelson’s Sparrow (4. nelsoni) at the northern edge of the breeding range

(Hodgman et al. 2002, Shriver et al. 2005, Walsh et al. 2011, 2015a).

MATERIAL AND METHODS
Field sites & measurements
From 20102012, we captured adult Saltmarsh and Nelson’s sparrows in 31 marshes

across a latitudinal range that includes 66% of the estimated Saltmarsh Sparrow breeding birds
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(Wiest et al. 2016) and the very southern end of the breeding range of the Atlantic subspecies of
the Nelson’s Sparrow (A. nelsoni subvirgata). Capture locations were in high-marsh habitat
(variously dominated by Spartina patens, short-form S. alterniflora, Distichlis spicata, and
Juncus gerardii) and provided replication both across the range and within watersheds to reflect
local habitat heterogeneity.

At each site, we captured sparrows with mist nets and ringed birds with uniquely
numbered aluminum leg rings issued by the United States Geological Survey and a site-specific
color ring. We collected morphological measurements including mass (to the nearest 0.1 g),
wing chord (to the nearest mm), nalospi (bill length to the nearest 0.1 mm, measured from the
distal edge of the nares to the distal edge of the maxilla), and bill height and width at the distal
end of the nares (to the nearest 0.1 mm). For adult birds of known sex, we used bill
measurements from their first capture to calculate bill surface area, assuming a bill shape
approximating an elliptical cone ([bill height + bill width]/4*nalospi*=n; Greenberg et al. 2012b).
We recorded sex, based on presence of brood patch or cloacal protuberance, excluding all
juveniles and birds of unknown sex (which generally were only present early in the breeding
season and may have been individuals in migration).

Because Saltmarsh Sparrows within the hybrid zone may be partially introgressed with
their sister taxon, Nelson’s Sparrow, we assigned species identity within the hybrid zone using a
linear discriminant function of morphometric and plumage characteristics (Walsh et al. 2015b).
Phenotypic data reliably differentiate between Saltmarsh (pure and back-crossed) and Nelson’s
(pure and back-crossed) individuals but are unable to differentiate between pure and back-

crossed individuals within either species group, although first and second generation hybrids are
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rare (< 5%; Walsh et al. 2015b). Some Saltmarsh Sparrows within the hybrid zone may thus be

expected to be at least partially introgressed with their sister taxon.

Statistical analysis

Body size index - To create a body size index, we conducted a principal component
analysis for Saltmarsh Sparrows, using scaled and centered data with function prcomp in
Program R version 3.02 (R Core Team 2014) based on wing chord and the cubed root of mass
(to convert this measurement to its one-dimensional component). We then used the first
principal component as an index of overall body size for all subsequent tests and also ran a
simple linear model to look at the relationship between body size and latitude. We repeated this
approach for Nelson’s Sparrows to make a body size index for tests for character displacement
described below. For every other test, “body size” refers to the index calculated for the
Saltmarsh Sparrow group. We did not include tarsus measurements, a standard metric of bird
body size, because, like the bill, bird legs are keratinized extremities that could also be under
selection for increased surface area in high environmental temperatures (Tattersall et al. 2017).

Correlates of bill size variation and model selection - To test our three hypotheses
concerning Saltmarsh Sparrow bill surface area variation, we created five linear mixed models
with Program R (function /mer in the ‘lme4’ package; Bates et al. 2015). All models included
body size (the principal component described above), sex, and an indicator variable describing
whether or not a sampling site was within the hybrid zone as fixed effects and marsh identity
(site) as a random variable to control for repeated measurements of populations. We defined
marshes within a great-circle distance of 196 km of Yarmouth, Maine, USA (which corresponds

