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A B S T R A C T

With the development of vehicle-to-infrastructure and vehicle-to-vehicle technologies, vehicles
will be able to communicate with the controller at the intersection. Autonomous driving tech-
nology enables vehicles to follow the instructions sent from the controller precisely. Autonomous
intersection management considers each vehicle as an agent and coordinates vehicle trajectories
to resolve vehicle conflicts inside an intersection. This study proposes an autonomous intersec-
tion management algorithm called AIM-ped considering both vehicles and pedestrians which is
able to produce the total optimal throughput when combined with max pressure control. This
study analyzes the stability properties of the algorithm based on a simpler version of AIM-ped,
which is a conflict region model of the autonomous intersection management. To implement the
proposed algorithm in simulation, this study combines the max-pressure control with an existing
trajectory optimization algorithm to calculate optimal vehicle trajectories. Simulations are
conducted to test the effects of pedestrian demand on intersection efficiency. The simulation
results show that delays of pedestrians and vehicles are negatively correlated and the proposed
algorithm can adapt to the change in the pedestrian demand and activate vehicle movements
with conflicting trajectories.

1. Introduction

Intersections are important components of urban traffic networks. They connect vehicle and pedestrian flows between network
links and are also the main bottlenecks that contribute to most of the delays for vehicles and pedestrians. Consequently, intersection
control plays an important role in improving traffic efficiency, enhancing the road safety level, and mitigating traffic congestion.
Current intersection control is based on traffic signals. Vehicle movements in different directions are categorized into signal groups
and vehicles whose trajectories are not conflicting or partially conflicting with other vehicles are allowed to move in the same time
interval, which is called a phase. Fixed signal controls use different signal timing plans for multiple periods of a day based on
historical traffic data. Typically, intersection control gives a phase that includes vehicle movements with larger volumes longer
activation time. In contrast, adaptive signal controls use traffic data collected by detectors at the upstream or downstream of an
intersection to flexibly adjust the duration of predefined phases aiming to reduce vehicle delay at the intersection. There are some
widely used adaptive signal control system applied to a city-wide area, such as SCOOT (Bing and Carter, 1995), SCATS (Sims and
Dobinson, 1980), RHODES (Mirchandani and Head, 2001), OPAC (Gartner, 1983), and etc.

https://doi.org/10.1016/j.trc.2020.01.016
Received 9 July 2019; Received in revised form 13 December 2019; Accepted 21 January 2020

⁎ Corresponding author.
E-mail address: chen4416@umn.edu (R. Chen).

Transportation Research Part C 114 (2020) 463–483

0968-090X/ © 2020 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/0968090X
https://www.elsevier.com/locate/trc
https://doi.org/10.1016/j.trc.2020.01.016
https://doi.org/10.1016/j.trc.2020.01.016
mailto:chen4416@umn.edu
https://doi.org/10.1016/j.trc.2020.01.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trc.2020.01.016&domain=pdf


With the advances in vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communications, it is easier to collect real-time
traffic data for adjusting the signal or calculating the optimal control. There are studies that optimize phase-based intersection
controls (Priemer and Friedrich, 2009; He et al., 2012; Goodall et al., 2013; Feng et al., 2015). The phase order or the phase time of
the intersection signal is optimized with data collected by V2I and V2V devices and only vehicles that are not conflicting with each
other are allowed to move in a specific phase. As autonomous vehicle technology develops, vehicles can be precisely controlled by
computers. Some studies designed algorithms for vehicles to adjust their driving speeds or accelerations based on existing traffic
signals so that vehicles can pass the intersection smoothly and avoid stopping for the red light (Kamalanathsharma and Rakha, 2013;
Ma et al., 2017). Some other studies proposed signal-free intersection control algorithms to coordinate non-conflicting trajectories at
the intersection. Once vehicle trajectories are determined, vehicles can follow these assigned trajectories and avoid collisions without
the safety buffers of traffic signal phases. Autonomous intersection management (AIM), which was proposed by Dresner and Stone
(2004), is an intersection control mechanism in which all vehicles that approach an intersection send their information to the
controller at the intersection and follow its instructions.

Most AIM models do not consider pedestrian access for intersections. In the future, for a traffic network with autonomous
vehicles, pedestrians will still require intersection access due to the costs of constructing separate right-of-way for pedestrians (e.g.
tunnels or bridges). However, having pedestrians at an intersection controlled by AIM introduces a lot of unpredictable risks to the
intersection. An AIM-controlled intersection calculates the trajectories of approaching vehicles based on their position and speed
information and does not consider pedestrians so the calculated vehicle trajectories only service the condition when there is no
pedestrian crossing the street. To minimize the vehicle delay at the intersection, AIM models often leave small gaps between vehicles.
It is hard for pedestrians to find a safe gap for them to cross the street under the control of AIM as they typically cross with traffic
signal phases. The detectors on autonomous vehicles enable vehicles to react to jaywalking pedestrians, but the resulting unplanned
stop causes the temporary breakdown of the intersection traffic. Therefore, AIM needs significant modification to include pedestrian
movements.

In traditional phase-based intersection control, crosswalks are activated with signal phases which significantly reduce the number
of conflict points between the trajectories of pedestrians and vehicles. However, in AIM, phases that align with crosswalk activation
do not exist. This study incorporates pedestrians into intersection control by adding crosswalk activation to a reservation-based
algorithm. When one or multiple crosswalks are activated, vehicles whose trajectories do not intersect with the activated crosswalks
are allowed to move.

Activating crosswalks in AIM reduces the throughput of vehicles at the intersection because it blocks vehicles with conflicting
trajectories. However, using the conventional objective of AIM, which is to maximize the total throughput or reduce the total delay of
vehicles, the efficiency of pedestrians will not be carefully considered. It is also hard to determine the weights assigned to vehicles
and pedestrians respectively as there is a subtle trade-off between these two components. Therefore, we apply max-pressure control to
the intersection control, which is able to maximize the network throughput of the total combined vehicle and pedestrian flow.

Max-pressure control was originally used as a scheduling policy in communication and power networks (Tassiulas, 1992). Max-
pressure control defines weights and pressures of turning movements and uses a mathematical program to get the optimal control
strategy which maximizes the total weight of the intersection. Most intersection control algorithms do not have network-level
properties that max-pressure control algorithms have, including the stability of the total queue length. Besides, it is also a distributed
algorithm with the controller at each intersection in a network calculating the control strategy by itself. The max-pressure control
algorithm needs input data, normally the queue length, to calculate the weight of each turning movement, but pedestrians are not
connected to the intersection controller. Therefore, a model is needed to estimate the queue length of pedestrians at the intersection.

The contributions of this study are: (1) proposing a max-pressure policy based on the conflict region model of AIM to address
vehicles and the pedestrians at an intersection (2) designing a queue length estimation method for pedestrians. (3) proving the
proposed algorithm can achieve optimal throughput of the network. (4) integrating the max-pressure control with an existing AIM
algorithm. The new algorithm can calculate the optimal vehicle trajectory at the intersection under the max-pressure control. (5)
testing the effects of the pedestrian demand on the efficiency of vehicles using the conflict-point model of AIM.

This paper is organized as follows: Section 2 summarizes the relevant studies about AIM and max-pressure control. Section 3
introduces the network model used to represent the flow propagation on the network. Section 3.3 proposes the modified max-
pressure algorithm that integrates the pedestrian flow on the network. Section 3.4 formulates the stability region of the demand and
proves the stability properties of the control algorithm. Section 4 formulates a mixed-integer program that integrates an existing
trajectory planning algorithm with the max-pressure control. Section 5 presents the simulation experiment and simulation results.

