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ABSTRACT: Accurate prediction of protein−ligand binding affinities and
their quantitative decomposition into residue-specific contributions
represent challenging problems in drug discovery. While quantum
mechanical (QM) methods can provide an accurate description of such
interactions, the associated computational cost is normally prohibitive for
broad-based applications. Recently, we have shown that QM-based
protein−ligand interaction energies in the gas phase can be determined
accurately using our multilayer molecules-in-molecules (MIM) fragmenta-
tion-based method at a significantly lower computational cost. In this paper,
we present a new approach for calculating protein−ligand interactions using
our three-layer model (MIM3) that allows us to decompose the total
binding affinity into quantitative contributions from individual residues (or
backbone and side chain), crystal water molecules, solvation energy, and
entropy. In our approach, the desolvation energy and entropy changes during protein−ligand binding are modeled using simple
and inexpensive empirical models while intermolecular interactions are computed using an accurate QM method. The
performance of our approach has been assessed on a congeneric series of 22 thrombin inhibitors, all with experimentally known
binding affinities, using a binding pocket cutout of 120 residues with more than 1550 atoms. Comparison of our MIM3-
calculated binding affinities calculated at the B97-D3BJ/6-311++G(2d,2p) level with experiment shows a good correlation with
an R2 range of 0.81−0.88 and a Spearman rank correlation coefficient (ρ) range of 0.84−0.89 while providing a quantitative
description of residue-specific interactions. We show that such residue-specific interaction energies can be employed to identify
and rationalize both obvious (e.g., hydrogen bonds, π···π) and nonobvious (e.g., CH···π) interactions that play a critical role in
protein−ligand binding. We suggest that such quantitative information can be used to identify the key residues that determine
the comparative binding affinities of different ligands in order to improve and optimize the effectiveness of computational drug
design.

1. INTRODUCTION

Molecular recognition is an important aspect of drug discovery
that occurs through collective contributions from several key
factors, viz., the binding interaction between a ligand and a
receptor, solvation/desolvation processes, dynamic vibrational
and conformational changes, etc.1,2 An in-depth analysis of
these components leading to the formation of a stable
protein−ligand complex is therefore central to understanding
the drug binding process at the molecular level.3 Partitioning of
the observed protein−ligand binding energy into the individual
contributions from various parts of the receptor molecule,
solely from experimental analysis, is essentially impossible. In
this regard, computational methods can play an important role
in guiding the drug discovery process robustly and cost
effectively4,5 by using structural as well as energetic data on
protein−ligand binding.6 Thus, a full description and
quantification of the magnitude and significance of the
energetic contributions of the different components is crucial
for optimizing protein−ligand binding, and for effective drug
design.

A range of computational tools with different levels of
complexity and sophistication have been developed to facilitate
the drug discovery and development process.5,7−9 Most
computational methods estimate binding affinities based on
some energy function derived from statistical analysis (knowl-
edge-based scoring function or empirical scoring function) or
physics-based methods (e.g., molecular mechanics (MM) force
field).10,11 More rigorous approaches estimate the binding
affinities as averages of protein−ligand interaction energies
over a sample of configurations from molecular dynamics
(MD) or Monte Carlo (MC) simulations.12,13 These methods
are capable of providing intra- and intermolecular interaction
energies along with conformational sampling and solvation.
However, even with the high-resolution protein structures in
hand, it may be difficult to achieve high accuracy using MM-
based methods alone because the different electronic effects
such as electrostatics, polarization, charge transfer, and many-
body effects that play a pivotal role in protein−ligand binding
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are often quite difficult to accurately model via the MM
parameters.14,15

Quantum mechanical (QM) methods, on the other hand,
offer a realistic and reliable electronic level description of the
noncovalent interactions compared to the classical methods.
There has been a growing interest in using QM methods in
protein−ligand binding studies.9,16,17 In principle, QM
methods include all contributions to the protein−ligand
interaction energies and therefore are ideal for such studies.
However, the complete QM treatment of all components of
the ligand binding process with explicit treatment of the
protein and solvent conformations is still intractable. There-
fore, in practice, only the ligand and a small portion of protein
near ligand are usually treated with accurate QM methods
(such as in QM/MM or ONIOM approaches).
The computational cost associated with conventional QM

methods can be significantly reduced by using the linear scaling
fragmentation-based methods that have evolved rapidly in the
past few years.17−19 These methods have made QM
calculations of large protein−ligand complexes containing
more than 1000 atoms computationally tractable. In addition
to the calculation of total interaction energies, some of the
fragmentation-based methods also offer a further decom-
position of interaction energy into residue-specific interactions
to facilitate a more profound understanding of protein−ligand
interactions.20−27 So far, the fragmentation-based QM
calculations of protein−ligand binding energies are performed
using a few representative structures obtained from the crystal
structures, docking, MD simulations, or structure minimiza-
tion.9 Though such approximations based on a single structure
(or a few structures) may seem remarkably simple, several
studies have shown that they provide a reasonably good
quantitative description of the fundamental nonbonded
interactions responsible for protein−ligand binding.9 However,
it is important to note that there exist many systems where a
complete conformational sampling may be necessary to obtain
a good correlation with the experiment.
To help understand the protein−ligand interactions using

QM methods at a lower computational cost, we have
developed a multilayered, fragmentation-based method,
molecules-in-molecules (MIM).28−30 In MIM, the full
molecule is divided into smaller overlapping subsystems, and
independent QM calculations are performed on them. The
energy contributions from all subsystems are combined to
obtain the total energy of the full system. In our recent study,31

we showed that our MIM method is capable of providing
protein−ligand interaction energies at a substantially lower
computational cost compared to the traditional quantum
mechanical approach. Using a wide range of protein−ligand
complexes, and the single-structure approximation, we
calculated interaction energies for seven different data sets,
each consisting of 7−18 structurally similar protein−ligand
complexes. In particular, we derived a simple and broadly
applicable computational protocol to obtain a good correlation
(Spearman rank correlation (ρ) = 0.83−0.94; R2 = 0.74−0.93)
between the calculated interaction energies and their
experimentally derived binding affinities. We showed that
this protocol is appropriate to investigate a set of structurally
similar ligands bound to the same receptor.
In this study, we present a new approach to studying the

protein−ligand interactions using our multilayered MIM
method. In this protocol, the total protein−ligand interaction
energy calculated using MIM is partitioned into the

contributions from individual amino acid residues (or
separately from backbones and side chains), crystal water
molecules, ligand desolvation energy, and the entropic changes.
The desolvation energy and entropy changes during the
protein−ligand binding are modeled using simple and
inexpensive empirical models, while intermolecular interac-
tions are computed using an accurate QM method. These data
are essential to identify the residues that play an essential role
in the ligand binding process so that refinements could be
made to improve the effectiveness of new drug design. To
demonstrate the application of our protocol, we investigate a
set of 22 structurally similar D-phenyl-proline-based (D-Phe-
Pro) thrombin inhibitors.32 These inhibitors are selected
mainly for two reasons: First, high-quality experimental
binding affinities are available for these compounds so that
the calculated trends can be directly compared. Second, the
ligand modifications are relatively minor; thereby the modified
ligands are structurally similar to the native, cocrystallized
ligand. This helps to simplify the analysis and to validate the
MIM-calculated binding affinities, and allows a fairly rigorous
comparison.
In this work, the binding energies have been calculated using

a single, energy-minimized structure of the protein−ligand
complex obtained from the X-ray crystal structure or docking
with a new protocol. As shown in our previous study, this is a
reasonable approximation to estimate the relative binding
affinity trends (or ranking) of structurally similar ligands,
thereby avoiding the high computational cost associated with
the protein conformational sampling.31 The correlation
between the three-layered MIM method (MIM3) calculated
interaction energies and the experimental binding affinities has
been analyzed, and the role of different energy components in
determining protein−ligand binding is discussed. The results
show that our new protocol provides a comprehensive
quantitative description of the interaction energy profiles of
the residues present in the ligand binding pocket. Furthermore,
a comparative difference energy analysis has been performed to
show that the residues responsible for an experimentally
observed binding affinity change between pairs of ligands can
be identified, and their contributions quantified.

2. METHOD
2.1. Structure Preparation. In this study, we perform a

comparative analysis of the protein−ligand binding energies for
a set of 22 congeneric D-phenyl-proline-based (D-Ph-Pro)
inhibitors bound to serine protease thrombin, a key enzyme
involved in blood coagulation and platelet aggregation.32 The
binding pocket with a cocrystallized ligand is shown in Figure 1
along with the complete set of ligands considered in this study.
The inhibitors differ only in the substituents on the phenyl
moiety portion of the ligand binding in the S1 pocket of the
enzyme. Despite the high structural similarities among the
ligands, the observed significant differences in the associated
binding affinities (range −4.1 to −11.5 kcal/mol) make it an
interesting system for a quantum mechanical investigation.
A well-resolved X-ray crystal structure with a cocrystallized

