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ABSTRACT: The concept of activity cliff (AC) (i.e., a small
structural modification resulting in a substantial bioactivity
change) is widely encountered in medicinal chemistry during
compound design. Whereas the study of ACs is of high interest as
it provides a wealth of opportunities for effective drug design, its
practical application in the actual drug development process has
been difficult because of significant computational challenges. To
provide some understanding of the ACs, we have carried out a
rigorous quantum-mechanical investigation of the electronic
interactions of a wide range of ACs (205 cliffs formed by 261
protein−ligand complexes covering 37 different receptor types)
using multilayer molecules-in-molecules (MIM) fragmentation-
based methodology. The MIM methodology enables performing
accurate high-level quantum mechanical (QM) calculations at a substantially lower computational cost, while allowing for a
quantitative decomposition of the protein−ligand binding energy into the contributions from individual residues, solvation, and
entropy. Our investigation in this study is mainly focused on whether the QM binding energy calculation can correctly identify the
higher potency cliff partner for a given ligand pair having a sufficiently high activity difference. We have also analyzed the effect of
including crystal water molecules as a part of the receptor as well as the impact of ligand desolvation energy on the correct
identification of the more potent ligand in a cliff pair. Our analysis reveals that, in the majority of the cases, the AC prediction could
be significantly improved by carefully identifying the critical crystal water molecules, whereas the contribution from the ligand
desolvation also remains essential. Additionally, we have exploited the residue-specific interaction energies provided by MIM to
identify the key residues and interaction hot-spots that are responsible for the experimentally observed drastic activity changes. The
results show that our MIM fragmentation-based protocol provides comprehensive interaction energy profiles that can be employed
to understand the distinctiveness of ligand modifications, for potential applications in structure-based drug design.

1. INTRODUCTION

The essence of drug action stems from its molecular recognition
with the target receptor. As such, a complete characterization
and understanding of the molecular interactions comprising the
target−drug recognition is crucial for drug design. The
relationship between the chemical structure of a molecule and
its biological activity, also known as structure−activity relation-
ship (SAR), has enabled the recognition of the molecular groups
responsible for an observed biological effect.1,2 An under-
standing of the SAR [both qualitative as well as quantitative (i.e.,
QSAR)] provides the key information for the modification of
the chemical structure of a small molecule to enhance the
desired biological effect.1,3 The correlation between the
structure of a small molecule and its bioactivity has also aided
the development of various physical or empirical (statistical or
machine learning) algorithms that can screen several thousands
of structures to obtain a few dozen chemical compounds having
the desired physicochemical and biological properties.4−12

Although such models are used to learn from the ever-growing
SAR databases and then employed to predict the potency of a
new molecule, such predictions are not always reliable.2,13 More
specifically, such models perform quite poorly when a small
structural change leads to a significant activity (or potency)
change (>100-fold), commonly known as activity cliffs (ACs) or
property cliffs.13−20 ACs showing a dramatic effect from small
structural modifications are frequently found in medicinal
chemistry during compound design. In the past few years, such
ACs have received significant interest in drug design from both
computational and medicinal chemists because their deliberate

Received: December 3, 2019

Articlepubs.acs.org/jcim

© XXXX American Chemical Society
A

https://dx.doi.org/10.1021/acs.jcim.9b01123
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

IN
D

IA
N

A
 U

N
IV

 B
LO

O
M

IN
G

TO
N

 o
n 

Ju
ne

 2
, 2

02
0 

at
 1

5:
10

:0
3 

(U
TC

).
Se

e 
ht

tp
s:

//p
ub

s.a
cs

.o
rg

/s
ha

rin
gg

ui
de

lin
es

 fo
r o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bishnu+Thapa"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jon+Erickson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Krishnan+Raghavachari"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jcim.9b01123&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b01123?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b01123?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b01123?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b01123?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b01123?fig=abs1&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.9b01123?ref=pdf
https://pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org/jcim?ref=pdf


use provides wider opportunities in lead-optimization proj-
ects.20−22

Although there are several distinct advantages of utilizing the
ACs in drug design protocols,20,21 practical implementation in
the actual drug development process is nontrivial because it
heavily relies on the accurate identification of such effects as well
as their understanding. Over the years, many publications have
focused on the development of new computational protocols to
identify and apply the concept of ACs.18,20,21 Mostly, the
compound similarity is evaluated based on the two-dimensional
(2D) molecular representation by calculating the similarity
values using some molecular-graph-based descriptors such as
molecular fingerprints and Tanimoto similarity coefficients.15

The ACs can also be identified using the matchedmolecular pair
(MMP) formalism, and its variants, in which a pair of
compounds with significant activity variance differ only at
specific sites represented by a substructure (such as R-group
substitution on an aromatic ring).23,24 As the ligand similarities
are analyzed based on the molecular substructures, MMP can
also provide a physically meaningful chemical interpretation of
the ACs. A more rigorous approach to identify the AC is based
on the three-dimensional (3D) structures, where a pair of bound
ligands in the complex structure with a given target protein show
significant spatial similarities along with a drastic activity change
(3D-cliffs).25,26

As much as the advantage of ACs in obtaining new bioactive
ligands (and ways to identify them) has been discussed in the
literature, significantly less work has been done in the context of
implementation to benefit the drug discovery process. The
major challenge lies in the fact that most of the empirical models,
including QSAR, are based on the linear similarity property
principle, whereas ACs are inherently nonlinear. Furthermore,
even the nonlinear models such as those based on machine
learning or neural networks struggle to identify the ACs as they
still rely on continuous SAR. Some of the somewhat successful
but relatively new approaches to identify the ACs in a given
dataset include the structure−activity landscape index,27

MMPs,23,24 retrosynthetic MMPs,28 and compound−core
relationship29 formalisms. Additionally, the concept of 3D cliffs
has also been used to investigate the ability of different docking
and scoring approaches to identify the substantial activity
change in structurally similar ligands.25,26,30,31

Another complication in incorporating the activity cliff
information in an empirical scoring function is due to the
challenges in identifying a proper, chemically intuitive,
molecular descriptor. As the interactions that trigger a sudden
activity change are specific to the particular receptor and the
inhibitor, it is highly difficult to generalize such descriptors
globally. Furthermore, when a structural change does not
necessarily alter any distinct new nonbonded interaction (e.g.,
steric repulsion or hydrogen bond), an accurate explanation or
prediction of such an AC is complicated, even for the force-field-
based scoring functions that explicitly define the electrostatic
and van der Waals interactions.32,33 In contrast, quantum
mechanical (QM) methods, in principle, include all contribu-
tions to the protein−ligand (P−L) interaction energies, and
hence should be ideal for such studies. An appropriate high-level
QM calculation could be a much-needed approach to address
the deficiencies in the current scoring functions while providing
a better understanding of the AC formation. Indeed, an
increasing number of studies have attempted to use the free-
energy-based and QM-based approaches to provide an

electronic-level understanding of P−L interactions, including
in the analysis of ACs.34−38

In this study, we have employed a high-level QM method to
explore and understand the formation of ACs on a set of 205 3D-
cliffs formed by 261 unique ligands reported in a previous study
by Bajorath and co-workers.25 The computational cost of the
associated QM calculation is reduced using our multilayer
molecules-in-molecules (MIM) fragmentation-based meth-
od.39−41 The multilayer MIM method is capable of reproducing
the total energy within 2 kcal/mol of an unfragmented full
molecule.40,41 The performance of the MIM approach is even
better for calculating the interaction energies, yielding values
within 1 kcal/mol of those obtained with the full, unfragmented
molecule with a good correlation (R2 = 0.98).42 The MIM
method has already been applied to analyze the P−L
interactions involved in several congeneric series of inhibitors
including interleukin-2-inducible T-cell kinase (ITK) inhibitors,
cyclin-dependent kinase 2 (CDK2) inhibitors, and thrombin
inhibitors.41,42 Using theMIMmethod, we have also shown that
contributions of the interactions from each amino acid residue
can be analyzed more effectively using an energy decomposition
scheme to identify the critical residues.43 Such a residue-specific
energy decomposition analysis could also be used to differ-
entiate two ligands to obtain the net interaction difference,
which makes the MIM an ideal method for understanding the
ACs.
In the following, we present an MIMmethod-based approach

for the investigation of the ACs present in a wide variety of
receptors, including metalloproteins. In particular, we aim to
reproduce the relative ordering of a large number of ACs using a
high-level QM method with a proper accounting of the
differential solvation effects. The role of crystal water molecules
and the effect of ligand desolvation energy on AC formation has
also been carefully explored. Additionally, we have exploited the
residue-specific interaction energies provided by MIM to
identify the key residues and interaction hot-spots that are
responsible for the experimentally observed drastic activity
changes. The results show that our MIM fragmentation-based
protocol provides comprehensive interaction energy profiles
that can be employed to understand the distinctiveness of ligand
modifications, for potential applications in structure-based drug
design (SBDD).

2. METHODS
2.1. Data Sets and Structure Preparation. A compre-

hensive set of 269 ligands bound to 37 target sets belonging to 17
different protein families forming a total of 216 3D cliffs was
considered in this study. These 3D-cliffs were obtained from the
Supporting Information of a remarkably rigorous study by
Bajorath and co-workers.25 In the original 3D cliff study, these
authors assembled a total of 12,145 protein−ligand complexes
with 2426 unique receptors from BindingDB and ChEMBL, and
systematically screened to obtain 216 well-defined 3D cliffs
based on the following criteria.

(a) To obtain high confidence experimental binding affinities,
any complexes with uncertain binding potencies, that is,
with “>” or “<” symbol, were discarded.

(b) For each target, there must be at least two complexes with
experimentally measured binding affinities to be consid-
ered for the cliff formation.

(c) For a ligand pair to qualify to possess a cliff, it must have
>80% 3D similarity and must have a 100-fold potency
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difference. The strongest binding partner of the cliffmust
have a nanomolar (nM) binding affinity (Ki) value. The
similarity evaluation was performed by using a 3D
similarity function with appropriate density functions,
taking positional, conformational, and property differ-
ences into account.

The resulting 3D cliff set consists of 269 ligands bound to 38
target sets belonging to 17 different protein families (Table S1).
The details about the screening protocol and further analysis to
obtain 3D cliffs can be found in the original refs 25 and 26.
The structures of the abovementioned 269 protein−ligand

complexes were downloaded from the protein data bank,44 and
further visually analyzed using the molecular operating environ-
ment (MOE) graphical interface45 to obtain the final test set. In
particular, we analyzed the structures to make sure that the
crystal structure does not have an error in the ligand structure
(i.e., missing or duplicated ligand atoms or bonds) compared to
the ligand reported in the original experimental study. In four of
the cases, we observed that the crystal structure had an
erroneous ligand, that is, with parts of the ligand present at
multiple places. In four additional instances, the ligands were
found to form a covalent bond with the receptor. Those eight
ligands were not considered for further analysis. Thus, our final
dataset includes a total of 261 ligand−receptor complexes
forming 205 ACs.We believe that this dataset is sufficiently large
to derive several fairly definitive conclusions (vide inf ra).
Missing hydrogen atoms in the crystal structure were added

with the Protonate3D46 tool as implemented in MOE at a
neutral pH of 7. Protein−ligand complexes were then energy-
minimized inMOEwith the AMBER10:EHT force field,47 using
a generalized Born/volume integral implicit solvation model
with an internal dielectric constant of 2 for the binding pocket
and an external dielectric constant of 80. The minimization was
performed under a 0.5 Å restraint for every atom with respect to
the starting structure. As the MM minimizations were
performed on the high-resolution crystal structures (resolution
< 2.5 Å) with some constraint, it is assumed that the resulting
protein−ligand complexes are quite close to the correct binding
modes. Therefore, they should be reliable enough for the
comparative study of the pairs of structurally similar ligands
(>80% 3D similarity) bound to the same receptor. Indeed, our
previous studies (and also this study) have shown that this
approach results in reliable structures to reproduce the
experimental binding trends.42,43

As the calculations are performed in the gas phase, any
charged ligand and all charged residues such as lysine, arginine,
glutamate, and aspartate were neutralized by adding/removing
protons to better match the stabilization seen in the solution. In
our previous study, we have shown that this is an appropriate
approximation for calculating protein−ligand interaction
energies in the gas phase that correlates well with the
corresponding experimental binding potencies.42,43 To further
assure that the neutralizing the charged groups does not lead to a
misrepresentation of the real systems, we computed the
interaction energies of a total of 46 AC pairs (total of 70 unique
protein−ligand complexes) having a net difference in the ligand
formal charges. A significant consistency in the results between
the fully charged versus charge-neutral system further validated
our approximation (see Supporting Information Table S7). For
the QM calculations, all residues along with crystal water
molecules present within 6.0 Å of the ligand were selected. The
selected regions were then extended to include the full residues

at the boundary. Our previous study has shown that including
the residues within 6.0 Å of a ligand is sufficient to capture all of
the most crucial residues that play a determining role in
protein−ligand binding.43 All the cut bonds were capped with
hydrogen atoms to satisfy the chemical valence. The final QM
region includes a total number of atoms in the range of 550−
1400 depending upon the size of the ligand.

2.2. MIM Method and Fragmentation Strategies.MIM
is a multilevel hybrid energy fragmentation approach similar in
spirit to the ONIOM methodology developed by Morokuma
and co-workers.48 Whereas more details about theMIMmethod
can be found in our previous publications,39−41,48 here we
provide a brief overview of the methodology adopted in this
study. All QM calculations were performed using our three-layer
MIM fragmentation-based method (i.e., MIM3). In MIM3, a
molecule is fragmented to form three increasingly larger sized
subsystems (r≪ r′≪ R), and the three subsystems are treated
with three different levels of theory. As in our previous study,
high-layer subsystems (r) are generated by forming pairs of
amino acid residues or crystal waters with the ligand (Scheme
1). In the cases where the ligand is significantly large (>30 heavy

atoms), the ligand is also split into multiple fragments by cutting
appropriate C−Cbonds tomake it computationally tractable. As
in our previous study,43 the protein is divided by cutting the C−
Cα and Cα−Cβ bonds, to obtain the initial nonoverlapping
monomers. In this scheme, each amino acid residue is divided
into two monomers, containing the backbone atoms (HC(
O)−NH−CH3) and the side chain, respectively. Such a

Scheme 1. Illustration of the MIM Fragmentation Scheme
Used in MIM2 and MIM3 Calculationsa

aAll carbon atoms of the ligand are shown in pink. In high- and
middle-layer subsystems, the fragment starting a subsystem is colored
in cyan.
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fragmentation scheme is convenient to obtain residue-specific
interaction energies (vide infra) that allows gathering a more
precise quantitative information of the residues contributing
significantly to the observed differences in the experimental
binding affinities of a pair of ligands. As the peptide bonds
between the amino acid residues have a partial double bond
character and therefore are not broken during the MIM
fragmentation, the definition of an amino acid residue is slightly

different (i.e., ) compared to the conventional

structure (i.e., ). Middle-layer subsystems (r′) are
generated using a distance-based fragmentation scheme with a
cutoff radius of 3.5 Å. In the low-layer (R), the full molecule is
calculated at a computationally efficient, semiempirical method,
PM6-D3. As the subsystems generated in each layer are
overlapping, the overcounting of atoms is corrected by forming
derivative subsystems using the inclusion−exclusion principle.
Independent energy calculations are then performed in each
layer, and the total energy is obtained by appropriate summation
of the subsystem energies, as shown in eq 1.43

∑ ∑ ∑

∑

= − + −

+ −
<

∩

< <

∩ ∩

− ∩ ∩ ∩ ∩

E E E E

E

...

( 1)

i

i

i j

i j

i j k

i j k

n

n

i j k n

MIM

1 ...

(1)

Here, the first term, Ei represents the energy of the ith primary
subsystem. The second and following energy terms (such as Ei∩j,
Ei∩j∩k) correspond to the derivative subsystems from the
overlapping region between the primary subsystems formed to
correct the overcounting.
The general energy expression for MIM3 can be written as

= − − − −′ ′E E E E E E( ) ( )r r r r RMIM3
high med med low low (2)

where r ≪ r′ ≪ R are the three arbitrary fragmentation
parameters used in the high, middle, and low layers. Ehigh

r and
Emed
r are the MIM energies calculated for the high-layer (r)

subsystems with the high and medium levels of theory,
respectively; Emed

r′ and Elow
r′ are the MIM energies calculated for

themiddle-layer (r′) subsystems with themedium and low levels
of theory, respectively, and Elow

R is the total energy calculated for
the low-layer (R) subsystems at the low level of theory.
The interaction energy between a protein and a ligand in a P−

L complex can be calculated as

= − −E E E Einteraction complex protein ligand (3)

Here, Ecomplex, Ecomplex, and Ecomplex are the total energy of a P−L
complex, a protein, and a ligand, respectively, which can be
calculated individually using eq 2.
As the interaction energy between the protein and the ligand

of a P−L complex is calculated by separating them at an infinite
distance without changing their coordinates, it is possible to
have some identical subsystems formed for the complex as well
as the protein due to the MIM fragmentation. As the energy
contribution from those subsystems will eventually cancel out
and therefore will not contribute to the calculated total
interaction energy, the energy calculation of those subsystems
can be avoided to further lower the computational cost without
compromising the accuracy. Therefore, for a given protein−
ligand complex, instead of separately calculating the total MIM3
energies for a PL complex, a protein, and a ligand using the eq 2

and subtracting them later (eq 3), the total interaction energy for
a molecule using our three-layer MIM is directly calculated as

Δ = Δ − Δ

− Δ − Δ
− Δ

′ ′

E E E

E E

E

(

) (

)

r r

r r

MIM3
interaction

high
interaction,

med
interaction,

med
interaction,

low
interaction,

low
interaction,full

(4)

where ΔEhigh
interaction,r and ΔEmed

interaction,r are the total interaction
energies calculated for the residue−ligand pairs with the high
and medium levels of theory, respectively; ΔEmed

interaction,r′ and
ΔElow

interaction,r′ are the total interaction energies calculated with
medium and low levels of theories with the distance-based
fragmentation scheme, and ΔElow

interaction,full is the total interaction
energy calculated for the full molecule at the low level of theory.
Each of the ΔEinteraction terms in eq 4 is calculated as

∑Δ = ΔE E
k

N
k

high/mid/low
interaction

high/mid/low
(5)

Here,N is the number of subsystems formed in the high, middle,
and low layers, and ΔEk is the interaction energy of the kth
subsystem.
As the high-layer fragments involve residue−ligand pairs, the

total protein−ligand interaction energy calculated using MIM3
can be partitioned into residue-specific interactions at the high
level of theory. However, as the residue-specific interaction
energies calculated only at the high layer will not add up to the
total MIM3 interaction energy because of the missing many-
body effects, we use a single uniform scaling factor to correct the
per-residue interactions. This scaling factor (α) is obtained from
the ratio of the total interaction energy (ΔEMIM3

interaction) and the sum
of the per-residue interaction energies calculated at the high
layer (ΔEhigh

interaction,r), as shown in eq 4. This approach has been
carefully calibrated in our recent study43 and shown to be
reasonably accurate to study the relative strength of residue-
specific interactions of structurally similar ligands as investigated
in this study.

α = Δ
Δ
E
E

Scaling factor ( ) r
MIM3
interaction

high
interaction,

(6)

where ΔEhigh
interaction,r = ∑k

NΔEhigh
k in which N is the number of

ligand−residue pairs formed in the high layer and ΔEhigh
k is the

interaction energy of the kth residue−ligand pair.
For all the light main group elements (i.e., H, C, N, O, F, P, S,

and Cl), we have employed the B97-D3BJ method (i.e., B9749,50

density functional with Grimme’s D3 dispersion correction51

and Becke−Johnson damping52) with 6-311++G(3d,2p)53−56

basis set as a “high” level and 6-31+G(d) basis set as a “medium”
level of theory. For the heavier elements or transition metals
such as Br, I, Zn, andMn, the energies are calculated at B97-D3/
def2-TZVPP,57 SDD58 as the “high” level and B97-D3/def2-
SVPP, SDD as the “medium” level of theory, both used with the
SDD pseudopotential. PM6-D359 was used as a “low” level of
theory for all atoms. Solvation effects on the interaction energy
were approximated using the scaled ligand desolvation energy
calculated using SMD60 implicit solvation and the B97-D3BJ/6-
311++G(3df,2p) method in conjunction with the solvent
accessible surface area (SASA) as described in our previous
study42 (see Supporting Information, Section S1 for details).
This approach provides a cost-effective way of approximating
the solvation energy penalty of protein−ligand binding and is
particularly appropriate for the comparative studies where the
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goal is to obtain the relative binding trend. However, for proper
calculation of the absolute binding energy that is comparable
with the experiment, a more rigorous calculation of protein−
ligand interaction in solution will be necessary.
For some selected cases (vide infra), the full solvation energy

of binding has been calculated using the SMD implicit solvation
model and B97-D3BJ/6-31+G(d) level of theory on the full,
unfragmented molecule and added to the gas-phase total MIM3
interaction energies. It is important to note that as the SMD
implicit solvation model is parametrized with Hartree-Fock
(HF) and density functional theory (DFT) methods, the
accuracy of the calculated solvation energies is unknown for the
semiempirical methods. Therefore, the semiempirical methods
cannot be used for the solvation energy calculations.
Furthermore, as the SMD implicit solvation model was
developed mainly to study small molecules, its direct application
with the default setting and uniform dielectric constant may not
be appropriate for the large and irregularly shapedmolecules like
proteins. Even for the small molecules, it has been shown in
some recent studies that the SMD solvation model has some
problems, particularly in dealing with charged molecules.60−62

Therefore, a more rigorous benchmarking of SMD implicit
solvation is necessary to study the larger molecules.
Additionally, for a total of 46 AC pairs (70 unique protein−

ligand complexes) having a net formal charge difference, we also
computed the interaction energies directly in the aqueous
solution using the MIM2 protocol with SMD/B97-D3BJ/6-
311++G(3df,2p) as a high level and SMD/B97-D3BJ/6-
31+G(d) as a low level of theory. The high-layer fragmentation
in this MIM2 protocol is the same as the one described in the
MIM3 calculation above. The MIM2 interaction energy is
calculated as

Δ = Δ − Δ

+ Δ

E E E

E )

r r
MIM2
interaction

high
interaction,

low
interaction,

low
interaction,full

(7)

The MIM fragmentation was performed using an in-house
Perl external module, and all electronic structure calculations
were performed using the Gaussian16 program suite.63

2.3. GlideScore.To provide a comparative assessment of the
relative MIM3 calculated interaction energies, a standard
evaluation of the ligand binding energies, often utilized in
SBDD, was also carried out. Specifically, the Glide docking
algorithm was used to estimate the protein−ligand interaction
energies utilizing the Glide scoring function.64−67 GlideScore is
an empirical scoring function to estimate ligand binding free
energy and includes force field (electrostatic, van derWaals) and
other parameters that penalize or reward interactions that
influence ligand binding. It has been refined to maximize
docking accuracy and binding affinity prediction. In addition,
another scoring term, EModel, was also included for a
comparison. The Emodel score, typically used for selecting
docking poses, weighs the force field components, that is,
electrostatic and van der Waals energies, higher. In docking,
Glide uses Emodel to pose selection and then ranks the best
conformer against one another with GlideScore. Emodel is a
combination of a modified version of GlideScore, the internal
ligand strain (Einternal), and the Coulomb and van der Waals
energy, but the exact formula is proprietary and not published.
For each of the 261 complex X-ray structures, the protein
preparation tool in Maestro was used to prepare each of the
complex structures starting with the identical files used in the
MIM3 calculations, followed by creation of the Glide docking

grid using the ligand in each complex structure to define the
position and extents of the grid using the default options.68,69

Following the protein preparation and grid generation, Glide
was used to score each ligand in the context of its protein
complex, allowing the ligand to minimize in the site according to
the Glide “refine in place” protocol. This procedure uses the
input ligand coordinates to perform an optimization of the
ligand structure in the field of the receptor, and then the ligand is
scored. The goal of this docking method is to find the best-
scoring pose that is geometrically similar to the input pose. The
GlideScore obtained was used directly to compare to the MIM3
interaction energies and the experimental binding affinities (vide
inf ra).

3. RESULTS AND DISCUSSION
In this study, we have investigated a set of 261 unique ligands,
forming a total of 205 3D ACs across 37 different receptors from
17 protein families to provide a quantitative understanding of
protein−ligand interactions. As mentioned earlier, the dataset
was taken from a previous study by Bajorath and co-workers on a
rigorous identification and classification of the 3D cliffs (vide
supra).25 The QM calculations are performed at the B97-D3BJ/
6-311++G(3df,2p) level of theory using our MIM3 fragmenta-
tion-based protocol to reduce the computational cost. All the
interaction energies are calculated in the gas phase using the
restraint-minimized geometries. The solvation energy contribu-
tion to the binding energy is approximated by including only the
ligand desolvation energy (see the Supporting Information
Table S3 for details). As the MIM3 calculation also gives the
interaction energy separately for each of the considered amino-
acid residues, we have exploited those residue-specific
interaction energies to further identify the source of the
experimentally observed difference in binding potency for the
cliff pairs. We have also explored in detail the interaction energy
contribution from crystal water molecules to the total binding
energy to elucidate their role in the AC formation.
We note a few important factors before presenting our results.

As the interaction energies are obtained in the gas phase, the
calculated values are significantly overestimated compared to
the experiments because of the missing screening effect from the
solvent as well as other factors such as protein and ligand
reorganization energies, and error in the accuracy of the QM
method [such as the accuracy of the method, basis set
superposition error (BSSE), etc.]. In this study, we did not
attempt to obtain the absolute binding energy differences,
although some calibrated scaling factors could be employed to
obtain binding energy values that are directly comparable to the
experiments. Nonetheless, as the primary goal of our study is to
be able to identify the more potent ligand in an AC, we mainly
focused on the relative ordering of the ligands based on their
interaction energies. Given the high structural similarity (>80%)
in the cliff ligand pairs, we expect that the effect of excluding
some of the environmental effects on the relative ligand order
should be small. Indeed, at the DFT level of theory noted above,
MIM correctly predicted the ligand potency ordering (i.e., larger
binding energy for the more potent ligand of the AC pairs) in
77.6% of the cases (159 out of 205 AC pairs). Although this is
quite respectable, we now discuss additional factors that can
yield further improvement.

3.1. Role of Crystal Water Molecules. Water plays a
fundamental role in protein folding, structure, and function and
thus the treatment of water and specifically crystallographic
water molecules is important in SBDD. Many methods have
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been developed to handle water computationally to help
understand their role in ligand binding.70 The effect of water
on ligand binding has been treated explicitly and with
continuum methods. In this work, we considered explicit as
well as implicit approaches, that is, retaining the crystal water
molecules present near the ligand-binding pocket considering
them as a part of the receptor, and removing them and treating
the system with and without a solvent model.
To investigate the role played by crystal waters in AC

formation, we computed the interaction energies with and
without the contribution from those molecules and compared
them with the experimental results. As mentioned above, when
the crystal water molecules were considered as a part of the
receptor (as in our starting point), MIM correctly predicted the
ligand potency ordering in 77.6% of the cases. Most
interestingly, the removal of the interaction energy contribution
from crystal waters (by removing all the crystal waters from the
structure) substantially improves the results: the accuracy
increases from 77.6 to 86.3% (now 177 out of 205).
Such a surprising observation leads to the next question: does

this mean the contribution from the explicit waters can be
ignored entirely? Comparing the results with and without crystal
water contributions (77.6 vs 86.3% accurate) suggests that
removing the crystal waters gives overall better results. However,
we do not expect that such an improvement will be consistently
seen for all investigated cliffs. In fact, the relative ordering of the
ligands in cliff-pairs did not change in 176 of 205 cases upon the
removal of the contributions from crystal water molecules,
although the total interaction energy changed quite substan-
tially. Of the 29 cases where the relative ligand ordering changed,
removing the contribution from all crystal waters leads to the

correct cliff ordering in 23 cases. In the remaining six cliff pairs,
removal of the contribution from explicit water molecules
worsened the results. This suggests that there are some cases
where having crystal water is essential for the AC formation. One
such example is shown in Figure 1, where two crystal waters
occupy the binding pocket of serine/threonine-protein kinase
and form two strong water-mediated hydrogen bonds (−3.5 and
−4.0 kcal/mol contributions). In its cliff partner, this pocket is
occupied by −OH and −OCH3 moieties. As expected, the
contribution of the two waters in the former is found to be a key
factor for the cliff formation, and therefore, they should be
considered as a part of the receptor.
The existence of essential water molecules have been studied

experimentally, particularly by Mattos, revealing cases where
crystallographic water molecules are conserved over several X-
ray structures of the same protein.71 Here, we analyzed cases in
AC pairs involving crystallographic waters and found that within
6 Å of ligand, there are as many as 16 crystal water molecules,
several of which are not present in one or the other of the AC
partners. Because of the significant difference in the number of
explicit water molecules in the cliff partners, the resulting
interaction energy contributions from crystal water molecules
are found to be significantly different (see Supporting
Information, Table S2 for details). Their total interaction
energy contribution is also quite substantial: up to −40 kcal/
mol. Therefore, the remarkable improvement in AC prediction
while excluding the crystal waters can be attributed mainly to the
discrepancy in the number of crystal water molecules present in
the crystal structures of the cliff pair. This suggests that having an
unequal number of explicit water molecules between a cliff pair
is clearly not optimal for calculating the interaction energy

Figure 1. Illustration of the difference in the hydrogen bond formation by crystal water molecules in a pair of serine/threonine-protein kinase chk1
inhibitors resulting in an AC. The rectangular box at the bottom shows the 2D structure of the ligands.
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differences. However, the uniform removal of the contribution
from explicit water molecules is also not a reasonable solution
because, as discussed above, it can potentially lead to incorrect
predictions.
To appropriately treat the binding energy contribution from

crystal water molecules, we carefully examined the crystal
structures to identify the water molecules that are unique to the
ligands in a cliff pair under consideration. These essential crystal
waters were identified based on the following two criteria:

(a) The crystal water should form at least two hydrogen
bonds, one with the ligand atoms and another with the
protein. Electronegative atoms such as N, O, S, and
halogens (F, Cl, Br, and I) are considered as the hydrogen
bond acceptor groups. Only polar hydrogens (NH, OH,
SH, PH) are considered as proton donors, and

(b) Hydrogen bonds are defined based on the donor−
acceptor distance (<3.0 Å) and the angle (>130°). A
crystal water molecule is considered to be unique to a
ligand only if similar hydrogen bonding is not possible for
its cliff partner (e.g., absence of OH group or N vs O
hydrogen bond).

With the interaction energy contributions only from the
unique and essential crystal water molecules fulfilling the
abovementioned two criteria included, the accuracy improved
further, with 88.8% of correct assignment of the most potent
ligand. Compared to the results with no crystal waters included,
interaction energy contribution from critical water molecules

resulted in a correct assignment of cliff ordering in four cases, as
shown in Figure 2.

3.2. Role of Ligand Desolvation Energy. As in our
previous studies, the contribution from desolvation effects was
approximated by using ligand desolvation energy calculated at
the B97-D3BJ/6-311++G(3df,2p) level with SMD implicit
solvation in conjunction with a model involving the SASA (see
Supporting Information Section S1 for details). The contribu-
tion of ligand desolvation energy ranges from 5 to 41 kcal/mol,
depending upon the size and polarity of the ligand and its
contact with the bulk solvent in the bound state. The relative
desolvation penalty for the cliff pairs is calculated to be in a range
of +11 to −17 kcal/mol (see Table S3 for details). Although the
desolvation energy contribution is quite significant, in the
majority of the cases, it did not change the overall ligand
ordering in the AC, that is, the strongly bound ligand in the gas
phase remained the stronger one even after the addition of
ligand desolvation energy difference. Only for nine of the cliff
pairs shown in Table 1, the addition of ligand desolvation energy
altered the relative ordering of the AC. In seven of those cases,
the addition of ligand desolvation led to the correct cliff
prediction. In the remaining two cases, the desolvation energy
resulted in the incorrect assignment of the most potent ligand of
the cliff pairs, which are discussed later in Section 3.5.
In general, the presence of polar groups in a ligand is expected

to form stronger interactions such as hydrogen bond or ionic
interactions with the receptor if a suitable group of a residue is
present nearby. At the same time, the desolvation penalty of such

Figure 2.Water-assisted AC formation. All carbon atoms of the most potent ligand of the AC pair are shown in pink. Crystal water molecules that are
unique to the specified ligand are shown in green. Only the polar hydrogens are shown for clarity. (a) Transferase-serine/threonine-protein kinase
inhibitors, (b) coagulation factor II inhibitors, (c) carbonic anhydrase2 inhibitors, and (d) beta-secretase1 inhibitors.
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a polar ligand tends to be relatively large because of its higher
solubility in the aqueous medium. A closer look at the crystal
structure and residue-specific interaction energies of those nine
cases suggests that, in many of those cases, the ligands modified
with more polar groups did not directly interact (i.e., did not
form H-bond or π−π stacking interactions, e.g.) with the
protein. This resulted in no significant improvement in total
interaction energy, though the larger desolvation energy penalty
resulted in an overall lower binding affinity. For example, in a
BACE1 inhibitor pair, 3IXJ and 3DM6 (ligand pair 3 in Table 1),
themajor difference between those two ligands is the presence of
two−COOH groups and the absence of a methoxy group in the
second ligand (3DM6) compared to the first (3IXJ), which
results in a significant desolvation energy difference (ΔΔEdesolv =
+11.15 kcal/mol) but a smaller gas-phase interaction energy
advantage (ΔΔEgas

interaction = −7.53 kcal/mol). A similar
noticeable correlation between the polar groups and energy

differences can also be observed in other cases listed in Table 1,
although the desolvation energy difference is not as significant as
in the BACE1 inhibitors. Overall, the inclusion of ligand
desolvation improved the cliff prediction results from 88.8% in
the gas phase to 91.2% in solution.

3.3. Distribution of Cliff Categories. Although, in
principle, it could be possible to qualitatively categorize the
ligand pairs based on the presence or absence of some specific
interactions such as H-bond donor or π−π interactions, the
overall effect of ligand modifications involves a significantly
larger number of residues than one would typically expect in
small ligand modifications (see below). In many cases, we
observed that a small change in ligand results in a significant shift
in its position and consequently affecting a large number of
residues that are not necessarily located at the actual site of
ligand modification. In other cases, the effect of ligand
modification is at the electronic level with a negligible

Table 1. Ligand Pairs With Activity Cliff Order Changed with the Ligand Desolvation Energya

aAll values are given in kcal/mol.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.9b01123
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

H

https://pubs.acs.org/doi/10.1021/acs.jcim.9b01123?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b01123?fig=tbl1&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.9b01123?ref=pdf


geometrical change but a significant change in interaction energy
[Cl (in 3E97) versus H (in 3EKR), e.g.)]. Identification of the
residues playing crucial roles in the AC formation can be useful
to understand the reasons for the experimentally observed
significant activity change and can potentially be used in
designing a new ligand.
To quantitatively identify the residues that are directly

affected by the ligand modification in the 3D-cliff pairs, we have
performed the MIM-difference energy analysis (MIM-DEA). In
MIM-DEA, the total interaction energy calculated for a ligand
using MIM3 is decomposed into the residue-specific inter-
actions, and differences in the per-residue interaction energy are
calculated for the ligand pair of interest to identify the residues
affected by the ligand modification. An illustrative example is
shown in Figure 3, where the quantitative information about the
residue-specific interactions and the net interaction energy
change for the residues that are affected by the ligand
modifications are shown for a pair of collagenase inhibitors.
Such residue-specific difference energy analysis provides

quantitative information about the residues that interact
differently for a ligand pair.
To further assist in rationalizing the residue-specific

interaction energy differences into the chemical nature of the
intermolecular interaction (i.e., H-bond, π···π, C−H···H−C
interactions), we also performed symmetry adapted perturbative
theory (SAPT) calculations on the high-layer subsystems at the
SAPT(0)/jun-cc-pVDZ level.72 SAPT energy calculation
provides a further decomposition of the residue-specific
interaction into the physically meaningful components, namely:
electrostatic, exchange-repulsion, polarization, and dispersion
interactions.73 Additionally, the SAPT analysis was further
rationalized by careful visual inspection of the residue−aligned
and superimposed protein−ligand complex geometries of the
ligand pairs.
Based on the calculated interaction energy differences

obtained from the residue-specific pairwise difference energy
analysis augmented with SAPT energy decomposition and
careful visual inspection, we have grouped the ACs into six

Figure 3. Residue-specific energy decomposition analysis of a pair of collagenase protein inhibitors. All residues in (a,b,d) are color-coded with red
color being attractive and blue color being repulsive interactions. (c) Shows the MIM calculated residue-specific interaction energies of some select
residues with contributionmore than |±0.5| kcal/mol. (d,e) Show theMIM difference energy analysis (MIM-DEA) where the per-residue interactions
of 1XUR are subtracted from 1XUD to obtain the relative interaction energy difference (only the residues contributing more than |±0.4| kcal/mol are
shown for clarity).
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categories, namely, (1) hydrogen bond, (2) aromatic/lipophilic
interaction, (3) dative bond, (4) bridging water molecule, (5)
ligand desolvation energy, and (6) multiple effects (Table 2).

The residues involved in the classification are identified based on
the following two energetic criteria: (1) difference in residue−
ligand interaction energy (ΔΔEpairwiseinteraction) must be larger than |
±1| kcal/mol and (2) interaction energy for a type of interaction
must exceed 60% of the calculated total interaction energy
differences. The distribution of the energetic contributions from
various interaction types for the selected ACs is depicted in
Figure 4, along with the number of contributing residues. The
number of 3D cliffs that fall into different categories is given in
Table 2.
Our QM-assisted analysis found a total of 72 cliff pairs that are

formed as a result of better hydrogen-bonding/ionic inter-
actions. Among those 72 cliff pairs, we found 44 cliffs that are
formed because of the classical hydrogen bonding (i.e.,
hydrogen bonding between O/N/S and NH/OH/SH groups).

Six of the hydrogen bond cliffs are found to bemainly dominated
by the nonclassical hydrogen bonds such as O···H−C,N···H−C,
or S···H−C, and the rest of the cliffs are formed by contributions
from both classical and nonclassical hydrogen bonding
interactions. In 58 of the 3D-cliff pairs, the AC formation is
dominated by the lipophilic interaction between the ligand and
the receptor. In 33 of those cases, the cliff formation was purely
due to the difference in the π interactions, which include π···π
and π···H type interactions. We also found three cases where the
cliffs were formed purely by C−H···H−C type interactions,
whereas the remainder were formed by the contribution from
the mixture of aromatic/lipophilic interactions. In 45 of the
cases, we found that multiple effects from both polar and
nonpolar interactions were responsible for the observed AC
formation. Interestingly, in eight of those cases, the interaction
energy contribution from only the residues meeting the
abovementioned criteria was not enough to result in the correct
cliff assignment. This suggests that the AC formation in those
cases is much more delocalized over a relatively large number of
residues. Additionally, four of the ACs were formed by the
bridging water molecules (Figure 2), whereas the ligand
desolvation energy was found to be crucial in seven cases
(Table 1), as discussed above.

3.4. Comparison of MIM Results with Glide Scores. To
put the QM cliff identification results in perspective, we
compared our MIM-assisted QM calculation results with
Schrodinger’s GlideScore, one of the most commonly used
ligand screening tools in SBDD. Figure 5 summarizes the results
obtained from the MIM and the GlideScore. Using the standard
protocol (see the Methods section for details), GlideScore
Emodel correctly identified the most potent ligand for 67.8%
(139 out of 205) of the cases. MIM results, on the other hand,
made correct predictions in 77.6% of the cases when the

Table 2. Distribution of Cliff Categoriesa

number of

s. no. cliff categories target sets 3D cliffs

1 hydrogen bond 23 72
2 aromatic/lipophilic interaction 23 58
3 dative bond 1 1
4 multiple effects 16 45
5 bridging water molecules 5 4
6 ligand desolvation energy 5 7

aThe numbers of 3D cliffs is the total number of cliffs that meet both
of the two criteria discussed in the text.

Figure 4. Illustrative example of energy contribution from various interaction types to the relative interaction energy difference calculated for the
thrombin inhibitor cliff pairs. The histogram on the right shows the number of residues involved. PDB IDs of the AC pairs are shown along the y-axis.
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restraint minimized X-ray crystal structures were used. As
discussed above, the MIM prediction is dramatically improved
to 91.2% (187 out of 205), when the interaction energies are
calculated including the contributions from unique crystal water
molecules and ligand desolvation energies.
Of the total 187 ACs that are correctly assigned by MIM,

GlideScore assigns false-positives in 52 cases. To see if there is
any specific type of interaction that is consistently under-
estimated by the GlideScore, we separated the cases whereMIM
and GlideScore results differ. Interestingly, in five of those cases,
MIM identifies ligand desolvation energy as the primary
contributor in the cliff formation. In 18 cases, we found that
the aromatic/lipophilic interactions played the defining role in
the AC formation, which is interestingly one-third of the total
cliffs formed by the lipophilic interactions (total of 55 cases,
Table 2). A closer inspection of the other 16 cases, where
hydrogen bonding interaction was the major contributor,
revealed that the nonclassical hydrogen bonding interaction
(e.g., C−H···O, C−H···S) contributed significantly. Further-
more, in 13 additional cases, MIM energy decomposition
analysis showed that the cliff formation arose frommany smaller
contributions (from 7 to 15 residues) with no single dominant
interaction type. Some of the representative examples are shown
in Figure 6. This analysis suggests that the relatively larger errors
seen in the GlideScore are the cases where the interactions are
not well-defined, that is, interactions that are dominated by the
nonclassical hydrogen bonds, and lipophilic interactions
involving π···H and C−H···H−C interactions. However, there
is no single type of interaction that is found to be consistently
underestimated in GlideScore.
Nevertheless, given the qualitative and rapid nature of the

GlideScore that can scan several millions of drug structures in a
few hours, it is important to note that the 67.8% accuracy
obtained using the GlideScore is very good. However, in the
context of how these results can be applied to the real drug
design problem to narrow down the search and identification of

potential drug candidates, the extra cost of carrying out the more
expensive MIM-assisted QM calculations to improve results by
>20% could make a big difference. Moreover, as discussed
above, the quantitative per-residue energy decomposition
provided by our approach can be useful in the informed drug
design protocols.

3.5. Problematic Cases: Is Accurate Interaction Energy
Calculation Enough? It is quite exciting to see that the QM
calculated interaction energies correctly predicted the more
potent ligand in a large number of ACs investigated in this study
(91.2% accurate cliff assignments). However, it is equally useful
to understand the cases where the high-level QM results
predicted the incorrect ligand pair ordering despite having a
significant experimental binding potency difference (>100-fold;
<−2.5 kcal/mol). To understand the possible reason for the
inability of QM calculations in predicting the relative ordering,
we further analyzed the structures and energetics by including
some of the other components of protein−ligand binding that
are not included in our current protocol. In the interaction
calculation protocol used above, we have only included two (i.e.,
interaction energy and ligand desolvation energy) of the many
other factors that could influence the protein−ligand binding
process such as protein desolvation, and vibrational and
conformational entropy changes. Furthermore, it is also possible
that the crystal structure may contain the ligand that is not in its
most favorable conformation.
To narrow down the potential factors defining the formation

of ACs in those 18 cases, we first investigated the effect of
entropy change to the relative ligand ordering. The entropy of
binding (−TΔS) for those 18 cliff pairs was computed using an
empirically derived protocol as described in the Supporting
Information Section S2. As the ligands involved in each AC are
structurally identical with >80% similarity, the overall
contribution from the entropy change is found to be relatively
small (−4.9 to 2.9 kcal/mol; Table S4). More importantly, the
ordering of the cliff partner changed in only one case (2PHB vs
2VWM) when the contribution from the−TΔS was included in
the total binding energy.
To determine if the observed incorrect assignment of the cliff

partner has resulted from the so-far approximated protein
desolvation energy, we computed the full solvation energy of
protein−ligand binding at the B97-D3BJ/6-31+G(d) level of
theory using SMD implicit solvation model. Note that these
implicit solvation calculations on such molecules with >1000
atoms are substantially more expensive than our approximate
approach of calculating only the ligand desolvation energy.
Though the inclusion of full solvation energy of binding
improved the overall binding energy by a significant amount (by
25−50 kcal/mol), it changed the relative ordering in only three
of the 18 examined ligand pairs (Table S5). This analysis
suggests that the origin of error in the majority of the failed cases
could be from some other effect such as the problem in the
crystal structure itself.
Regarding the possibility of having issues with the crystal

structures, it is important to note that we have already performed
the structure minimization with 0.5 Å restraint (see method
section for details) using the Amber10:EHT forcefield, which is
expected tominimize most of the crystal structure-related errors.
To examine the possibility of not having the ligand in its fully
relaxed form in the binding pocket, we took the restraint-
minimized geometry and performed a full geometry optimiza-
tion of the ligand at the PM6-D3 level while keeping the protein
fixed. Interestingly, using the protein−ligand complex with the

Figure 5. Comparison of the ACs prediction accuracy for various
computational approaches. On the x-axis, the bars corresponding to
QMgas

all , QMgas
NoWat, and QMgas

UniqueWat represent the results from MIM3
gas-phase calculation, including all atoms, excluding water molecules,
and including only the unique water molecules, respectively. The right-
most bar corresponding to QMsol

UniqueWat shows the MIM3 gas-phase
results plus the ligand desolvation energy.
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fully optimized ligand in the binding pocket, we found the
relative ordering is corrected in 4 of those 18 cliff pairs (Table
S6). In the other 14 cliffs, the relative ligand ordering remained
incorrect.
As the amino acid residues and ligand could be charged at the

physiological pH, it is also possible that the false assignment of
the AC could also stem from neutralizing the molecule in our
protocol. To test if that is the case, we computed the interaction
energies of a total of 46 AC pairs having a net difference in formal
charge on the ligands using MIM2 protocol and SMD implicit
solvation. In 42 of the 46 evaluated cases, the relative ordering of
the ligand remained identical with our previous assignment
using the charge−neutral systems (see Supporting Information
table S7). For the remaining four cases, the ordering of the
ligand changed compared to the order calculated using the
charge-neutralized protocol. Interestingly, three of those four
cases were among the 18 incorrectly assigned cases with our
charge-neutralized protocol. This suggests that care must be

taken when neutralizing the charged ligand, especially when
there is a net difference in overall ligand charge. Note that some
recent studies have shown that the SMD solvation model has
some problems, in particular, in dealing with charged
molecules.61,62 Therefore, a more rigorous calibration of SMD
implicit solvation is necessary to calibrate the accuracy.
In summary, this analysis suggests the possibility that even in

the high-resolution crystal structures, the ligandmay not be in its
optimum binding pose and therefore resulting in an under-
estimation of the nonbonded interaction energies, as pointed
out in some recent studies.74 Our analysis above showed that
some of those issues could be understood and corrected by
systematically preparing the starting structure. Finally, other
factors such as the deficiencies of our DFT methods such as
BSSE, and using neutral instead of charged ligands and residues
also may be responsible for some of the incorrect predictions.

Figure 6. Difference interaction energy analysis results of some selected examples of ACs where Glide score is found to incorrectly identify the most
potent ligand of the cliff. Only the residues contributing ΔΔEinteraction more than |±0.5| kcal/mol to the total interaction energy difference are shown
along with their quantitative contributions. In (A−F), the most potent ligand and its receptor is shown in cyan color, whereas the other complex is
shown in orange color. Receptors: (A) prothrombin, (B) heat shock protein HSP 90-alpha, (C−E) BACE1, and (F) collagenase 3.
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4. SUMMARY AND CONCLUSIONS

This study presents a large-scale application of QM methods in
providing insight into the experimentally observed large activity
differences in structurally similar ligand pairs. A set of 261
protein−ligand complexes forming a total of 205 ACs, which
cover 37 different receptor types belonging to 14 different
protein families, was used to assess the performance of our
protocol. These cliffs were systematically identified in a previous
study by Bajorath and co-workers to have at least 80% 3D
similarity in ligand structure and display more than 100-fold
difference in potency.25 To lower the computational cost of
high-level QM calculations (B97-D3BJ/6-311++G(3df,2p))
that are necessary to obtain reliable interaction energies, we
applied our three-layer MIM (MIM3 [B97-D3BJ/6-311+
+G(3df,2p):B97-D3BJ/6-31+G(d):PM6-D3]) fragmentation-
based approach, which accurately reproduces the high-level
interaction energies at a significantly reduced computational
cost. Our MIM3 approach is also shown to provide a residue-
specific energy decomposition of the total interaction energy,
which can be used to further analyze and identify the key
residues involved in protein−ligand interactions.
In this study, we mainly focused on whether the QM binding

energy calculation can correctly identify the higher potency cliff
partner for a given ligand pair having a sufficiently high activity
difference. We analyzed the effect of including crystal water
molecules as a part of the receptor as well as the effect of ligand
desolvation energy on the correct identification of the more
potent ligand in a cliff pair. We found that the interaction energy
contribution from all residues within 6 Å of the ligand correctly
identified 77.6% (159/205) of the ACs. When the contribution
from crystal water molecules was removed, the accuracy
significantly improved to 86.3%. Using a simple distance and
angle-based criteria, we also identified some of the unique water
molecules that are essential in protein−ligand binding. Our
study identified four cases where the AC is primarily formed by
the bridging crystal water molecules. Additionally, we detected
seven cases where the AC is formed due to the significantly large
difference in ligand desolvation energies. Along with the
interaction energy contribution from the unique crystal waters
and ligand desolvation energy, our study correctly identified the
potent cliff partner in 91.2% of the cases. These results are
significantly better relative to the results from GlideScore, which
correctly identified the cliff pairs in 67.8% of the cases, although
the latter method is remarkably efficient.
We also employed the residue-specific difference energy

analysis to identify the chemical nature of protein−ligand
interaction responsible for the AC formation. We observed a
large number of residues (3−20) contributed significantly (>|
±1.0| kcal/mol) to the cliff formations. In 72 of the correctly
identified 3D-cliffs, the cliffs are found to be dominated by both
the classical and nonclassical hydrogen bonds. Our study also
identified a total of 58 cases where the lipophilic interactions
were the dominant contributors. Furthermore, in 45 of the cases,
the effects were somewhat mixed with non-negligible con-
tributions from various interactions, including hydrogen-bond,
lipophilic interactions, steric repulsion, and halogen bond
formation.
Despite the remarkable accuracy of our protocol (91.2%

correct AC prediction), there are still 18 (8.8%) cliff pairs where
our protocol failed to correctly identify the AC even when high-
resolution crystal structures were used along with the high-level
QM calculations. The improvement from the entropy change as

well as from the full solvation energy change upon protein-ligand
binding was found to be minimal (only one and three cases,
respectively). Interestingly, the ligand geometry optimization at
the PM6-D3 level of theory corrected the ordering in 4 of those
18 failed cases. This suggests that, in addition to the accurate
interaction energies, proper treatment of all components of the
protein−ligand binding energy along with some additional
refinement of the crystal structure, perhaps a full QM geometry
optimization in solution, could further improve the results.
Work in this area is underway in our group and will be addressed
in the future.
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