2. Literature review

This section introduces the existing literature related to AIM and max-pressure control.

2.1. Autonomous intersection management

Autonomous intersection management (AIM) is a type of signal-free intersection control algorithm. Its application is based on V2I
or V2V technologies to transmit messages between the intersection controller and the approaching vehicles. AIM algorithms co-
ordinate vehicles with conflicting trajectories to avoid crashes. As AIM algorithms consider minimizing vehicle delays or vehicle gaps
as their objectives and allow vehicles with conflicting trajectories to move in the same time interval, they are more efficient than
traditional intersection controls, as highlighted by many studies in their simulations (Fajardo et al., 2011; Li et al., 2013; Kamal et al.,
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2015; Wu et al., 2015; Levin and Boyles, 2016; Fayazi et al., 2017).
Dresner and Stone (2004) considered an intersection with autonomous vehicles as a multi-agent system and proposed a re-

servation-based approach to coordinate the reservation of tiles at the intersection for vehicles. Initial studies focused on conflict-free
protocols for vehicle trajectory reservations (Dresner and Stone, 2006) with extensions to emergency vehicle and human vehicle
access (Dresner and Stone, 2007a,b). AIM was also used to manage inter-connected intersections in a network (Hausknecht et al.,
2011) or other types of intersections, such as roundabouts (Bento et al., 2012). The effects of AIM under the context of dynamic traffic
assignment was also explored (Zhu and Ukkusuri, 2015).

AIM was formulated with multiple models, such as linear programming (Jin et al., 2012), mixed-integer linear programming (Zhu
and Ukkusuri, 2015; Fayazi et al., 2017; Levin and Rey, 2017), mixed-integer nonlinear programming (Mirheli et al., 2019). There are
also studies formulated this problem in model predictive control framework (Kamal et al., 2013, 2015) or as a dynamic optimization
problem (De Campos et al., 2017; Wuthishuwong and Traechtler, 2013; Mirheli et al., 2018).

Different models of AIM provided different outputs. Some models calculated vehicle arrival times at conflict points or depart times
and exit times at the intersection (Jin et al., 2012; Levin and Rey, 2017), while some models gave the number of vehicles allowed to
move (Zhu and Ukkusuri, 2015). The objectives of these models included maximizing the total throughput (Fayazi et al., 2017; Levin
and Rey, 2017), minimizing total travel times (Jin et al., 2012), minimizing fuel consumption (Zhang et al., 2016), and minimizing
potential risk (Kamal et al., 2015).

AIM is originally designed for an intersection with all autonomous vehicles so that vehicles can follow the controller’s instruc-
tions. There are studies that consider AIM with human vehicles that are not equipped or partially equipped with V2V and V2I
communication facilities and do not have autonomous driving modules (Dresner and Stone, 2007b; Bento et al., 2013; Qian et al.,
2014; Levin and Boyles, 2016). As human drivers are subject to high control uncertainty, these studies considered the vehicle
dynamics of human vehicles and intersections used traffic lights to communicate with human vehicles. Due to the challenge of
incorporating human vehicles in AIM with max-pressure control, this study focuses on the case where all vehicles are autonomous
and can communicate with the intersection manager.

Existing studies of AIM optimized vehicle trajectories considering the traffic flow with all autonomous vehicles or a mixed-flow
with both autonomous and legacy vehicles under various objectives, but none of them consider pedestrians in their model. This study
is the first one that proposes an AIM algorithm with pedestrians. Furthermore, we go beyond adding a simple pedestrian phase to AIM
by allowing simultaneous activation of crosswalks and non-conflicting vehicle movements. Adding the crosswalk activation may
change the performance of the AIM, which is originally designed for improving vehicle efficiency. For example, the activation of
crosswalks may prevent the controller from activating conflicting vehicles.

2.2. Max-pressure control

In existing studies about the max-pressure control, there are different ways of defining the weight and the pressure for a
movement. The weight can be defined as the difference between queue lengths of an entry link and an exit link. The pressure of a
phase is the sum of the product of movement weights and movement capacities (Wongpiromsarn et al., 2012). The weight can also be
defined as the difference in its queue length and the average queue length of its downstream turning movements. The pressure of a
control plan was the product of the weights and the saturation flow rates of activated turning movements (Varaiya, 2013). There are
some variants of these two mainly used definitions. For example, Gregoire et al. (2014a) used aggregated link length to calculate the
weight of a turning movement thus obviating the need for turning ratios. Normalized pressures (Gregoire et al., 2014b) and position-
based weights (Li and Jabari, 2019) were also used to calculate the optimal control.

In most studies, a linear program is used to determine optimal control after the calculation of pressures. The optimal control is
created by using the phase with the largest total pressure and only turning movements included in this phase are allowed to move
(Wongpiromsarn et al., 2012; Varaiya, 2013; Gregoire et al., 2014a,b; Xiao et al., 2014; Lioris et al., 2016). To make sure all
interested phases were activated, Pumir et al. (2015) added a constraint to their linear program to set the minimum activation
duration. Another way to achieve this is by using fixed cycle time and assigned each of the predefined phases activation time
proportionally based on their weights (Le et al., 2015). This method can prevent the condition in which a turning movement with a
small queue length is forced to wait for a long time. In the calculation of the optimal control, Hsieh et al. (2017) incorporated the
switch-over delay in a max-pressure model, which caused the capacity loss when the traffic light switched between red and green. To
improve the practicality of the max-pressure control for mixed flow of autonomous vehicles and legacy vehicles, Rey and Levin
(2019) designed an intersection controller that could address both autonomous vehicles and legacy vehicles at an intersection with
dedicated lanes for autonomous vehicles. In Rey and Levin (2019)’s study, the autonomous and legacy vehicles were separated in
time by using two exclusive phases so these two types of vehicle were not allowed to move at the time. In this study, the activation of
crosswalks used by pedestrians and the activation of vehicle movements can be simultaneous.

Max-pressure control can achieve network-level queue length stability when the demand is in the stability region. Some studies
proved the stability of the control algorithm analytically under the assumption of infinite queue capacity (Varaiya, 2013; Le et al.,
2015; Hsieh et al., 2017) or finite queue capacity (Xiao et al., 2014). Some studies showed the queue length became stable using
simulation (Lioris et al., 2016). Existing studies proved the stability of queue length considering only vehicle queues, but this study
proves the network-level queue length stability considering both pedestrian and vehicle queues.

Max-pressure controls were proved to have higher efficiency than traditional signal control in many studies. Some studies showed
that the max-pressure control had better performance than the adaptive traffic signal control (Wongpiromsarn et al., 2012; Sun and
Yin, 2018), the fixed signal timing (Hsieh et al., 2017; Li and Jabari, 2019), the greedy policy by Lämmer and Helbing (2010) and the
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proportional policy by Smith (1980) (Le et al., 2015). Some studies showed cycle-based max-pressure policies outperformed the
traditional max-pressure policy (Le et al., 2015; Sun and Yin, 2018).

Both AIM algorithms and max-pressure control show better performances than the traditional signal control when solely used in
intersection control. When these two algorithms are integrated in this study, the AIM algorithm is able to prevent collision between
vehicles and coordinates the arrival times of vehicles while max-pressure control is able to achieve the optimal throughput for the
combined vehicle-pedestrian flow.

3. Network model

Consider a traffic network consisting of a road network for vehicles ( , )veh veh veh and a sidewalk network for pedestrians
( , )ped ped ped . These networks interact at intersections where crosswalks and vehicles can conflict. For both networks,

veh ped denotes the node set and veh ped denotes the link set. The link set can be classified into three subsets ,entry int,
and exit representing the entry, interval, and exiting links respectively. The entry link set includes links that bring vehicles or
pedestrians into the road network or the sidewalk network. The exiting link set includes links that take vehicles or pedestrians out of
the road network or the sidewalk network. In this study, it is assumed that every link has a free flow travel time of 1 time step, which
means the vehicle link and the pedestrian link may have different lengths if the vehicle and the pedestrians have different travel
speeds. A long link can be divided into several shorter links whose travel time is the free flow travel time. Let i and +

i be the sets of
incoming and outgoing links of link i or sidewalk i respectively. If link i is connected with crosswalk j, it can be represented as i j
or +i j .

In the vehicle network ( , )veh veh veh , a turning movement can be denoted by a pair of links i j( , ), which represents a turning
movement leaving link i and entering link j. Let be the set of all turning movements. The capacity of link i is denoted by Qi. The
capacity of turning movement i j( , ) is calculated by =Q Q Qmin{ , }ij i j . We assume an intersection is divided into several conflict
regions where trajectories of turning movements intersect with each other. Let be the set of all conflict regions at an intersection. ij
is the set of conflict regions on the trajectory of turning movement i j( , ). Let ij

c denote the relation between turning movement i j( , )
and conflict region c. If turning movement i j( , ) intersects with conflict region c, = 1ij

c . Otherwise, = 0ij
c .

The pedestrian network ( , )ped ped ped is consisted of the set of pedestrian nodes ped and the set of pedestrian links ped. The
pedestrian link set includes the sidewalk and the crosswalk. In Fig. 1, the pedestrian links in green are sidewalks, such as links
a b c d e f g, , , , , , , and h. If two sidewalks are directly connected, pedestrians do not need to wait when they walk from one to another.
For example, the sidewalk b is connected with sidewalk c and pedestrians at sidewalk b can walk to sidewalk c without stopping. The

Fig. 1. Pedestrian network.
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pedestrian links that intersect with vehicle links are crosswalks, such as links i j k, , , and m. Pedestrians need to wait for the activation
of a crosswalk to cross the street. For example, pedestrians at sidewalk b should wait at crosswalk k if they wants to go to sidewalk e
until the pedestrian signal turns green. Let denote the set of all crosswalks. A pair of adjacent pedestrian links can define a
pedestrian movement. A pedestrian movement whose direction is toward a crosswalk is restricted by the actuation of the crosswalk.
For example, pedestrian movement b k( , ) is restricted by the pedestrian signal on crosswalk k but b c( , ) is not.

Considering the interaction between crosswalks and vehicles, ij
m is used to indicate if the trajectory of turning movement i j( , )

intersects with crosswalk m. If they have an intercept, = 1ij
m , otherwise, = 0ij

m .

3.1. Queue evolution

To calculate the length of vehicle queue and pedestrian queue at every time step, the point queue model based on the store-and-
forward model in Varaiya (2013)’s paper study is used, as shown in Eqs. (1) and (2). z indicates the mode type is either vehicles or
pedestrians. If the link is an internal or exit link, then the queue evolution follows Eq. (1). In Eqs. (1), x t( )ij is the queue length of
vehicle movement i j( , ) or pedestrian movement i j( , ) at time t y t, ( )ij is the number of vehicles or pedestrians that exit the queue at
time t, and the last term is the total amount of flows that join the queue i j( , ) from upstream links or upstream sidewalks. p t( )ij is a
random variable which represents the proportion of vehicles or pedestrians on link i going to link j at time step t.

+ = + +x t x t y t y t p t i h j z1 ( ) ( ) ( ) ( ) , , , veh, pedij
z

ij
z

ij
z

h
hi
z

ij
z z

i iint exit
i (1)

If the link is an entry link, then the queue evolution follows Eq. (2). The last term in Eq. (1) is replaced by d t( )i , which is the input
demand at entry link i.

+ = + +x t x t y t d t p t i j z1 ( ) ( ) ( ) ( ) , , veh, pedij
z

ij
z

ij
z

i
z

ij
z

ientry
(2)

The vehicle flow y t( )ij is calculated at every time step based on the control algorithm. For vehicle turning movement i j( , ), the flow is
the minimum between the maximum number of vehicles allowed to move Q S t( )ij ij

veh and the current queue length x t( )ij
veh , where

S t( )ij
veh is the proportion of time that turning movement i j( , ) are allowed to move and Qij

veh is the capacity.

=y t Q t S t x t i j( ) min{ ( ) ( ), ( )} ,ij ij ij ij
veh veh veh (3)

For pedestrian movement i j( , ), if both link i and link j are sidewalks, Sij
ped is always 1. If link j is a crosswalk, S t( )ij

ped depends on the
intersection control. All pedestrian movements heading for the same crosswalk have the same pedestrian signal control, which is

= =S t S t S t j h i h i( ) ( ) ( ), , , ,ij hj j j
ped ped ped .

=y t Q t S t x t i j( ) min{ ( ) ( ), ( )} ,ij ij ij ij
ped ped ped (4)

3.2. Estimating the pedestrian queue length

Unlike automated vehicles, which are assumed to communicate wirelessly with the intersection, pedestrians may only be able to
indicate their presence through the crosswalk button. Consequently it is difficult to count the number of waiting pedestrians, which
requires an estimation of the waiting queue. The estimated pedestrian queue length is used to calculate the weight for pedestrian
turning movements in the max-pressure control and activate crosswalks.

The activation of crosswalk m is represented by S t( )m . When the pedestrian signal is activated at time =t S t, ( ) 1m
ped . Otherwise,

=S t( ) 0m
ped . The activation of the pedestrian signal is related to the pedestrian queue, and we want the pedestrian queue length to be
bounded. To estimate the pedestrian queue, the pedestrian waiting time should be recorded.

Let t( )m be the waiting time of pedestrian at crosswalk m since the last actuation of the pedestrian signal. +t( 1)m can be
updated with Eq. (5).

+ =

+ = >

= =
t

t S t x t

S t x t
1

( ) 1, if ( ) 0 ( ) 0

0, if ( ) 1 ( ) 0
m

m m
l

lm

m
l

lm

ped

ped
m

m (5)

If the pedestrian signal is not activated at the last time step, and there are waiting pedestrians, then the waiting time will increase by
one. If the pedestrian signal is activated at the previous time step or if there is no pedestrian going to cross the road, the waiting time
is set to be 0. Based on this model, the waiting time of a pedestrian queue is determined by the pedestrian with the longest waiting
time.

After the estimation of the pedestrian waiting time, the estimated pedestrian queue xij
ped can be calculated using Eq. (6).
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+ = +x t x t y t y t1 ( ) ( ) ( )ij ij ij ij
ped ped out in

(6)

Because of the difficulty to directly measure the queue length at crosswalk j, the estimated value instead of the actual value of the
queue length is used. In Eq. (6), the estimated pedestrian queue +x t( 1)ij

ped is the estimated pedestrian queue x t( )ij
ped added to the

estimated pedestrian entering flow y t( )ij
in and minus the estimated pedestrian exiting flow y t( )ij

out . The estimated entering flow is
=y t t u( ) ( ) ¯ij j ij

in . j is the waiting time since the last activation of the pedestrian signal at crosswalk j and ūij is the mean arrival rate of
pedestrians that are from pedestrian link i to crosswalk j and is assumed to be exogenous. The estimated exiting flow is

=y t x t Q S t( ) min ( ), ( )ij ij ij j
out ped ped , which is the minimum value between the estimated pedestrian queue length x t( )ij

ped and the

product of the capacity and the crosswalk control S t( )j
ped . If the crosswalk is not activated, the estimated exiting flow is zero. If the

crosswalk is activated and the estimated pedestrian queue length at time t does not exceed the capacity, all potential pedestrians can
cross the street at the current time step. Otherwise, the number of supposed pedestrians that can pass the street is restricted by the
capacity. We assume that the expected value of the difference between the estimated queue length and the actual queue length is
bounded by 0, i.e. x t x t[ ( ) ( ) ]ij ij

ped ped . In the perspective of queuing theory, the average queue length should be the
product of the arrival rate and the waiting time. As the estimated queue length is calculated using the measured waiting time and the
average arrival rate, the expectation of the estimated queue length and the actual queue length should be equal in the long term.

3.3. Max-pressure control policy

As max-pressure control has the property of maximizing the throughput at the network-level (Varaiya, 2013), this study uses a
max-pressure algorithm to calculate how many vehicles at the intersection should be served at every time step and the actuation of
the crosswalk. The weight of each vehicle turning movement i j( , ) is defined by Eq. (7).

=
+

w t x t x t p t z( ) ( ) ( ) ( ) veh, pedij
z

ij
z

k
jk
z

jk
j (7)

The weight of movement i j( , ) is the queue length of this movement minus the average queue length of movements on down-
stream links. For example, in Fig. 2, the downstream movements of movement i j( , ) are movements j k j k( , ), ( , )1 2 , and j k( , )2 . The
queue length of a vehicle turning movement is measured regularly. The calculation of the weights for pedestrian queues uses the
estimated queue length in Eq. (6). The difference between the weights calculated by the actual and the estimated pedestrian queue
length is also assumed to be bounded, which is w t w t( ) ( )ij ij

ped ped .
After calculating the weight for each movement, a mixed-integer linear program is used to calculate the intersection control

strategy, as shown in Eq. (8). In this program, the intersection is divided into several conflict regions and each of them has its
capacity. Fig. 3 shows an intersection with four conflict regions (A, B, C, and D). The trajectory of a vehicle will pass one or several
conflict regions. We use ij to denote the set of conflict regions passed by vehicle movement i j( , ). For example, the northbound left-
turn movement passes through conflict regions A, C, and D. The capacity of conflict region c isQc and is determined by the capacities
of turning movements that pass through conflict region, which is =Q Qmax { }c i j c ij{( , ) }ij . The total amount of vehicles passing through
a conflict region per time step is restricted by the capacity of the conflict region.

+w t y t w t S t Q tmax ( ) ( ) ( ) ( ) ( )
i j

ij ij
n m

mn mn mn
( , )

veh

,

ped ped ped

n (8a)

y t Q t S t i j n ms. t. ( ) ( )(1 ( ) ) ( , ) , ,ij ij mn ij
n

n
ped

(8b)

Fig. 2. Downstream movements.
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y t Q c( )
i j

ij ij
c

c
( , ) (8c)

y t x t i j( ) ( ) ( , )ij ij (8d)

S t n m( ) {0, 1} ,mn n
ped (8e)

=S t S t m l m l( ) ( ), , ,mn ln n
ped ped (8f)

y t i j( ) 0 ( , )ij (8g)

The max-pressure control aims to optimize the total pressure. yij represents the number of vehicles in turning movement i j( , ) that
is allowed to move, which should be constrained by the capacity at the conflict region and the waiting vehicles at the entry approach.
Smn

ped controls the activation of pedestrian movement m n( , ). The value for Sij in Eq. (3) can be calculate using =S y Q/ij ij ij. Let Sr denote

the max-pressure control at intersection r in the network, which is = +{ }S w y w S Qarg maxr
y S

i j ij ij m n mn mn mn
,

( , )
veh

( , )
ped ped ped

ij mn
ped

.

3.4. Stability region

Vehicles and pedestrians enter the network through all entry links i entry
veh and entry

ped . Let demand vector d̄ represent the average
demand of the traffic entering the network through each of the entry links or entry sidewalks. The dimension of d̄ is equal to the
number of elements in the set entry. The ith element of d̄ corresponds to the flow to link i entry

veh or sidewalk i entry
ped . Let fi denote

the flow on link i or sidewalk i. p̄ij is the average turning proportion from link i to link j or from sidewalk i to sidewalk j. Link flows and
flows of vehicle movements (or pedestrians) follow rules in Eq. (9). With these constraints, a demand vector d̄ and average turning
proportion vector p̄ can uniquely determine a flow vector f on the network if all turning proportions are fixed based on Varaiya
(2013)’s assumption. When affected by the intersection control, the value of pedestrian arrival rate uij is smaller or equal to the flow
rate f p̄i ij of the movement, which is calculated based on the input demand and the average proportions of turning movements.

=f d i z¯ , {veh, ped}i i
z
entry (9a)

Fig. 3. Conflict region model of AIM.
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=f f p j z¯ , veh, pedj
i

i ij
z z
int exit

(9b)

The activation of a movement i j( , ) at time step t is represented by S t( )ij . For vehicles, S t( )ij is a fraction between 0 and 1, which
represents the percentage of time used for activating turning movement i j( , ). For example, if =S t( ) 0.5ij and the time step is 30 s,
then turning movement i j( , ) is allowed to move for 15 s in this time step. For pedestrians, it is a binary variable whose value is either
0 or 1 because it is assumed that the pedestrian can use the entire time interval if the pedestrian signal is activated. The turning flow
or pedestrian flow y t( )ij is the minimum between the product of the capacity and the movement activation Q t( )ij ij and the current
queue length x t( )ij . Eq. (10) shows the constraint applying to the activation of movements at an intersection. The sum of Sij should be
less than or equal to 1, because the sum of percentages of time occupied by any turning movement should be less than or equal to
100%.

S t c( ) 1,
i j

ij ij
c

( , ) (10)

Let S t( )r be an intersection control matrix for intersection r that includes values of S t( )ij
veh for all vehicle turning movements and

values of S t( )n
ped for all crosswalks at time step t. Using S t( )r at all time steps, we can define an intersection control sequence

=S S t t{ ( ), }r r as a sequence of feasible controls for intersection r. We also have =t S t rS( ) { ( ), }r
veh , which is a vector of S t( )r

over all intersections. For any given intersection control sequence, the long-term average time used for serving turning movement
i j( , ) and pedestrian movement i j( , ) can be calculated by Eq. (11).

=
=

S
T

S tlim 1 ( )ij
T t

T

ij
1 (11)

An intersection control sequence S can accommodate demand d if the average serving time of this control sequence multiplied by the
capacity is larger than or equal to the corresponding average flow for the turning movement or the pedestrian flow, as shown in (12).

f p S Qi ij ij ij (12)

Let be the set for all intersection control matrices. We can define a convex hull co ( ) including all possible intersection control
matrices, as shown in (13).

= =co S( ) 0, 1
S

S S S
(13)

At each time interval, an intersection control matrix is picked from and an intersection control sequence S includes intersection
control matrices for all time intervals. Then we can use a vector S̄ to include the average activation times for all turning movements or
the pedestrian queues and we have coS̄ ( ).

A demand vector d is feasible if there is an intersection control sequence S that can make the corresponding average flow for the
turning movement or the pedestrian flow be always smaller than the average serving time multiplied by the capacity for every link
(Varaiya, 2013). Let denote the set of all feasible demand vectors.

Let o denote the interior of . When there is a demand vector d o, the flow pattern f corresponding to it satisfies
<f p S Q¯i ij ij ij, which is also equivalent to + =f p S Q¯i ij ij ij for some > 0.

3.5. Stability of the control algorithm

Queuing stability is defined in Eq. (14). We prove the stability of the overall system when max-pressure control is used.

<
=T

x t Tlimsup 1 ( ) ,
T t

T

i j
ij

0 ( , ) veh ped (14)

Lemma 3.1. If x t x[ ( ) ]mn mn
ped ped , then expectation of the the difference between the optimal solutions of two programs with objective

functions O and O for an intersection is also bounded, where = +O w y x x p ymax ij ij ij mn mn o no no mn
veh ped ped and

= +O w y x x p ymax ij ij ij mn mn o no no mn
veh ped ped .

Proof. The general form of the mixed integer program in Eq. (8) can be expressed as:
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+
+

h c
A G b

y S
y S

y
S
y
S

max
s. t.

0
0

{0, 1}

T T ped

ped

ped

ped

In the general form, y is a vector including decision variables yij for all vehicle turning movement. Sped is a vector including decision
variables Smn

ped for all crosswalks. Changing the weights of the pedestrian queue is actually changing the cost c in the objective
function. The vector c is replaced by +c c with c Qij ij

ped. If adding c does not change the optimal solution, then =O O . Even if
adding c does change the optimal solution, O O is also bounded because all constraints build a feasible set which can be enclosed
by a polyhedron. As the size of the polyhedron is limited, O O can always be bounded by a value, denoted by .

Proposition 1. If the demand vector d o, this max-pressure control is stabilizing.

If the max-pressure control is stabilizing, the queue length for each turning movement and at each crosswalk will remain bounded
in expectation. Equivalently, the control is throughput optimal.

Proof. The proof is in Appendix A. □

4. Intersection control: AIM-ped

In Section 3.3, the max-pressure algorithm is proposed based on the conflict region model of AIM (Levin and Boyles, 2015) and
the proposed stability properties are also based on this model. When applied to microscopic simulation, the conflict region model of
AIM has some limitations. This model only considers the capacity constraint at each conflict region but does not consider the order of
arriving vehicles at the intersection. Therefore, the vehicle behavior in this model may violate the first-in-first-out assumption in
some conflict regions. For example, if there are three through vehicles from northbound, westbound, and southbound approaches
respectively. Assume the intersection has four conflict regions, so each pair of these three vehicles share a conflict region at the
intersection. Using this model, it is hard to incorporate time-dependent conflict avoidance within each time step. To add pedestrians
to the microscopic simulation with AIM, we create a new algorithm called AIM-ped by combining the max-pressure control algorithm
proposed in Section 3.3 with the trajectory optimization of Levin and Rey (2017).

In the model of Levin and Rey (2017), two intersecting vehicle trajectories form a conflict point. Fig. 4 shows the conflict points
on the trajectories of northbound left-turn, through, and right-turn movements at a standard intersection with four two-lane ap-
proaches. The original objective function used in their study is to minimize the exit time of the last vehicle at the intersection. The
constraints are used to ensure vehicle trajectories are collision-free. In AIM-ped, we control vehicles individually rather than con-
trolling the flow of turning movements and constraints relating vehicles to crosswalks are added to the existing constraints. The
objective function is modified to maximize the total pressure:

+w z w Q zmax
v

v v
n

n n n
veh veh ped ped ped

(16)

In Eq. (16), the decision variables are zv
veh and zn

ped, which control the movement of vehicle v, and the actuation of crosswalk n.
and represent the sets of vehicles and crosswalks respectively.

We first show the constraints borrowed from the study of Levin and Rey (2017). Constraint (17) requires the calculated departure
time of vehicle v to be larger than its earliest possible arrival time ev at the intersection. v is the first conflict point in the path of
vehicle v, then t ( )v v represents the moment when vehicle v enters the intersection.

t e v( )v v v (17)

Constraint (18) guarantees that if two vehicles v and v share the same entry lane ( =v v ), then the vehicle that reaches the
intersection earlier should also enter the intersection earlier. ev is the earliest time of vehicle v to reach the intersection and t ( )v v is
the time when vehicle v enters the intersection. ( )v v is the time that vehicle v occupies the entry point of the intersection on its path.

+ = <t t v v e e( ) ( ) ( ) , : ,v v v v v v v v v v (18)

Constraint (19) calculates the time that vehicle v spends at conflict point c, denoted by c( )v . L c( )v is the distance that vehicle v
travels around c and +d ( , )v v v is the travel distance of vehicle v along its path. w is the backward shock wave speed of the related
fundamental diagram of this road, and v is the set of conflict points on the trajectory of vehicle v. The derivation of this constrained is
included in the study of Levin and Rey (2017).

= +
+

+c L c
w

L c t t
d

v c( ) ( ) ( )( ( ) ( ))
( , )

,v
v v v v v v

v v v
v (19)

Constraints (20) and (21) both control the vehicle travel times. Constraint (20) sets the upper bound and lower bound of vehicle
travel time through the intersection. +t t( ) ( )v v v v is the time that vehicle v uses to pass through the intersection.Uv and U v are the
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maximum and the minimum speeds respectively. Constraint (21) calculates the travel time through each conflict point. t c( )v is the
time that vehicle v arrives the conflict point c. d c( , )v v is the travel distance from the entry point v to conflict point c. This
constraint requires that the average travel speed between the entry point and any conflict point on the path should equal the average
travel speed between the entry point and the exit point, which pushes the vehicle to keep a constant speed.

+
+

+d
U

t t
d

U
v

( , )
( ) ( )

( , )v v v

v
v v v v

v v v

v (20)

=
+

+
t c t

d c
t t

d
v c

( ) ( )
( , )

( ) ( )
( , )

,v v v

v v

v v v v

v v v
v (21)

In constraint (22), if vehicles v and v use the same entry lane ( =v v ) and vehicle v arrives earlier, then vehicle v can only enter
each shared conflict point c after vehicle v exits. In constraint (23), for two vehicles with conflicting trajectories, variables vv and v v
are used to represent the order of vehicles entering conflict point c. If vehicle v enters first, =c( ) 1vv and =c( ) 0v v . Otherwise,

=c( ) 0vv and =c( ) 1v v . Constraint (24) sets the range of arrival times of two vehicles at each conflict point with conflicting
trajectories. Mvv is a large number. One vehicle can only enter the conflict point c when the other vehicle has passed and variable vv
sets the passing order. If =c( ) 1vv , then vehicle v enters the conflict c earlier than vehicle v , then the right hand side equals to 0, and
the constraint becomes +t c c t c( ) ( ) ( )v v v . If =c( ) 0vv , the constraint becomes +t c c M( ) ( )v v vv , which means there is no re-
striction on the arrival times of two vehicle at the conflict point.

+ = <t c c t c v v e e c( ) ( ) ( ) , : , ,v v v v v v v v v (22)

+ = <c c v v v v c( ) ( ) 1 , : , ,vv v v v v v v (23)

+t c c t c c M v v c( ) ( ) ( ) (1 ( )) , : ,v v v vv vv v v v v (24)

c v v c( ) {0, 1} , : ,vv v v v v (25)

To integrate the trajectory optimization model with max-pressure control, additional constraints are introduced to control the
activation of vehicle movements and crosswalks. Constraint (26) controls the activation of crosswalks and vehicle movements. zn

ped

and zv
veh are binary variables indicating the activation of crosswalk n and vehicle movement v. v

n indicates whether the trajectory of
vehicle v intersects with crosswalk n which is determined in advance. If crosswalk n is activated and the trajectory of vehicle v is

Fig. 4. Conflict point model of AIM.
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conflicting with crosswalk n, then this vehicle is not allowed to move at the current time step. Constraint (27) relates the activation of
two vehicles on the same entry lane. If the preceding vehicle is not allowed to move, the following vehicle is not allowed to move
either. Constraint (28) plays an important role in relating the max-pressure control with the trajectory optimization model because it
builds the relationship between decision variables. t is the current time and t is the length of the time interval. When vehicle v is not
allowed to move at the current time interval and =z 0v

veh , then constraint becomes + + ++ +t t t M( ) ( )v v v v v, which means the
exit time of vehicle v of the intersection is not restricted in the current time step and vehicles that are allowed to move at the current
time step have priority over vehicle v. If =z 1v

veh , then the constraint becomes + ++ +t t t( ) ( )v v v v , which means the exit time of
vehicle v should be in the current time interval.

z z v n1 ,v n v
nveh ped (26)

= <z z v v e e, : ,v v v v v v
veh veh (27)

+ + ++ +t t t z M v( ) ( ) (1 )v v v v v v
veh (28)

z v{0, 1}v
veh (29)

z n{0, 1}n
ped (30)

Compared with model (8), AIM-ped has a smaller convex hull that contains all possible intersection control matrices because it has
more constraints. If we generate a control policy based on the convex null mentioned in Eq. (13), this control policy may not be
feasible in AIM-ped If we sum up the number of vehicles on the same turning movement to get yij and Sij and create a feasible set that
has the same form as the feasible set in model (8), feasible set of AIM-ped is smaller than model (8). Therefore, the largest demand
that can be accommodated by model (8) and AIM-ped are different.

5. Numerical experiments

To test the effects of the pedestrian demand on the efficiency of the vehicle network, simulations with different pedestrian and
vehicle demands are conducted. A multi-layer network is used in the simulation, as shown in Fig. 5.

5.1. Vehicle network

The first layer is the vehicle layer consisting of a 7-by-7 grid of intersections. Any two adjacent intersections are connected by a
pair of directed links that are 1800 feet long. These directed links represent a two-way road that connects two adjacent intersections.
What is not depicted is that each of these directed links is segmented into 4 intermediate links of equal distance (450 feet). These

Fig. 5. 7-by-7 grid test network.

R. Chen, et al. Transportation Research Part C 114 (2020) 463–483

473



intermediate links are required for the assumption that each link has a free flow travel time of 1 time step. Throughout the edge of the
grid reside vehicle centroids, denoting either a vehicle origin or destination, adjacent to every intersection on the edge of the grid.

5.2. Pedestrian network

The second layer of the network is the pedestrian layer consisting of sidewalks, crosswalks, and pedestrian nodes as depicted in
Fig. 5. The second layer overlaps the vehicle layer. For every vehicle intersection there resides four pedestrian nodes, each of which is
connected by a crosswalk. In Fig. 5, vehicle node 1 and pedestrian nodes a b c d1 , 1 , 1 , and 1 correspond to the same intersection. The
solid lines connecting each pair of these four pedestrian nodes are crosswalks. Each crosswalk is controlled by a signal, which if
activated, all pedestrians who are waiting on this crosswalk can move, and any vehicles who have turning movements that conflict
with this crosswalk cannot move. Crosswalks are either active or inactive for an entire timestep of 15 s. Any two adjacent groups of
four pedestrian nodes are connected by a pair of undirected links that are 1800 feet and overlay the directed vehicle links that
connect adjacent intersections. These two undirected pedestrian links represent two sidewalks on both sides of a road. Pedestrians
can move in both directions on either sidewalk, but cannot cross the road from one sidewalk to another. A pedestrian can only switch
links, or sidewalks, by reaching the end of its current link and either traversing a crosswalk or entering another link directly that is
not blocked by a crosswalk (jaywalking is not modeled). Like vehicle links, pedestrian links are also segmented into intermediate
links. Pedestrian links are made up of 40 intermediate links of equal distance (45 feet). We assume that a pedestrian will be able to
traverse 45 feet in a timestep of 15 s at a speed of 2 miles per hour. At the corner of every intersection is a pedestrian centroid,
denoting either a pedestrian origin or destination.

5.3. Simulation parameters

The simulation time is 3 h with a timestep of 15 s. Vehicles and pedestrians continually enter the network at varying demand
rates. The vehicle demand ranges from 2 to 18 vehicles per hour per origin-destination pair and the pedestrian demand ranges from 0
to 10 pedestrians per hour per origin-destination pair. Upon creation, each vehicle and pedestrian has a specified origin centroid and
a specified destination centroid. For every vehicle, a random shortest path is generated and followed until the vehicle reaches its
destination. For every pedestrian, a shortest path is selected from all predetermined paths and followed until the pedestrian reaches
its destination. Every pedestrian origin-destination pair has 5 predetermined paths and when a pedestrian is generated, it will
randomly pick one path from the 5 possible. Due to the large number of possible pedestrian paths, and the typical lack of congestion
on sidewalks, we restrict the set of possible pedestrian paths to 5 per origin-destination.

Two sets of simulations are run. One set is run using estimated pedestrian queue lengths xij
ped as described earlier in the paper, and

results are shown in Section 5.4. Another set is run using actual pedestrian queue lengths with xij
ped equal to the actual number of

pedestrians waiting for the specific turning movement from i to j, and results are shown in Section 5.5. For every time step, mixed-
integer linear programs are created and solved for each of the intersections using CPLEX. Computation times are analyzed in Section
5.6 and the conflict rate is analyzed in Section 5.7.

5.4. Results with estimated pedestrian queue lengths

The simulation is run over a time period of three hours and vehicle delay, pedestrian delay, vehicle queue length, and pedestrian
queue length are all bounded. Vehicle delay, pedestrian delay, and vehicle queue length become stable after around 500 s, or about
8 min into the simulation, as shown in Fig. 6(a)–(c). Pedestrian queue length becomes stable after 4000 s, or 67 min into the
simulation, as shown in Fig. 6(d).

In Fig. 7(a), we can see that an increase in pedestrian demand results in an increase in average vehicle delay. This behavior is
expected because a high relative pedestrian demand would result in a higher priority for pedestrians to move at an intersection and
thus a higher delay for vehicles. An increase in vehicle demand has more of a mixed effect on average vehicle delay. When vehicle
demand is low, increasing vehicle demand decreases average vehicle delay, and when vehicle demand is high, increasing vehicle
demand increases average vehicle delay. This could be because of a balancing act between two main factors that drive vehicle delay
at an intersection: queue length and vehicle weights. When vehicle demand is low, queue lengths are low and as a result vehicle
weights are low. Vehicles will be given low priority compared to pedestrians and vehicle delay will be higher. However, when vehicle
demand is high, queue lengths will tend to be higher and so will vehicle weights but since only a certain number of vehicles can move
in a timestep there could be situations where vehicles are given high priority to move but will still have to wait for multiple timesteps
because queues are long, resulting in higher delay.

Fig. 7(b) describes the relationship between average pedestrian delay, vehicle demand, and pedestrian demand. As a trend
average pedestrian delay increases as vehicle demand increases. This is explained by the fact that more vehicles at an intersection
give lower priority to pedestrians, increasing the delay. Fig. 7(b) also implies that as pedestrian demand increases, pedestrian delay
decreases, regardless of whether or not pedestrian demand is high or low. This is because if a crosswalk activates, all the pedestrians
waiting on that crosswalk can move. As a result, there’s no conflict between pedestrian queue lengths and pedestrian weights as there
is with vehicles.

Fig. 7(c) shows the trend that the average vehicle queue length increases with the vehicle demand. The effect of pedestrian
demand on vehicle queue length is not significant. We would expect that a higher pedestrian demand would increase vehicle queue
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length, since more pedestrians would result in higher priority for pedestrians at intersections and thus a higher likelihood that
vehicles will not move and a vehicle queue will accumulate. However, pedestrian demand seems to have a minimal effect on vehicle
demand in Fig. 7(c).

Fig. 7(d) describes the relationship between average pedestrian queue length, vehicle demand, and pedestrian demand. Increasing
pedestrian demand increases average pedestrian queue length, and increasing vehicle demand has a similar effect.

Fig. 7(f) describes the relation between the difference between actual and estimated pedestrian queue lengths, vehicle demand,
and pedestrian demand. The difference between actual and estimated pedestrian queue lengths increases as pedestrian demand
increases. This is because in our simulation using estimated pedestrian queue lengths, the estimated pedestrian queue length for every
turning movement is constant. However, for higher pedestrian demand, once a crosswalk is activated, the flow of pedestrians to
downstream links will be much higher than the constant estimated pedestrian queue length.

5.5. Results with actual pedestrian queue lengths

In Fig. 8(a), the effect of pedestrian demand and vehicle demand on the vehicle delay is similar to that in Section 5.4. An increase
in the pedestrian demand results in larger vehicle delay. An increase in the vehicle demand reduces the vehicle delay when the
vehicle demand is small but increases the vehicle delay when the vehicle demand is large. When the vehicle demand is between 10
and 14 vehicles per hour per OD pair, the change in the vehicle demand does not significantly affects the vehicle delay. Compared
with the vehicle delay in Section 5.4, the average vehicle delay here is larger because the estimated pedestrian queue length is lower
than the actual queue length which gives higher priority to pedestrians in the intersection control.

In Fig. 8(b), an increase in the pedestrian demand reduces the pedestrian delay and an increase in vehicle demand increases the
pedestrian delay. Pedestrian delay is on average higher in Fig. 7 than in Fig. 8. This is because our estimated pedestrian queue length
for an intersection is lower than the actual pedestrian queue length, as shown in Fig. 7(f).

In Fig. 8(c), increases in the pedestrian demand and the vehicle demand both increase the vehicle queue length. Compared with
Fig. 7(c), the effects of pedestrian demand on the vehicle delay is more significant in Fig. 8(c).

Fig. 8(d) describes the relationship between average pedestrian queue length, vehicle demand, and pedestrian demand. An in-
crease in the pedestrian demand results in an increase in the pedestrian delay. An increase in the vehicle demand also increases the
pedestrian delay but the effect is not significant.

Fig. 6. Simulation results with the vehicle demand of 10 vehicles per hour per O-D pair and the pedestrian demand of 4 pedestrians per hour per O-D
pair.
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5.6. Discussion of computation times

Figs. 7(e) and 8(e) describe the relation between CPLEX computation time, vehicle demand, and pedestrian demand. It is the
average CPLEX computation time for one time step and one intersection in the simulation. As shown in Figs. 7(e) and 8(e), CPLEX
computation time is close to zero when the vehicle demand is small and spikes upwards for high vehicle and pedestrian demand. This
is because the high vehicle and pedestrian demands increase the vehicle queue lengths, and every vehicle creates several additional
variables in the mixed-integer program that CPLEX needs to solve. Vehicles with different moving directions create different numbers

Fig. 7. Simulation result using estimated pedestrian queue length.

R. Chen, et al. Transportation Research Part C 114 (2020) 463–483

476



of variables in the mixed-integer program which related with the number of conflict points they would pass through. As the proposed
algorithm is a distributed algorithm, we only need the CPLEX computation time for an individual intersection to be smaller than the
step size if we want to implement it in real-time. In the simulation, the average CPLEX computation time per intersection under all
demands is far smaller than the time step size (15 s), which indicates that the algorithm can possibly be used in real-time.

5.7. The effect of pedestrian and vehicle demand on the conflict rate

Fig. 9 describes the relationship between pedestrian demand and the similarity of the simulation to a phase-based intersection

Fig. 8. Simulation result using actual pedestrian queue length.
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control. As pedestrian demand increases, the percentage of time steps in which conflicting vehicle movements are simultaneously
permitted to traverse an intersection decreases. The simulation becomes more and more like a traditional traffic light system where
only non-conflicting vehicles can move in a certain time period. This is because of the high pedestrian demand and high pedestrian
priority at intersections, there is a higher likelihood that crosswalks will be activated in any given timestep which restricts all vehicle
movements that go through that crosswalk. Crosswalk activation limits the different possible vehicle movements in a time step
making it more likely that moving vehicles have non-conflicting trajectories. Even when the pedestrian demand is high, the algorithm
still allows about 40% of the conflicting vehicle movements, which means this algorithm can adapt to pedestrian demand and
activate conflicting movements when optimal.

6. Conclusion

This study proposes an autonomous intersection management algorithm based on max-pressure control considering both vehicles
and pedestrians. This study defines the stability region of the traffic demand and proves that this algorithm can produce throughput-
optimal intersection control at network level. To apply this algorithm in simulation, this study combines an existing trajectory
optimizing algorithm with max-pressure control and formulates a mixed-integer program model to calculate the optimal trajectories
of vehicles and optimal control of pedestrian signals based on the max-pressure control. In the simulation, the proposed algorithm has
a small computation time when the vehicle demand is small. Simulation results show that the pedestrian and vehicle delays become
stable in a short time and the difference between the actual and the estimated pedestrian queue lengths are bounded. Simulation
results with different demands of pedestrians and vehicles show a trade-off between the efficiency of vehicles and pedestrians in this
algorithm. Delays of pedestrian and vehicles are negatively correlated. When demands of vehicles and pedestrian increase, the
intersection control produced by this algorithm is more similar to phase-based intersection control, but this algorithm is still capable
of adapting to the change of the pedestrian demand and allows vehicles with conflicting trajectories to pass the intersection.

In future work, different formulas will be used to calculate the pressure of turning movements. The stability properties of the
algorithm will be explored under different assumptions, such as finite queue capacity. Other network components will be added to
the model, such as cyclists or legacy vehicles. The network model used in this study is based on the point-queue model, the future
work may use other network models, such as the spatial queue model and the cell transmission model, which results in more realistic
results.
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Appendix A

Proof for Proposition 1. To calculate the queue length at time +t 1, we apply the point queue model shown in Eqs. (1) and (2).

+ = + +x t x t Q S t x t( 1) ( ) min ( ( ), ( )) min (Q S (t), x (t))p (t) i , jij ij ij ij ij
h

hi hi hi ij int i

i (31)

+ = + +x t x t Q S t x t d t p t i j( 1) ( ) min( ( ), ( )) ( ) ( ) ,ij ij ij ij ij i ij ientry (32)

Then we get the difference in the queue length between two consecutive time steps.

= + = + +x t x t min Q S t x t min Q S t x t p t i j( 1) ( ) ( ( ), ( )) ( ( ), ( )) ( ) ,ij ij ij ij ij ij
h

hi hi hi ij int i
i (33)

= + +Q S t x t d t p t i jmin( ( ), ( )) ( ) ( ) ,ij ij ij ij i ij ientry (34)

Let X t( ) be a matrix including all queue lengths of all vehicle movements and pedestrian movements.
Here we choose the Lyapunov function

=X t x t( ) ( ( ))
i j
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(35)
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In Eq. (39), the random variable p is replaced with its mean value p̄

=
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=Q S t x t p t x t X t Q S t x t X t p x t[min( ( ), ( )) ¯ ( ) ( ) ( )] [min( ( ), ( )) ( )] ¯ ( )ij ij ij jk jk ij ij ij jk jk (40)

By the definition of the pressure, + =+x t p x t w t( ) ¯ ( ) ( )ij k jk jk ij
j

, so we obtain
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Therefore,
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Q is the average value of the random variableQ. is the maximum value of Q. For vehicle flow =i j Q S t y t x t, , ( ) ( ) ( )ij ij ij ij
veh veh veh veh ,

so =Q S t x t Q S tmin( ( ), ( )) ( )ij ij ij ij ij
veh veh veh veh veh . Then,

Q S t Q S t w t Q w t Q( ( ) ( )) ( ) ( )ij ij ij ij ij ij ij ij ij
veh veh veh veh veh veh

(49)

For pedestrian flow i j S t( , ), ( ) {0, 1}ij
ped . to get the upper bound, S t( )ij

ped is pulled out.

=Q S t Q S t x t X t w t Q min Q x t X t S t w t( ( ) [ min ( ( ), ( )) ( )]) ( ) ( [ ( , ( )) ( )]) ( ) ( )ij ij ij ij ij ij ij
ped

ij
ped

ij
ped

ij
ped

ij
pedped ped ped ped ped

(50)

When =x t Q Q x t X t( ) , ( [min( , ( )) ( )]) 0ij ij ij ij ij
ped ped ped ped . Otherwise,

=Q Q x t X t x t x t w t Q( [min( , ( )) ( )]) ( ), and ( ) ( )ij ij ij ij ij ij ij ij
ped ped ped ped ped ped

(51)

Therefore,

Q S t Q S t x t X t w t Q( ( ) [min( ( ), ( )) ( )]) ( )
i

ij ij ij ij ij ij
i

ij ij
int entry int entry (52)

At each time step, an intersection control matrix S t( )r is selected from the set of signal control matrices. The max-pressure algorithm
can get an intersection control matrix with the maximum pressure

= +S S Q w S Q wargmax
S S i j

ij ij ij
n

n n n
, ( , )

veh ped

ij n (53)

As demand vector d is in the stability region, the relation between the arrival rate and the intersection control has the relation
+ =f p S Q¯i ij ij ij for both vehicle turning movements and pedestrian flows, where > 0. Inequality 55 holds because of Lemma 3.1.

+

+

f p Q S t w t f p Q S t w t

f p Q S w t f p Q S w t

¯ ( ) ( ) ¯ ( ) ( )

¯ ( ) ¯ ( )

i
i ij ij ij ij

m
m mn mn n mn

i
i ij ij ij ij

m
m mn mn mn mn

veh ped

veh veh ped ped

int
veh entryveh

int
ped

entry
ped

int
veh entryveh

int
ped

entry
ped

(54)

+ +f p Q S w t f p Q S w t¯ ( ) ¯ ( )
i

i ij ij ij ij
m

m mn mn mn mn
veh veh ped ped ped

int
veh entry

veh
int
ped

entry
ped

(55)

Sij
veh and Smn

ped correspond to the average actuation rates of the turning movement i j( , ) and the crosswalk n. If >w t( ) 0ij
veh , then

turning movement i j( , ) will be activated. So the average actuation rate for the period when turning movement i j( , ) is activated times
the turning capacity has the relation > +Q S f p̄ij ij i ij

veh because Sij
veh should satisfy that >Q S f p̄ij ij i ij

veh . Otherwise, when
=w Q S0, 0ij ij ij

veh veh because turning movement i j( , ) is not actuated based on max-pressure algorithm. Similarly, for crosswalk n,
when >w 0mn

ped , the average actuation rate times the capacity have the relation = +Q S f p̄mn ij i ij
ped . Otherwise, =w Q S0, 0ij ij ij

ped ped .

+

+

f p Q S t w t w f p w

w f p w

[ ¯ ( )] ( ) max { , 0} ¯ max { , 0}

max { , 0} ¯ max { ^ , 0}

i i ij ij ij ij ij ij ij i ij ij

mn mn mn m mn mn

veh veh

ped ped
int entry

(56)

w wij mn
veh ped (57)
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As we assume that x t x t( ) ( )mn mn
ped ped , and w wmn mn

ped ped and based on Lemma 3.1, we have

+f p Q S t w t w w¯ ( ) ( )
i

i ij ij ij ij ij ij
veh ped ped

int entry (58)

The formula used to get the pressure w is a linear function of the matrix X that represent the queue length, so we can find >, 01 2

such that w X t( )ij ij
veh

1
veh and w X t( )mn mn

ped
2

ped . Therefore, we have

+ +w w X t X t( ) ( )ij ij
veh ped ped

1
veh

2
ped ped (59)

+Q X t X t( ) ( )
i

ij ij 1
veh

2
ped ped

int entry (60)

Let = min( , )1 2 and let = ped , we have:

+X t X t Q X t( ) ( ) ( )
i

ij ij
T

int entry (61)

For 2, we have:

= +Q S t x t Q S t x t p tmin ( ), ( ) min ( ), ( ) ( )ij ij ij ij
h

hi hi hi ij
i (62)

+i jmax , ,ij
h

hi iint

i (63)

= + +Q S t x t f t d i jmin{ ( ), ( )} ( ) max{ , } ,ij ij ij ij ij ij ij ientry (64)

where dij represent the maximum value of the flow rate

= =d dLet max , , ^ , max , , ^
ij

h
hi ij ij

h
hi ij1

veh veh veh
2

ped ped ped

i i (65)

Therefore, +ij ij

2

1 1
2

2 2
2 , where 1 is the total number of vehicle movements and 2 is the total number of pedestrian

movements.

+ = +X t X t X t( 1) ( ) 2 ( )2 2 T 2 (66)

+ + +Q X t2 ( )
i

ij ij 1 1
2

2 2
2

int entry (67)

= X t( ) (68)

= + + + =Qwhere 2 ,
i

ij ij 1 1
2

2 2
2

int entry (69)

Now we have:

+X t X t X t X t[ ( 1) ( ) ( )] ( )2 2 (70)

If we sum from =t 1 to T,

+
=

=

=

=

X t X t X t X t( [ ( 1) ( ) ( )]) ( ( ) )
t

t T

t

t T

1

2 2

0 (71)

+
=

=
X T X X t T X t[ ( 1) (1) ( )] ( )

t

t T
2 2

0 (72)

+ + +
=

=
X t T X X T T X( ) [ (1) ] [ ( 1) ] [ (1) ]

t

t T

0

2 2 2

(73)
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+
=

=

T
X t X1 ( ) 1 ( [ (1) ])

t

t T

0

2

(74)
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