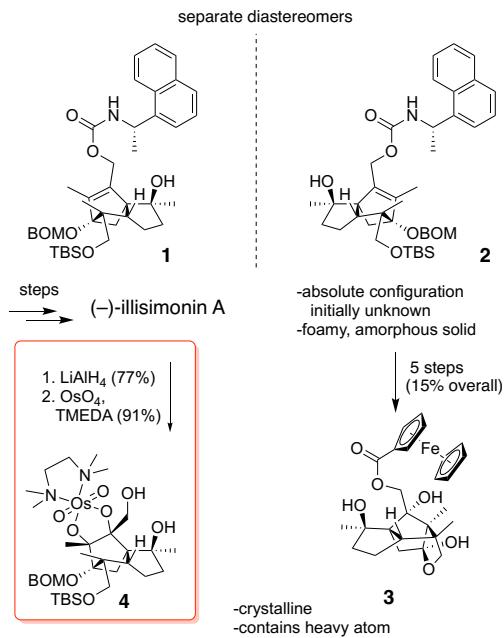


Relative and Absolute Structure Assignments of Alkenes Using Crystal-line Osmate Derivatives for X-Ray Analysis

Alexander S. Burns, Charles Dooley III, Paul R. Carlson, Joseph W. Ziller, and Scott D. Rychnovsky*

Department of Chemistry, 1102 Natural Sciences II, University of California at Irvine, Irvine, California 92697, United States
Supporting Information Placeholder

ABSTRACT: Osmium tetroxide and TMEDA form stable crystalline adducts with alkenes. The structure of liquid alkenes can be determined through X-ray analysis of these derivatives. Osmium, a heavy atom, facilitates the crystallographic analysis and the determination of the absolute configuration using common Mo X-ray sources. The utility of this method for assigning structures and absolute configurations was demonstrated on a number of unsaturated substrates that include simple alkenes, enones, enol ethers, and silyl enol ethers.


Determination of absolute configuration of organic molecules can be challenging. Numerous strategies have been developed to solve this problem,¹ including experimental and computation ECD and VCD approaches,² derivatization strategies such as the preparation of Mosher's esters or amides,³ and exciton coupled circular dichroism (ECCD).⁴ Our lab has developed the competing enantioselective conversion method, which is expeditious, but requires a firm understanding of the reactivity for an amine or alcohol substrate.⁵ X-ray crystallography is the gold standard because it not only determines the absolute configuration (using anomalous dispersion), but also confirms the structure assignment. Unfortunately, most organic compounds are not crystalline. Many derivatization strategies have been developed to generate crystalline compounds from organic liquids, but they can be unreliable and labor intensive. In a remarkable development, absorption of a liquid sample into a crystalline matrix for X-ray analysis has recently been reported.⁶ We have developed a new approach based on the osmylation of alkenes and subsequent crystallization of these osmate esters. This osmylation strategy is useful for both the assignment of absolute configuration, as well as the assignment of the relative structure of alkenes.⁷

Many derivatization tactics have been used to improve the crystallinity of organic compounds. Alcohols or amines have been derivatized with 4-nitrobenzoyl chloride or 4-bromobenzoyl chloride. Ketones and aldehydes have been transformed into 3,5-(NO₂)₂-phenylhydrazones. Carboxylic acids are often

crystallized as amine salts. Ferrocene carboxylic acid forms esters and amides that are highly crystalline.⁸ They also contain a heavy atom (Fe) that facilitates the measurement of anomalous dispersion and assignment of absolute configuration by Flack's method using common molybdenum X-ray sources.⁹ Further improvements in the Flack method allows it to be applied to molecules that contain no heavy atoms,¹⁰ most often with a Cu X-ray source. High quality crystals are required for the diffraction analysis. Very recently, sulfate derivatives of alcohols have been crystallized as guanidinium salts and analyzed by crystallography.¹¹ The use of crystalline derivatives has rendered X-ray analysis feasible for many organic compounds.

We recently faced the problem of assigning the absolute configuration of the natural product illisimonin A.¹² Synthesis of racemic illisimonin A confirmed the relative configuration of the assigned structure, but an enantioselective route was necessary to determine the absolute configuration. We eventually solved the problem by resolving an alcohol intermediate using (S)-1-(1-naphthyl)ethyl isocyanate and separating the diastereomers by chromatography, Figure 1. Carbamate **1** was carried on to natural (−)-illisimonin A. Carbamate **2** was elaborated to a crystalline derivative **3** using ferrocene carboxylic acid, and the absolute configuration was determined by X-ray analysis. A crystalline derivative was only found after we carried the material through five steps, which included removal of the TBS

and BOM protecting groups. The data led to a revision of the absolute configuration of the natural product.

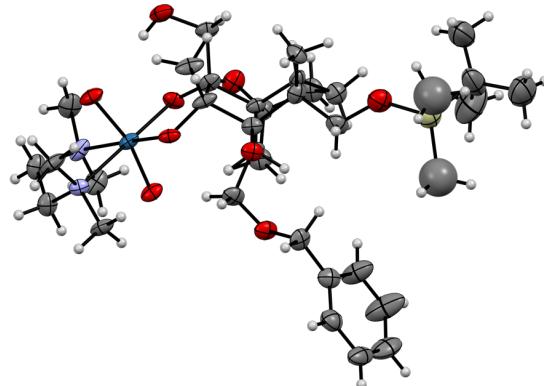


Figure 1. Determination and revision of the absolute configuration of $(-)$ -illisimonin A. Our published assignment was based on ferrocene ester **3**, whose absolute configuration was determined through X-ray crystallography. Osmate ester **4**, prepared in fewer steps and still carrying protecting groups, was analyzed by crystallography and provided a more direct means to assign the absolute configuration of the natural product.

While ferrocene carboxylate **3** crystals were analyzed, we attempted another derivatization strategy. Donohoe reported that OsO_4 and TMEDA (tetramethylethylenediamine) make a very reactive complex, estimated to be 100 times more reactive than the OsO_4 -pyridine complex, that rapidly dihydroxylates alkenes.¹³ The OsO_4 -TMEDA complex can be directed by hydrogen bonding and frequently reacts with good diastereoselectivity.¹³ The resulting osmate esters were remarkably stable, and Donohoe determined the structures of a few of the products by crystallography.¹³ With little to lose and still uncertain of the outcome with crystals of **3**, we osmylated the alcohol derived from carbamate **1**. This experiment directly led to a crystalline derivative **4**. Remarkably, this chromatographically stable osmate ester contained both a TBS and BOM group, which often limit crystallinity, and yet it formed X-ray quality crystals. The resulting X-ray structure (Figure 2) confirmed the revised absolute configuration of $(-)$ -illisimonin A.

X-ray structures of crystalline osmate esters have been reported in the literature. Where the organic component was non-trivial, the crystalline osmates were used to elucidate the stereoselectivity of the osmylation reaction,^{13,14} the regioselectivity of the reaction,¹⁵ or to help explain the effect of chiral ligands in stoichiometric enantioselective osmylations.¹⁶ Several studies investigating the interactions of OsO_4 with RNA and DNA have produced crystal structures of nucleoside and nucleotide-derived osmates.¹⁷ Recently X-ray analysis of osmates derived from porphyrins have demonstrated the position of reaction.¹⁸ These structures demonstrate that osmate esters prepared from a wide variety of alkenes will form X-ray

quality crystals for analysis. We are aware of only one case where X-ray crystallography of an osmate ester was used to assign the structure of the unsaturated organic component.¹⁹ We propose that TMEDA-osmate esters, highly crystalline derivatives of alkenes, can be used to assign relative and absolute structures of starting alkenes. Although the cost and toxicity of OsO_4 is a concern for preparative, stoichiometric reactions, generating osmates for X-ray structure analysis is best done on small scale, where the cost is negligible and safety issues are easily managed.

Figure 2. X-ray Structure of osmate **4**. The osmium is a distorted octahedron with local C_2 symmetry. The crystals incorporate THF (not shown) in the unit cell. Solvent incorporation was found with most osmate ester crystals in Table 1.

To evaluate the utility of this method, we initially examined commercially available, liquid alkenes. The results are shown in Table 1. The osmylation of prenol (**5a**), geraniol (**6a**), and $(+)$ -2-carene (**7a**), all proceeded in good yield and were purified using flash column chromatography ($\text{CH}_2\text{Cl}_2/\text{MeOH}$) on silica. The solid products were readily crystallized using vapor diffusion, and their structures determined by single crystal X-ray diffraction. For geraniol, osmylation occurs proximal to the allylic alcohol, in accord with the hydroxyl-directing effect reported by Donohoe.¹³ The melting point of the geraniol osmate **6b** is 61 °C higher than the corresponding ferrocene carboxylate ester, indicating enhanced crystallinity.⁸ In the case of $(+)$ -2-carene osmate **7b**, the absolute configuration was confirmed by the Flack method.⁹

Decalin **8a**²⁰ and allylic sulfide **9a**²¹ are both oils. They react under standard conditions (OsO_4 and TMEDA at -78 °C in CH_2Cl_2) to form osmate esters in good yields. The structures and absolute configurations were determined by X-ray crystallography. Sulfide **9a** is a compelling example of the utility of our methodology. Its absolute configuration was originally inferred by analogy to a model substrate synthesized using the same enantioselective method. From 14 mg of the sulfide, we prepared 36 mg of the osmate ester that crystallized on the first attempt, providing conclusive experimental evidence of its proposed absolute configuration.

Alkene **10a**²² reacted with the osmium complex selectively and the adduct **10b** crystallized readily. Initially the crystals were twinned, which made assigning absolute configuration challenging. Fortuitously, changing crystallization solvent systems resolved the twinning, and the absolute configuration could be confidently assigned.

Verbenone (**11a**), an oil, and the solid dienone α -santonin (**12a**) were both osmylated and the adducts readily crystallized, highlighting the method's applicability to electron deficient alkenes. The chemoselectivity of the $\text{OsO}_4/\text{TMEDA}$ system in the osmylation of α -santonin was notable, as a lack of selectivity could lead to lower yields and perhaps necessitate further purification.²³ The selectivity of OsO_4 additions has been extensively documented.²⁴

The dihydroxylation of enol ethers and silyl enol ethers typically leads to isolation of alpha hydroxy ketones.²⁵ We sought to investigate whether the osmate esters of these motifs would be kinetically stable and crystalline. Enol ether **13a** formed a stable, crystalline osmate ester. Even silyl enol ether **14a** formed a moderately stable osmate ester. While we did note some unidentified decomposition over time, the TES ether osmate **14b** could be crystallized directly from the crude reaction mixture, without prior chromatography.²⁶

Table 1. Alkenes and the Derived Crystalline Osmate-TMEDA Esters^a

Alkene	Yield	Osmate	mp	Alkene	Yield	Osmate	mp
	59%		135 °C (dec)		81%		192 °C (dec)
5a achiral oil		5b		11a enantiopure oil		11b	
	60%		100-103 °C		87%		202 °C (dec)
6a achiral oil		6b		12a enantiopure solid mp = 172 °C		12b	
	85%		180 °C (dec)		76%		182-185 °C
7a enantiopure oil		7b		13a racemic oil		13b	
	93%		87-92 °C		-		170 °C (dec)
8a racemic oil		8b		14a enantiopure oil		14b	
	91%		170 °C (dec)		87% 1.3:1		84-87 °C
9a enantiopure oil		9b		15a enantiopure oil		15b^b	
	97%		231 °C (dec)		68% 2.4:1		90-93 °C
10a enantiopure solid mp = 59-63 °C		10b		16a racemic oil		16b^b	

^aStandard conditions: 1.0 equiv alkene and 1.1 equiv TMEDA, CH₂Cl₂, -78 °C, then add 1.0 equiv OsO₄, 60 min. ^bThe diastereomeric mixture of osmate esters was separated by chromatography on silica gel prior to crystallization.

One drawback of the functionalization of alkenes is the possible generation of diastereomers. Initially, we investigated substrates that gave high diastereoselectivity. In theory a single diastereomer could be selectively crystallized out of a

mixture, but we did not have much success with roughly equimolar mixtures of diastereomeric osmates. However, we were able to separate diastereomeric osmates when the osmate group was proximal to the other stereocenters. Thus, $(-)$

)-isopulegol (**15a**) and vinyl cyclopropane **16a** were osmylated to form diastereomeric mixtures. The osmate esters were separated by silica gel chromatography prior to crystallization.

Several alkenes did not result in useful osmate crystals, and these cases are presented in Table S1 in the supporting information. Several were unreactive with OsO₄-TMEDA, including a benzothiophene. A chloroalkene did react, but the osmate was not stable. A few examples formed stable osmates, but did not crystallize in our hands. In one case, diastereomeric osmate esters were inseparable by chromatography. The osmate derivatization and crystallization strategy was successful for most but not all substrates.

Derivatization of alkenes with OsO₄-TMEDA is a mild and efficient procedure. It offers a tactically distinct alternative from traditional functionalization strategies which rely on alcohols, amines, ketones, and carboxylic acids. The examples in Table 1 demonstrate that the reaction is compatible with alcohols, cyclopropanes, ketones, sulfides, nitriles, acetals, lactones, amides, sulfones and silyl ethers. Dichloromethane is the standard solvent, but reactions run in THF and MeOH gave >80% yields from verbenone (**11a**), demonstrating that more polar substrates could be derivatized under these conditions. The reagents add 370 au to the alkenes. For precious samples, the increase in mass of the osmate esters simplifies crystallization.

We have demonstrated that OsO₄-TMEDA reacts with a variety of alkenes, and the resulting osmate esters are crystalline and suitable for X-ray diffraction in most cases. The osmium contained within these complexes facilitates the assignment of absolute configuration by increasing anomalous scattering.

When mixtures of diastereomeric osmates are generated, chromatographic separation is often possible. The derivatization of alkenes as OsO₄-TMEDA adducts and X-ray crystallographic analysis will be a useful new tool for the assignment of structure and absolute configuration.²⁷

ASSOCIATED CONTENT

Supporting Information

Experimental details, compound characterization and crystallization methods are provided for all osmate esters. CIF files and crystallographic analysis are included. The Supporting Information is available free of charge on the ACS Publications website.

AUTHOR INFORMATION

Corresponding Author

* E-mail: srychnov@uci.edu

Author Contributions

The manuscript was written through contributions of all authors.

ACKNOWLEDGMENT

The National Science Foundation (CHE 1764380) provided support. ASB thanks Bristol-Myers Squibb for a Graduate Fellowship. We thank the research groups of Professors Dong (Ryan Davison), Jarvo (Kirsten A. Hewitt), Overman (Dr. Nicholas Weires) and Vanderwal (Dr. Jonathan Chung) from UC Irvine for sharing samples with us.

REFERENCES

¹ Molinski, T. F.; Morinaka, B. I. Integrated Approaches to the Conformational Assignment of Marine Natural Products. *Tetrahedron* **2012**, *68*, 9307–9343.

² (a) Petrovic, A. G.; Berova, N.; Alonso-Gómez, J. L.; Absolute Configuration and Conformational Analysis of Chiral Compounds via Experimental and Theoretical Prediction of Chiroptical Properties: ORD, ECD, and VCD. In *Structure Elucidation in Organic Chemistry*, Eds M. Cid and J. Bravo, Wiley-VCH, Weinheim-Germany, **2015** pp. 65–104. (b) Merten, C.; Golub, T. P.; Kreienborg, N. M. Absolute Configurations of Synthetic Molecular Scaffolds From Vibrational CD Spectroscopy. *J. Org. Chem.* **2019**, *84*, 8797–8814. (c) Pescitelli, G.; Bruhn, T. Good Computational Practice in the Assignment of Absolute Configurations by TDDFT Calculations of ECD Spectra. *Chirality* **2016**, *28*, 466–474.

³ (a) Seco, J. M.; Quinoa, E.; Riguera, R. Assignment of the Absolute Configuration of Polyfunctional Compounds by NMR Using Chiral Derivatizing Agents. *Chem. Rev.* **2012**, *112*, 4603–4641. (b) Wenzel, T. J.; Chisholm, C. D. Assignment of Absolute Configuration Using Chiral Reagents and NMR Spectroscopy. *Chirality* **2010**, *23*, 190–214. (c) Seco, J. M.; Quinoa, E.; Riguera, R. The Assignment of Absolute Configuration by NMR. *Chem. Rev.* **2004**, *104*, 17–118. (d) Dale, J. A.; Mosher, H. S. Nuclear Magnetic Resonance Enantiomer Regents. Configurational Correlations via Nuclear Magnetic Resonance Chemical Shifts of Diastereomeric Mandelate, *O*-Methylmandelate, and Alpha-Methoxy- α -Trifluoromethylphenylacetate (MTPA) Esters. *J. Am. Chem. Soc.* **1973**, *95*, 512–519. (e) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. High-Field FT NMR Application of Mosher Method - the Absolute-

Configurations of Marine Terpenoids. *J. Am. Chem. Soc.* **1991**, *113*, 4092–4096. (f) Hoye, T. R.; Renner, M. K. Applications of MTPA (Mosher) Amides of Secondary Amines: Assignment of Absolute Configuration in Chiral Cyclic Amines. *J. Org. Chem.* **1996**, *61*, 8489–8495. (g) Hoye, T. R.; Jeffrey, C. S.; Shao, F. Mosher Ester Analysis for the Determination of Absolute Configuration of Stereogenic (Chiral) Carbonyl Carbons. *Nat. Protoc.* **2007**, *2*, 2451–2458

⁴ (a) Huang, X.; Fujioka, N.; Pescitelli, G.; Koehn, F. E.; Williamson, R. T.; Nakanishi, K.; Berova, N. Absolute Configurational Assignments of Secondary Amines by CD-Sensitive Dimeric Zinc Porphyrin Host. *J. Am. Chem. Soc.* **2002**, *124*, 10320–10335. (b) Li, X.; Borhan, B. Prompt Determination of Absolute Configuration for Epoxy Alcohols via Exciton Chirality Protocol. *J. Am. Chem. Soc.* **2008**, *130*, 16126–16127. (c) Li, X.; Tanasova, M.; Vasileiou, C.; Borhan, B. Fluorinated Porphyrin Tweezer: a Powerful Reporter of Absolute Configuration for Erythro and Threo Diols, Amino Alcohols, and Diamines. *J. Am. Chem. Soc.* **2008**, *130*, 1885–1893. (d) You, L.; Pescitelli, G.; Anslyn, E. V.; Di Bari, L. An Exciton-Coupled Circular Dichroism Protocol for the Determination of Identity, Chirality, and Enantiomeric Excess of Chiral Secondary Alcohols. *J. Am. Chem. Soc.* **2012**, *134*, 7117–7125. (e) Zhang, J.; Gholami, H.; Ding, X.; Chun, M.; Vasileiou, C.; Nehira, T.; Borhan, B. Computationally Aided Absolute Stereochemical Determination of Enantioenriched Amines. *Org. Lett.* **2017**, *19*, 1362–1365. (f) Takeda, S.; Hayashi, S.; Noji, M.; Takanami, T. Chiroptical Protocol for the Absolute Configurational Assignment of Alkyl-Substituted Epoxides Using Bis(Zinc Porphyrin) as a CD-Sensitive Bidentate Host. *J. Org. Chem.* **2018**, *84*, 645–652.

⁵ (a) Wagner, A. J.; Miller, S. M.; King, R. P.; Rychnovsky, S. D. Nanomole-Scale Assignment and One-Use Kits for Determining the Absolute Configuration of Secondary Alcohols. *J. Org. Chem.* **2016**, *81*, 6253–6265. (b) Wagner, A. J.; Rychnovsky, S. D. Determination of Absolute Configuration of Secondary Alcohols Using Thin-Layer Chromatography. *J. Org. Chem.* **2013**, *78*, 4594–4598. (c) Burns, A. S.; Ross, C. C.; Rychnovsky, S. D. Heteroatom-Directed Acylation of Secondary Alcohols to Assign Absolute Configuration. *J. Org. Chem.* **2018**, *83*, 2504–2515. (d) Miller, S. M.; Samame, R. A.; Rychnovsky, S. D. Nanomole-Scale Assignment of Configuration for Primary Amines Using a Kinetic Resolution Strategy. *J. Am. Chem. Soc.* **2012**, *134*, 20318–20321. (e) Burtea, A.; Rychnovsky, S. D. Determination of the Absolute Configuration of Cyclic Amines with Bode's Chiral Hydroxamic Esters Using the Competing Enantioselective Conversion Method. *Org. Lett.* **2017**, *19*, 4195–4198.

⁶ Inokuma, Y.; Yoshioka, S.; Ariyoshi, J.; Arai, T.; Hitora, Y.; Takada, K.; Matsunaga, S.; Rissanen, K.; Fujita, M. X-Ray Analysis on the Nanogram to Microgram Scale Using Porous Complexes. *Nature* **2013**, *495*, 461–466.

⁷ An early draft of this manuscript was deposited in ChemRxiv: doi.org/10.26434/chemrxiv.10830143.v1

⁸ (a) Holstein, P. M.; Holstein, J. J.; Escudero-Adán, E. C.; Baudoin, O.; Echavarren, A. M. Ferrocene Derivatives of Liquid Chiral Molecules Allow Assignment of Absolute Configuration by X-Ray Crystallography. *Tetrahedron Asymm.* **2017**, *28*, 1321–1329. (b) Shibata, T.; Arai, Y.; Takami, K.; Tsukikawa, K.; Fujimoto, T.; Takebayashi, S.; Takagi, K. Iridium-Catalyzed Enantioselective [2+2+2] Cycloaddition of Diynes and Monoalkynes for the Generation of Axial Chiralities. *Adv. Synth. Catal.* **2006**, *348*, 2475–2483.

⁹ Flack, H. D. On Enantiomorph-Polarity Estimation. *Acta Crystallogr., Sect. A* **1983**, *39*, 876–881.

¹⁰ (a) Hooft, R. W. W.; Straver, L. H.; Spek, A. L. Determination of Absolute Structure Using Bayesian Statistics on Bijvoet Differences. *J. Appl. Cryst.* **2008**, *41*, 96–103. (b) Parsons, S.; Wagner, T.; Presly, O.; Wood, P. A.; Cooper, R. I. Applications of Leverage Analysis in Structure Refinement. *J. Appl. Cryst.* **2012**, *45*, 417–429.

¹¹ Brummel, B. R.; Lee, K. G. McMillen, C. D.; Kolis, J. W.; Whitehead, D. C. Simple One-Pot Absolute Stereochemical Identification of Alcohols via Guanidinium Sulfate Crystallization. *Org. Lett.* **2019**, *21*, ASAP. DOI: 10.1021/acs.orglett.9b03792

¹² Burns, A. S.; Rychnovsky, S. D. Total Synthesis and Structure Revision of (–)-Illisimonin A, a Neuroprotective Sesquiterpenoid From the Fruits of *Illicium Simonsii*. *J. Am. Chem. Soc.* **2019**, *141*, 13295–13300.

¹³ (a) Donohoe, T. J.; Blades, K.; Moore, P. R.; Waring, M. J.; Winter, J. J. G.; Helliwell, M.; Newcombe, N. J.; Stemp, G. Directed Dihydroxylation of Cyclic Allylic Alcohols and Trichloroacetamides Using OsO₄/TMEDA. *J. Org. Chem.* **2002**, *67*, 7946–7956. (b) Donohoe, T. J.; Blades, K.; Helliwell, M.; Waring, M. J.; Newcombe, N. J. The Synthesis of (+)-Pericosine B. *Tetrahedron Lett.* **1998**, *39*, 8755–8758. (c) Donohoe, T. J.; Mitchell, L.; Waring, M. J.; Helliwell, M.; Bell, A.; Newcombe, N. J. Scope of the Directed Dihydroxylation: Application to Cyclic Homoallylic Alcohols and Trihaloacetamides. *Org. Biomol. Chem.* **2003**, *1*, 2173–2186.

¹⁴ (a) Sivik, M. R.; Gallucci, J. C.; Paquette, L. A. Crystal Structure Analysis of an Osmium(VI) Bisglycolate Produced by Reaction of a Sterically Hindered Chiral Nonracemic Alkene with Osmium Tetroxide. *J. Org. Chem.* **1990**, *55*, 391–393. (b) Landais, Y.; Mahieux, C.; Schenk, K.; Surange, S. S. A New Synthesis and Stereocontrolled Functionalization of Substituted Silacyclopent-3-Enes. *J. Org. Chem.* **2003**, *68*, 2779–2789. (c) Lang, Y.; Souza, F. E. S.; Xu, X.; Taylor, N. J.; Assoud, A.; Rodriguez, R. Pentacyclic Furanosteroids: the Synthesis of Potential Kinase Inhibitors Related to Viridin and Wortmannolone. *J. Org. Chem.* **2009**, *74*, 5429–5439. (d) VanVeller, B.; Miki, K.; Swager, T. M. Rigid Hydrophilic Structures for Improved Properties of Conjugated Polymers and Nitrotyrosine Sensing in Water. *Org. Lett.* **2010**, *12*, 1292–1295.

¹⁵ (a) Prangé, T.; Pascard, C. Osmium Tetroxide–9-Methylbenzanthracene–Bis(Pyridine) Adduct (Toluene Solvate). *Acta Crystallogr. Sect. B* **1977**, *33*, 621–623. (b) Wallis, J. M.; Kochi, J. K. Electron-

Transfer Activation in the Thermal and Photochemical Osmylations of Aromatic Electron Donor-Acceptor Complexes with Osmium(VIII) Tetroxide. *J. Am. Chem. Soc.* **1988**, *110*, 8207–8223. (c) Groy, T. L.; Hartman, R. F.; Rose, S. D. Structure of a Bis(Osmate Ester) Produced by Addition of Osmium Tetroxide to Diethyl 3,4-Furandicarboxylate. *Acta Crystallogr. Sect. C* **1991**, *47*, 273–275. (d) Herrmann, W. A.; Eder, S. J.; Scherer, W. Catalytic Oxidation of Partially and Fully Fluorinated Olefins with Osmium Tetroxide. *Angew. Chem. Int. Ed.* **1992**, *31*, 1345–1347. (e) Herrmann, W. A.; Roesky, P. W.; Elison, M.; Artus, G.; Oefele, K. Oxy Functionalization of Metal-Coordinated Heterocyclic Carbenes. *Organometallics* **1995**, *14*, 1085–1086.

¹⁶ (a) Tomioka, K.; Nakajima, M.; Itaka, Y.; Koga, K. Mechanistic Aspects of Asymmetric Cis-Dihydroxylation of Olefins with Osmium-Tetroxide Employing a C₂-Symmetric Chiral Diamine. *Tetrahedron Lett.* **1988**, *29*, 573–576. (b) Oishi, T.; Hirama, M. Highly Enantioselective Dihydroxylation of Trans-Disubstituted and Monosubstituted Olefins. *J. Org. Chem.* **1989**, *54*, 5834–5835. (c) Pearlstein, R. M.; Blackburn, B. K.; Davis, W. M.; Sharpless, K. B. Structural Characterization of the Pseudoenantiomeric Cis-Dioxo Osmium(VI) Esters of Chiral Diols with Cinchona Alkaloid Ligands. *Angew. Chem. Int. Ed.* **1990**, *29*, 639–641. (d) Hanessian, S.; Meffre, P.; Girard, M.; Beaudoin, S.; Sanceau, J. Y.; Bennani, Y. Asymmetric Dihydroxylation of Olefins with a Simple Chiral Ligand. *J. Org. Chem.* **1993**, *58*, 1991–1993. (e) Donohoe, T. J.; Harris, R. M.; Butterworth, S.; Burrows, J. N.; Cowley, A.; Parker, J. S. New Osmium-Based Reagent for the Dihydroxylation of Alkenes. *J. Org. Chem.* **2006**, *71*, 4481–4489.

¹⁷ (a) Conn, J. F.; Kim, J. J.; Suddath, F. L.; Blattmann, P.; Rich, A. Crystal and Molecular Structure of an Osmium Bispyridine Ester of Adenosine. *J. Am. Chem. Soc.* **1974**, *96*, 7152–7153. (b) Umemoto, T.; Okamoto, A. Synthesis and Characterization of the 5-Methyl-2'-Deoxycytidine Glycol-Dioxosmium–Bipyridine Ternary Complex in DNA. *Org. Biomol. Chem.* **2008**, *6*, 269–271. (c) Sugizaki, K.; Ikeda, S.; Yanagisawa, H.; Okamoto, A. Facile Synthesis of Hydroxymethylcytosine-Containing Oligonucleotides and Their Reactivity Upon Osmium Oxidation. *Org. Biomol. Chem.* **2011**, *9*, 4176–4176.

¹⁸ Hewage, N.; Daddario, P.; Lau, K. S. F.; Guberman-Pfeffer, M. J.; Gascón, J. A.; Zeller, M.; Lee, C. O.; Khalil, G. E.; Gouterman, M.; Brückner, C. Bacterio- and Isobacterioidilactones by Stepwise or Direct Oxidations of Meso-Tetrakis(Pentafluorophenyl)Porphyrin. *J. Org. Chem.* **2018**, *84*, 239–256.

¹⁹ Hawkins, J. M.; Meyer, A.; Lewis, T. A.; Loren, S.; Hollander, F. J. Crystal-Structure of Osmylated C60 - Confirmation of the Soccer Ball Framework. *Science* **1991**, *252*, 312–313.

²⁰ Taber, D. F.; Gunn, B. P. Control Elements in the Intramolecular Diels-Alder Reaction. Synthesis of (±)-Torreyol. *J. Am. Chem. Soc.* **1979**, *101*, 3992–3993.

²¹ Yang, X.-H.; Davison, R.; Dong, V. M. “Catalytic Hydrothiolation: Regio- and Enantioselective Coupling of Thiols and Dienes.” *J. Am. Chem. Soc.* **2018**, *140*, 10443.

²² Slutskyy, Y.; Jamison, C. R.; Zhao, P.; Lee, J.; Rhee, Y. H.; Overman, L. E. “Versatile Construction of 6-Substituted cis-2,8-Dioxabicyclo[3.3.0]octan-3-ones: Short Enantioselective Total Synthesis of Chelovienoles A and B and Dendrillolide C.” *J. Am. Chem. Soc.* **2017**, *139*, 7192–7195.

²³ The reactivity of the tetrasubstituted alkene in α-santonin has previously been noted for the dihydroxylation with potassium permanganate: Paknikar, S. K.; Malik, B. L.; Bates, R. B.; Caldera, S.; Wijayaratne, T. V. Stereochemistry of 4,5-Dihydroxy-Alpha-Santonin and Structure of a New Santonin Oxidation-Product. *Tetrahedron Lett.* **1994**, *35*, 8117–8118.

²⁴ (a) Schroeder, M. Osmium Tetraoxide Cis Hydroxylation of Unsaturated Substrates. *Chem. Rev.* **1980**, *80*, 187–213. (b) Donohoe, T. J.; Bataille, Carole J. R.; Innocenti, P. Hydrogen-Bonding-Mediated Directed Osmium Dihydroxylation. *Organic Reactions* **2012**, *76*, 1–48.

²⁵ McCormick, J. P.; Tomasik, W.; Johnson, M. W. α-Hydroxylation of Ketones - Osmium Tetroxide-N-Methylmorpholine-N-Oxide Oxidation of Silyl Enol Ethers. *Tetrahedron Lett.* **1981**, *22*, 607–610.

²⁶ There was some disorder in the crystal structure of **14b** for the TES and TMEDA alkyl groups. The absolute and relative structure of the core was unambiguous.

²⁷ Deposition Numbers: **4**: 1966637; **5b**: 1966639; **6b**: 1966638; **7b**: 1966635; **8b**: 1966647; **9b**: 1966636; **10b**: 1966640; **11b**: 1966643;

12b: 1966641; **13b**: 1966642; **14b**: 1966644; **15b**: 1966646; **16b**: 1966647. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures