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ABSTRACT: We extend the application of our multilayer molecules-in-molecules (MIM)
fragmentation-based method to the study of open-shell systems, particularly organic radicals. A
test set of organic mono-, di- and polyradicals with a wide range in size, containing up to 360
atoms, was investigated. Total energies computed with MIM using density functional theory
(DFT) were compared with full, unfragmented energies to assess the performance of MIM and
to develop a systematic protocol for the treatment of large radical systems. More specifically, a
two-layer (MIM2) model with a fragmentation scheme along the backbone involving covalently
bonded dimers, trimers, or tetramers was considered, with DFT at a smaller basis set serving as
the low level of theory. The MIM method was evaluated on the high-spin state and several
possible broken-symmetry (BS) states for di- and polyradicals. When relevant spin−spin interactions were considered, the
errors in total energies were less than 1 kcal mol−1. In addition, the applicability of MIM2 was extended to predict the intersite
magnetic exchange coupling constants (J), which were compared with reference values. Further, since the energy levels derived
from Hamiltonian diagonalization are physically more meaningful, the calculated J values estimated from the BS-DFT
methodology were used to obtain the lower spin state energies of the polyradicals. The difference in calculated total energies of
the lower spin state between full and MIM2 lie within 1 kcal mol−1 in the majority of these cases. Our rigorous, quantum
chemical study demonstrates that MIM can be successfully applied to the study of large organic radicals reliably and accurately
within the framework of BS-DFT.

1. INTRODUCTION
Open-shell molecules (radicals) containing one or more
unpaired electrons are known to be challenging systems to
describe accurately with single-determinant-based electronic
structure methods (including density functional theory).
Functionally, they can exist in several possible spin states
and routinely play key roles in electronic excited states.
Radicals as a class tend to possess high energies, short lifetimes,
and increased reactivity over more stable, closed-shell systems.1

While commonly implicated as intermediates in organic,
inorganic, and combustion-condition reactions due to their
reactivity, many stable radical species are known to exist and
find use in disparate fields of chemistry.1 Stable, chemically
useful radical species include spin clusters and organometallic
luminaries such as carbenes, which play a major role in
stabilizing metals in particularly high oxidation states.2−4

Additionally, stable organic radicals serve as building blocks in
organic magnetic materials5−7 and in the development of
spintronics.8 They have been found to have properties
desirable for spin transport and many spin filters employing
organic diradicals have been proposed.9−13 Over the years,
experimental techniques, such as laser flash photolysis, electron
spin resonance, photoelectron spectroscopy, and low-temper-
ature matrix isolation infrared spectroscopy, have been
developed and applied to the characterization of radicals.14

However, as radical species are notoriously difficult to isolate,
experimental techniques can only provide a piece of the puzzle

and quantum chemical calculations have proven to be an
invaluable tool for studying the electronic properties of open-
shell molecules.14

In recent years, interest has grown in organic radicals with
abnormally high spin states due to their high magnetic
susceptibilities, bistability, biocompatibility, and low density.15

Organic molecules possessing high multiplicity ground states
also provide insight into how molecular structure affects spin
interactions, giving us insight into the physical effects of
electron spin. For example, only a small number of diradicals
have been isolated with both strong ferromagnetic interactions
between unpaired electrons and a thermally accessible singlet−
triplet energy gap (ΔEST) on the order of thermal energy at
room temperature (∼0.6 kcal mol−1).16−26

Ideally, ab initio multireference methods would be used to
describe open-shell systems due to the problems of
delocalization, spin contamination, and symmetry breaking
present in the single-determinant Hartree−Fock (HF) or
density functional theory (DFT) treatment.27−34 Unfortu-
nately, multireference methods are highly expensive for
medium to large molecules even with relatively modest basis
sets so single-reference DFT and wave function methods are
likely to be used for the foreseeable future. Thus, it is
immediately important to increase the applicability and reduce
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the scaling of more accurate single-determinant treatments.35

Open-shell systems are studied with both unrestricted
Hartree−Fock (UHF) wave functions or restricted open-shell
Hartree−Fock (ROHF) theory. While ROHF wave functions
have been shown to perform better as a reference for single-
determinant wave function theory methods, such as MP2 and
CCSD(T),36 unrestricted wave functions find extensive
applications with DFT.37 While spin-contamination effects
plague UHF wave functions, unrestricted density functional
theory is less prone to spin contamination than UHF.38 While
both unrestricted and restricted versions of DFT have been
used to derive radical stabilization energies,39,40 it has been
argued that spin contamination in the Kohn−Sham wave
function is a feature rather than a fault and does not need to be
eliminated.41 Additionally, in the case of diradical species,
unrestricted formulations have proven to be quite effective in
obtaining reliable geometries.42,43

Nevertheless, regardless of the reference wave function, it is
clear that large radical species require a balanced treatment,
often involving multiple calculations to obtain di- and
polyradical coupling constants. One of the most efficient and
reliable ways to study large molecules that has arisen in recent
years is the fragmentation-based44,45 methodology in which the
desired property of a large system is described by the
properties of small fragments summed in some manner. A
wide range of fragmentation-based methods has been
developed by different research groups over the decades and
these differ by the manner of fragmentation, the nature of the
expression by which fragment properties are collected, and
whether multiple levels of theory are employed or not.44−46

Over the past few years, we have developed and applied the
multilayer molecules-in-molecules (MIM) fragmentation
method to a variety of systems, including water clusters and
large biomolecules.47−53 While MIM has been applied to a
diverse set of systems, previous applications have been
exclusively on closed-shell systems. The question of how to
successfully fragment open-shell molecules while maintaining
the correct spin state for the parent molecule is open-ended
and largely unaddressed by the fragmentation community.
Recent work has been done with a divide-and-conquer inspired
method, demonstrating successful fragmentation and recovery
of open-shell species through the localization of fragment
molecular orbitals.54 Additionally, the fragment molecular
orbital fragmentation-based method has been extended to
open-shell systems but has generally been restricted to
monoradicals and the calculation of spin densities.55,56 Here,
we are interested not just in the behavior of a single radical site
but in assessing the performance of an energy-based
fragmentation scheme in computing coupling constants and
the broken symmetry states of polyradicals.
Herein, we present the first application of the MIM energy-

based fragmentation method to the study of open-shell
systems. First, we have selected a range of small to medium-
sized experimentally known and stable organic monoradicals to
analyze if their energies can be reproduced by MIM through
comparison to full (unfragmented) energies obtained at a
target high level of theory. Next, we consider a set of stable
organic diradicals to compare the performance of MIM relative
to the full calculation, as well as available experimental results,
in terms of both low- and high-spin energies, singlet−triplet
gaps, and coupling constants. We have also included organic
polyradicals possessing unusually high spin states to validate
the performance of MIM on truly complex and large open-shell

systems. Lastly, we report intersite magnetic exchange coupling
constants and compare MIM to the full calculation of the
energies of the lower polyradical spin states through
diagonalization of the Heisenberg−Dirac−van Vleck Hamil-
tonian (HDvV).

2. COMPUTATIONAL METHODS

2.1. Molecules-in-Molecules (MIM) Protocol. The
molecules-in-molecules (MIM) fragmentation method has
been described in detail in previous papers; only the essentials
will be described here and we refer the reader to previous
work.48−50,52 Throughout this study, we use a two-layer MIM
model (referred to as MIM2), as shown in eq 1. Here, the
energy of the full, unfragmented molecule is calculated at the
low level of theory (Elow

R ) and the fragmented energy is
obtained at both the low (Elow

r ) and (Ehigh
r ) high levels of

theory. The superscript ‘R’ refers to the full, unaltered system,
whereas the superscript ‘r’ refers to energies obtained through
the fragmentation approach. The energy of the fragmented
molecule is treated in a generalized manner analogous to the
model system in the ONIOM methodology of Morokuma and
co-workers57,58 with the low level energy subtracted out and
the high level added in as an extrapolation to the energy of the
full molecule calculated at the high level of theory

E E E EMIM2
low
R

low
r

high
r= − + (1)

To obtain the fragmented energies, Elow
r and Ehigh

r , we first cut
single bonds between two nonhydrogen atoms to specify
nonoverlapping, primitive monomers. Conjugated rings and t-
butyl group are kept intact and not broken in the initial
fragmentation procedure. Moreover, the fragmentation of
bonds that would replace one center with two link atoms
(i.e., in rings) is not carried out to avoid unphysical artifacts.48

Local interactions between primitive monomers yield over-
lapping primary subsystems based on some prescription. In our
case, we employ a number-based scheme wherein covalently
bonded monomers are grouped into subsystems of η
monomers. We explore dimer (η = 2), trimer (η = 3), and
tetramer (η = 4) schemes in this work. Derivative subsystems
are formed from the overlap of primary subsystems to avoid
overcounting through application of the inclusion−exclusion
principle during property summation. Calculations are
performed on the derivative and primary subsystems with
hydrogen link atoms to satisfy the valences of cut bonds. In an
energy calculation step, the energies of each subsystem
(primary and derivative) are obtained and summed according
to the inclusion−exclusion principle. Calculations are
performed at both the high and low levels of theory to obtain
Ehigh
r and Elow

r , respectively, and the difference between them
contributes to the MIM2 energy, as shown above in eq 1. To
treat open-shell molecules, when nonoverlapping monomers
are combined to form subsystems, the spin state of the
subsystems depends on the number of radical centers for each
monomer and their set spins. The user specifies atomic centers
and their associated spin value as a list and fragment
monomers containing the specified atoms are given an overall
spin through summation. This same process is used to find the
total spin for a subsystem (the actual units that calculations are
performed upon). The multiplicity of each primary and
derivative subsystem depends on the presence and number
of radical centers in the subsystem. A representative example
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has been presented in Figure S1 of the Supporting
Information.
2.2. Treatment of Radical Species. While a monoradical

(S = 1/2) exists in the doublet (D) ground state, a diradical
can exhibit either a triplet (T, high-spin, S = 1) or singlet (S,
low-spin, S = 0) state. The magnetic exchange coupling
constant, J, describes the degree to which two spins interact
with each other. A positive J value corresponds to
ferromagnetically coupled electrons and the highest spin
ground state, whereas an antiferromagnetic interaction yields
a negative J and a ground state of the lowest S value. For the
triplet state, E(T) = −J/2, whereas the singlet state energy is
expressed as E(S) = 3J/2. In the case of a triradical, the two
possible states are either a doublet (S = 1/2 with E(D) = 2J) or
a quartet (S = 3/2 with E(Q) = −J), neglecting coupling
between disconnected sites. Thus, the magnetic exchange
coupling constant can be calculated from the low-spin (LS)
high-spin (HS) energy gap.

J E S E S

J E S E S

1
2

( 0) ( 1) ,

1
3

( 1/2) ( 3/2)

diradical

triradical

= [ = − = ]

= [ = − = ]
(2)

To use eq 2, we need the energy of both the low- and high-spin
states. However, the determination of an accurate E(LS) is a
challenging problem.
While multiconfigurational methods based on restricted

open-shell treatments have been used successfully in some
diradicals,59 reasonable molecular geometries, relative energies,
and spin polarization can be obtained from unrestricted
density functional theory calculations at a reduced computa-
tional cost. The drawback to single-determinant, unrestricted
methods is that only the highest spin state can be represented
correctly. To overcome this problem, Noodleman and co-
workers proposed the broken symmetry (BS) methodology in
the framework of unrestricted DFT to calculate the coupling
constant.60−63 The lower spin states are a linear combination
of these BS wave functions, which cannot be obtained directly
from single-determinant DFT calculations. These BS determi-
nants are not pure spin states; they possess an ms value but no
well-defined S quantum number. For a pure diradical, the ideal
BS state is an equal mixture of the low- and high-spin states
with ⟨S2⟩ = 1. A generalized formula to obtain coupling
constants for diradicals was proposed by Yamaguchi et al.64,65

in which the energy difference is corrected for the effect of spin
contamination by scaling with the calculated ⟨S2⟩ values.

J
E E

S S
( )

( )
Y BS HS

2
HS

2
BS

= −
⟨ ⟩ − ⟨ ⟩ (3)

Here, EBS and EHS represent the energy of the broken
symmetry solution and the high-spin state, respectively, and
⟨S2⟩HS and ⟨S2⟩BS stand for the ⟨S2⟩ values of the two states.
Other procedures to estimate the energy difference include
more lengthy prescriptions discussed by Kitagawa et al.,66

Malrieu and Trinquier,67 Saito and Thiel,68 and Chu et al.69

and have been applied to somewhat smaller diradicals. Keeping
in mind the computational cost of the large systems under
study, we have used eq 3 to calculate the coupling constants for
diradicals.
To determine the intersite coupling constants in poly-

radicals, the Heisenberg−Dirac−van Vleck (HDvV) Hamil-
tonian can be used. The HDvV Hamiltonian is written as

H J S i S j2 ( ) ( )
i j

ijHD V
( )

atom

V
∑= − ·
< (4)

where i and j are the radical sites with local spin S(i) and S(j).
Note that here, Jij is dependent on the identities of the two
sites being coupled. Generally, the HDvV Hamiltonian is used
for understanding spin couplings in transition-metal com-
plexes; however, it has also been shown to be useful in the
treatment of organic polyradicals.70,71 The coupling constants
for polyradicals have been determined following the procedure
of Pantazis et al.72 The energies of BS states with distinct spin
configurations were computed, and since the number of
coupling constants is less than the number of states, the
resulting equations were solved using singular value decom-
position to obtain unique solutions for Jij. Our procedure is
presented in detail in Section 1 of the Supporting Information.
Final energy levels were obtained from direct diagonalization
of the HDvV Hamiltonian.

2.3. Computational Details. We have carried out the full,
high-level optimization on the mono- and diradical test sets
(vide infra, Figures 1 and 2, respectively) using B3LYP73−75

with Grimme’s D3 dispersion correction76 and Becke−
Johnson damping77 using the 6-311++G(d,p) basis set.78−82

Diradicals were optimized at the high level for both the singlet
and triplet states. Minimum energy structures were confirmed
through frequency calculations at the B3LYP-D3BJ/6-311+
+G(d,p) level of theory. The corresponding total energies and
properties are used as the reference values throughout all tests.
All MIM2 calculations were performed with B3LYP-D3BJ/6-
311++G(d,p) as the high level of theory and B3LYP-D3BJ/6-
31G(d) as the low level of theory. The use of the same
functional with differing basis sets helps to avoid potential
mismatches between functionals while still representing a
substantial increase in accuracy through the difference in basis
set size. MIM2 single-point energies were obtained with dimer
and trimer subsystems for each molecule in both test sets. We

Figure 1. Structures of 15 monoradicals included in the Mono15 test
set.
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have also tested the effect of the long-range corrected
functional CAM-B3LYP on the mono- and diradicals to
evaluate the error in MIM2 energy by calculating the single-
point energies using 6-31++G(d,p) as the high level basis set
and 6-31G(d) as the low level.
To stress test MIM on larger open-shell systems with many

possible spin states, we have studied the polyradicals shown in
Figure 3 (vide infra). Due to the larger size of these molecules,
we have adopted the B3LYP-D3BJ/6-311G(d) level of theory
for full optimization in the highest spin state; further spin
states were not optimized, and excitations are assumed to be
vertical in nature. Next, the single-point energies of the high-
spin state (HS) and broken symmetry states (BS) were
evaluated at B3LYP-D3BJ/6-311++G(d,p). Finally, the devia-
tion of the single-point energies (ΔE) between full and
fragmented (using dimer, trimer, and tetramer subsystems)
calculations were determined for the HS and BS states of the
polyradicals. All calculations were performed in the gas phase
under the framework of unrestricted density functional theory
using the Gaussian (G16) program suite.83

3. RESULTS AND DISCUSSION
To assess the applicability of the MIM fragmentation method
to open-shell molecules of disparate spin states, a careful
benchmark study is performed on organic radicals. First, we
test MIM on a set of 15 small- to medium-sized monoradical
species (the Mono15 test set), as shown in Figure 1. Next, to
determine the ability of MIM to reproduce radical coupling
effects, we evaluate MIM on the triplet state of 25 diradicals
(the Di25 test set), as depicted in Figure 2, as well as the open-
shell singlet state (i.e., broken symmetry, BS state) of the 22
applicable molecules in the Di25 set. Finally, to assess the
performance of MIM on systems with a larger number of
radical centers, we have also studied the tri-, tetra-, and
octaradicals depicted in Figure 3. The molecules are
fragmented following the fragmentation schemes described in
Section 2.3 and the Supporting Information (Figures S2−S4).
Results presented throughout this section are calculated using
the B3LYP-D3BJ method unless otherwise mentioned
explicitly.
We have not yet implemented the evaluation of the total

⟨S2⟩ value from the fragment calculations. Therefore, in the
calculation of coupling constants, we have considered the ⟨S2⟩
value derived from the low-level calculation on the full
molecule (Elow

R in eq 1). To determine if this is an appropriate
approximation, Figure 4 details the mean deviation in ⟨S2⟩ at
both the low and high levels of theory from the directly
evaluated ⟨S2⟩ values for the monoradical set and both spin
states of the diradical set. We refer to the deviation of the
calculated ⟨S2⟩ from the ideal value as Δ⟨S2⟩. For the doublet
state of the monoradicals, there is almost no difference
between the low- and high-level mean Δ⟨S2⟩ value. In the case
of diradicals, the difference between low and high levels is
again quite small: 0.003 for triplet states and 0.004 for broken
symmetry singlets. Thus, the low level ⟨S2⟩ value seems

Figure 2. Structures of 25 diradicals included in the Di25 test set.

Figure 3. Structures of examined polyradicals.
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appropriate for the calculation of coupling constants and
comparison to experiments.
3.1. Monoradicals. The 15 monoradicals shown in Figure

1 are experimentally known and exhibit doublet ground
states.84,85 These radicals contain diverse functional groups,
disparate hybridizations, and radical centers at differing p-block
elements. In addition, some of the molecules included in the
Mono15 test set contain cyclic, conjugated moieties stabilizing
the radical center. The ⟨S2⟩ values and energies of all studied
radicals are provided in the Supporting Information, Table S2.
The error in the calculation of the energy (ΔE), with respect to
the full calculation, for each radical of the Mono15 test set is
shown in Figure 5. In this test set, every subsystem in the MIM
scheme is either a doublet (if it contains the radical center) or
closed-shell singlet (otherwise).

While the results of MIM2 with the dimer model are in very
good agreement (<1 kcal mol−1 in all but one case, rad11) with
the full calculation, we have also included the results of MIM2
using the trimer model, wherever applicable (Figure 5, rad2,
and rad13 do not have more than three primitive monomers
and are omitted). All errors are less than 2 kcal mol−1, ranging
from 0.001 to 1.43 kcal mol−1 for the dimer model and 0.01 to
1.64 kcal mol−1 for the trimer model (Figure 5). The largest
dimer error, rad11 with 1.43 kcal mol−1, arises from the
triphenylmethyl radical, which is expected as every dimer
primary subsystem includes the radical center and only one
phenyl group, meaning a tertiary radical is now represented as
a primary radical. Upon expansion to the trimer scheme, every
primary subsystem in rad11 contains two phenyl groups and
the secondary radical center, indicating that the radical
delocalization is better described in trimer subsystems
containing two phenyl rings compared to the dimer with
only one phenyl ring to significantly reduce the error (to 0.02
kcal mol−1).
In most of the cases shown in Figure 5, the error is

substantially reduced when considering a trimer scheme as
opposed to a dimer scheme, with two notable exceptions. Both
rad1 and rad5 perform significantly worse as trimers than as

dimers and are also the only cases where rings are broken
during fragmentation. This result likely stems from repulsion
between the two link atoms in each primary trimer subsystem,
making the less-strained dimer subsystems more appropriate
and hence more reliable. Additionally, we also observed that
the repulsion between those link atoms is treated differently by
the high and low levels of theory, resulting in an overall larger
error. The mean absolute error (MAE) in B3LYP-D3BJ
calculated energy is very similar using both models (0.27 kcal
mol−1 for the dimer model and 0.31 kcal mol−1 for the trimer
model); however, the trimer scheme outperforms the dimer
scheme significantly when considering larger systems (vide
infra). If the contribution from those two structures is not
included, we indeed see a decrease in MIM2 errors going from
dimer to trimer subsystems (dimers MAE: 0.26 kcal/mol;
trimers MAE: 0.14 kcal/mol). However, it is important to note
that the overall errors are quite small for both dimer and trimer
subsystems. Similar accuracy was observed with CAM-B3LYP
(MAE = 0.35 kcal mol−1), as shown in Table S3. This first test
confirms that in the case of monoradicals, MIM performs as
well as it does for closed-shell systems. The only considerations
that must be made to ensure accuracy are avoidance of ring-
breaking and ensuring tertiary radicals are at least represented
as secondary radicals in individual subsystems.

3.2. Diradicals. To determine the best procedure for the
fragmentation of systems with a diradical character, we first
study the triplet states of the 25 diradicals present in the Di25
test set, as shown in Figure 2. These 25 radicals are
experimentally known, have different sizes and hybridizations
with radical centers at different p-block elements, such as C, N,
and O, and some of them contain cyclic, conjugated moieties.
The ⟨S2⟩ values and energies of the full radicals are provided in
the Supporting Information, Table S4. The MIM2 results are
compared to the full calculations at B3LYP-D3BJ/6-311+
+G(d,p) and detailed in Table 1. In this comparison, for the
triplet spin state, each MIM subsystem is either in a doublet,
triplet, or a closed-shell singlet state depending on the presence
of one, two, or no radical centers, respectively. The MIM error
ranges from 0.03 to 4.97 kcal mol−1 for the dimer model and
0.001 to 1.43 kcal mol−1 for the trimer model (Table 1). The
MAE in energy is 0.80 kcal mol−1 for the dimer model and
0.38 kcal mol−1 for the trimer model, showcasing general
improvement in the trimer model. As a test, we have calculated
the MIM error obtained for the triplet state for the trimer
model employing CAM-B3LYP functional and it follows the
same trend as that obtained with B3LYP-D3BJ (Table S5).
In addition to the triplet states, we report the performance of

MIM on the open-shell singlet states of the 22 applicable
diradicals in the Di25 test set. The broken symmetry state of
rad1 is too conjugated for the proper application of MIM, and
the lower spin state of rad5 and rad6 are closed-shell singlets,
which is outside the scope of this work. Similar to the triplet
states, we compared the MIM2 results with the full calculation
at B3LYP-D3BJ/6-311++G(d,p) and employed dimer and
trimer models wherever applicable. For broken symmetry
solutions of diradicals in the MIM calculation, each subsystem
is either a doublet, open-shell singlet, or a closed-shell singlet,
depending on the presence of one, two, or no radical centers,
respectively. The ⟨S2⟩ values and energies of the full radicals
are provided in the Supporting Information, Table S6. The
MIM error in energy ranges from 0.01 to 4.97 kcal mol−1 for
the dimer model and 0.003 to 1.50 kcal mol−1 for the trimer
model with MAEs of 0.84 and 0.48 kcal mol−1, respectively.

Figure 4. Mean Δ⟨S2⟩ with respect to ideal value of the Mono15 and
Di25 benchmark sets. D, BS, and T represent doublet, broken
symmetry singlet, and triplet states, respectively.

Figure 5. Errors in the energy (ΔE) of MIM2[B3LYP-D3BJ/6-311+
+G(d,p):B3LYP-D3BJ/6-31G(d)] using dimer and trimer subsystems
with respect to the full, high level calculation, on the Mono15 set.
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The MAE in energy for the BS singlet states is comparable to
the MAE in triplet states, suggesting that MIM is equally
applicable for both spin states.
For both spin states, the errors are generally improved in the

trimer model, as expected, particularly for rad20, rad22, and
rad24, where ΔE is larger than 3 kcal mol−1 for the dimer
model and improves to less than 1.5 kcal mol−1 when
considering the trimer scheme. In the case of rad22,
considering that trimer subsystems allow the spin−spin
coupling interaction to be included at the high level, the
error reduces to less than 0.1 kcal mol−1. Considering trimer
subsystems for rad20 and rad24 reduces the error similar to the
behavior of the triphenylmethyl radical in the previous section:
triphenyl-substituted tertiary radicals require subsystems of at
least two phenyl rings to stabilize the radical and to obtain
reliable results. The |ΔE| is less than 1 kcal mol−1 in most of
the radicals investigated; however, in the case of the trimer
scheme of the rad9 and rad12 BS singlet states, |ΔE| is larger
than 1 kcal mol−1.

In the case of rad9, the singlet state performs worse than the
similar rad8, whereas the triplet state errors are nearly identical.
This discrepancy raises an interesting case study exhibiting
some of the complications that can occur when fragmenting
diradicals. In both rad8 and rad9, the radical located on the
central ring is delocalized over the oxygen and nitrogen atoms
while polarizing the spin on the carbon bridging the two
radical sites. In the triplet case, if the ring radical site is of α
character, then the carbon is accordingly polarized to β
character and acts as a buffer against the α spin radical site
residing outside of the ring. However, in the broken symmetry
singlet case, this spin polarization on the bridging carbon will
be of the same sign as the radical located outside of the ring,
meaning that cutting the carbon nitrogen bond between the
two radical sites will interrupt the coupling between the two
sites much more so than as a triplet. This effect is much more
prominent in rad9, with the bridging carbon exhibiting a
Mulliken spin density three times the magnitude of rad8. Thus,
when possible, it is best to ensure both spin sites are located on

Table 1. Performance of MIM on Di25 Benchmark Seta

aMAEs, ΔET, ΔEs compared to the full, high level calculation, in kcal mol−1. JY and ΔEST calculated as described in Methods and eq 5. N/A refers
to cases where trimer calculations were not applicable. JY and ΔEST calculated with trimer subsystems, dimers in the nonapplicable cases. Darker
shades of blue and green, referring to ΔEs and ΔET, respectively, correspond to cases where improvement is seen going from dimer to trimer
subsystems. The JYs and singlet−triplet energy gaps are shown in yellow and red shades, respectively. ΔEST with a large (>2 kcal mol−1) deviation
from experimental results is shown in darker red shade. bFor dimer subsystems, the trimer scheme is not applicable.
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the same monomer; however, when this is not possible, a
preliminary, low level, spin density analysis can be illuminating.
Next, we have predicted the magnetic exchange coupling

constant (JY) for each diradical with MIM and compared to the
high level. As the trimer model provides a more accurate
depiction of the radical environment, all coupling constants are
computed using a trimer scheme. We note that for all
diradicals, the calculated JY values correspond to an “adiabatic”
coupling constant and can be seen in Table 1. In every case,
MIM JY has the same sign as the high level coupling constant,
demonstrating that the nature of coupling (ferromagnetic or
antiferromagnetic) is preserved. The calculated values are in
good agreement with modest deviations for rad9, rad12, and
rad23, which is expected given the poorer reproduction of the
BS singlet and triplet state energies observed for these species.
In most of the examined diradicals, MIM overestimates the JY

values; however, the total MAE of ΔJY is quite low, 0.26 kcal
mol−1. We have also calculated the “vertical” coupling constant
(Table S5) using the CAM-B3LYP functional, for comparison.
These J values obtained from the full calculation result show
that the same trend in values as that obtained from B3LYP-
D3BJ with few deviations where ΔJ (B3LYP-D3BJ vs CAM-
B3LYP) > 2 kcal mol−1 (rad10, rad12, and rad25). These
deviations likely stem from the geometries being obtained with
B3LYP-D3BJ, not CAM-B3LYP. Since the MIM2 error in
energy for the triplet state of Di25 at CAM-B3LYP shows a
similar trend to that of B3LYP-D3BJ (Table S5), the coupling
constants are expected to follow the same trend for MIM2 as
well.
The energy gap between the high-spin (Smax) and next

highest-spin (Smax − 1) states can be determined from the
calculated coupling constants.

E J S2ST
Y

maxΔ = (5)

The high level and MIM calculated singlet−triplet energy gaps
(ΔEST) for all applicable species are shown in Table 1. The
average MIM error is nearly half a kcal mol−1 (MAE = 0.52
kcal mol−1). A larger than 1.0 kcal mol−1 deviation is observed
in rad9, rad12, rad13, and rad23, likely due to the poorer
performance of the trimer scheme in the open-shell singlet
geometry compared with the triplet state. In rad23, although
both the triplet and singlet energy errors are below 1 kcal
mol−1, they possess opposite signs and lead to an error in J of
1.24 kcal mol−1. Experimental values of ΔEST obtained from
magnetic susceptibility and superconducting quantum inter-
ference device (SQUID) measurements and theoretical values
of ΔEST obtained from difference-dedicated configuration
interaction (DDCI) and BS-DFT are also included in Table 1.
For most of the diradicals studied in this study, the calculated
values are in the range of the observed values present in the
literature except for rad9 and rad18. For these two radicals,
even the full, high level calculation deviates significantly from
the experimental ΔEST values obtained from magnetic
susceptibility measurements.17,94 Since the purpose of this
study is to examine how MIM reproduces full, high level,
computations, we do not expect improvement when the full
calculation is itself not validated by experimental results.
However, the agreement between experiment and theory in
cases such as rad16 and rad17, where experimental results are
matched well with both the full and MIM levels of theory and
the relative trends are preserved throughout, adds validity to
the levels of theory chosen for this study.

3.3. Polyradicals. To test whether MIM performs well on
large, complex polyradical systems, we investigated the five
polyradical systems shown in Figure 3. The first radical, 1, the
smallest among the five examined radicals, is a nitroxide-based
triradical, known to have a ground state with S = 3/2 and a
small energy gap between the quartet and lowest doublet
excited state.86−97 Three of the remaining systems are
tetraradicals: 2, 3, and 4, related to each other by the
substitution of aromatic groups. Tetraradical 3 has been shown
to exhibit an S = 2 ground state along with excited states of S =
1 and 0, the energy gap between the HS and LS states being
greater than thermal energy,98 whereas 2 and 4 were studied as
related model systems in this work. The last considered
polyradical is an octaradical, 5, known as an “organic spin
cluster” in the literature with S = 4 for the 8 ferromagnetically
coupled, unpaired electrons.99 We have studied the high-spin
state for each polyradical in Figure 3 as well as several possible
low ms, broken symmetry states (Figure 6). Octaradical 5 can

also be considered as a higher homologue of tetraradical 3 with
an S = 2 macrocyclic core (tetraradical 3) in conjunction with
four biphenyl-based radical branches. The spin coupling
through the macrocyclic core moiety is much stronger than
the coupling between the radicals at the ends of the four
branches.99 Hence, we have studied the broken symmetry
states originating from different spin combinations of the
macrocyclic core, similar to that of the investigated
tetraradicals. The ⟨S2⟩ values and energies of the full radicals
at each studied spin state are provided in the Supporting
Information, Table S7.
For the high-spin state of triradical 1, individual subsystems

for the dimers are either doublets or closed-shell singlets,
whereas for trimers, subsystems can be doublets, triplets, or
closed-shell singlets depending on the presence of one, two, or
no radical centers, respectively. In the broken symmetry states,
BS1, BS2, and BS3 (Figure 7a), when η = 2, each subsystem is
a doublet or a closed-shell singlet and when η = 3, subsystems
are doublets, open-shell singlets, or closed-shell singlets. Due
to the nonlinearity of the molecule, BS1 and BS3 have been
calculated and are expected to be distinct but similar. Figure 7a
shows that the error in the energy (ΔE) is greater than 1 kcal
mol−1 in dimer subsystems but decreases to ∼0.3 kcal mol−1

when employing trimer subsystems with spin−spin inter-
actions included in individual subsystems.
In the cases of tetraradicals 2, 3, and 4, one HS state and

three BS states exist due to molecular symmetry. The aryl
groups in 3 and 4 help to stabilize the tertiary radicals and S =
2 in all cases with S = 0 and S = 1 comprising the lowest energy
excited states. All three tetraradicals follow the stability order

Figure 6. Spin state configurations of mono-, di-, tri-, and
tetraradicals.
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of HS > BS2 > BS1 > BS3 (see Figure 6), although BS2 (with
S = 0) and BS1 (with S = 1) are very closely spaced. In the
simplest case, 2, ΔE is greater than 2 kcal mol−1 with dimer
subsystems, decreasing to less than 1 kcal mol−1 with trimer

subsystems (Figure 7b). Considering the aryl substituted
polyradicals 3 and 4, ΔE is larger than 5 kcal mol−1 when
treated with dimer subsystems. Due to increased delocalization
in spin centers (Figure S5), spin−spin interactions play a very
important role, increasing the errors from those obtained for
tetraradical 2. For both tetraradicals 3 and 4, the errors
decrease to below 0.2 kcal mol−1 when considering trimer
subsystems (Figure 7c,d), indicating the applicability of this
scheme even for larger systems.
To study octaradical 5, we have considered dimer, trimer,

and tetramer subsystems, improving the MIM energy system-
atically. The tetramer subsystems were employed to capture
the spin−spin interactions not only between the central
macrocyclic spin centers but also to include the interaction
between the macrocyclic moiety and that of the branches. The
high-spin state with S = 4 is the ground state, the stability order
being HS > BS1 (S = 3) > BS3 (S = 2) > BS2 (S = 2). The
energy difference between BS1 and BS3 is only 0.3 kcal mol−1.
The spin states of the fragmented systems are also similar to
those of triradical 1 in both HS and BS states. The MIM error
with dimer subsystems is greater than 12 kcal mol−1, whereas
with trimer and tetramer subsystems, the error reduces to
below 1 kcal mol−1 (Figure 7e) The difference in error
between trimers and tetramers is quite small, signifying that the
spin coupling is very weak between the macrocyclic moiety and
the branches. Hence, it can be concluded that the energy of
similar polyradicals can be effectively evaluated by fragmenting
it into smaller radical systems to take care of the most relevant
spin−spin interactions.
Next, we have focused on the magnetic exchange coupling

constants for the polyradicals using MIM2 and compared with
the full high-level results. The exact wave functions that are
eigenfunctions of S2 of different spin states are multiconfigura-
tional and cannot be calculated within the DFT framework.
Hence, we adopt the broken symmetry strategy applied for
three-iron clusters by Noodleman et al.100 The attainment of
the desired BS state is confirmed from the spin density plots, as
shown in Figure 8. The approximate models applied for the
calculation of coupling constants are depicted in Figure 9 and

Figure 7. Energy deviation (ΔE) of MIM2[B3LYP-D3BJ/6-311+
+G(d,p):B3LYP-D3BJ/6-31G(d)] from the full, high level, calcu-
lation using dimer and trimer subsystems for polyradicals 1−5 at each
applicable spin state. Tetramer subsystems were also employed for
polyradical 5, as discussed in the text.

Figure 8. Spin density plots of high-spin (HS) and different broken symmetry (BS) states of polyradical 2. The isovalue of density is 0.005 units.

Figure 9. Approximate models applied for calculating intersite
coupling constants of the (a) triradical and (b) tetraradicals.
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they are determined as shown in the Supporting Information,
Section 1.101,102 The resulting J′s can be used to form the
parametrized spin Hamiltonian and the estimates of the pure
spin states are carried out by diagonalization of the
Hamiltonian. As in the previous cases, in the case of
polyradicals 1−4, the error in energy with trimer subsystems
is lower than with dimers in all spin states, except for BS1 of
polyradical 1; hence, we have used the trimer results for
estimation of coupling constants. For polyradical 5, results
obtained with tetramer subsystems are used. Results along with
the values corresponding to vertical coupling constants are
shown in Table 2. The individual nature of coupling

(ferromagnetic or antiferromagnetic) matches between full
high level and MIM calculations, except for J′ of 1. The MAE
in ΔJ and ΔJ′ between full and MIM calculations is 0.06 and
0.11 kcal mol−1, respectively, for polyradical 2 to 5. The |ΔE| in
BS2 of polyradical 2 (Figure 7b) is larger than for other spin
states, leading to a larger deviation in J′ of 2 between full and
MIM calculations. In the majority of cases, the calculated
coupling constant from MIM is in excellent agreement (less
than 0.1 kcal mol−1 in 7 out of the 11 total coupling constants)
with that of the full high-level calculation.
Next, we have compared the available experimental findings

of the polyradical with our calculated ones. For polyradical 1,
the energy gap between quartet and lowest excited doublet
state is ΔEDQ ≈ 0.5 kcal mol−1.86 This energy gap was
calculated assuming isotropic exchange interaction and
neglecting the intramolecular coupling between the terminal
radicals, so the spin Hamiltonian takes the form of −2J(S1S2 +
S2S3) and the eigenvalues of this Hamiltonian are E1 = 2J (S =
1/2), E2 = 0 (S = 1/2) and E3 = −J (S = 3/2). For polyradical
1, the calculated ΔEDQ = 0.45 kcal mol−1 at the high level and
ΔEDQ = 1.02 kcal mol−1 with MIM2 using trimer subsystems
obtained from diagonalizing the Hamiltonian, as represented in
Table S8. The high-level calculation is in very good agreement
with the experimental value of ΔEDQ ≈ 0.5 kcal mol−1.86 It is
clear from Table S8 that the energy levels corresponding to
various spin states are very closely spaced in polyradical 1. The
larger error in BS1 resulted in a different ordering of the spin
states of 1 when considering MIM2 results. In the case of
polyradicals 2−4, the order of stability is Smax > Smax − 2 > Smax
− 1 > Smax − 1 > Smax − 2. It is clear from Table 2 that in the
ground state of polyradicals 2 to 5, the radical centers are
ferromagnetically coupled and the overall magnetic inter-
actions decrease with the increase of radical branches and the
increase in aryl substitution decreases the energy gap between
the different spin states. For tetraradical 3, the most stable
ground state corresponds to S = 2 with the lowest energy gap
∼2.5 kcal mol−1. This result agrees well with the electron

paramagnetic resonance spectroscopic study that has shown
that tetraradical 3 possesses an S = 2 ground state and that the
energy gap between high-spin and low-spin states is much
greater than thermal energy.98 For polyradical 5, we have not
considered the coupling between the macrocyclic core and the
radical centers on the branches as these centers are far away
enough to be considered noninteracting and would lead to
considering unnecessary states, thus muddying the analysis.
The calculated order of stability is Smax > Smax − 1 > Smax − 1 >
Smax − 2 > Smax − 2. The detailed calculation is shown in
Supporting Information Section 1. The ΔE between the energy
levels of spin pure states calculated from full and MIM
calculations is less than 1 kcal mol−1 for all excited states of
polyradical 5.

4. CONCLUSIONS
In this study, we have applied our multilayer Molecules-in-
Molecules (MIM) fragmentation-based method to the
calculation of the total energies, energy gaps, and coupling
constants of open-shell organic molecules within the frame-
work of the BS-DFT methodology. We have calibrated the
performance of the MIM method using B3LYP-D3BJ and
CAM-B3LYP with the 6-311++G(d,p) basis set as the high
level and the 6-31G(d) basis set as the low level. The ⟨S2⟩
value obtained from the low-level calculation was used for the
calculation of the magnetic exchange coupling constant (J) for
diradicals. For polyradicals, the intersite coupling constant has
been evaluated from relevant broken symmetry state
calculations. Finally, the energy of the spin pure states for
large polyradicals has been calculated by diagonalizing the
parametrized Hamiltonian. The energy difference between the
spin pure states obtained from full and MIM2 calculations is
less 1 kcal mol−1 in the majority of cases and in excellent
agreement with experimental findings. These analyses suggest
that the MIM fragmentation method can be used to study large
polyradicals with several radical centers not only to obtain
absolute energies but coupling constants and energy gaps as
well.
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Table 2. Calculated Vertical Coupling Constants of the
Studied Polyradicalsa

J J′ J″

full-high MIM2 full-high MIM2 full-high MIM2 ΔE0
1 −0.004 −0.54 0.43 −0.10 0.48 1.02 0.59
2 3.20 3.28 −0.16 −0.60 −0.04
3 1.39 1.35 −0.07 −0.07 0.16
4 1.45 1.40 −0.08 −0.07 −0.09
5 0.23 0.16 0.30 0.30 0.59

aJ and J′ are defined in Figure 9. The detailed calculation of J and J′ is
presented in the Supporting Information. All values are in kcal mol−1.
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