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ABSTRACT ARTICLE HISTORY
Autonomous intersection management (AIM) (which coordinates intersec- Received 27 April 2018

tion movements to avoid signal phases) and dynamic lane reversal (DLR) Accepted 6 November 2019
(which frequently changes lane directions in response to time-varying KEYWORDS

demand) have previously been proposed for connected autonomous vehi- Autonomous intersection
cles. A major open question for both is finding the optimal control pol- management; dynamic lane
icy. This paper develops a decentralized max-pressure policy that controls reversal; dynamic traffic
both AIM and DLR based on queue lengths on adjacent links. Using a assignment; cell transmission
stochastic queueing model, we prove that the max-pressure policy is also model; max-pressure control
throughput-optimal; any demand that can be stabilized (queue lengths

remain bounded) will be stabilized by the max-pressure policy. We show

numerically that DLR significantly increases the stability region, particularly

for asymmetric demand. Since the stochastic queueing model excludes

some realistic aspects of traffic flow, we adapt the max-pressure control

for simulation-based dynamic traffic assignment. Results on a city network

show significant improvements from max-pressure AIM with and without

DLR.

1. Introduction

Revolutionary new traffic control technologies have been proposed for autonomous vehicles (AVs)
to increase traffic flow and reduce congestion. The two such technologies that we address are
autonomous intersection management (AIM) and dynamic lane reversal (DLR). AIM (Dresner and
Stone 2004, 2006) is an alternative to traffic signals which coordinates the movement of individual AVs.
AVs communicate their requested turning movement to the intersection manager, which microsimu-
lates the requests of all vehicles waiting at each intersection to find non-conflicting combinations of
turning movements. The solutions are then communicated back to each AV in the form of intersec-
tion access time and speed. By controlling individual vehicles, AIM greatly expands the feasible region
for intersection movements, and previous work has found that simple policies for AIM (such as first-
come-first-served) could perform better than optimized traffic signals for some intersections (Fajardo
etal. 2011; Liet al. 2013).

DLR is an extension of contraflow lanes for AVs. Contraflow lanes are typically applied on a peak
hour schedule (e.g. Zhou et al. 1993; Xue and Dong 2000; Meng and Ling Khoo 2008) or for evacu-
ations (e.g. Zhang and Bing Lei Xie 2012; Wang et al. 2013; Dixit and Wolshon 2014) because lane
reversals can cause major safety problems for human drivers. However, lane direction changes could
be communicated directly to individual AVs through infrastructure-to-vehicle communications to
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admit more frequent spatio-temporal changes in lane direction. Hausknecht et al. (2011) proposed
to use infrastructure for AIM to enable DLR. Since DLR requires more complex communications and
coordination than AIM, models of DLR have typically used AIM for the intersection control (Hausknecht
et al. 2011; Levin and Boyles 2016).

Both AIM and DLR expand the feasible region for traffic control, and are sufficiently novel that the
question of control policy has been studied but is still open. For instance, initial work on AIM used
the first-come-first-served policy (Dresner and Stone 2004; Fajardo et al. 2011) with the goal of mini-
mizing delay. Initial work on DLR has used saturation-based heuristics for lane allocation (Hausknecht
et al. 2011; Levin and Boyles 2016). For both AIM and DLR, the problem of finding the optimal con-
trol given known deterministic demand has been formulated as mixed integer linear programs (Duell
et al. 2016; Levin, Fritz, and Boyles 2017). However, due to the computational requirements of solving
such formulations, previous numerical results have either been limited to small networks or relied on
heuristics.

The ideal solution is to find a throughput-optimal decentralized policy that does not assume to
know future travel demand (which depends on vehicle departures and route choices). A decentralized
policy can be computed at the individual intersection level without knowledge or consideration of the
state elsewhere, and is therefore desirable for practical implementation. Optimality includes several
possible objectives, such as maximum throughput or minimum delay. The purpose of this paper is to
develop a throughput-optimal decentralized control policy for both DLR and AIM. As we will demon-
strate, the AIM and DLR control problems can be formulated together in a manner highly similar to the
signal timing model of Varaiya (2013), which admits a similar proof of throughput optimality. Never-
theless, the formulation and proof are valuable to answer the open questions of how to control AIM
and DLR.

This paper makes two main contributions. First, we formulate the problem of controlling AIM and
DLR as a stochastic queueing model, and define a max-pressure policy that is proven to be throughput-
optimal. This is the first max-pressure policy for either AIM or DLR.

We then compare the stability region (the set of demands for which bounded queue lengths are
possible) for AIM, DLR with AIM, and traffic signals to explore whether AIM and DLR would reduce
queues in the traffic network. Second, since the queueing formulation makes unrealistic assump-
tions on the traffic flow behavior, we apply the max-pressure policy to simulation-based dynamic
traffic assignment (DTA). Although the policy is not provably optimal in DTA, we demonstrate the
effectiveness of max-pressure control on a calibrated city network.

The remainder of this paper is organized as follows: Section 2 describes the state of the art on con-
trol of AIM and DLR, and discusses previous work on max-pressure control. Section 3 formulates the
stochastic queueing model and gives the max-pressure control. We investigate the stability region
in Section 4. Section 5 describes the simulation-based DTA model used to study max-pressure con-
trol under more realistic traffic flow and route choice behavior. We present numerical results on a city
network in Section 6, and conclude in Section 7.

2. Background

AIM has received considerable attention in the literature, including several different studies on con-
trol policies (Section 2.1). DLR has received relatively less attention, but makes use of technologies
similar to those required for AIM (Section 2.2). Although pressure-based control has yet to be studied
for AIM or DLR in the literature, it has been previously been applied to signalized intersection control
(Section 2.3).

2.1. Autonomous intersection management

AIM was first proposed by Dresner and Stone (2004, 2006) as an alternative to traffic signals, and
similar technologies have been tested in autonomous vehicles (Alonso et al. 2011). Vehicles use
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vehicle-to-infrastructure communications to transmit a request for a specific turning movement and
entry time to the intersection manager, which uses forward simulation to accept a subset of non-
conflicting requests. A key question is how to decide which request to reject when vehicle requests
conflict. Initial work focused on the control protocol and used a first-come-first-served (FCFS) policy:
the vehicle that sent its request first receives priority in request acceptance. In addition to being fair,
the FCFS policy fits in well with the AIM protocol. Fajardo et al. (2011) and Li et al. (2013) found that the
FCFS policy could perform better than traffic signals for a variety of demand scenarios. However, FCFS
can easily become worse than traffic signals for asymmetric intersection geometries or by breaking
intersection coordination (Levin, Boyles, and Patel 2016). Since AIM can mimic traffic signals (Dresner
and Stone 2007), the feasible region of AIM includes traffic signals. Therefore, AIM can always perform
at least as well as traffic signals. Previous studies have investigated alternatives to FCFS for prioritizing
vehicle movement.

Schepperle and Bohm (2007) and Vasirani and Ossowski (2012) suggested holding auctions at each
intersection to determine which vehicles received priority. However, it is not clear whether these auc-
tions significantly improved over FCFS, since they essentially just create a random priority of vehicles
atthe intersection. Carlino, Boyles, and Stone (2013) used system bids to augment auctions and reduce
travel times, but it was not clear if the auctions themselves had a significant impact on the observed
improvements. Levin and Boyles (2015) found that many high-bidding vehicles became stuck behind
low-bidding vehicles, reducing the benefits of auctions for high-bidders.

The more interesting question is how to find the optimal ordering of vehicles through an intersec-
tion. Using AIM, individual vehicles can be controlled, allowing many more combinations of vehicle
ordering than with traffic signals. Tachet et al. (2016) proposed modifying a platoon-based policy for
granting reservations to batches of vehicles moving together. Zhu and Ukkusuri (2015) developed a
linear program for AIM within DTA, although it was limited to one vehicle per conflicting movement
per time step. Levin, Fritz, and Boyles (2017) formulated the vehicle ordering problem as a mixed
integer program, again for a single intersection within DTA. Since DTA operates on time steps, and
is not necessarily practical for actual control, Levin and Rey (2017) developed a mixed integer linear
program for optimizing vehicle trajectories in continuous-time. They also modified the original AIM
protocol (Dresner and Stone 2004) to admit optimized trajectories.

A major downside of AIM is the lack of support for human-driven (legacy) vehicles. Consequently,
AlMis unlikely to be usable until AVs comprise most of the vehicle traffic. Dresner and Stone (2007) pro-
posed occasionally cycling a green traffic light to clear queues of legacy vehicles, but delays could be
high. Conde Bento et al. (2013) proposed to reserve all possible vehicle trajectories for legacy vehicles,
creating a method for legacy vehicles to use the reservation system without two-way communica-
tions and precise control. However, due to the extra space reserved for legacy vehicles, this method
is unlikely to improve over traffic signals until reaching 80% or higher AV market penetration (Levin
and Boyles 2016). Qian et al. (2014) suggested that legacy vehicles might follow AVs through an inter-
section. The problem of integrating legacy vehicles into AIM safely yet efficiently is challenging and
requires further study. It is also tangential to the purpose of this paper, which is to optimize AIM and
DLR for the best case scenario of 100% AV market penetration.

2.2. Dynamic lane reversal

AIM improves intersection capacity, but does little for link capacity. Hausknecht et al. (2011) pro-
posed using the intersection manager technology for AIM to control lane access as well. Lane direction
becomes dynamic because vehicles must request permission to use a specific lane in a specific direc-
tion as well. DLR is similar to contraflow lanes currently in use in some cities during peak hours or for
evacuations. However, the main difference between DLR and contraflow lanes is that two-way com-
munications and precise control of AVs might be used to change lane direction at much more frequent
intervals, such as on the order of minutes (Hausknecht et al. 2011). Hausknecht et al. (2011) suggested
changing the direction of the lane for an entire link, but lane direction could also be modified at smaller
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spatial intervals. For instance, Duell et al. (2016) proposed a mixed integer linear program for deter-
mining lane direction in system optimal DTA. Levin and Boyles (2016) studied DLR in (user equilibrium)
DTA, and developed a saturation-based heuristic for determining lane direction based on expected
future demand rates and turning proportions. However, they were not able to find an optimal policy
efficiently, especially when future demand was not known with certainty. This paper improves signif-
icantly on previous methods. The max-pressure control is provably optimal for a point-queue based
flow model, like the one used by Varaiya (2013), and does not require any knowledge of future demand.
The policy is used to develop a heuristic for simulation-based DTA using the cell transmission model,
which is shown to be effective on a city network.

2.3. Pressure-based control

Max-pressure control is inspired by the backpressure policy for internet communications (Tassiulas
and Ephremides 1992). The control is responsive to the queue lengths, which are used to determine
the pressure for specific turning movements. Typically, pressure for movement from queue i to queue
j increases with the length of i and decreases with the length of j. The objective of pressure-based
control is to maximize the stability of the network, where stability is defined in terms of the sum of the
queue lengths. If queues grow to infinity, the network is said to be unstable. To apply max-pressure
control, the traffic network is typically modeled as a stochastic queueing system, and stability is proven
using Lyapunov analysis. Varaiya (2013) studied the variant in which a single phase is chosen per time
step. Le et al. (2015) created a similar max-pressure signal control policy, instead choosing the fraction
of each time step allocated to each signal phase. Le et al. (2017) extended the model to include system
optimal route choice and spatially-constrained queues.

In general, the stochastic queueing models used to prove the optimality of max-pressure control
make several assumptions that are not applicable to traffic networks. First, they assume that queues
are unbounded, whereas roads have finite space to store vehicles. Second, they typically assume that
link travel times are an uniform one time step. Although that is reasonable for internet packet routing
with information traveling at the speed of light, that is not applicable to traffic networks. This assump-
tion can be somewhat overcome by breaking each link into segments, with each one traversable in
one time step at the free flow speed. However, the third limiting assumption is not modeling the
congested side of the flow-density relationship. Consequently, max-pressure control has yet to be
proven to be throughput-optimal for realistic traffic networks, and such a proof may not exist given the
challenging analytical properties of traffic flow models such as the cell transmission model (Daganzo
1994).

Nevertheless, max-pressure control has elegant analytical properties for the simplified queueing
model (Varaiya 2013). To address the issues with realistic traffic flow, this paper takes a two-phase
approach: we first formulate and prove stability of max-pressure control under the necessary assump-
tions. Then, we apply the max-pressure control to simulation-based DTA to study whether it is effective
in a more realistic flow model.

Another limiting assumption made by some previous work on max-pressure control is that route
choices remain fixed. Smith (1979) demonstrated that intersection control can have significant and
adverse effects on route choice. Although some papers used simulation to investigate the effects of
max-pressure control with route choice (Zhang, Li, Feng, and Jiang 2012; Gregoire et al. 2014; Zaidi,
Kulcsar, and Wymeersch 2016), Levin, Boyles, and Patel (2016) showed that decentralized control
(which includes most max-pressure policies) could create the Daganzo (1998) paradox. Despite the
lack of optimality for realistic conditions due to traffic flow modeling or route choice, max-pressure
control could yet be a better policy for realistic networks than FCFS or other heuristics. Therefore,
this paper will develop and prove the optimality of a max-pressure policy for a stochastic queueing
model with fixed routing proportions, then apply it within simulation-based DTA to calibrated network
data.
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3. Max-pressure control

Although max-pressure control has been formulated and proven for traffic signals (Varaiya 2013; Le
etal.2015),it has yet to be applied to AV technologies. AVs are more amenable to max-pressure control
than signals because the two-way communications and potential behavioral precision of AVs admits
a greater feasible range of intersection controls. For instance, signals are limited to selecting phases,
whereas AIM can grantintersection access to individual vehicles (Fajardo et al. 2011). In this section, we
formulate a combined max-pressure policy for controlling both AIM and DLR. Essentially, we show that
we can formulate the AIM and DLR problem so similarly to the signal control model of Varaiya (2013)
that the proofs of optimality are identical.

3.1. Traffic network

Consider a traffic network G = (\V, .A) with nodes A" and links A. LetT'~ (n) ¢ Aand " (n) C Abe
the sets of links incoming and outgoing from node n, respectively. In an intuitive overload of notation,
let '™ (/) and '™ (i) be the sets of links incoming and outgoing from link i as well. For the purposes of
proving throughput optimality, links are modeled as store-and-forward queues with changing num-
bers of lanes, resulting in changing capacities. A turning movement (i,j) € '™ (n) x ' (n) indicates
movement from link i to link j across some node n.

Consider discretized time. Let x;;(t) € R be the number of vehicles waiting for turning movement
(i,j) at time step t. Let x(t) be the array of queue lengths at time t, and let X’ be the state space - the
set of possible queue length arrays. Queue lengths evolve over time based on the intersection control
and number of lanes available for vehicle movement. At the start of each time step, two controls are
chosen: lane allocations and intersection flows.

Let Z; be the number of lanes on link i without lane reversals. Let E,T(t) € {0,.. .,Z,-} and E,-l(t) €
{0,. .., ¢} be the number of lanes allocated for inflow and outflow from link i at time t, respectively.
The 1 and | refer to the upstream and downstream ends of the link, respectively. As discussed by Levin
and Boyles (2016), the number of lanes need not be uniform throughout a link.

Lanes may be shared between parallel, opposite-direction pairs of links. (Note that a link could
have 0 lanes allocated as long as it is empty of vehicles.) Let Ag, C A be the set of links which have
an opposite-direction pair that admits DLR. Let i~ be the opposing link of i. The set Ayq, is sym-
metric; if i € Aqg), then i< € Ay, also. Furthermore, applying the (-)* function twice results in the
original link: (i) = i.Let Asy = A\ Agyy be the set of links without a parallel pair. For all links i € Ay,
Z,-T(t) = K,.l(t) = 1. Let A; C Ajy be the set of source links on which vehicles can enter the network,
and let As C Agy be the set of sink links on which vehicles can exit. Vehicles that enter a sink link are
immediately removed from the network. The set of internal links is denoted A, = A\(As U A;).

3.2. Lane allocation

We do not include physical space constraints in the max-pressure formulation so that we can prove
stability. Therefore, the lane allocation has only a limited effect on the space available for a link queue.
In this queuing model, vehicles can ‘stack’ infinitely. The spatial constraints on lane allocation are

ety = 1Y xyt—1)>0 (1a)
jeA

£ () = Tif Y x(t) > 0 (1b)
jeA

which ensures that the link is given at least one lane if a queue exists on that link. If no queue exists,
then it is possible to reverse all lanes on a link, making it impassable until the next time step.
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Each link and its opposite have #; + ;- lanes when combined that can be reversed as needed.
Therefore, the lane allocation is also constrained by

(0 + £/ (t) = & + b 2

Let £(t) be the array of lane allocations at time t. Let L(x(t)) be the set of lane allocations satisfying
constraints (1) and (2) and the domain on[T(t) and Z,l (t) for a given queue array x(t). The feasible lane
allocations depend on x(t) due to constraints (1). The saturation flows for turning movement (i, j) will
depend on the number of lanes allocated to both jand j. For convenience, let £(t) = min{eil (0, ZJ-T ()}
be the number of lanes available for movement from i to j.

If a system is not capable of dynamic lane reversal, this formulation can still be used for intersection
control only (see Section 3.4) by setting ¢ (t) = ¢/ (t) = ¢; forall t.

An interesting property of this formulation is that K,.T (t) and él.l (t) must be controlled separately to
achieve a policy decentralized at the node level. If E,-T (t) and K,l(t) must be equal but can vary over
time, then the number of lanes allocated to outflow from link i affects the number of lanes allocated
to inflow into link i. However, inflow and outflow to i occur at different intersections, which prevents
decentralization by node. Levin and Boyles (2016) proposed to enact dynamic lane reversal at small
spatial intervals within each link, which would satisfy the requirement that Z,-T (t)and Z,l (t) are separate.

3.3. Saturation flow

Although the lane allocation does not affect the available space, it affects the available capacity for
inflow and outflow. Let Q;; be the saturation flow per lane for moving from link i to link j at time t
across an intersection independent of conflicting movements. This saturation flow is based on the link
capacities, but may be further limited by the turning geometry. The actual capacity for each turning
movement at time t also depends on the lane allocation. For movement from i to j, the saturation flow
isequal to Q;¢;(t) = Qj min{¢; (o), ZJ.T(t)} attime t. Therefore, choosing ZI-T (t) = £} (t) may be necessary
to maximize the utilization of turning movement (i, j). However, the choice of ZjT (t) is also limited by
constraint (2), and affects outflow on link j*.

3.4. Intersection flow

Since DLR requires 100% autonomous vehicles, and DLR systems may make use of autonomous inter-
section control technologies (Hausknecht et al. 201 1), we combine DLR with AIM. Early versions of AIM
relied on microsimulation of vehicle movements on a spatial-temporal grid per intersection. Instead
of microsimulating vehicle movements within AIM, we use the conflict region model of AIM estab-
lished by Levin and Boyles (2015) to model the intersection flows per time step. Previous work on
max-pressure control (e.g. Varaiya 2013) similarly used a mesoscopic flow model for traffic signal flows.

Consider a time step t, and suppose that the saturation flows Qj are realized and known. Since
AIM requires two-way communication with vehicles requesting intersection access, saturation flows
should be known at the beginning of each time step through the reservation process. Divide each
intersection into a set of conflict regions. One method for creating this division is to align the conflict
region boundaries with incoming and/or outgoing links (Levin and Boyles 2015). Figure 1 provides
an example of conflict regions. Notice that the shape of the conflict regions changes in response to
lane allocation. For instance, in Figure 1, east-west movements are allocated only one lane while west-
east movements are allocated three lanes. Thus the conflict regions associated with the east-west and
west-east divisions are scaled proportionally.

Figure 1 illustrates that turning movements may be compressed into a single lane, depending on
the lane allocation. This may result in first-in-first-out (FIFO) restrictions on exiting flow. It is not yet
known how to include these restrictions in max-pressure control. Previous work (e.g. Varaiya 2013;
Le et al. 2015) assumed that each turning movement had a separate queue. Because FIFO is a real
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(a) (b)

Figure 1. lllustration of conflict regions. Conflict region boundaries change in response to lane allocation, but turning movements
pass through the same conflict regions regardless of the lane directions.

limitation, Section 6 applies the max-pressure control developed here to a cell transmission model-
based simulation which includes FIFO.

Figure 1 also illustrates that each turning movement passes through one or more conflict regions,
which restrict the total flow passing through. Let R be the set of all conflict regions, and let Rj; € R
be the subset of conflict regions used for turning movement (i, j). Assume that R;; is independent of
the lane allocation, which means that turns from i to j pass through the same conflict regions regard-
less of the lane allocation. That is accomplished when the conflict region geometry varies with the turn
geometry, as shown in the example in Figure 1. The total flow through each conflict region is bounded,
which places additional constraints on the feasible combinations of intersection flows. For instance,
simultaneous east-west and west-east movements do not overlap in any conflict regions, so the con-
flict region constraints would be inactive. On the other hand, simultaneous west-east and north-south
movements would overlap in one conflict region. Let S[j indicate whether turning movement (i, j) uses
conflict region r:

1 ifreRj
3;; _ ifr e Rji 3)
0 else

Let yj;(t) be the flow from i to j. Levin, Fritz, and Boyles (2017) derived the constraint on conflict region
flows as

yii ()
§ st <1 4
.. YeiQy ~ “)
(ij)e.A2 y y

forallr e R.

The objective of AIM is to decide the flows per turning movement, y;i(t). Finding yj;(t) is equivalent
to finding the fraction of the time step s;i(t) € [0, 1] devoted to movement from i to j. yj;(t) relates to
sij(t) via

yii(t) < s;(0)Q;£;(t) (5)

If s;(t) = 1, then flow from j to j can be equal to the saturation flow. Equations (4) and (5) can be
combined to obtain

D s < 6)
(ipeA?



1700 M. W. LEVIN ET AL.

We formulate a mathematical program to find the best s;;(t) for a single time step t given some weight
per turning movement w;;(t):

max WEZ wii(D)y;i (1) (7a)
st. 0<si(t) <1 V() e A’ (7b)
Z 8,-’js;j(t) <1 VreR (7¢)
(ij)e.A?
L) € L(x(D)) (7d)
yi(®) < spOQuLi (1) V(i j) € A2 (7e)
yi() < sp®Qs€] (1) V(i j) € A? (7)
yi(®) < x() Y j) € A? (79)
yi®) >0 V(ij) e A (7h)

The objective of mathematical program (7) is to maximize the weighted sum of intersection flows.
Constraint (7d) restricts the possible lane allocations to £(t) € L(x(t)), since L(x(t)) is the feasible
set of lane allocations as previously defined. Since the flow across each intersection is only affected
by incoming and outgoing links, the solution can be found by solving decomposing program (7) by
every node n € V. Further observe that if the lane allocation £(¢) is fixed, then program (7) becomes a
linear program with decision variables s(t) and y(t). If £;(t) are restricted to integer values then £(x)
is finite, and after decomposing program (7) per node, the number of possible lane allocations is rela-
tively small. Therefore, solving program (7) is equivalent to solving program (8) for each node with all
possible lane allocations at that node. By doing so, I(t) becomes a constant in program (8) resulting in
a linear program.

max a,,;er—%xm Wi (£)y;i(0) (8a)

st. 0<s() <1 VGij)el (nxTT(n (8b)

Z 8,~’js,-j(t) <1 VreRn (8¢)
(ij)el=(n)xT*(n)

yi(t) < spt)Qyt; (t) V(ij) € T™ (n) x I (n) (8d)

Yi(t) < sj0Qs€] () V(i j) € T~ (n) x T'" (n) (8e)

i < x(t) V(,j) € T7 (n) x " (n) (8f)

yj(®) =0 V(j)e T~ (n) x T* (n) (89)

where R, is the set of conflict regions at intersection n. Let s(t) be the array of intersection time
allocations, and let S be the feasible region of linear program (7).

3.5. State transitions

Each time step, the queue lengths evolve based on the lane allocation and intersection control, ran-
dom turning proportions, and demand. A control u = (£, s) specifies both the lane allocation and
fractions of time allocated to each turning movement. Let U (x) = (L(x), S) be the control space, also
known as the set of feasible controls.
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At each time step, the number of vehicles exiting the queue for turning movement (j, k) € A? is
min{sy () Qi ()£ (1), Xjk (t)}. The number of vehicles entering the queue for (j, k) depends on vehicle
route choices. Let Py (t) € [0, 1] be the proportion of vehicles entering j that join the queue for turn-
ing movement (j, k). When vehicles request intersection access through AIM, they must specify their
desired turning movement. Although Py (t) is a random variable, assume it is realized and known at
the beginning of each time step through the AIM protocol. Let pjx be the mean of Py (t). The number of
vehicles entering queue (j, k) is > ;. 4 min{s;(t)Q;€;; (1), x;j() }Pjx (t). Combining these gives the queue
update equation for turning movement (j, k) € A, x A based on conservation of vehicles:

Xk (t 4+ 1) = xc(t) — min {5() Qi (DL (1), X (1) }

+ Y min {s5()QyL; (), x5 (1) } Pixc(0) )
ie A

Equation (9) applies for queues on ordinary links, and must be modified for source links to include
entering demand. Let Djj(t) € R be the random variable for demand entering the queue for turning
movement (i,j) € A; x A at time t. Let djj be the mean of Dji(t) and let d be the vector of average
demands. Then the queue update equation for turning movement (j, k) € A, x Ais as follows:

Xjk (t 4 1) = X (t) — min {s3(6) Qi (D)€ (1), X (1) } + Dj (1) (10)

Once vehicles reach a sink link, they exit the network, so the queue on a sink link is always empty.

3.6. Stability

We wish to find a control policy that stabilizes queue lengths for as many demands as possible. As
in Tassiulas and Ephremides (1992) and Varaiya (2013), we first characterize the demands that can
be stabilized, then develop a maximum stability control policy. A control policy 7 defines the action
u = m(x(t)) taken when the state is x(t). A policy  is feasible if = (x(t)) € U (x(t)) for all x(t).

Definition 3.1: The queue length process X(t) = {x(t)} is stable under policy 7 if there existsa K < oo
such that

.
o
TleOO?ZE > x| <K an

t=1 (ij)eA?

Define |x(t)| = Z(,-J)eAz xjj(t) to be the L1 norm, i.e. the sum of the queue lengths at time t.

As in Varaiya (2013) we will characterize the stabilizable demands in terms of the long-term average
controls. For any time t, Dj(t) has mean dj;, which is also the long-term average rate of demand. Let f;
be the average flow on link i, defined by

fi=> fioy i€ (12a)
ie A

fi=> di icA (12b)
ke A

Let f be a vector of flows, and let P be the matrix of average turning proportions. By Proposition 1 of
Varaiya (2013) there exists an unique flow vector f satisfying (12a) and (12b) such that f = dP.

At each time t a control u(t) is chosen which specifies the lane allocations £(t) € £(x(t)) and
intersection time allocations s(t) € S.Let U = {u(t)} = (L, S) be the network control sequence where
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L= {£(t)} and S = {s(t)} are the sequences of lane allocations and intersection time allocations,
respectively. Let £ and s be the average control choices:

.

_ o

= lim - ;E(t) (13)
1 T

§= Tleoo - Zs(t) (14)

t=1
Definition 3.2: d is a stabilizable demand if the associated flow vector f satisfies
aiiSi > fipj (15
forall (i,j) € A2
Q,J-K_,-j?,-j is the average maximum flow for turning movement (i, ). fipj; is the average demand for

flow from i to . If inequality (15) is satisfied, then average demand is less than the average capacity.
Let co(if) be the convex hull of the set of network controls:

coUd) = quu:xuzo,qu=1 (16)

uel ueld

Here co(l{) is the set of convex combinations of any control u = (£, s). As in Varaiya (2013), we use
co(U) to characterize the set of stabilizable demands. By Proposition 2 of Varaiya (2013), we observe
the following:

Lemma 3.1: Control ii = (,5) € co(d) if and only if there exists a control sequence U = {u(t) € U}
satisfying equations (13) and (14).

Let D be the set of demand vectors such that there exists a it = (£,§) € co(f) satisfying

fipy < Q€S (17)
Let DO denote the interior of D, i.e. the set of demand vectors such that there existsa il = (£,5) € co(f)
satisfying

fipy < Qi3 (18)
Section 3.7 will develop a policy that stabilizes the queue lengths forall d € D°. Stability is not possible
ifd ¢ D:
Proposition 3.1: /fd ¢ D, there is no stabilizing control.

Proof: Let f = dP be the flow vector associated with d. Let 1 be an optimal solution to the linear
program

min Z)‘” (19a)
ueld
st fipy < Y (MQytfsy)  VGj) € A (19b)
ueld
iy = > (haayt]sy) VGj) e A2 (199)
ue
>0 Yuel (19d)

where £ and s in equation (19b) are defined by u = (¢, s). Since D is defined in terms of equation (17),
ifd ¢ Dthen ), > 1.By Lemma 3.1, any policy requiring > ,;, A, > 1is not feasible. |
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Note that linear program (19) may have uncountably infinite variables due to the feasible intersec-
tion control space S, but this does not present an issue for the proof. Infinite linear programs have been
studied in the literature (e.g. Shivakumar, Sivakumar, and Zhang 2016) and the existence of a solution
is sufficient for the proof of Proposition 3.1. Actual implementation of the max-pressure policy uses
the finite program (8).

The following result will be used for numerically characterizing the stability region.

Proposition 3.2: Consider two demand rate vectors d and d’. Supposed’ > d.

(@) Ifd ¢ DO thend ¢ DP.
(b) ifd € D° thend € D°.

Proof: Follows from equation (18). |

3.7. Max-pressure control

We now define the max-pressure policy 7* that stabilizes queue lengths whenever the average
demand vector is d € D, First, define a weight wj;(t) per turning movement (i, j). As in Tassiulas and
Ephremides (1992) and Varaiya (2013), this weight increases with the queue on (i, j) and decreases with
the queues on downstream links:

wi(t) = xj(t) — D ppxk(t) (20)
kel *(j)

This weight is the pressure to move vehicles from i to j, and the pressure is based on the difference in
queue lengths. The max-pressure policy chooses the control which maximizes the relieved pressure:

(D) = | max (M)ZAzoijsija)eu(r)wU(r) 1)
ij)e

*(X(t)) can be found by solving linear program (7) for all feasible lane allocations £(x(t)). Since
i€ Zyand0 < {; < ¢ for every link i, £(x) is finite. Since the lane allocation can vary for upstream
and downstream ends of each link, the solution method may be separated by intersection, i.e. solving
linear program (8) for all feasible lane allocations per intersection. The solutions per intersection can
be solved in parallel and combined to find 7 *.

Proposition 3.3: The policy * stabilizes queue lengths whenever the average demand vector isd € D°.

Proof: The proof is almost identical to the proof of Theorem 2 of Varaiya (2013)" by replacing Qjjsij (1)
with Qjsji(t)£;;(t). Note also that we assume Qj is constant for AVs, whereas in Varaiya's proof the
saturation flows are stochastic. |

3.8. Traffic signals with fixed lanes

Notice that as in Varaiya (2013), D° is defined implicitly by inequality (18). Intuitively, D° depends on
the control space U (x). AIM and DLR both greatly extend the control space beyond the traffic signals
studied by Varaiya (2013). AIM admits simultaneous conflicting combinations of vehicle movements
by coordinating the timing of individual vehicles, and DLR changes the numbers of lanes available for
outgoing and incoming flows. We modify the control space U/ (x) to create Usignal (X) to illustrate the
differences between traffic signals and DLR with AIM.
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For traffic signals, DLR is not used, so e,T(t) = Z} (t) = ¢; for all links i. Traffic signals also choose a
single phase per time step, so

sij(t) € {0, 1} (22)

forall (i, j). Note that constraint (7b) still holds. Although Qj; is realized, it is not known to a traffic signal
controller.

Therefore, combining constraint (22) with constraint (7b) prevents multiple conflicting turning
movements being activated during a single phase. Constraint (22) results in a finite S, which defines
the feasible phases available to the traffic signal. Then program (7) can be simplified to choosing the
phase at each intersection that maximizes the relieved pressure.

3.9. Discussion

We would like to clarify that the analytical results presented here rely on a simplified model of traffic
flow. As with previous results on max-pressure control (e.g. Varaiya 2013), the traffic flow model uses
point queues. Queue spillback is not included, and backwards-moving shockwaves do not obstruct
flow within links. Therefore, the stability results are limited due to the assumptions of the traffic flow
model. The stability results further assume that the turning proportions are fixed. In reality, vehicles
adjust their route choices to reduce their travel disutility, such as the user equilibrium principle. The
purpose of Section 5 is to apply the nice analytical properties from this simplified model to a more
realistic model of traffic flow and vehicle behavior.

4. Characterizing the stability region

Section 3.8 shows that simple restrictions on the control space yields a signal control model. Of course,
the signal control model has a similar throughput-optimal policy (Varaiya 2013), but the set of stabi-
lizable demands D° may be different. A comparison of D° for DLR, AIM, and signals would show the
potential capacity improvements from installing DLR and AIM technologies.

Equation (18), which is used to define PP, does not give a clear method for enumerating the
boundaries of D°. The stability region is characterized in the sense that d € D° if there exists a §
and ¢ satisfying equation (18). Checking this existence is required for enumeration. As specified by
equation (18), we must determine whether there exists an average control t such that the average
flow proportions are less than the average intersection flow permitted by . Equivalently, for given d
and P, we must solve linear program (19) to determine whether )", ,, Ay < 1. However, I{(x) may be
uncountably infinite for AIM.

Although calculating (18) does not seem practical, it is nevertheless possible to find the optimal
policy 7* relatively easily by solving program (8) for all possible lane allocations. Therefore, to find
the boundaries of D°, we use simulation. Choose a duration T, then simulate the evolution of queue
lengths from t = 0 to T. At each time step, choose u = *(x(t)), then calculate x(t + 1) according to
equation (10) based on the demand.

4.1. Relation between signals and AIM

Consider signals and AIM without DLR. As we will show below, it is important for traffic signal lost
time to be included as a reduction in the exogenous saturation flow parameter. Let Uim be the set
of feasible controls for AIM without DLR (setting £;(t) = i foralli e A). Let Dgignal and Dgim be the
region of stable demands for signals and AIM without DLR, respectively.

Proposition 4.1: D% = D

signal aim*
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Proof: Consider any s obtainable from AIM. Then s satisfies

Z 8,5-3,-1- <1 VreR (23)
(ij)eA?

from constraint (7c). Let Ssignal be the possible intersection control matrices for signals. Each s € S;ignal
defines a phase.

Since Sgignal is defined by constraints (7c) and (22), s is in the convex hull of Sgignal. Then there exists
some A satisfying

S= ) As (24a)
s€Ssignal
Z As =1 (24b)
s€Ssignal

Over a sufficiently long time period, we can obtain s by choosing phase s € Ssignal for As proportion
of the time.

Then s is also obtainable through traffic signals, which results in Dgim

=D

signal

by equation (18).
]

Of course, signals add additional overhead in terms of startup and clearance lost time, and queues
of vehicles cannot immediately move due to non-infinite backwards wave speeds. AVs under the AIM
control need not have the same overhead because they can coordinate their accelerations and startup
timing through vehicle-to-intersection communications.

Therefore, Proposition 4.1 shows that these effects must be included in the exogenous specification
of the saturation flow parameters because they are not endogenous to the stochastic queueing model
itself.

Proposition 4.1 is somewhat unintuitive, and holds for two main reasons. First, lost time from sig-
nal phases is likely to result in lower saturation flows for signals. Second, even with Dggnal = Dgim,
using signals will likely result in greater variance in the queue length for any given turning movements
because signal phases satisfy constraint (22). Consequently, outflow from long queues will be further
reduced by a non-infinite backwards wave speed and signals might cause queue spillback whereas
AIM would not. Neither of these effects are modeled in Section 3. Still, Proposition 4.1 is an important
result for analyzing the change in stability region from signals to AIM without DLR. The stability region
of signals will be proportionally reduced from the stability region of AIM based on the fraction of each
time step lost to startup delay and clearance intervals.

4.2. Detecting stabilizable demands

A more interesting part of this simulation method is detecting an unstabilizable demand. After the
termination of simulation, we have recorded the queue lengths x(t) at every time step t. Since the
policy is decentralized, we investigated D° for a single intersection. Nevertheless, the same method
could easily be applied to arbitrary networks. We considered a standard four-approach intersection,
with approaches from the north, south, east, and west. Each approach had two lanes per approach, and
all outgoing links also had two lanes. Conflict regions were determined as in Levin and Boyles (2015),
illustrated in Figure 1. We chose Q;; = 1200 vph. Turning proportions were distributed on average as
70% through, 20% right-turn, and 10% left-turn movements, but actual turning proportions at any time
step varied depending on the Poisson distribution sampling for demand per turning movement. We
used IBM’s CPLEX solver (version 12.6.0) to find the optimal solution to program (7). For a 2hr simulation
with a 15s time step, computation times were on average 68.9s on an Intel i7-7700 CPU with 16GB of
memory. Figure 2 plots the sum of the queue lengths |x(t)| for two demand scenarios for T = 3600s
with a time step of 15 s using a Poisson distribution for demand.



1706 M. W. LEVIN ET AL.

300 300
250 250
w v
£ £
2 200 % 200
] o
Q (3]
3 150 3 150
> 3
o o
k] s
¢ 100 £ 100
=3 =]
w (%)
) M 50
0 0
0 1000 2000 3000 0 1000 2000 3000 4000
Time Time
(a) (b)

Figure 2. Queue lengths over time for one simulation using (a) 1500vph demand per approach and (b) 1800vph demand per
approach. Each approach had 70% straight, 20% right-turn, and 10% left-turn movements with a Poisson distribution for demand.(a)
1500 vph demand, (b) 1800 vph demand.

From Figure 2 it is clearly obvious from a sufficiently long time period whether a demand vector is
stabilizable or not. In Figure 2(a), the queue lengths increase sharply during the middle of the simula-
tion, but return to around 20 several times. On the other hand, in Figure 2(b), the queue lengths are on
average (but not monotonically) increasing with time. Notice that in Figure 2(a), the queue lengths did
not return to 0, but the queue lengths nevertheless satisfy Definition 3.1 as the average queue length
is bounded by some K.

Evaluating Definition 3.1 would require running a simulation for an infinite time horizon. An alter-
native identification comes from realizing that demand is stabilizable if the queue length process x(t)
is positive recurrent. Formally, the queue length process is positive recurrent if for every x(t), there
exists a T such that the probability that x(t + 7) = x(t) given x(t) is non-zero. This definition is more
feasible to check within a finite simulation time. Over a simulation duration of T, we record the sum of
the queue lengths at 7, [x(t)|. Then, we check whether the sum of the queue lengths ever recurs to
within (1 + €)|x(7)] in the last T time of simulation. If so, we mark the demand rate as stabilizable. It
is clear from Figure 2(b) that demands that are far from the stability region will not satisfy this check
when ¢ is chosen to be a reasonably small number. We chose € = 0.1 to avoid rejecting stabilizable
demands for which the simulated queue length at 900s was on the low end of the normal variation.

Notice that equation (18), which defines D°, depends only on the average rate of entering demand.
The distribution of the entering demand is not relevant. Of course, the distribution will affect the
average queue length and delay, but does not affect whether a demand rate vector d is stabilizable.
Therefore, we can restrict our attention to deterministic demand.

Following the preceding discussion, we can now present a general method for enumerating D°.
Recall that A, is the set of links with external demand entering the network. Let £d; = 3, 4 djj be
the total rate of demand entering approach i. Divide A, into Afx C A, with fixed demand and A4)?" C
A with demand that varies together. Fix Xd; for all i € AI‘X. Since Ax should be zero or monotone
increasing, use a binary search on AY?" (with the demand on each i € A4}?" varying together).

4.3. Single-intersection stability region

We used the method in Section 4.2 to graph the stability region for the network with one standard
four-approach intersection described in Section 4.2. We used t = 900s and T = 7200 s with a time
step of 15s. To reduce the number of variables in the binary search approach, we first assumed that
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Figure 3. Maximum stable northbound and southbound demand for given eastbound and westbound demand for standard four-
approach intersection with different control technologies.
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Figure 4. Maximum stable northbound and eastbound demand for given southbound and westbound demand for standard four-
approach intersection with different control technologies.

the north-south approaches and the east-west approaches have the same demand. Figure 3 plots the
maximum northbound and southbound demand rate for which queue lengths were stable, given a
fixed eastbound and westbound demand rate. Figure 4 does the same for northbound/eastbound
and southbound/westbound demand, respectively. The demand variations in Figure 4 conflict more,
and are more interesting when considered with DLR. We considered three intersection control options:
AIM with DLR, AIM without DLR, and signals without DLR. (Signals with DLR is unlikely to occur due to
the technological and protocol requirements of DLR.) Figures 3 and 4 leave out the stability region for
signals, which is equal to the stability region for AIM without DLR by Proposition 4.1.

For AIM without DLR, the maximum NB/SB demand (with 0 EB/WB demand) was around 2182.6 vph,
but the maximum NB/EB demand (with 0 SB/WB demand) was around 1847.5 vph. That discrep-
ancy is because NB/SB approaches have fewer conflicts (only left-turning vehicles) than the NB/EB
approaches, which conflict in their through movements also. In addition, the stability region appears
to come to a sharp extreme point in both Figures 3 and 4. This is due to the intersection geometry.
Figure 4 has an especially sharp cutoff because NB/EB demand significantly conflict with each other
as well as with SB/WB demand.
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AIM with DLR exhibits surprising variability in Figures 3 - the maximum stable NB/SB demand is
not monotone decreasing with respect to EB/WB demand. The variation is due to DLR being able to
move larger numbers of vehicles through the intersection during any one time step by modifying
lane direction. Consequently, the initial queue length sample |x(7)| was sometimes abnormally low.
Nevertheless, the overall pattern demonstrates the expected result. The stability region from DLR is
significantly greater than the stability region from AIM alone. DLR is also more able to adjust to asym-
metric demand. The differences between the stability regions of DLR and AIM are largest when all of
the demand is from either the NB/SB or EB/WB approaches (Figure 3) or from either the NB/EB or SB/WB
approaches (Figure 4). Therefore, DLR is likely to be particularly beneficial during the AM and PM peak
hours when most traffic is moving either towards or away from the central business districts.

5. Simulation-based dynamic traffic assignment

The formulation and proof of the max-pressure control in Section 3 require fairly restrictive assump-
tions on the traffic network and traffic flow behavior that are necessary to prove the maximum stability
of m*. As in Varaiya (2013), we assumed unbounded queues to prove stability and ignored FIFO
behavior. In reality, queues have a finite maximum length due to physical space constraints, and after
reaching that length, will begin to spill back onto upstream links. Queue spillback can be a major con-
tributor to high travel times and route choice paradoxes (Daganzo 1998). FIFO may restrict exiting flow,
reducing the efficiency of a policy. The max-pressure control formulation also assumes that routing
proportions are fixed. In reality, vehicles change routes in response to travel times, and Smith (1979)
demonstrated that optimizing signal timings for current proportions and capacities could increase
congestion. To explore the practical utility of the max-pressure control developed in Section 3, we
adapt 7* to the simulation-based DTA model developed by Levin and Boyles (2016). We begin by
briefly describing the simulation-based DTA model in Section 5.1. The novel max-pressure heuristic is
then defined in Sections 5.2 and 5.3.

5.1. AIM and DLR in the cell transmission model

For dynamic network loading we use the cell transmission model (CTM) developed by Levin and
Boyles (2016) for modeling DLR and AIM. Each link i € A is divided into a sequence of cells. Let C be the
set of all cells, and let C; C C be the set of cells on link i € A. Therefore, vehicles traveling at the free
flow speed will move one cell per time step. Each cell c has some number of lanes £.(t) which may vary
with time t. Each cell cin alink i € Ay, also has a parallel, opposite direction cell, which we denote c*.

CTM determines vehicle movement between cells based on the lane allocation (Levin and
Boyles 2016). Let x.(t) be the number of vehicles in cell ¢ at time t. Cell occupancy evolves via
conservation of flow:

Xc(t+ 1) =X (1) = Ye,er1 () + Ye1,c(0) (25)

where ¢+ 1 denotes the cell after cell c. y¢ 11 (t) is the number of vehicles moving from cell ¢ to cell
c+1attimet:

Yee+1(t) = min {Xc(t): QcAtLc(D), @ (ijZH Atlei1(8) = Xe (t))} (26)

Ueyq

where uf is the free flow speed, w, is the congested wave speed, and Qc is the capacity of cell c. kj is
the jam density.

We refer the reader to Levin and Boyles (2016) for a more detailed discussion of lane-changing
behavior within this CTM. The lane allocation is constrained so that vehicles can be forced to change
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lanes at most once per time step:

[€c(t) —Lc(t+ 1] <1 (27a)

[€c(t) = L (t+ 1] <1 (27b)
We also ensure sufficient space for the cell occupancy:

kjuf Atee(t) > xc(t) (28a)

£c(t) = L= (1) = e+ Lo (28b)

where £. is the number of lanes allocated to cell ¢ in the absence of lane reversals.

To model AIM in simulation-based DTA, we use the aforementioned conflict region model but with
discrete vehicles. Let Vj;(t) be the set of vehicles waiting for intersection access from link i to link j at
time t, and let y,()1{0, 1} indicate whether vehicle v moves through the intersection at t. We wish to
execute the max-pressure policy every time step for thousands of intersections in our simulation-based
DTA. Therefore, rather than using a MILP to find the optimal combination of vehicles per intersection,
we use the greedy heuristic developed by Levin, Fritz, and Boyles (2017). We calculate the efficiency of
moving a vehicle from i to j based on the pressure term wj;(t) and the intersection supply the vehicle
would consume. We grant reservations to vehicles in order of greatest efficiency.

5.2, Max-pressure control policy

We now modify the max-pressure policy 7 * from Section 3.7 for use within the cell transmission model
of AIM and DLR. We first define the weight wj;(t) for movement from link i to link j. Recall that for the
stochastic queueing model, the weights are defined by equation (20). We define a similar pressure
term here based on cell occupancies. Let x;(t) be the number of vehicles in cell ¢ that want to turn
onto linkj (so Zjec, x¢j(t) = xc(t) is the total cell occupancy). x(t) is analogous to x;(t), except it is
defined for occupancy in cell ¢ € C;. Then equation (20) can be written as

W) =Y xg® = D Y Pk Y Xek(® (29)

ceCj jer+(i) kel +(j)  ceC;

for CTM. Of course, wjj(t) cannot become as large as w;;(t) because in the stochastic queueing model,
queues were unbounded and w;i(t) could become infinitely large as queue lengths grew to infinity.
In CTM, queues have a maximum length, which limits the maximum value of w;;(t). Still, Ww;;(t) will
increase and apply more pressure on movement from i to j as the queue length for (i, j) increases.

In equation (29), the average turning proportions pjx are an extra exogenous parameter to obtain.
However, we can convert it to an endogenous parameter by observing that

T T
T N Xek(D)
Pik = TILmoo T ; PO = TILmoo T Z Z Z Xc(t) (30)

t=0 ceCj kel *(j)

Then we approximate pj with the time-specific turning proportions pj (t) defined by

Xy (1) >0
p(®) = X (0= (31)
0 else

which results in
Wi =D xg® = Y > xek (O (D) (32)
ceCj jer(i ceCj
pjk is approximated with the turning proportions at t because those are the current turning proportions

of the queue at t. It is hoped that using this approximation will make the pressure more responsive to
the actual queued vehicles.
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When using the CTM, a major factor in lane allocation is capacity for vehicle movement through the
link, not only capacity for movement through intersections. With many cells per link, the possible com-
binations of lane allocations for individual cells can become quite large, and the optimal cell-specific
lane allocation cannot be found within a reasonable computation time. Therefore, we use the strategy
of Levin and Boyles (2016) and allocate lanes according to ¢/ (t) and ¢/ (t). ¢; (t) applies only to the last
cell on the link, in effect creating a dynamic turn bay. For any link i, label the cells on i, C;, as 1 through
|Cil, with cell ¢; = |Ci| being the most downstream cell. Then the cell lane allocation for cell ¢; on link i
is

0] if ¢ = ||
be(t) = 0+ 8= — i (t) ifc=1 (33)
E,»T(t) else

The second case occurs because the downstream allocation of lanes for link i affects the lane allocation
of the first cell on link i*.

Using Equation (33) to define Z,T (t) and Z,l (t), we can rewrite constraint (28a). Consider any cell con
link i. Then the feasible lane allocations are constrained by

kiuf Ate} (t) = xo () ifci = |Cil (34a)
kiuf Ate] (t) = xo () ifci # |Cil (34b)

Using the weights for specific turning movements, we translate the max-pressure problem (21) into
the cell transmission model as the following mathematical program:

max > wy0E(t) (352)
(ij)cA?
st. &M= Y w® Vi) eA (35b)
veVi(t)
kju,fAtZC(t)zxc(t) YceC (350)

where y,(t) in constraint (35b) is defined by vehicle movements from the simulation-based conflict
region model, and £.(t) is defined by equation (33). Due to the number of dimensions in £(x) and the
simulation-based constraint (35b), solving program (35) exactly is still unlikely to be practical for large
networks. Constraint (35¢) is not as easily decentralized because in the cell transmission model (as in
reality), the lane allocation for one direction affects the available space for the vehicle queue in the
other direction. We therefore develop a heuristic to choose the lane allocation. Essentially, the max-
pressure policy for simulation-based DTA calculates pressure terms wj;(t) for all turning movements,
then decentralizes intersection flow and lane allocation separately. Intersection flows are calculated
per intersection using the greedy heuristic developed by Levin, Fritz, and Boyles (2017). Lane allocation
is decentralized at the link level using the heuristic described in Section 5.3.

5.3. Heuristic for lane allocation

Notice that the definition of Z,-T(t) and E,-l(t) in equation (33) means that the space with Z,T(t) lanes
allocated may overlap with the space with Z,-t_ (t) lanes allocated. This overlap was not an issue in the
stochastic queueing model due to the lack of density constraints. Therefore, we also require that

O+ < b+ - (36)
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The CTM developed by Levin and Boyles (2016) has further link-specific restrictions that a vehicle can
only be forced to change lanes once per time step:

|€ai(0) = Lcqnyi(D)] <1 (37a)
€ci(D) = Lei(t+ )] <1 (37b)

Constraints (36) and (37) limit our ability to decentralize the lane allocation by intersection, as is the
case in Section 3. Instead, as in Levin and Boyles (2016), we use a heuristic policy that decentralizes lane
allocation by link. We use the calculated pressure terms w;;(t) to choose Z,.l(t) and Z,T(t), and assign
lanes according to equation (33). A feasible lane allocation always exists by Proposition 1 of Levin and
Boyles (2016); a simple feasible solution is to set £(t + 1) = £.(t) for every cell c and every link .

Consider any pair of links i and i~. We can easily enumerate the possible values of Z,-T (t) and Z,-T,_ (t)
based on constraints (34) and (36). For any E,.T (t), calculate

o) =min { > wy0)p;(0), Q] (1) 38)

Jjert

For each pairof linksiand i, choose the B,T (t)and Z,-TQ_ (t) that maximizes w;(t) + ;- (t). w;i(t) increases
with respect to the queue length for movement from j to j, and decreases with respect to the queues
onj.Since there are multiple downstream links, and vehicles on link i interact with each other and obey
first-in-first-out regardless of downstream link, we multiply w;;(t) by the proportion of vehicles turning
fromitoj. QiZ,-T (t) is the capacity for much of the link when using equation (33) to assign lanes. Unlike
in the stochastic queueing model of Section 3, lane allocation can cause mid-link bottlenecks due to
capacity limitations. By finding the lane allocation that maximizes w;(t) 4+ wj- (t) for each pair of links
iand i, we essentially seek to maximize the flow through the link.

Next, we consider adding an extra lane to the last (most downstream) cell of i to allow additional
flow to exit (which reduces the lanes allocated to the first cell of i~). This extra lane is similar to a
dynamic turning bay, but could also be used to increase the flow for through movements. Recall that
the last cell of i is allocated K,l(t) lanes. If E,-L t) > E,T(t), then i has an extra lane for a turning bay. Let
a),-l (t) be the estimation of the benefit of the lane allocation on the last cell of link i:

o} () = min {xi¢; (0, Q; (¢} )} +min § > X (0, Qe (£ (1)) (39)
Jer=(i)

If Eil t) = E[T (t) 4+ 1, then that increases the capacity for flow out of j by the capacity per lane, but also
decreases the flow of vehicles within i~ by the capacity per lane. a),-l (t) attempts to estimate the net
benefit. We choose the ¢; (t) € {¢] (t), ¢! (t) + 1} with the greatest o (1).

Equation (39) does not use the pressure weights directly because the number of lanes in the last
cell of link i only affects flow out of cell |C;j| and flow into cell |C;|~ at the current time. Therefore,
equation (39) considers the occupancy of cell |G|, xc;|(t), as well as the vehicles seeking to enter cell
|Ci|< at the current time, Zjer_(,h) X|gjli= (1).

6. Numerical results from dynamic traffic assignment

Using the simulation-based DTA model described in Section 5, we perform experiments on a test net-
work and city network to demonstrate the effectiveness of the max-pressure heuristic. As with the
max-pressure control of Section 3, the heuristic does not require any knowledge of future demand,
whether it be average demand rates or average turning proportions.
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Figure 5. Corridor for benchmark testing of heuristic. The dashed links are centroid connectors.
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Figure 6. Average travel times for various demand rates. The total demand was always 2400 veh/hr, but the eastbound/westbound
split varied. Free flow time is 8 min.

6.1. Test network for dynamic lane reversal

We first study the heuristic on the simple two-way corridor network shown in Figure 5. All intersec-
tions were controlled by the max-pressure AIM, and links shown in black were modeled using the
cell transmission model with 2 lanes, length 2mi, free flow speed 30mi/hr, congested wave speed
15mi/hr, capacity 800veh/hr, and jam density 264veh/mi. We study a variety of eastbound and west-
bound demand rates. The purpose of this benchmark is to evaluate whether the heuristic adjusts lane
direction properly to account for varying demands. Intersection control was not a major factor due to
the lack of turning movement conflicts.

Figure 6 plots average travel times with and without DLR for various demand rates. The total
eastbound and westbound demand was 2400 veh/hr, but the split was adjusted between 0veh/hr
eastbound to 2400 veh/hr eastbound. Since each lane has 800 veh/hr capacity, without DLR the capac-
ity per direction was 1600 veh/hr. With DLR, the total capacity (in either direction) of 4800 veh/hr could
be redistributed among the two directions of traffic. One hour of demand was simulated, and all
vehicles were allowed to exit.

Figure 6 shows that the heuristic was significantly effective at reallocating capacity when demand
was highly asymmetric. When all 2400 veh/hr were in one direction, average travel times increased by
around 10.0% with DLR compared to 71.3% without DLR. The heuristic performed worst when demand
was completely symmetric, with a 20.9% increase in average travel times. When demand is perfectly
symmetric, the heuristic reacted to small differences in link occupancies and changed lane directions
to compensate. Although frequent changing of lane directions is not an issue with the point-queue
model of Section 3, it can cause mid-link bottlenecks and congested regions of flow in the cell transmis-
sion model. Nevertheless, this heuristic could be considerably effective during the AM and PM peak
hours when most demand is traveling either to or from the central business districts. Therefore, in
Section 6.3, we study max-pressure control in the AM peak scenario for the downtown Austin network.

6.2. Stability region analysis

We next study the stability region on the same single-intersection network as in Section 4, except using
CTM for the traffic flow model. All links had 2 mile lengths, and were connected to a centroid which



TRANSPORTMETRICA B: TRANSPORT DYNAMICS 1713

4000
3500

3000 S

<

(mm—m—————

2500
2000
1500 -

-
IV, = o~
(J

1000 ----DLR and AIM
500 AIM without DLR

!
W |l [Y) LIRY
A N ‘I’ “,\’\J\~'¢‘ Sy
Y
1
0 N
0 500 1000 1500 2000 2500 3000 3500

EB/WB approach demand (vph)

Max. stable NB/SB approach demand (vph)

Figure 7. Maximum stable northbound and southbound demand for given eastbound and westbound demand for standard four-
approach intersection with different control technologies using CTM.

3500

z

£3000 ccoeninnC -

- \

] vy

E 2500 Wn

- (O

S \

§ 2000 Ml

s \

g !

g 1500 o,

o - \Y

= Nea_tMeo

@ 1000 Na ooy

2 ----DLRand AIM v Teee

g mmaban

% 500 AIM without DLR hidad S

= \
1

0 L
0 500 1000 1500 2000 2500 3000 3500

SB/WB approach demand (vph)

Figure 8. Maximum stable northbound and eastbound demand for given southbound and westbound demand for standard four-
approach intersection with different control technologies using CTM.

could hold arbitrarily long queues. Each link had 2 lanes, and capacity was 1200 veh/hr per lane. The
free flow speed was set at 30 mi/hr and the congested wave speed at 15 mi/hr. As in Section 4.3, 2
hours of simulation, including continuous demand generation, was used in experiments. We used the
method in Section 4.2 to test whether a combination of demands could be stabilized. Figures 7 and 8
are directly comparable to Figures 7 and 8, respectively.

Overall, the results are much noisier than in Figures 3 and 4. That is because the cell transmission
model, with a finite congested wave speed and queue spillback, creates much more interesting traf-
fic flow dynamics. The stability was based on whether a queue length at t = 900 s of simulation was
observed to recur in the last 900s of simulation. Due to the variability in traffic flow, the queue length
was unusually low at t = 900 s for some demands, and higher for others. Regardless, Figures 7 and 8
show the same general pattern as Figures 3 and 4. DLR is observed to significantly increase the stability
region. Actually, the effects of DLR on the north/east-bound vs. south/west-bound approach demands
is much more dramatic than in Figure 4, and stabilizes up to 3000 veh/hr demand. On the other hand,
AIM without DLR is less effective because the intersection becomes a major bottleneck. Long queues
and a finite congested wave speed reduce the efficiency of vehicles exiting the queue.
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Figure 9. Downtown Austin network. Links shown in red were capable of DLR.

These results clearly show that even in a more realistic cell transmission model-based simulation,
DLR greatly increases the stability region. During the AM and PM peak periods, in which most traffic is
heading towards or away from the central business districts, respectively, DLR could greatly improve
throughput. To study the throughput benefits, we next present results from a network calibrated for
the morning peak period.

6.3. Downtown Austin network

To demonstrate the improvements of max-pressure and DLR in a realistic setting, we used the down-
town Austin network which was calibrated to match observations by the Network Modeling Center.
This network has 171 zones, 546 intersections, 1247 links, and 62,836 trips over 2 hours during the AM
peak. The network is shown in Figure 9; links highlighted in red were capable of DLR. Other links were
not due to being one-way only, having different lengths or free flow speeds, or having different geom-
etry that would discourage lane reversals. For instance, the I-35 freeway on the east side is divided by
its structural design, and reversing lanes would require major structural changes. However, the major
arterial corridors are capable of DLR.

We studied four scenarios. The first is a benchmark consisting of controlling intersections with
AIM with the first-come-first-served (FCFS) policy. FCFS has been widely used in previous work on
AIM (e.g. Dresner and Stone 2004; Fajardo et al. 2011; Li et al. 2013; Levin and Boyles 2016) and is one
of the simplest policies both from control, fairness, and implementation perspectives. Nevertheless,
FCFS is far from optimal even in simple scenarios (Levin, Boyles, and Patel 2016). Our second scenario
is the max-pressure control described in Section 5 without DLR. The third scenario is max-pressure
control of both AIM and DLR. To focus on the max-pressure control, capacity increases from AVs are
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Figure 10. Comparison of max-pressure AIM and DLR, max-pressure AIM without DLR, and first-come-first-served AIM. The ‘MDP
heuristic’ is the heuristic developed by Levin and Boyles (2016).

not included in these scenarios (see Levin and Boyles 2016). For a comparison of traffic signals and
FCFS on this network, we refer the reader to Levin, Boyles, and Patel (2016). The fourth (MDP heuristic)
implements the lane allocation and intersection control policy of Levin and Boyles (2016).

Figure 10 presents a sensitivity analysis of the average travel times at dynamic user equilibrium
with respect to demand. Demand was scaled proportionally based on the calibrated origin-destination
matrix. DTA was solved using the method of successive averages to 500 iterations or a cost gap of
0.36 (see Levin et al. 2015), and all vehicles exited. Max-pressure DLR increased the computation
time by an average of 17.3% per iteration as compared with FCFS. Scenarios were run on a desktop
computer with an Intel i7-7700 CPU at 3.60 GHz with 16 GB of memory.

The max-pressure policy performed around 5% better than the MDP heuristic from Levin and
Boyles (2016) for less than 63,000 trips. Between 63,000 and 75,000 trips, greater improvement was
observed of up to 9.9% at 69,143 trips. At 75,423 trips, the max-pressure method performed worse
because it struggled with gridlock. This is not completely unexpected. Gridlock typically results from
queue spillback. The max-pressure policy was developed for a point queue model, which does not
include queue spillback.

The maximum observed improvement from max-pressure AIM (without DLR) over FCFS AIM was
18.6%, at 105% of the current demand. The average travel times exhibited an interesting pattern.
Improvement from max-pressure AIM was lowest at low demand and at high demand. At low demand,
congestion was low, so the intersections were less of a bottleneck. At high demand, link capacities
became a significant bottleneck, and max-pressure AIM without DLR was less effective at reducing
congestion.

AIM and DLR combined was more effective than AIM alone at all demand levels. Max-pressure con-
trol of AIM with DLR decreased average travel times by up to 36.8% (at 110% of the current demand).
DLR seemed to be most effective at reducing congestion when scaled demand was between 100%
and 115% of the calibrated demand. At higher demands, DLR may not have been able to adjust lane
directions enough to match capacity to demand. Many roads have 2 lanes in each direction (4 lanes
total). Even one vehicle traveling away from downtown during the AM peak required an entire lane
to be allocated, resulting in the practical limitation of 3 lanes in one direction. Although max-pressure
AIM and DLR can improve congestion, it cannot completely mitigate growth in demand.

7. Conclusions

This paper developed combined max-pressure control for autonomous intersection management
(AIM) and dynamic lane reversal (DLR), two new traffic operations technologies for autonomous
vehicles (AVs). Due to the complexity of realistic flow models, we first modified a stochastic queueing
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model to include AIM and DLR. Using the method of Varaiya (2013), we proved that the max-pressure
control stabilizes the network (maintains bounded queue lengths) for demands that can be stabi-
lized. Like max-pressure control for traffic signals, the max-pressure policy developed here has several
advantages. Max-pressure is decentralized by node: the policy depends only on queue lengths on adja-
cent links, and is therefore easy to compute in parallel for any size network. Max-pressure also adapts
to changes demand without requiring predictions or estimations of future demand by responding
to queue lengths. Max-pressure requires knowledge of turning ratios, but that information is always
necessary for AIM.

Using the max-pressure control, we compared the stability regions (the set of demands that can
be stabilized) from traffic signals, AIM, and AIM with DLR. An interesting theoretical result is that
within the stochastic queueing model, traffic signals and AIM have the same stability region assum-
ing identical saturation flows. In practice, AIM will increase the saturation flow by reducing lost time
and avoiding long queues and queue spillback. On a test network, AIM with DLR was observed to
have a significantly larger stability region than AIM with fixed lanes, and the stability region was
especially increased for asymmetric demand. Therefore, DLR could be particularly valuable for peak
hour congestion.

However, the stochastic queueing model does not include key aspects of traffic flow such as den-
sity limitations, mid-link capacity constraints, and first-in-first-out behavior on links. These behaviors
are well modeled by micro- and meso-scopic flow models, but such models are analytically complex,
and proving the stability of max-pressure control within such models may not be possible. In addition,
Levin, Boyles, and Patel (2016) showed that decentralized control could lead to the Daganzo (1998)
paradox. Therefore, we applied max-pressure control to simulation-based DTA using the cell transmis-
sion model. Due to the additional lane allocation constraints and computational complexity, we used
the max-pressure control weights and concepts in two heuristic policies —one for intersection flows,
and another for lane allocation. Results on a test network demonstrated that the DLR heuristic was
effective at reducing travel times, especially for asymmetric demand. Max-pressure control was also
highly effective on the downtown Austin city network (including solving for dynamic user equilibrium)
compared with first-come-first-served.

Since AIM and DLR are not practical with (nearly) 100% AV market penetration, there is considerable
time and opportunity for future work. Potential extensions include adding system optimal route choice
to the max-pressure control d fa communications packet routing in Tassiulas and Ephremides (1992).
Another important question is whether max-pressure control remains throughput-optimal under real-
istic traffic flow behavior including density constraints, first-in-first-out behavior, and queue spillback.
Finally, the AIM and DLR technologies themselves require further development. Although they are
theoretically possible with coordinated AV, they have yet to be demonstrated with real AVs. Lane-
changing due to DLR could temporarily reduce capacity, and this effect should be estimated to
be included. Capacity loss from lane-changing could be included in this model as a reduction in
capacity for the next time step. In practice, it will be decades before 100% AV market penetration
is achieved, and even afterwards, roads must be shared with pedestrians and cyclists. Modifying
the AIM and DLR control protocols to admit non-connected human interactions is necessary for
practical use.

Note

1. Varaiya (2013) uses different notation; Q;is;;(t) is equivalent to C(/, m)(t + 1)S(/, m)(t) in Varaiya (2013)'s proof.
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