ligand (PDB ID 2ZFF; resolution 1.47 Å) was used to prepare
the set of protein−ligand complexes. The cocrystallized ligand
(1m) was modified to obtain the rest of the ligands in the set
using a systematic protocol. To ensure that all important
interactions are preserved during the ligand modification, the
modified ligands were aligned with the cocrystallized ligand
using the flexible alignment module as implemented in the
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Molecular Operating Environment (MOE) program (version
2018.01).33 Missing hydrogen atoms in the crystal structure
were added with the Protonate3D34 tool as implemented in
MOE at a neutral pH 7. The incidental crystal water,
HOH3098, present in the S1 pocket, near the meta-position
of the phenyl moiety of the cocrystallized ligand, was removed
before performing the ligand modifications. This was necessary
because the modification of the ligand by any atom/group
(other than the hydrogen atom of the cocrystallized ligand)
results in an unfavorable overlap with HOH3098, indicating
that the water molecule would get pushed out from the S1
pocket upon substitution at the meta-position of the phenyl
ring. Each protein−ligand complex was minimized in MOE
with the AMBER10:EHT force field,35 using a generalized
Born/volume integral implicit solvation model with an internal
dielectric constant of 2 for the binding pocket and an external
dielectric constant of 80. The minimization was performed
under a 0.5 Å restraint for every atom with respect to the
starting structure. All the charged residues such as lysine,
asparagine, glutamate, and aspartate were neutralized by
adding/removing protons to better match the stabilization
trends observed in the solution. Since the interaction energy
calculations are performed in the gas phase, neutralizing the
charged residues is necessary due to the substantial over-
estimation of the electrostatic interactions in the gas phase. We
have shown in our previous study (and also here) that this is

an appropriate approximation for calculating protein−ligand
interaction energy calculation in the gas phase correlating well
with the corresponding experimental binding affinities. The
information about the neutralized residues is listed in the
Supporting Information. For the QM calculations, all residues
along with the crystal water molecules within 11.0 Å of the
ligand were selected. The selected regions were then extended
to include the full residues at the boundary, which makes the
effective radius to be more than 13.0 Å from the ligand. The
final QM region includes a total 1560−1575 atoms with 92
amino acid residues, 28 crystal water molecules, and the ligand
being considered.

2.2. MIM Method. In this work, we present a new
approach to study the protein−ligand interactions using our
recently developed multilayered, molecules-in-molecules
(MIM) fragmentation-based method. Multilayered MIM is
capable of providing protein−ligand interaction energies at a
substantially lower computational cost compared to traditional
quantum mechanical approaches. We have used the three-
layered MIM method (MIM3) with high, middle, and low
layers to estimate the total interaction energy. To obtain the
initial nonoverlapping “monomer” fragments, the receptor
molecule is divided by cutting the C−Cα and Cα−Cβ bonds, as
shown in Figure 2. In this scheme, each amino acid residue is
divided into two monomers, containing the backbone atoms
(HC(O)NHCH3) and the side chain, respectively.
Depending upon the size, the ligand can also be divided into

Figure 1. (a) Active site of the thrombin receptor with a
cocrystallized ligand. The receptor cavity is shown as a light-pink
surface, and the carbon atoms in the ligand are shown in green and
pink colors. The phenyl moiety of the ligand present in S1 pocket is
shown in pink color. (b) Structures of 22 inhibitors used in this study.

Figure 2. (a) Illustration of the fragmentation scheme used in the
MIM3 calculation. Scissors across the bonds denote the bonds being
broken during MIM fragmentation. Side-chain atoms of the amino
acid residues are shown in orange, backbone atoms are shown in
alternating pink and green colors, and the fragment with a disulfide
bond is shown in yellow. (b) and (c) are examples of high and middle
layer fragments, respectively.
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multiple nonoverlapping monomers. This fragmentation
scheme is slightly different from our previous approaches
where every single, non-hydrogen, bond was cut. However, the
new scheme is convenient to obtain residue-specific interaction
energies (vide infra), one of the main objectives of this study.
Since the peptide bonds between the amino acid residues have
partial double bond character and therefore are not broken
during the MIM fragmentation, the definition of amino acid
residue is slightly different, i.e.

compared to the conventional structure, i.e.

In the high layer of MIM3, the primary subsystems are formed
by pairing the ligand with each of the nonoverlapping residue
monomers as well as the crystal water molecules. In the middle
layer, subsystems are obtained using a distance-based
fragmentation with a cutoff radius of 3.5 Å. All the monomers
within the specified cutoff distance are combined to form a
subsystem. The full molecule is used in the low layer. From the
overlaps between the primary subsystems, derivative sub-
systems are obtained, and the energy is summed according to
the inclusion−exclusion principle. Each dangling bond in the
subsystems is capped with a hydrogen atom. The three levels
of theory used in MIM3 are B97-D3BJ/6-311++G(2d,2p) as
the “high” level, B97-D3BJ/6-31+G(d) as the “medium” level,
and PM6-D336 as the “low” level. The interaction energies
calculated in each layer are summed up using the following
equation to obtain the total interaction energy at the target
B97-D3BJ/6-311++G(2d,2p) level of theory [i.e., the B9737,38

functional with Grimme’s D3 dispersion correction39 and
Becke−Johnson damping,40 and 6-311++G(2d,2p)41−44 basis
set]:

E E E

E E E

(

) ( )

r r

r r R

MIM3
interaction

high
interaction,

med
interaction,

med
interaction,

low
interaction,

low
interaction,

Δ = Δ − Δ

− Δ − Δ − Δ′ ′
(1)

where r, r′, and R with (r < r′ ≪ R) are symbolic
representations of the relative subsystem sizes; ΔEhighinteraction,r

and ΔEmed
interaction,r are the sum of the ligand−residue pairwise

interaction energies calculated at the high and medium levels
of theory, respectively, using the high layer fragmentation
scheme; ΔEmed

interaction,r′ and ΔElowinteraction,r′ are the total interaction
energies calculated at the medium and low levels of theory,
respectively, using the distance-based middle layer fragmenta-
tion scheme; and ΔElow

interaction,R is the interaction energy of the
full molecule calculated at the low level of theory.
The total protein−ligand interaction energy as computed

above can now be broken down into residue-specific
interactions at the high level of theory. Since high layer
calculations are already available for ligand-residue (monomer)
pairwise interactions, their sum yields the total residue-specific
interactions at the high level of theory.

E Er

k

N
k

high
interaction,

high∑Δ = Δ
(2)

Here N is the number of primary subsystems (i.e., ligand−
residue pairs) formed in the high layer, which increases linearly
with the system size, and ΔEhigh

k is the interaction energy of the
kth primary subsystem. However, since the pairwise interaction
energies calculated in the high layer will be nonadditive (i.e.,

will not add up to the total MIM3 interaction energy) due to
the missing many-body effects, we use a single uniform scaling
factor to correct the per-residue interactions. This factor is
obtained from the ratio of total interaction energy calculated
using MIM3 and the sum of the per-residue interaction
energies calculated at the high layer.

E
E

scaling factor ( ) r
MIM3
interaction

high
interaction,α = Δ

Δ (3)

The corrected high-layer interaction energy and the scaled
per-residue interaction energies are

E E E( )r r

k

N
k

high
interaction,

corrected high
interaction,

high∑α αΔ = Δ = Δ
(4)

Since there is a possibility of having spatial variability in the
polarization due to the nearby groups, it is possible that the use
of a single uniform scaling factor per individual fragment
derived from eq 3 may not appear to be the ideal solution.
More importantly, this could be a potential problem in the case
of charged residues where the polarization effects are
significantly larger. However, since our study only deals with
the neutral residues, such an issue is expected to be minimal
and therefore should not affect the interpretation comparative
study of residue-specific interactions. To assess the validity of
our choice of using the uniform scaling factor per ligand, we
performed test calculations by systematically increasing the
fragment size from one residue (backbone + side chain) to
two, four, and five residues per subsystem and computed the
difference in interaction energy as a function of the size of the
subsystems (see the Supporting Information for details). As
expected, the difference is calculated to be relatively small (<|
±1.3| kcal/mol). To make sure that this does not result any
bias in the residue-specific interaction energy analysis, we also
performed the subsystem-specific difference energy analysis on
selected ligand pairs using the interaction energy calculated for
larger vs smaller subsystems (see Results and Discussion for
the details about the MIM difference energy analysis). Analysis
showed that the fragment-specific difference in interaction
energy remains reasonably small (largest error < |±0.30| kcal/
mol). More importantly, the subsystems (or the residues) that
contribute significantly to the calculated binding energy change
for a pair of ligands are correctly identified even when smaller
subsystems were used to calculate residue-specific interactions.
This demonstrates that the use of a single scaling factor is
correctly justified within our current protocol to study the
relative strength of residue-specific interactions of structurally
similar ligands. Furthermore, since the residue-specific pairwise
interaction energies are already available from the MIM3
calculation, no additional calculations are required to perform.
In addition to the gas-phase interaction energies, we have

also included the contributions from desolvation energy and
entropy (−TΔS) in the interaction energy calculations. The
desolvation energy for protein−ligand binding is approximated
using the solvation energy of the ligand and a scaling factor
obtained from the solvent accessible surface area (SASA)
calculations, as described in our previous work.31 The solvation
energies of ligands in aqueous solution are calculated using the
B97-D3/6-311++G(2d,2p) method and the SMD45 implicit
solvation model. The entropic contribution (−TΔS) to the
total interaction energy is calculated from an empirical model
based on the atomic solvent accessible surface (SAS) area and
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buried solvent accessible surface (BSAS) area, developed by
Wang and co-workers (see the Supporting Information for
more details).46 Their method is shown to accurately
reproduce the quantum mechanical TS for small molecules
as well as the −TΔS of protein−ligand binding compared to
the MM normal-mode analysis (NMA). All the electronic
structure calculations were performed using the Gaussian 16
program suite47 and our in-house MIM external package.

3. RESULTS AND DISCUSSION

3.1. Correlation with Experiments. We have calculated
the interaction energies of 22 thrombin inhibitors using the
MIM3 method at the B97-D3BJ/6-311++G(2d,2p) level of
theory and compared the results with the corresponding
experimental binding affinities. Table 1 shows the various

components of protein−ligand binding energies calculated in
this study.
Figure 3 visualizes the correlation between the calculated

interaction energies and the experimental binding affinities. As
can be seen in Table 1, the total binding free energies are the
sum of large individual contributions, some with opposite
signs, which can be analyzed separately. The calculated gas
phase interaction energies range from −80.8 to −112.5 kcal/
mol, which are about an order of magnitude larger than the
experimental binding affinities. Despite this overestimation, a
very good correlation of R2 = 0.81 is obtained between the
experimental binding affinities and the gas phase interaction
energies (Figure 3), indicating that the gas phase interaction
energies reflect the trends in the observed binding affinities
reasonably well. This observation is somewhat expected since

Table 1. Experimental Binding Energy (ΔGbinding) and Calculated Interaction Energies of 22 Thrombin Inhibitors at B97-
D3BJ/6-311++G(2d,2p) Level of Theorya

ligand ΔGbinding(expt) ΔEgas
interaction ΔEligand

desolv −TΔS ΔEgas
interaction + ΔEliganddesolv ΔEgas

interaction + ΔEligand
desolv − TΔS

1a −7.36 −87.16 14.72 24.07 −72.44 −48.37
1b −9.20 −92.97 14.66 24.79 −78.31 −53.52
1c −8.53 −94.33 15.17 25.44 −79.16 −53.72
1d −6.58 −84.86 13.66 26.04 −71.21 −45.17
1e −7.25 −90.18 15.30 24.50 −74.88 −50.38
1f −7.24 −88.89 17.76 23.69 −71.12 −47.43
1g −6.59 −93.32 17.74 24.00 −75.58 −51.58
1h −6.90 −91.67 16.06 24.97 −75.61 −50.64
1i −8.07 −89.78 14.59 24.30 −75.19 −50.89
1j −7.21 −88.21 14.36 25.05 −73.85 −48.80
1k −5.09 −82.71 14.25 25.48 −68.46 −42.98
1l −4.09 −80.84 13.97 26.30 −66.87 −40.57
1m −6.75 −85.37 14.93 23.17 −70.44 −47.27
1n −9.85 −97.30 14.81 25.68 −82.50 −56.82
1o −8.98 −95.27 14.08 25.43 −81.20 −55.77
1p −8.96 −97.55 15.90 26.06 −81.65 −55.59
1q −8.68 −96.14 18.48 25.11 −77.66 −52.55
1r −8.60 −94.73 15.09 25.21 −79.63 −54.42
1s −7.58 −92.33 13.92 24.95 −78.41 −53.46
1t −7.96 −90.52 15.23 24.09 −75.29 −51.20
1u −7.36 −91.01 14.75 24.72 −76.26 −51.54
1v −11.46 −112.51 20.81 25.03 −91.69 −66.66

aAll energy values are given in kcal/mol.

Figure 3. Correlation between the experimental binding energy (ΔGbinding) and (a) gas-phase interaction energy (ΔEgasinteraction), (b) sum of the gas
phase interaction energy and the ligand desolvation energy (ΔEgasinteraction + ΔEliganddesolv), and (c) sum of the gas phase interaction energy, the ligand
desolvation energy, and the entropy of binding (ΔEgas

interaction + ΔEligand
desolv − TΔS). Black diagonal lines are the lines of best fit. ρ is the Spearman rank

correlation.
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the modifications made in the ligand are relatively small and
possess similar rigidity compared to the cocrystallized ligand.
The addition of the ligand desolvation energy lowers the

total interaction energy by 13−21 kcal/mol. The variation in
the desolvation energies among the alkyl- and halogen-
substituted ligands is relatively small (a spread of 1.6 kcal/
mol) compared to their experimental binding free energies. On
the other hand, the ligands substituted with −OH, −OMe,
−NO2, or −NH2 group show a more substantial desolvation
energy penalty upon binding (larger by 5−8 kcal/mol)
compared to the unsubstituted ligand. The inclusion of the
ligand desolvation energy (ΔEliganddesolv) in the interaction energy
calculation improves the correlation coefficient (R2) from 0.81
to 0.86. This indicates that the protein−ligand (P−L) binding,
to some extent, correlates with the differential ligand
desolvation penalty of binding; however, it is not the only
factor to dictate the overall protein−ligand binding. The
entropy contributions lie between +23.2 and +26.3 kcal/mol
and do not fluctuate as strongly. Not surprisingly, a good
correlation (R2 = 0.88) is maintained when the −TΔS of
binding is added to the total interaction energy. However,
those contributions are still important for lowering the
absolute binding energy toward the experiment, though there
is still a significant gap between the two. It is important to note
that, even with the ligand desolvation energy and entropy of
binding included, the calculated values are still significantly
larger compared to the experimental binding energies possibly
due to the missing large contribution from the protein
desolvation energy, and other effects such as ligand and
protein reorganization upon binding. A good correlation
obtained between the calculated values and the experiment
suggests that those effects are somewhat systematic for the
structurally similar ligands used in this study. However, a
proper treatment of those contributions is required to obtain
the accurate absolute energy of protein−ligand binding.
The correlation of the calculated total interaction energies

with the experiment can also be analyzed as a function of the
cutoff radius. Figure 4 shows the average cumulative

interaction energy versus increasing shortest cutoff radius (or
contact distance) between the residues and the ligand. The
shortest contact radius indicates that only the residues within
that distance contribute to the calculated total interaction
energy. The initial convergence of the interaction energy is
relatively rapid; about 95% of the total interaction energy is
already captured from the contributions from residues within
5.0 Å of the ligand. This observation is similar to a previous
study of HIV-II protease complex, investigated with the
functional group symmetry-adapted perturbation theory (F-
SAPT).27 Interestingly, the correlation coefficient (R2) also
converges significantly fast. At the closest contact radius of 4.0
Å, R2 reaches close to the optimum value of 0.81
corresponding to the full molecule and remains similar
afterward. This observation indicates that including residues
within 5−6 Å of the ligand is sufficient to capture the most
significant portion of protein−ligand interactions to estimate
the relative binding trends.

3.2. Residue-Specific Energy Decomposition Anal-
ysis. In addition to the calculation of the total interaction
energy of binding, the MIM method can provide a better
description of the noncovalent interactions in terms of per-
residue interaction energies. In this approach, the MIM3 total
interaction energy is partitioned into the contributions from
individual amino acid residues allowing the quantification of
their interaction energy contributions. This information is
essential while designing a new drug since it helps to identify
key residues essential for ligand binding and also allows for
each interaction to be tuned and analyzed.
Figure 5 illustrates the residue-specific interaction energy

partitioning for the ligand 1n. All atoms of each amino acid
residue are colored according to their contribution to the total
interaction. The quantitative breakdown of the total interaction
energy into per-residue contributions is also given. A similar
partitioning of the interaction energies for other thrombin
inhibitors is given in Figures S3−S24. Such residue-specific
information makes it easy to identify the key residues that
contribute significantly to the total interaction. The decom-
position analysis shows that there are at least 15 significantly
favorable (the magnitude of ΔEper‑residue greater than 2.0 kcal/
mol) interactions. Some of the key residues that contribute
significantly across all the considered ligands include Trp215
(−15.9 to −18.8 kcal/mol), Gly216 (−7.2 to −12.6 kcal/mol),
HOH3160 (−8.3 to −9.4 kcal/mol), Leu99 (−5.6 to −6.0
kcal/mol), Trp60 (−4.0 to −4.6 kcal/mol), and Glu192 (−2.5
to −4.3 kcal/mol).
The residue-specific interaction energy contribution can be

further decomposed into the contribution from the backbone
(HC(O)NHCH3), side chain, disulfide (CH3−S−S−
CH3), and crystal water molecules (Tables S3−S24). For
example, the −15.9 to −18.8 kcal/mol interaction energy for
residue Trp215 comes from two major interactions with the
ligand: π−π stacking and a hydrogen bond. The π−π stacking
interaction between the indole side chain and the phenyl
moiety of ligand contributes in the range of −5.2 to −5.7 kcal/
mol depending upon substituent on the ligand. A strong C
O···HN hydrogen bonding between the peptide oxygen of
the tryptophan backbone and the H−N group of the ligand
contributes the remaining (−10.2 to −13.6 kcal/mol of the
ligand−Trp215 interaction energy. Similarly, a crystal water
molecule (HOH3160) bridging between CO and NH2
groups of the ligand forms two hydrogen bonds and
contributes −8.3 to −9.4 kcal/mol to the total interaction

Figure 4. Percentage of average interaction energy recovered
compared to the full molecule (red, triangles) and its correlation
with the experimental binding affinity (blue, circles) as a function of
the protein cutoff radius.
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Figure 5. Illustration of residue-specific energy decomposition analysis. Ligand atoms are shown in green color. All atoms in each amino acid
residue are colored based on the interaction energy contribution. (a) Ligand 1n complexed with thrombin receptor, (b) ligand and selected amino
acid residues, and (c) interaction energy contribution of some selected amino acid residues, more than |±0.2| kcal/mol.

Figure 6. Interaction map for some of the key residues (x-axis). Ligands on the y-axis are ordered based on their experimental binding affinities.
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energy. The contribution from other amino acid residues can
also be analyzed in a similar manner.
In many structure−activity relationship (SAR) studies, the

experimental binding affinities are analyzed based on the
geometrical features that appear in the crystallographic
structures. In favorable cases, the obvious changes in
protein−ligand interactions such as the presence or absence
of hydrogen bonding or π−π stacking interactions can be
qualitatively identified from a visual inspection. However, a
formal quantification of such changes and their contribution to
the total interaction for different ligands are, in general,
difficult to assess. The quantitative information provided by
MIM can be useful to rationalize both the obvious and
nonobvious changes in protein−ligand interactions. For
example, the nonclassical interactions such as the CH−π
interaction between the C−H of the proline moiety of the
ligand and the imidazole side chain of His57 (∼−3 kcal/mol),
the hydrophobic interaction between the side chain of Val213
and the phenyl moiety of the ligand (∼−1 kcal/mol), and the
π−π interaction between the backbone of Glu192 and the
phenyl group of the ligand (−2 to −4 kcal/mol), found in
many of the investigated thrombin inhibitors, contribute
significantly although these interactions are not easily apparent
by visual inspection (see Tables S3−S24 for the quantitative
details).
The residue-specific interactions can also be analyzed using

an interaction map and can be correlated with the structural
features. Figure 6 shows the heat map of the interaction energy

contributions from some of the important residues for all 22
ligands. Figure 6 highlights the residues with the significant as
well as smaller contributions to the total interaction energy.
Such an analysis becomes useful while identifying common
critical residues that appear across a series of ligands. For
example, columns that correspond to the residues Trp215,
Gly216, His57, Trp60, Tyr60, and HOH3160 appear
consistently in dark red, irrespective of the ligand, indicating
that these residues are critical for the binding of these D-Phe-
Pro-based thrombin inhibitors. On the other hand, the residue
Asp189 which has a modest contribution for all but one ligand
contributes significantly to the ligand 1v binding due to the
strong hydrogen bonding interaction that is unique to this
ligand. Similarly, repulsive interactions resulting from the
substitution of a hydrogen atom in the native ligand (ligand
1m) by bulkier groups such as −OMe, −isopropyl, or −tert-
butyl can also be seen in the heat map (shown in blue squares).

3.3. MIM Difference Energy Analysis (MIM-DEA). To
gather a more precise quantitative understanding of the
observed change in the experimentally measured ligand
dissociation constants across the various ligands, we performed
the MIM difference energy analysis (MIM-DEA). In the MIM-
DEA, the change in the total interaction energy for a pair of
ligands (ΔΔEinteraction) due to a structural modification is
obtained by taking the difference in the energy contributions
from individual residues (ΔΔEgas

interaction), from solvation
(ΔΔEdesolv), and from the entropy (−TΔΔS). The interaction
energy difference between two ligands A and B is calculated as

Figure 7.MIM difference energy analysis (MIM-DEA) results for ligands 1b and 1m at B97-D3/6-311++G(2d,2p) level of theory. (a) ΔΔEinteraction
mapped to the thrombin S1 pocket complex geometry. All atoms in each amino acid residue are colored based on the interaction energy
contribution. (b) Quantitative ΔΔEinteraction data for residues contributing more than |±0.2| kcal/mol. (c) ΔΔEinteraction contribution from residue
backbone only. (d) ΔΔEinteraction contribution from residue side chain only.
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E E E T SB A
interaction

B A,gas
interaction

B A
desolv

B AΔΔ = ΔΔ + ΔΔ − ΔΔ→ → → →
(5)

where

E E E( )
k

N
k k

B A,gas
interaction

B A gas∑ΔΔ = Δ − Δ→
(6)

E E EB A
desolv

B
desolv

A
desolvΔΔ = Δ − Δ→ (7)

T S T S S( )B A B A− ΔΔ = − Δ − Δ→ (8)

In the equations above, N is the total number of ligand−
residue pairs, ΔEk is the interaction energy of the kth ligand−
residue pair, ΔEdesolv is the desolvation energy, and ΔS is the
entropy of binding for each of the ligands.
The difference interaction energy calculation allows

identifying the residues that contribute significantly to the
observed differences in the experimental binding affinities of
the two ligands. To demonstrate this premise, we compared
the interaction of a pair of thrombin inhibitors with a small
difference in structure but a significant change in binding
affinity: H-substituted versus Cl-substituted ligands (1m vs 1b,
respectively) with a 62-fold change in the experimental binding
affinity.
The difference MIM interaction energy between the ligands

1b (with −Cl) and 1m (with −H) is presented in Figure 7.
Figure 7 demonstrates the change in interaction energies
(ΔΔEinteraction) when the −H group is replaced with a strong
electron withdrawing group, −Cl. MIM calculations show that
this substitution is energetically favorable (ΔΔEinteraction =
−7.60 kcal/mol). The enhancement in the binding energy of
the chloride-substituted ligand (1b) is primarily dominated by
a strongly favorable contribution from electronic energy
(ΔΔEinteraction = −7.60 kcal/mol), slightly favored in terms of
ligand desolvation energy (ΔΔEligand

desolv = −0.27 kcal/mol), but
disfavored in terms of the entropy (−TΔΔS = +1.62 kcal/
mol), resulting in a net favorable substitution (calculated
−6.25 kcal/mol; experimenatal −2.45 kcal/mol). Thirteen
residues surrounding the substituted phenyl moiety in the S1-
binding pocket are found to experience an appreciable change
in the pairwise interaction energy (with ΔΔEpairwise > |±0.20|
kcal/mol). The minor contributions (ranging from ±0.02 to
±0.20 kcal/mol) are found to extend up to 30 nearby amino
acid residues; however, their collective contribution is
relatively small (<|±0.20| kcal/mol). Among the significantly
contributing 13 residues, chloride substitution results in an
increase in favorable interaction for 11 residues, namely
Phe227, Trp215, Ser214, Ala190, Gly226, Val213, Cys220,
Glu217, HOH3009, Cys191, and His57. For two residues,
Asp189 and Gly216, the interaction energy is found to be
lowered by 0.44 and 1.26 kcal/mol upon the chloride
substitution. Interestingly, most of the interaction energy
change for the H- versus Cl-substitution is dominated by
backbone−ligand interactions (Figure 7b) relative to the
ligand−side-chain interaction (Figure 7c).
Overall, the comparative quantitative description of the

protein−ligand interaction discussed above demonstrates how
MIM can be useful to understand the change in the strength of
protein−ligand interactions due to chemical substitution.
Additionally, it shows that understanding noncovalent
interactions based on visual inspection may not always be
sufficient enough to identify the critical changes in the
underlying interactions for structurally similar ligands.

4. CONCLUSIONS

We have presented a large-scale application of our multilayer
MIM method to calculate protein−ligand interaction energies
of significantly large systems with over 1550 atoms and more
than 22 000 basis functions. A key goal of this study is to
demonstrate that our fragmentation-based MIM method can
be useful to understand the protein−ligand interactions which
will decrease the need for a trial-and-error approach while
adding to the toolbox of intelligent and informed drug design.
Using a test set of 22 structurally similar but chemically diverse
thrombin inhibitors, we demonstrated the capability of our
approach to provide total interaction energies along with the
partitioning of energy contribution from solvation, entropy,
and individual residue fragments. As in our previous work, a
good correlation has been obtained between the experimental
binding affinities and calculated interaction energies (R2 0.81−
0.88; ρ 0.84−0.89), though the calculated interaction energies
are higher by as much as 1 order of magnitude than the
experiment. The solvation energy contribution is found to
improve the correlation slightly (gas phase R2 = 0.81 vs gas
phase + solvation R2 = 0.86). Our calculations also show that
the entropic contribution does not vary by much for a set of
structurally similar ligands (usually the case in a lead
optimization process); however, its contribution is necessary
to lower the gap between theoretical and experimental binding
energies. We also show that, in order to obtain the accurate
absolute binding energies that are comparable to the
experiments, it is necessary to include the contributions from
other components of protein−ligand binding including the
proper treatment of protein desolvation. Analysis of the
distance-dependent contribution to the MIM3 total interaction
energy revealed that the initial convergence of the interaction
energy is quite rapid. Residues within ∼5.0 Å of closest contact
contribute about 95% of the total interaction energy.
Interestingly, the change in the correlation coefficient remains
minimal after 4.5 Å, suggesting that the closest contact radius
of 5.0−6.0 Å between ligand and residues is sufficient to obtain
a good correlation. However, the contributions from residues
farther away are necessary to calculate the absolute binding
energy reliably.
The residue-specific energy decomposition analysis greatly

enabled us to identify critical residues that contribute
significantly to the total interaction energy. The quantitative
information provided by MIM can be used to identify and
rationalize both the obvious (e.g., hydrogen bonds, π−π
interactions) and nonobvious (e.g., CH···π interactions) in the
protein−ligand binding. Analysis of the difference interaction
energy of a pair of ligands showed that residues responsible for
the observed enhancement in experimental binding affinity can
be quantitatively identified. Such information will be useful in
designing new ligands since the chemical-intuition-based
identification of noncovalent interactions may not always be
sufficient to estimate the extent of binding affinity change.
Overall, the quantitative description of the protein−ligand

interaction presented in this study demonstrates how MIM can
be useful to understand the change in the strength of protein−
ligand interactions upon chemical substitution. Although the
interaction energies calculated in the gas phase are highly
overestimated compared to the experimental binding affinities,
these energies nevertheless provide valuable information about
the relative binding strengths among different ligands. While
the method presented in this study can be further improved by
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introducing the conformational sampling and a better
description of solvation energy contributions, we believe that
our protocol is a promising tool to assist in structure-based
drug design.
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