to the Atlantic coastline from Petit Manan Point in Maine to Duxbury Bay in Massachusetts,
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USA) as within the sparrow hybrid zone, based on the estimated genetic introgression cline
center and width across 29 genetic loci (Walsh et al. 2016a). We did not include an interaction
term between body size and sex because preliminary data exploration with a linear model
indicated that the allometric relationship was similar for both sexes (see Results). During model
selection we then tested a null model with just these variables against four additional models
with the fixed effects of A) latitude, B) population density, C) the additive effect of those two
variables, and D) their interaction. We determined the relative support for each model using the
second-order Akaike Information Criterion (AIC) and assumed that models with AAIC < 2.0
had equivalent support (Akaike 1974, Hurvich and Tsai 1989, Burnham and Anderson 2002).
Post hoc t-statistics and P-values were calculated in ‘ImerTest’ package using Satterthwaite’s
method (Kuznetsova et al. 2017). We calculated marginal and conditional »* values using the
r.squaredGLMM function in the ‘MuMIn’ package (Barton 2019).

We used latitude as a proxy for temperature, as the range of the Saltmarsh Sparrow is a
narrow band of marsh that stretches roughly north to south and temperatures increase to the
south. The correlation coefficient between latitude and average daily climate normals from
1981-2010 for US National Oceanic and Atmospheric Administration weather stations nearest to
our bird sampling sites is -0.89. The 30-year climate normals for maximum daily temperatures
(US National Oceanic and Atmospheric Administration) range from 24.1-29.3° C during July
across our sampling region with an average of 26.5° C.

We calculated mean Saltmarsh Sparrow densities for each 0.10 degrees of latitude using
sparrow density estimates from a separate study (Wiest et al. 2016). Abundance was initially
estimated for marsh patches and calculated using bird detections during 5-min, passive point-

count surveys conducted 2—3 times per year (2011-2012) from within 50 m of a fixed survey

10
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point. Abundance was then estimated using a general multinomial-Poisson mixture model that
accounted for detection probability using time-to-detection methods (see Wiest et al. 2016 for
further details). These abundance estimates were converted to bird density by dividing by marsh
area, and were only included in the regional density estimates used in the present study when
they were > 0.0 and when marsh patches were at least 25% high marsh (i.e., appropriate nesting
habitat: Greenlaw et al. 2018). This allowed us to calculate an average population density
among those populations with A) enough individuals to have a meaningful evolutionary
influence on the regional metapopulation and B) to exclude small populations where bill size
evolution is influenced more strongly by genetic drift. Before calculating regional (0.1
latitudinal degrees) estimates, we recalculated all patch density estimates as birds per ha of high
marsh habitat as a more realistic estimate of the density within appropriate habitat.

Character displacement — Sympatry with the Nelson’s Sparrow might alter any spatial
gradients in Saltmarsh Sparrow bill size due to character displacement through ecological
competition (Grant and Grant 2006), character displacement related to species reinforcement
(Parsons et al. 1993, Saetre et al. 1997, Coyne and Orr 2004), the introgression of alleles from
the smaller billed Nelson’s Sparrow, or less predictable changes in the strength of mate
competition due to the presence of available, but less preferred, interspecific mating
opportunities. To investigate potential mechanisms for any effect of the zone of sympatry on bill
size, we tested for character displacement between Saltmarsh and Nelson’s sparrows. We used a
single mixed model for both species to explain variation in bill surface area as a function of the
three-way interaction (and the subordinate two-way interactions and additive effects) between
hybrid zone position (i.e., sympatric or allopatric), species identity, and sex, while controlling for

body size with the species-specific principal component (described above) as a fixed effect. This

11
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model tests whether bill size of Saltmarsh and Nelson’s Sparrows are more or less different
within the hybrid zone and whether the degree of sexual dimorphism differs inside the hybrid
zone. While Nelson’s sparrows also do not defend territories, and might therefore be expected to
also not exhibit bill sexual dimorphism, similar to Saltmarsh Sparrows, we are aware of no tests
for bill dimorphism in this taxon. Post hoc, we used Least Squares Means (function ref.grid in
the ‘Ismeans’ package; Lenth and Herv 2015) to compare model predicted means among the
treatment groups and the Tukey method for pairwise contrasts for eight multiple comparisons
(function contrast in ‘Ismeans’ package: Lenth and Herv 2015) to test for differences among the

groups.

