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GENERALIZED MULTISCALE FINITE ELEMENT METHOD FOR
THE STEADY STATE LINEAR BOLTZMANN EQUATION*
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Abstract. The Boltzmann equation, as a model equation in statistical mechanics, is used to
describe the statistical behavior of a large number of particles driven by the same physics laws.
Depending on the media and the particles to be modeled, the equation has slightly different forms.
In this article, we investigate a model Boltzmann equation with highly oscillatory media in the small
Knudsen number regime and study the numerical behavior of the generalized multiscale finite element
method (GMsFEM) in the fluid regime when high oscillation in the media presents. The GMsFEM
is a general approach [E. Chung, Y. Efendiev, and T. Y. Hou, J. Comput. Phys., 320 (2016), pp. 69—
95] to numerically treat equations with multiscale structures. The method is divided into the offline
and online steps. In the offline step, basis functions are prepared from a snapshot space via a well-
designed generalized eigenvalue problem (GEP), and these basis functions are then utilized to patch
up for a solution through DG formulation in the online step to incorporate specific boundary and
source information. We prove the well-posedness of the method on the Boltzmann equation and show
that the GEP formulation provides a set of optimal basis functions that achieve spectral convergence.
Such convergence is independent of the oscillation in the media, or the smallness of the Knudsen
number, making it one of the few methods that simultaneously achieve numerical homogenization
and asymptotic preserving properties across all scales of oscillations and the Knudsen number.

Key words. multiscale finite element method, linear Boltzmann equation, high contrast
AMS subject classifications. 656N12, 65N30

DOI. 10.1137/19M1256282

1. Introduction. The Boltzmann equation is a fundamental model in statistical
mechanics. It traces the evolution of the distribution function on the phase space and
describes the dynamics of a large number of particles that follow the same physics
rules via a statistical manner. The equation encodes the particles’ free transport
and their interactions with the media and each other. Depending on the physics the
particles follow, the interaction term may differ, but to a large extent, many particles,
including neutrons, photons, and phonons, interact mainly with the media, making
the collision term linear. The dynamics then can be described by the linear Boltzmann
equation:

(1) du+v-Vu=ocRu(z,v) —nu, (z,0)€QxV.

In the equation, u is a function on the phase space (z,v) € Q x V. The evolution
is governed by v - Vu, a free transport term, and the terms on the right side of the

*Received by the editors April 15, 2019; accepted for publication (in revised form) January 23,
2020; published electronically March 25, 2020.
https://doi.org/10.1137/19M1256282
Funding: The first author’s research is partially supported by the Hong Kong RGC General
Research Fund (projects 14304217 and 14302018) and CUHK Direct Grant for Research 2018-19.
The second author’s research is partially supported by NSF 1620318 and NSF Tripod 1934904. The
fourth author’s research is supported by NSF-DMS 1619778 and 1750488 and the UW-Madison Data
Science Initiative.
fDepartment of Mathematics, The Chinese University of Hong Kong, Hong Kong SAR
(tschung@math.cuhk.edu.hk).
fDepartment of Mathematics & Institute for Scientific Computation (ISC), Texas A&M
University, College Station, TX 77840 (efendiev@math.tamu.edu).
§Department of Mathematics, Texas A&M University, College Station, TX 77840 (lyb@tamu.edu).
TDepartment of Mathematics, University of Wisconsin, Madison, WI 53706 (qinli@math.
wisc.edu).

475

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/19M1256282
mailto:tschung@math.cuhk.edu.hk
mailto:efendiev@math.tamu.edu
mailto:lyb@tamu.edu
mailto:qinli@math.wisc.edu
mailto:qinli@math.wisc.edu

Downloaded 06/02/20 to 128.104.46.196. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

476 ERIC CHUNG, YALCHIN EFENDIEV, YANBO LI, AND QIN LI

equation that represent the “collision” and quantify the particles’ interactions. These
interactions include a pure absorption term nu, where 7 is the absorption coefficient,
and a scattering term ocRu. The specific form of the operator R varies from particle
to particle, and it is typically a functional independent of x. The strength of the
interactions is governed by the size of ¢ and 7. For photons specifically, the radiative
transfer equation is used; these coefficients are termed the optical thickness. In this
paper, for simplicity, we take R to be

(2) Ru(x,v) = /v uw(z,v")dv" — u(z,v),

where dv is a normalized measure, i.e., f dv =1, and we set n = 1.

The equation demonstrates different behavior in different regimes. One partic-
ularly interesting regime is called the diffusion regime, in which the scattering coef-
ficient is extremely strong and the pure absorption term is weak. Mathematically,
considering the steady state case, we model the equation to

(3) v-Vu+eu= 1chu(:r,U) .
€

In this equation, € is termed the Knudsen number, and it characterizes the ratio of
the mean free path and the typical domain length. Physically it reflects the number of
collisions a normal particle experiences inside 2 before emitting. When € is small, the
number of collisions per particle is large, meaning the particle gets scattered many
times before emitting, and thus some kind of averaging effects take place, and the
local equilibrium is achieved. In the case of (2), the equilibrium reads

(4) u(z,v) ~ p(x),

and through asymptotic analysis, one could mathematically derive that p satisfies the
diffusion equation:

(5) Ccv- <in> =p,

where C' depends on the dimension.

The convergence from (3) to the asymptotic limit (5) was conjectured in [4] and
was made rigorous in [3] for periodic boundary condition. In [29] the authors studied
the boundary layer effect with geometric corrections, and the asymptotic convergence
rate was shown to degrade [26, 27].

However, all the rigorous proofs are done assuming certain smoothness of o. In
particular, it is assumed that o is sufficiently smooth. At the current stage, very
limited work has been done when oscillations present in the media. Denoting ¢ the
small scale in the media, we rewrite our equation as

1
(6) v-Vu+eu=-0"Ru(z,v),
€

where () = o(z, %) to explicitly reflect the fast variable £ dependence. On the
theoretical level, to our best knowledge, except a few cases [22], the theory is largely
lacking, except a few cases [22], and to a large extent, we do not yet know the res-
onance of the two parameters and how they contribute in the asymptotic limits of
the equation. And on the computation level, the only numerical study known to the
authors is presented in [25], where the limits are taken in order: § < e < 1.
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The problem is very challenging on the numerical level. The small ¢ makes the
collision term extremely stiff, bringing ill-conditioning to the associated discrete sys-
tem, and thus create a severe stability issue; the small § brings wild oscillations to the
media and the solution, and for accuracy of the numerical solution, high resolution is
needed and small discretization is necessary, driving up the numerical cost.

This is certainly unaffordable, especially in the zero limit of € and §. The main
goal of this paper is to develop a general numerical treatment that could deal with
the equation with a wide range of € and §, and perform uniformly well, with the error
term independent on the small parameters.

The approach we take is in the line of the generalized multiscale finite element
method (GMSFEM). This is an offline-online framework that builds a good set of
local basis functions during the offline step and patches local solutions up in the
online step, similarly to the original multiscale finite element method. One main
feature of GMsFEM is its basis selection procedure in the offline step where a special
generalized eigenvalue problem (GEP) is designed. This special GEP encodes the
oscillations and the ill-conditioning of the problem.

More explicitly, like many other multiscale methods, we build nested grids with
coarse grid H and fine grid h satisfying H > € > h. In the offline step, local basis
functions are constructed within coarse mesh H on fine mesh h that capture fine
scale structure and preserve the heterogeneities in the media; in the online step, the
basis functions are patched up through Galerkin framework [2, 6, 17, 13, 15, 16, 20,
10, 11, 9, 19, 1, 24]. The online step is rather standard and different methods give
various algorithms in the offline step. What makes GMsFEM favorable is indeed
its offline step, in which the full list of a-harmonic functions are collected, and then
the most “representative” modes are selected through a specially designed GEP. The
definition of the matrices in the GEP is associated with the final error term, which
permits certain spectral error decay. We should mention GMsFEM was initially used
for elliptic equations containing strong heterogeneous media, a topic about which the
literature is extremely rich. For this particular problem, there is another category of
method: upscaling-type methods. In upscaling methods, either locally or globally an
effective media is numerically prepared so that equations can be computed on coarser
grids with the effective media replacing the heterogeneous one [12, 30, 18, 21]. But
this approach is not going to be pursued in this paper.

As a framework, the GMsFEM approach is rather easy to use, and the main
mathematical challenge, when utilized to tackle different equations, is to develop the
right GEP. For the linear Boltzmann equation with heterogeneous media, we frame the
problem in the discontinuous Galerkin setting and are able to find two matrices that
resemble the mass and stiffness matrices in the GEP of the elliptic equations, which
allows us to show the optimality of the basis functions with respect to a physically
meaningful norm. As the standard approach, these basis functions are then used in
the online computation.

The paper will be organized in the following way. In section 2, we introduce some
preliminaries. Both discrete ordinates, the standard kinetic solver and GMsFEM for
the elliptic equation will be presented. Some properties will be presented. We present
the algorithm in section 3, which is further divided into two subsections introducing
offline and online procedures. Section 4 contains the analysis where we present the
well-posedness and convergence results. The small € limit of the method will also be
discussed. Numerical results will be shown in section 5.

To end the introduction, we comment that the scaling problem studied in this
paper is not mathematically artificial. In fact, as one redefines x — %, o(x) should
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have been automatically changed to highly oscillatory media o(z/¢). Another practi-
cal example is to inject light into crystals, where the radiative transfer equation (one
particular linear Boltzmann equation) is utilized. In this case, the periodic crystal
structure should be encoded in the media and the period that corresponds to ¢ in our
math formulation is expected to be small.

2. Preliminaries. In this section we prepare some basic important concepts. In
particular, we will first present the discrete ordinate method for the linear Boltzmann
equation, and then give a brief account of the GMsFEM. They are the building blocks
for the algorithm designed in this paper.

2.1. Discrete ordinate method. The Boltzmann equation gives a statistical
description of particle dynamics. Its extensive use in all kinds of engineering problems
brought its great popularity, and literature on both theory and numerics has been
very rich. Among all numerical methods developed for the Boltzmann equation, the
discrete ordinate method stands out for its simplicity and intuitiveness and is the
method we will use in our GMsFEM. Essentially it discretizes the velocity domain,
and the semidiscrete system is a coupled PDE in the physical space.

We start the discussion with the following model equation:

1
v-Vu(z,v) + eu(z,v) = FRu(a:,v) in QxS
€

u(z,v) = g(z,v) onI'",

(7)

where z € 2 C R? is a bounded domain with a Lipschitz boundary 0€2. The velocity
is v € S, the unit circle. The media a® presents fine scale structure at & order,
and the stiffness of the collision operator R is determined by % > 1. We have the
inflow boundary condition, with the inflow data g(z,v) defined on I'", a collection of
coordinates on the boundary with velocity pointing into the domain:

I~ ={(z,0) €90 x S'|v-n, <0} .

Here n, is the unit outer normal direction at = € 9. For simplicity, we use the
model collision operator with homogeneous scattering coefficient:

Ru(z,v) =u(z) — u(z,v) = % /sl u(z, v)dv —u(z,v).

The discrete ordinate method, denoted by Sy, is a standard method to discretize
the velocity domain. One first sample m quadrature points on S! and each sample
point is associated with a weight, denoted by {(v;,a;),i = 1,...,m}, where v; are the
quadrature points and «; are the corresponding positive weights. These quadrature
points and weights are chosen so that

m 1 m
(8) ;ai =1 and Py /S1 u(x,v)dv = Zaiu(aﬂ,vi).

i=1

The equation then will be discretized into a semidiscrete system. Let u;(z) = u(z, v;);
the integrodifferential (7) is then transformed into a system of m coupled PDEs:
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1 i .
9 vi-Vui—Feui—l—J ui—Zajuj =0 in Q,
(9) =1
up = gi onI'",

where g; = g(z,v;) is the inflow boundary data. Denote

2 . .
- a;p —ay, =17,
(10) i1 { —qioy,  LF ]

Then (9) is further simplified to

1
(11) v; - Vu; + eu; + €a50¢i Zaijuj = 0.
J
Since {a;;} is basically the discrete version of the collision operator —R, it
resembles the properties of R. In particular, the matrix is positive semidefinite with
a known kernel.
PROPOSITION 1. Define a matriz A so that A;; = ai;, we claim
e A is positive semidefinite,
e u'Au = 0 if and only if u = (uy,us, ..., Uy) s isotropic, i.c., Uy = Uy =
e — um;

e v Au = 0 if either u or v is isotropic.

Proof. The computation is straightforward:

m m
ulAu= E @i uju; = E (; — a)u? —2 g 00U U
ij=1 i=1 i<j
m
= E a; g ajui — 2 E Q0 U U
i=1 i i<j
Z 2
= OéiOéj (Ui—u]') ZO
i<j

The equal sign is achieved only when u; = u; for all ¢ # j.
To show the third bullet point, we note that the matrix A is symmetric; it suffices

to assume that u is isotropic: u; = us = -+ = u,, = u. Then,
m m m m

viAu = E iUV = E Qi UV; E uv; E Qjj
ij=1 ij=1 i=1 j=1

m
E uv; ai—a?—i—g —Q;Q
i=1

J#i

m
:E ﬂ’l)iOéi ].—CVZ'—E ij :0,
i=1

J#i

where we have used the weight condition (8): >, a; = 1. |
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The discrete ordinate method is a classical way of reformulating a Boltzmann-type
equation supported on an (z,v)-domain to a coupled system of advection-diffusion
equations that only have physical domain z-dependence. This reformulation quickly
allows one to apply many different methods developed to treat equations on physical
space. There are many choices. In this article, we confine ourselves to the GMsFEM
framework.

2.2. Generalized multiscale finite element method. The discrete ordinate
method is used to discretize the velocity domain, and for the spatial domain, we follow
the GMsSFEM approach, which, by choosing “optimal basis functions” via a special
design of a GEP, we can obtain a reduced model that is robust for all values of € and
0. For the completeness of the paper, we now present a general idea of GMsFEM, and
its application to the heterogeneous Boltzmann equation will be discussed in detail in
section 3.

The GMsFEM uses two stages: offline and online. In the offline stage, a small
dimensional approximation space is constructed to solve the global problem for any
external source on a coarse grid, whose grid size does not need to resolve any scales of
the media and solution. The offline stage consists of two main concepts. The snapshot
space, Vs’;mp, is constructed for a generic coarse element K;. The snapshot solutions
are used to compute local multiscale basis functions. An appropriate snapshot space
can

e provide a faster convergence,
e provide problem relevant restrictions on the coarse spaces (e.g., divergence-
free solutions),
e reduce the cost associated with constructing the offline spaces.
Standard choices of snapshot spaces (see [7]) are (1) all fine grid functions; (2) snap-
shots of local solutions; (3) oversampling snapshots of local solutions; and (4) force-
based snapshots. In this paper, we will use snapshots of local solutions.

More specifically, these are functions nl(i) that satisfy
£(n?) =0 K
m = m 3

subject to some boundary conditions, where L is the differential operator under con-
sideration, and [ is the index for the boundary condition. One can use all fine grid
delta functions as boundary conditions or randomized boundary conditions [7, 5].

The offline space, Vi, is computed for each K; (with elements of the space denoted
wl(l)). We perform a spectral decomposition in the snapshot space and select the
dominant eigenfunctions (corresponding to the smallest eigenvalues) to construct the
offline (multiscale) space. The convergence rate of the resulting method is proportional
to 1/A., where A, is the smallest eigenvalue that the corresponding eigenvector is not
included in the multiscale space. We would like to select a local spectral problem such
that we can remove many small eigenvalues with fewer multiscale basis functions. The
choice of spectral problems is usually problem dependent and is based on convergence
analysis. In general, the error is decomposed into coarse subdomains. If we take
the elliptic operator —V - (kVu) with heterogeneous coefficient k as an example,
the energy functional corresponding to the domain Q is denoted by aq(u,u), e.g.,
aq(u,u) = [, kKVu- Vu. Then,
(12) aQ(u—uH,u—uH)jZaK (uK—ug,uK—ug),

K
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where K are coarse regions (K;), and u€ is the localization of the solution. The local
spectral problem is chosen to bound ax (uf — uf, u® — uf). We seek the subspace

V}; such that for any n € V! there exists 19 € V}, with

snap’
(13) ar,(m—"mn0,m—10) = Bsk,(n—"10.1—10),

where sk, (-, ) is an auxiliary bilinear form, and /8 is an accuracy parameter. The
auxiliary bilinear form needs to be chosen such that the solution is bounded in the
corresponding norm.

Finally, in the online stage, the space Vj is used together with a suitable coarse
grid discretization to solve the problem. The same space Vp is used for all input
sources.

3. GMsFEM for heterogeneous Boltzmann equation. We now apply the
GMsFEM approach to numerically study the heterogeneous Boltzmann equation,
expressed in the discrete ordinate system (9).

The numerical difficulties in solving this equation are summarized as follows.
First, the media a® is highly oscillatory, which implies that the solution u; is also
highly oscillatory and of multiscale nature. In order to capture these scales, the mesh
size h has to be smaller than §, which in turn brings prohibitive numerical cost.
Second, the operator L is scaled by %, and in the zero limit of €, the term is extremely
stiff, and this brings concern in stability. It is our aim in this paper to develop a
multiscale method that can address these issues. In particular, inspired by GMsFEM,
we will design a numerical method that relies on offline basis construction and online
basis patching procedure, and its numerical error has limited dependence on the two
small parameters.

We will construct nested grids and call 7" the partition of Q into fine finite
elements and 7% the partition into coarse elements, where h and H are the fine and
coarse mesh sizes, respectively. For simpler notation, we consider rectangular coarse
elements as shown in Figure 1. The basis functions and discretization are based on
the coarse grid, and the fine grid is used to numerically compute the basis functions.
We also denote the collection of coarse edges £x, and 5?1 = £ \OQ the collection of
coarse edges in the interior of the domain.

The discontinuous Galerkin method allows one to pick different values of the
solution on different sides of the edges. Suppose two adjacent coarse blocks 7; and
7; share an edge and that 7; is the upwind block; then we denote wt = w|,, and

1/7 Coarse Grid! -

K

j
Coarse Element

Fine Grid

K
- 4
Oversampled Region

Fic. 1. Left: an illustration of fine and coarse grids. Right: an illustration of a coarse neigh-
borhood and a coarse element.
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o |
Ti (w+) 75 (W™)

F1ac. 2. An illustration of upwind and downwind blocks.

w™ = wl,,. Notice that depending on the direction of a specific v;, a different block
could be picked as the upwind block, as shown in Figure 2.
For the fine scale approximation, we choose the discrete function space to be

Vi, ={ve L*Q)|v|, € Qi(r) V7 € T" and v|x € C°(K) VK € T} |
and we seek numerical solution such that
up = (Wh,1, Un,2s - - Unm) € (Vi)™

This means the numerical solution for each up_;, when confined in each fine grid, is
a linear function and is continuous function across coarse grids. In the variational

formulation for all i = 1,2,...,m, we have
(14) /u;”sz v; + Z /uhl w;] - v + Z /uhzwlvl n+/ €U, W,
ecgy V¢ eel+
+/Qea5 Up, Za]uh] w; = — Z/gzwvl n Yw; €V,
ecl'~
or with the definition of {a;;} in (10), they could be summed up to
(15)
m
Zai —/u;”le v; + Z /u,“wl CVi+ Z /uhzwzvz n"‘/ﬁuhzwz
1=1 650 € ecl'+
1 m
+ /Q g ”Zﬂ Qjjup,jw; = Zal GZF, /gzwlvl n Ywe (V)™
W= €

In the equation, we have used upwind approximation for v; - Vu; and the jump
operator [-] is defined by

wn” +wrnt on &Y
[w] = wn- onI'~,
whn™ on .

For notational simplicity, we define two bilinear operators
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m
a(u, w) = Zaiai(ui,wi) with
i=1

ai(ui, w;) = —/ wVw; - vi+ /Uﬂwi] vit > [ wwivi-n,
Q e

ecEd ecl+ v ¢
m 1 m m
l(u,w) = Zai/ — | ui — Z a;u; | w4+ Zai/ €U W;
i=1 Q€ j=1 i=1 Q
1 m m
= /Q ﬁ Z aijujwi + Zai /Q EU; W,
i,7=1 i=1
and a linear operator
m
i=1 ecl'— v €
With this notation, (15) is now written
(16) a(up, w) + l(up, w) = F(w) Yw e (V,)™.

With A < min{e,d}, it is a standard result that u, =~ w, with an error term
of size O(h?/min(e, §)). For significantly small h, the function uy, is considered as a
reference solution in accessing the performance of our method.

However, using small h that resolves € and § leads to a very big system that is
numerically very costly. We would like to develop an algorithm that seeks solution
only on the coarse grid H and the corresponding solution ugy ~ uj ~ u. To do that, an
offline-online procedure developed in [5] for the elliptic equation, that is, GMsFEM,
will be pursued. In the offline step, an approximate space Vpy is constructed to
replace V3. This newly constructed space would have much fewer degrees of freedom
but preserves V},’s important factors. The final multiscale solution will be computed
in the online step where the boundary condition g(x,v) will be taken into account to
determine the degrees of freedom in V.

We quickly review the online stage in section 3.1, and the complicated offline step
will be discussed in detail in section 3.2.

3.1. Online computation. In the online stage, we will use the multiscale basis
functions together with a coarse grid discretization to solve the given problem. The
coarse grid discretization we used is a discontinuous Galerkin method with upwind
flux. Assume that a multiscale finite element space Vi = span{¢,} is determined,
and this space, in some sense, approximates (V3)™. Then similar to the formulation
as in (15), the solution will be sought in

ug = (U1, UH2, -, UHm) € VI

so that
(17)

m

E Q; —/ wH, i VWw; - v; + E /u;[“[wl] v+ E /uH,iwivi~n+/ EUR ;W;
i=1 Q@ eeg "¢ eer+ "¢ @

m m
1
+ -5 E i UH jW; = — (67 E g;w; Vi - n Yw € VH .
O €a” = ; e
i,7=1 i=1 ecl'—
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Similar to (16), we use a compact notation:
(18) a(lug,w) + l(ug,w) = F(w) Yw e Vy.

To implement the scheme above, we define the following matrices:

(19) qu = a(d)p) ¢q) s qu = l(¢pa ¢q) , and bp = F(¢p) .
Then the multiscale solution ug is formulated as
(20) ug = Z Upop ;

p

where the coeflicient vector U solves (A + L)U = b.

3.2. Construction of Vg. The key to the success of our method is the con-
struction of the space Vg on the coarse mesh during the offline stage. We will give
the details here.

As discussed in section 2.2, the offline step is further decomposed into two sub-
stages: constructing the snapshot space, and selecting modes associated with small
eigenvalues. These two stages will be presented in sections 3.2.1 and 3.2.2, respec-
tively.

In the snapshot space construction stage, in each coarse region, the Boltzmann
solution will be solved multiple times together with all possible boundary conditions
resolved by the fine grid. This give a high dimensional space. However, some modes
in the snapshot space are more important than the others, and they dominate the nu-
merical solution. To identify these basis functions, a specially designed local spectral
problem (GEP) is formulated and solved. The modes that correspond to the smallest
eigenvalues are selected to form Vy. The number of modes to be selected depends on
the error tolerance and the eigenvalues of the GEP. The design of the local spectral
problem is to encode the convergence error that is to be discussed in section 4.

3.2.1. Snapshot space. We present the construction of the snapshot spaces in
this subsection. The procedure is the same in each coarse element, and we take the
coarse element K; as an example. The snapshot space for this particular element is
denoted by V;ilap. We use the notation J¢(D) to denote the set of all nodes of the
fine mesh 7" lying in the upwind part of D associated with velocity v;. And we
also use J(D) = @;", J'(D) to denote the union. Then the snapshot space is simply
the linear span of solutions to the local Boltzmann equation with delta function as

boundary condition, namely,

(21) Vszlapz{nw{:nzl,...,m, xleJ(Kj)},
where nwlj =(, lj)l,nwlj,g, .. .,nwim) solves
(22)

{vi~Vnle’i+enwl]’i+eié (n 1™ 2oge1 Qan f,q) =0 in K; Vi=12,...,m,
U =de, on J(Kj).

Here we use multi-index Kronecker delta function d;e,,, where e,, is the standard basis

in R™ and ¢; is the standard Kronecker delta function:

1, k=1,
51(%)2{0 Y zy € J(Kj).
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This strategy is summarized in Algorithm DETLOCAL.
The full snapshot space is given by

(23) ‘[snap = @ Vvsilap .
J

Remark 1. Numerically to prepare all snapshot basis functions is hard. It requires
the computation of the local Boltzmann equation with a large number of possible
incoming delta functions. To reduce the cost of computation, we use the idea of
oversampling [15]. To do so, the local computational domain is slightly enlarged to
K;r (see Figure 1), and a collection of random boundary condition is imposed on K;r.
The low rank structure of the solution space allows one to correctly capture the range,
even with a limited sampling. In particular, we define the snapshot space

(24) vs{mp:{nzﬁ{ﬂ&:n:1,...,m,1:1,...,kj},

where k; is the number of snapshot functions we could customize, and nqﬁ’Jr =
(n?/hj,’fr m%{’; o -,nwlj”;) solves
(25)
vi Vit b el + & (Wl - S agutly ) =0 i K
Vi=1,2,....,m,
2 =re, on J(K;r),

where r; are random independent and identically distributed (i.i.d.) Gaussian sampling
on J (K;r) The solutions ,,%{"" confined on K; are then used to form the snapshot
spaces. We remark that the use of randomized boundary conditions on oversampling
domains is able to reduce the offline computational cost as there is no need to impose
delta function boundary conditions as in (22).

This strategy is summarized in Algorithm RANLOCAL.

Similar to (16) and (18), we can solve the snapshot solution ugnap € Venap by the
following equation:

(26) a(Usnap, W) + {(Usnap, W) = F(w) Yw € Vipap -

We note that the snapshot solution can be considered as a reference solution. The
error of the snapshot solution is related to the approximation property of the snapshot
space in the fine scale space.

3.2.2. Offline space. Now, we will present the construction of the solution
space Vg, with the property we mentioned in (13). In the end Vy, when confined
on each coarse element, say, K, will be a subspace of V], and the construction of

Vi is the choice of the most appropriate basis functions in Vg;mp to be included. The
procedure is further divided into two substeps: the energy minimizing oversampling,
and a design of a GEP, as used in [8].

We first denote the local oversampled snapshot space €D  x+ Viap by V&L
Notice that, for a given coarse element K; and its corresponding ovérsampling region
K;r, the space V21 is the union of all snapshot spaces Vi . with the condition that

snap snap
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Then the energy minimizing snapshots are calculated. For any snapshot function
Y € Vap, its energy minimizing extension ¢ has the smallest energy in some norm

aEnergy( ,-) and is sought in the local oversampled snapshot space VZ:* with the

snap
constraint 9|k, = 1|k,. In mathematical expression, for any ¢ € Vihaps We seek
¥ € VIt so that
¢ = argmin-_ ;.4 a’ er (5, (E)
(27) . ