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ABSTRACT: Osmium tetroxide and TMEDA form stable crystalline adducts with alkenes.  The structure of liquid alkenes can be 
determined through X-ray analysis of these derivatives. Osmium, a heavy atom, facilitates the crystallographic analysis and the 
determination of the absolute configuration using common Mo X-ray sources. The utility of this method for assigning structures 
and absolute configurations was demonstrated on a number of unsaturated substrates that include simple alkenes, enones, enol 
ethers, and silyl enol ethers.

Determination of absolute configuration of organic mole-
cules can be challenging.  Numerous strategies have been de-
veloped to solve this problem,1 including experimental and 
computation ECD and VCD approaches,2 derivatization strate-
gies such as the preparation of Mosher’s esters or amides,3 and 
exciton coupled circular dichroism (ECCD).4  Our lab has devel-
oped the competing enantioselective conversion method, 
which is expeditious, but requires a firm understanding of the 
reactivity for an amine or alcohol substrate.5  X-ray crystallog-
raphy is the gold standard because it not only determines the 
absolute configuration (using anomalous dispersion), but also 
confirms the structure assignment.  Unfortunately, most or-
ganic compounds are not crystalline.  Many derivatization 
strategies have been developed to generate crystalline com-
pounds from organic liquids, but they can be unreliable and la-
bor intensive.  In a remarkable development, absorption of a 
liquid sample into a crystalline matrix for X-ray analysis has re-
cently been reported.6 We have developed a new approach 
based on the osmylation of alkenes and subsequent crystalli-
zation of these osmate esters.   This osmylation strategy is use-
ful for both the assignment of absolute configuration, as well 
as the assignment of the relative structure of alkenes.7 

Many derivatization tactics have been used to improve the 
crystallinity of organic compounds.  Alcohols or amines have 
been derivatized with 4-nitrobenzoyl chloride or  4-bromoben-
zoyl chloride. Ketones and aldehydes have been transformed 
into 3,5-(NO2)2-phenylhydrazones.  Carboxylic acids are often 

crystallized as amine salts.  Ferrocene carboxylic acid forms es-
ters and amides that are highly crystalline.8  They also contain 
a heavy atom (Fe) that facilitates the measurement of anoma-
lous dispersion and assignment of absolute configuration by 
Flack’s method using common molybdenum X-ray sources.9  
Further improvements in the Flack method allows it to be ap-
plied to molecules that contain no heavy atoms,10 most often 
with a Cu X-ray source. High quality crystals are required for 
the diffraction analysis.  Very recently, sulfate derivatives of al-
cohols have been crystallized as guanidinium salts and ana-
lyzed by crystallography.11 The use of crystalline derivatives 
has rendered X-ray analysis feasible for many organic com-
pounds.  

We recently faced the problem of assigning the absolute 
configuration of the natural product illisimonin A.12 Synthesis 
of racemic illisimonin A confirmed the relative configuration of 
the assigned structure, but an enantioselective route was nec-
essary to determine the absolute configuration.  We eventually 
solved the problem by resolving an alcohol intermediate using 
(S)-1-(1-naphthyl)ethyl isocyanate and separating the diastere-
omers by chromatography, Figure 1. Carbamate 1 was carried 
on to natural (–)-illisimonin A.  Carbamate 2 was elaborated to 
a crystalline derivate 3 using ferrocene carboxylic acid, and the 
absolute configuration was determined by X-ray analysis.  A 
crystalline derivative was only found after we carried the ma-
terial through five steps, which included removal of the TBS 
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and BOM protecting groups.  The data led to a revision of the 
absolute configuration of the natural product. 

 
Figure 1. Determination and revision of the absolute configuration 
of (–)-illisimonin A. Our published assignment was based on ferro-
cene ester 3, whose absolute configuration was determined 
through X-ray crystallography.  Osmate ester 4, prepared in fewer 
steps and still carrying protecting groups, was analyzed by crystal-
lography and provided a more direct means to assign the absolute 
configuration of the natural product. 

While ferrocene carboxylate 3 crystals were analyzed, we 
attempted another derivatization strategy.  Donohoe reported 
that OsO4 and TMEDA (tetramethylethylenediamine) make a 
very reactive complex, estimated to be 100 times more reac-
tive than the OsO4-pyridine complex,  that rapidly dihydrox-
ylates alkenes.13  The OsO4-TMEDA complex can be directed by 
hydrogen bonding and frequently reacts with good diastere-
oselectivity.13  The resulting osmate esters were remarkably 
stable, and Donohoe determined the structures of a few of the 
products by crystallography.13  With little to lose and still un-
certain of the outcome with crystals of 3, we osmylated the 
alcohol derived from carbamate 1.  This experiment directly 
led to a crystalline derivative 4.  Remarkably, this chromato-
graphically stable osmate ester contained both a TBS and BOM 
group, which often limit crystallinity, and yet it formed X-ray 
quality crystals.  The resulting X-ray structure (Figure 2) con-
firmed the revised absolute configuration of (–)-illisimonin A. 

X-ray structures of crystalline osmate esters have been re-
ported in the literature.  Where the organic component was 
non-trivial, the crystalline osmates were used to elucidate the 
stereoselectivity of the osmylation reaction,13,14 the regioselec-
tivity of the reaction,15 or to help explain the effect of chiral 
ligands in stoichiometric enantioselective osmylations.16 Sev-
eral studies investigating the interactions of OsO4 with RNA 
and DNA have produced crystal structures of nucleoside and 
nucleotide-derived osmates.17 Recently X-ray analysis of os-
mates derived from porphyrins have demonstrated the posi-
tion of reaction.18  These structures demonstrate that osmate 
esters prepared from a wide variety of alkenes will form X-ray 

quality crystals for analysis. We are aware of only one case 
where X-ray crystallography of an osmate ester was used to 
assign the structure of the unsaturated organic component.19 
We propose that TMEDA-osmate esters, highly crystalline de-
rivatives of alkenes, can be used to assign relative and absolute 
structures of starting alkenes.  Although the cost and toxicity 
of OsO4 is a concern for preparative, stoichiometric reactions, 
generating osmates for X-ray structure analysis is best done on 
small scale, where the cost is negligible and safety issues are 
easily managed.  

 
Figure 2. X-ray Structure of osmate 4. The osmium is a distorted 
octahedron with local C2 symmetry. The crystals incorporate THF 
(not shown) in the unit cell. Solvent incorporation was found with 
most osmate ester crystals in Table 1. 

To evaluate the utility of this method, we initially examined 
commercially available, liquid alkenes. The results are shown 
in Table 1. The osmylation of prenol (5a), geraniol (6a), and (+)-
2-carene (7a), all proceeded in good yield and were purified 
using flash column chromatography (CH2Cl2/MeOH) on silica.  
The solid products were readily crystallized using vapor diffu-
sion, and their structures determined by single crystal X-ray 
diffraction.  For geraniol, osmylation occurs proximal to the al-
lylic alcohol, in accord with the hydroxyl-directing effect re-
ported by Donohoe.13 The melting point of the geraniol osmate 
6b is 61 °C higher than the corresponding ferrocene carbox-
ylate ester, indicating enhanced crystallinity.8 In the case of (+)-
2-carene osmate 7b, the absolute configuration was confirmed 
by the Flack method.9  

Decalin 8a20 and allylic sulfide 9a21  are both oils. They react 
under standard conditions (OsO4 and TMEDA at –78 °C in 
CH2Cl2) to form osmate esters in good yields.  The structures 
and absolute configurations were determined by X-ray crystal-
lography. Sulfide 9a is a compelling example of the utility of 
our methodology.  Its absolute configuration was originally in-
ferred by analogy to a model substrate synthesized using the 
same enantioselective method.  From 14 mg of the sulfide, we 
prepared 36 mg of the osmate ester that crystallized on the 
first attempt, providing conclusive experimental evidence of 
its proposed absolute configuration.  

Alkene 10a22 reacted with the osmium complex selectively 
and the adduct 10b crystallized readily. Initially the crystals 
were twinned, which made assigning absolute configuration 
challenging.  Fortuitously, changing crystallization solvent sys-
tems resolved the twinning, and the absolute configuration 
could be confidently assigned. 
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Verbenone (11a), an oil, and the solid dienone α-santonin 
(12a) were both osmylated and the adducts readily crystal-
lized, highlighting the method’s applicability to electron defi-
cient alkenes.  The chemoselectivity of the OsO4/TMEDA sys-
tem in the osmylation of α-santonin was notable, as a lack of 
selectivity could lead to lower yields and perhaps necessitate 
further purification.23  The selectivity of OsO4 additions has 
been extensively documented.24 

The dihydroxylation of enol ethers and silyl enol ethers typ-
ically leads to isolation of alpha hydroxy ketones.25  We sought 
to investigate whether the osmate esters of these motifs 
would be kinetically stable and crystalline.  Enol ether 13a 
formed a stable, crystalline osmate ester.  Even silyl enol ether 
14a formed a moderately stable osmate ester.  While we did 
note some unidentified decomposition over time, the TES 
ether osmate 14b could be crystallized directly from the crude 
reaction mixture, without prior chromatography.26 

Table 1. Alkenes and the Derived Crystalline Osmate-TMEDA Estersa 

 

aStandard conditions: 1.0 equiv alkene and 1.1 equiv TMEDA,  CH2Cl2, –78 °C, then add 1.0 equiv OsO4, 60 min. bThe diastereomeric mixture 
of osmate esters was separated by chromatography on silica gel prior to crystallization.

One drawback of the functionalization of alkenes is the 
possible generation of diastereomers.  Initially, we investigated 
substrates that gave high diastereoselectivity.  In theory a sin-
gle diastereomer could be selectively crystallized out of a 

mixture, but we did not have much success with roughly 
equimolar mixtures of diastereomeric osmates.  However, we 
were able to separate diastereomeric osmates when the os-
mate group was proximal to the other stereocenters.  Thus, (–
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)-isopulegol (15a) and vinyl cyclopropane 16a were osmylated 
to form diastereomeric mixtures.  The osmate esters were sep-
arated by silica gel chromatography prior to crystallization.   

Several alkenes did not result in useful osmate crystals, and 
these cases are presented in Table S1 in the supporting infor-
mation.  Several were unreactive with OsO4-TMEDA, including 
a benzothiophene.  A chloroalkene did react, but the osmate 
was not stable.  A few examples formed stable osmates, but 
did not crystallize in our hands.  In one case, diastereomeric 
osmate esters were inseparable by chromatography. The os-
mate derivatization and crystallization strategy was successful 
for most but not all substrates. 

Derivatization of alkenes with OsO4-TMEDA is a mild and 
efficient procedure.  It offers a tactically distinct alternative 
from traditional functionalization strategies which rely on alco-
hols, amines, ketones, and carboxylic acids. The examples in 
Table 1 demonstrate that the reaction is compatible with alco-
hols, cyclopropanes, ketones, sulfides, nitriles, acetals, lac-
tones, amides, sulfones and silyl ethers. Dichloromethane is 
the standard solvent, but reactions run in THF and MeOH gave 
>80% yields from verbenone (11a), demonstrating that more 
polar substrates could be derivatized under these conditions. 
The reagents add 370 au to the alkenes.  For precious samples, 
the increase in mass of the osmate esters simplifies crystalliza-
tion. 

We have demonstrated that OsO4-TMEDA reacts with a va-
riety of alkenes, and the resulting osmate esters are crystalline 
and suitable for X-ray diffraction in most cases.  The osmium 
contained within these complexes facilitates the assignment of 
absolute configuration by increasing anomalous scattering. 

When mixtures of diastereomeric osmates are generated, 
chromatographic separation is often possible.  The derivatiza-
tion of alkenes as OsO4-TMEDA adducts and X-ray crystallo-
graphic analysis will be a useful new tool for the assignment of 
structure and absolute configuration.27 
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