RESULTS

We measured the bills of 1,593 sparrows (Nelson’s = 251; Saltmarsh = 1,342) across 31
marshes that span both sides of the hybrid zone. We measured Saltmarsh Sparrow bills at 28
marshes (39.6° — 43.8°N) and Nelson’s Sparrows at 13 marshes (43.0° — 44.7°N). We measured
21 allopatric Nelson’s Sparrows in marshes north of the hybrid zone; 230 Nelson’s and 634
Saltmarsh sparrows within the hybrid zone; and 708 allopatric Saltmarsh Sparrows south of the
hybrid zone. The mean number of surveyed marsh patches used to compute each regional (tenth
degree of latitude) density was 3.1 (range: 1 — 11). The median of the regional Saltmarsh
Sparrow densities was 0.58 birds per ha of high marsh (range = 0.11 — 1.67). Nelson’s Sparrow
regional densities were generally higher (median = 1.84 birds per ha of high marsh; range = 0.25
— 5.01 birds per ha of high marsh).

Across the full Saltmarsh Sparrow range, body size predicted bill surface area similarly

for both sexes (= 0.1, P =0.90; male Saltmarsh Sparrow  + SE =1.3 £0.2; female =1.1 £+

12
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0.2). Across all samples and sexes, bill surface area was 5.3 mm? larger for Saltmarsh (mean +
95% CI =70.8 + 0.8 mm?) vs. Nelson’s (65.5 £ 0.9 mm?) sparrows. The first principal
component explained 69% and 66% of the variation in the body size measurements for Saltmarsh
and Nelson’s sparrows, respectively. This principal component was positively related to latitude
(F1213=15.5, P <0.0001), although the relationship was weak (r> = 0.02). The raw pattern of
bill measurements, uncorrected for body size, shows maximum bill surface areas near 42°N (near
the southern boundary of the hybrid zone and the peak in regional sparrow density: Field et al.
2018) and declines both to the south and north (Fig. 1).

Correlates of bill size variation — The top-ranked model (model weight > 0.999, marginal
r? =0.20, conditional 7° = 0.21; Table 1) of bill surface area among Saltmarsh Sparrows included
a positive relationship with body size, no effect of sex, increased bill size within the hybrid zone,
and an interaction between latitude and bird density (Table 2). The interaction indicated that bill
surface area was more negatively related to latitude when densities were low (Fig. 2). Further,
the univariate relationship between bill size and density was negative, after controlling for this
interaction (Table 1, Fig. 3). This model outperformed the next-ranked model (model weight <
0.001, AAIC¢ = 22.0), which included the additive effect of latitude and population density
without their interaction, and the null model (AAIC-= 26.5; Table 1).

Character displacement & sexual dimorphism — Controlling for body size, there was no
evidence for sexual dimorphism in bill size in Saltmarsh Sparrows either outside (estimate of the
difference between males and females = SE = 0.83 = 0.45 mm?, t = 1.8, P = 0.59) or inside (0.38
+0.46 mm?, t = 0.8, P = 0.99) the hybrid zone (Fig. 4). Likewise, there was no sexual
dimorphism in bill size among Nelson’s Sparrows outside (4.1 + 2.5 mm?, t= 1.6, P =0.74) or

inside (0.91 = 0.73 mm?2, t = 1.2, P = 0.92) the hybrid zone (Fig. 4).

13
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Bill size was higher on average for both male (estimated mean difference + SE =2.1 £+
0.8 mm?, t=2.7, P =0.04) and female (2.5 = 0.8 mm?, t = 3.1, P = 0.02) Saltmarsh Sparrows
inside the hybrid zone relative to outside of it (Fig. 4). There was, however, no evidence for
character displacement, as the difference between Saltmarsh and Nelson’s sparrows in allopatry
(estimated difference + 95% CI = 7.5 + 1.2 mm?) was greater than the estimated difference of the
two taxa in sympatry (5.1 £ 0.9 mm?). Nelson’s Sparrow bill size was the same for males (2.2 +
1.7 mm?, t= 1.3, P=0.59) and larger for females (7.2 + 2.5 mm?2, t = 2.8, P = 0.02) inside the
hybrid zone relative to outside (Fig. 4). Regardless of species or sex, sparrow bill size was larger
on average inside the hybrid zone (mean surface area = 95% CI = 69.0 + 0.9 mm?) relative to

outside of it (65.5 + 1.7 mm?).

DISCUSSION

Bill size in Saltmarsh Sparrows was best predicted by an interaction between latitude (a
proxy for temperature) and regional bird density (a proxy for competition), after controlling for
the effects of a hybrid zone with Nelson’s Sparrows (in support of Hypothesis 3). We found a
negative relationship between bill size and latitude (Fig. 2), indicating a similar relationship with
temperature as has been reported in many other species (see Tattersall et al. 2017 for a list of
over 50 species showing intraspecific correlations in bill size related to thermoregulation), but
only after controlling for bird density (Fig. 3). Consequently, Saltmarsh Sparrows are an indirect
point of support for the Greenberg-Tattersall Corollary, the positive correlation between bill
surface area and summer temperatures (Tattersall et al. 2017) in freshwater-limited
environments, but highlight that this pattern can be obscured by other selective gradients. Like

other coastal sparrows, Saltmarsh Sparrows possess a larger bill than their nearest inland relative

14
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(Grenier and Greenberg 2005, Shriver et al. 2011, Greenlaw et al. 2018), supporting the
hypothesis that bill size is related to freshwater limitation. Unlike other coastal bird taxa,
however, the effect of temperature on Saltmarsh Sparrow bill size is only apparent after regional
bird density is controlled for, and raw bill size was smallest at the southern end of the range
where temperatures and presumably water stress are greatest. Our results demonstrate for the
first time that bird density can mask the effects of the Greenberg-Tattersall Corollary, and we
hypothesize that competition may have a role to play in the pattern’s production in this system
and others.

The geographic pattern we report here (Fig. 1) eliminates the possibility that temperature
alone is sufficient to produce the Corollary’s predicted pattern in bill size in Saltmarsh Sparrows
(contrary to Hypothesis 1). Our results also demonstrate that broad spatial relationships between
bill morphology and temperature are possible outside of socially monogamous mating systems,
and therefore do not require territorial defense. There was a strong correspondence between bill
size and climate, but this relationship was mediated by population density in a negative fashion
(Fig. 3). The overall higher population densities of multiple coastal birds are thus not likely
responsible for their convergent increases in bill size (contrary to Hypothesis 2).

The case for sexual selection — Larger bills appear to supply an advantage under warmer
temperatures for populations of any given density, but the strength of the relationship was
steeper at lower densities (Fig. 2). There are a number of mechanisms that could explain this
interaction with population density. First, density is a known mediating influence on the strength
of sexual selection (Kokko and Rankin 2006). If larger bills allow males to compete more
effectively for mates in warm conditions, as has been suggested by others (Greenberg and

Danner 2013, Olsen et al. 2013, Luther and Danner 2016), the strength of this selective force
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would be expected to vary with the strength of mate competition. There are many scenarios
where the strength of sexual selection for competitive traits would vary inversely with density
(Kokko et al. 2012). For example, higher male densities may make female monopolization more
difficult (Klug et al. 2010), or females may exhibit less mate discrimination when males are
more common (Hutchinson 2005).

The precise behavioral mechanism for this in the non-territorial Saltmarsh Sparrow
would be different than hypothesized for other tidal marsh songbirds, which defend territories
with song. Mate competition in Saltmarsh Sparrows occurs both via copulatory chases of
females, often by multiple males, and via female-solicited choice (Greenlaw and Post 2012),
although the precise selection criteria are unclear. Males do spend considerable time singing,
however, despite their lack of territories. Bills, therefore, could assist in thermoregulation during
both copulatory chases and song displays, but more work is necessary to directly support either
of these hypotheses. It seems reasonable to posit, however, that it would be harder for a small
number of males to monopolize all forced and female-solicited copulations in a marsh with
higher male densities.

Second, differences in the frequency of multiple paternity might cause males in dense
populations to obtain less offspring for a given mating (i.e., the Bateman gradient is less steep in
these populations: Bateman 1948). Saltmarsh Sparrows show extreme levels of multiple
paternity, with every offspring within a nest often having a different sire (Hill et al. 2010,
Maxwell 2018). Further, rates of multiple paternity in a given brood were positively correlated
with population density in the single study that has tested this relationship. Hill et al. (2010)
found that between 12% and 24% of the variation in multiple paternity was explained by the

number of males in the vicinity of the nest. We hypothesize that sexual selection for larger bills
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may be greater in sparser populations, because males that mate with a single additional female
there would be more likely to sire multiple offspring in a nest. The Bateman gradient would thus
be steeper in these populations, and this would result in stronger sexual selection for competitive
traits like bill size, if the thermoregulatory advantages it confers assists with chasing females or
singing during high environmental temperatures.

Any complete hypothesis regarding sexual selection as a mechanism for increases in bill
surface area, however, must explain selection on both sexes. Among the sexually dimorphic
tidal marsh species, this is perhaps easier, as multiple studies across a large diversity of bird taxa
have reported positive correlations between minimum winter temperatures and bill size (Snow
1954; Symonds and Tattersall 2010; VanderWerf 2012; Danner and Greenberg 2014; Friedman
etal. 2017; Ryeland et al. 2017; but see Greenberg et al. 2011). In these cases, sexual
dimorphism would result if selection on large bills during the summer was stronger for males
than females (e.g., due to female mate choice or male-male competition). The equilibrium
between selection for large bills in the summer and small bills in the winter would then settle at a
larger bill surface area for males than females, resulting in sexual dimorphism. We found no bill
dimorphism in either Saltmarsh or Nelson’s sparrows, however, which interestingly are the only
two species, to our knowledge, to lack this pattern among those tidal marsh birds tested. These
are also the only two North American tidal marsh birds that do not defend exclusive territories
(Greenlaw et al. 2018, Shriver et al. 2011) and participate instead in frequent and athletic
copulatory chases (Greenlaw and Post 2012). If variation in sexual selection is responsible for
the relationship between density and bill size in male Saltmarsh Sparrows, low-density
populations must increase selection on female bill size in these same marshes. Otherwise, we

would expect to see bill sexual dimorphism in this taxon as well, assuming that winter
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temperatures are selecting for smaller bills in both sexes similarly. We hypothesize that the
mating advantages supplied to males by larger bills during copulatory chases (i.e., the ability to
avoid thermoregulatory stress during energetically expensive activity in the heat of the day)
apply equally well to the females being chased as to the males doing the chasing. The same
sexual similarity would not be true in taxa where most mate choice (either direct or indirect)
occurs through male song. Thus, we would expect to see larger bills both in species that defend
territories by song and those that don’t, but we would only expect bill dimorphism in the former.
Further, if this is true, the flight endurance of Saltmarsh Sparrows should correlate with bill size
under high temperatures; females with larger bills should be able to express mating preferences
(by out-maneuvering males) better than smaller-billed females; and this relationship should be
strongest in environments with high breeding season temperatures and low male densities.
Future studies should test these predictions explicitly.

The case for ecological competition — Third, ecological competition might allow
population density to modulate the net selection strength from thermoregulation. For example, if
smaller bills are more advantageous for foraging in populations with higher intraspecific
competition, this selective force would weaken the ability of temperature to select for larger bills.
We would expect ecological competition, however, to covary with the ratio between population
density and local resource abundance, not simply with density, as we found here. The same
sparrow density in two different marshes could experience radically different levels of
competition if resource abundance varied. Among-marsh variation in resource abundance is not
well understood, however, and if it is minor, we might still detect a direction correlation between

bill size and density.
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Further, the lack of character displacement we report here does not suggest a strong role
for ecological competition. Nelson’s and Saltmarsh Sparrows, which have very similar diets
(Shriver et al. 2011, Greenlaw et al. 2018), showed smaller differences in bill size between the
species in sympatry than in allopatry. Further, ecological competition is not thought to be strong
in marsh-nesting sparrows. Neither Saltmarsh nor Nelson’s Sparrows defend exclusive space
within the marsh, and therefore do not appear to exclude each other from preferred resources.
Foraging occurs in close proximity within overlapping home ranges both for individuals of the
same and of different species (Post and Greenlaw 1982, Shriver et al. 2011, Greenlaw et al.
2018), and their invertebrate food resources are thought to be abundant relative to bird foraging
demand (Post and Greenlaw 2006) in this highly productive ecosystem (Tiner 2013).

Additionally, variation in bill morphology among other populations of tidal-marsh taxa
does not support the presumption of foraging niche competition. In marshes with both Saltmarsh
and Seaside Sparrows (4. maritima), the two species again have very similar diets with no
evidence for niche partitioning (Post and Greenlaw 2006), despite differences in bill size
(Grenier and Greenberg 2005, Post and Greenlaw 2009, Greenlaw et al. 2018). Bill size
differences in another tidal-marsh specialist, the Coastal Plain Swamp Sparrow (Melospiza
georgiana nigrescens), are also unrelated to diet, but are attributable to differences in female
mate choice (Olsen et al. 2013).

The case for other alternatives — Fourth, our reported negative relationship between bill
size and population density (Fig. 3) could be due to an indirect correlation with any other
environmental variable or simply be an artifact of our sampling distribution. Population density
is likely related to habitat quality, for instance, and many other environmental correlates may

thus covary with population density. The center-peaked density distribution shown by this
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species (Wiest et al. 2016; Field et al. 2018) may also align with a number of additional,
unmeasured environmental factors. In fact, a quadratic relationship with latitude explains
slightly more variance in bill surface area than our top model with the interaction between
latitude and sparrow density (AAICc = 2.7), although it is unclear what latitude is predicting at
this point. Selection on the bill from any environmental covariate of density could explain the
statistical interaction we report here.

Our reported negative relationship between bill size and population density could also be
an artifact of our latitudinal sampling distribution. Our low-density populations were all in the
northern half of our sampling range (range = 42.1° — 43.7° N), while we sampled high-density
populations in both the north and south (range = 39.6° — 43.5° N). The lower 25" percentile of
sparrow densities spanned only 1.6° of latitude among our 4.2°-long sampling region, while the
second through fourth quartiles covered more of the 7.0° breeding distribution (3.2°, 2.3°, and
3.9° latitude for 2"d through 4t quartiles, respectively). Thus, the influence of a small number of
populations could drive this interaction. Regardless of whether the reported relationship between
bill size and density is due to competition or some other driver, however, we show a positive
correlation between bill surface area and temperature once density has been controlled for.

It is important to note that bill size is not subject to the selective forces of temperature
during just the summer months. Selection outside of the breeding season can also be a dominant
force in bill evolution (Schluter and Smith 1986, Grant and Grant 1993, Francis and Guralnick
2010). Multiple bird species show correlations between bill size and minimum winter, not
maximum summer, temperatures (Symonds and Tattersall 2010, Danner and Greenberg 2015).
Saltmarsh Sparrows, however, are migratory with high degrees of mixing between breeding and

non-breeding populations. Ringed birds from single breeding populations have been resighted
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across the non-breeding range and vice versa (Borowske 2015; SHARP, unpublished data). It
seems highly unlikely that selection during the non-breeding period would be able to produce the
geographic clines we report here during the breeding season.

Conclusions — While not tested directly in our study, a link between bill size and male
mating success could explain an array of bill size patterns observed in various coastal avian taxa:
the patterns of female choice reported in some taxa (Olsen et al. 2013), the display behaviors of
others (Luther and Danner 2016), the presence of sexual dimorphism across a number of socially
monogamous mating systems (Greenberg and Olsen 2010), and the correlations between bill
morphology and density that we report here. No other selective process for the Greenberg-
Tattersall Corollary can singly explain all of these patterns. Taken together, our findings, and
those of others working in similar water-limited environments, suggest that sexual selection is a
strong hypothesis for producing intraspecific geographic patterns in bill size, and we suggest that
future investigations measure sexual selection on bill size directly across populations with a

range of climates and densities.
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TABLES

Table 1. Results from model selection to explain geographic variation in Saltmarsh Sparrow

(Ammospiza caudacuta) bill surface area.

fixed model
Model'2 AAICS  effects (k)  weight (w))
Latitude x Intraspecific Density 0 6 >0.999
Latitude + Intraspecific Density 22.0 5 <0.001
Latitude 233 4 <0.001
Intraspecific Density 26.3 4 <0.001
Null 26.5 3 <0.001

I All models (including the null model) include fixed effects for body size (the first principal component score of

mass and wing chord), sex (male or female), an indicator variable describing whether or not the sampled

population was within the zone of introgression with Nelson’s Sparrow (4. nelsoni), and a random effect for

marsh identity.
2 All models with interaction terms also included the component additive terms
3 AIC¢ for the top model was 6520.79.
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Table 2. Parameter estimates, standard errors (SE), and post hoc t-scores and P-values for the
top-ranked model of Saltmarsh Sparrow (Ammospiza caudacuta) bill size across the majority of
its breeding range. Covariates include a principal component for body size, bird sex (female is
the reference level), an indicator variable for whether or not birds were found within the hybrid
zone with A. nelsoni (outside of the hybrid zone is the reference level), degrees north latitude,
sparrow density averaged over the nearest tenth of a degree of latitude, and the interaction
between latitude and density. All variables were scaled before parameterization.

Parameter Estimate SE t P
Body Size 0.81 0.22 3.75 0.0002
Sex 0.16 0.45 0.36 0.72
Hybrid Zone 4.51 1.32 3.40 0.002
Latitude -1.55 0.79 -1.96 0.06
Density -1.37 0.29 -4.60 0.0003
Latitude x Density 1.65 0.29 5.70 0.001
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FIGURE CAPTIONS

Figure 1. Mean bill surface area (mm? =+ standard error) for Saltmarsh Sparrow (Ammospiza
caudacutus, filled circles) and Nelson’s Sparrow (4. nelsoni, open circles) calculated for each
0.05 degrees of latitude with sampled individuals as a function of latitude (a proxy for
temperature). Each point represents 30 individuals on average (range 1 —231). This raw pattern

was best predicted by the interaction between latitude and population density (Fig. 2, Table 1).

Figure 2. Predicted relationship between bill surface area (mm?) and latitude for marshes with
low (first quartile density; dotted line with shaded 95% confidence interval), medium (median
density; solid line), and high (third quartile density; dashed line with shaded 95% confidence
interval) densities of Saltmarsh Sparrow (Ammospiza caudacuta). Darker confidence interval
shading indicates areas of overlap between the first and third quartile intervals. The confidence
interval around the median density is omitted for visual clarity but lies in between the two other
quartile intervals. Predicted values control for the effects of body size, sex, and position relative

to the hybrid zone with Nelson’s Sparrows (4. nelsoni).

Figure 3. Mean bill surface area (mm? + SE) of Saltmarsh Sparrows (Ammospiza caudacutus),
corrected for body size, in 25 marshes (2 — 121 sparrows per marsh, median = 11 sparrows).
Symbol shape indicates whether marshes are outside (square) or inside (circle) of the hybrid zone
with A. nelsoni. Sparrows were measured at 40° (open squares), 41° (filled squares), 42° (open

circles), 43° (gray circles), and 44° (black circles) north latitude.
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Figure 4. Least squares mean bill surface area (mm?+ 95% confidence intervals) for female
(circles) and male (squares) Nelson’s (Ammodramus nelsoni) and Saltmarsh (4. caudacutus)
sparrows. Values in (a) were measured outside of the hybrid zone of the two species (Nelson’s
Sparrows in Washington County, Maine, USA; Saltmarsh Sparrows south of Cape Cod,

Massachusetts, USA) and values in (b) were measured inside the hybrid zone.
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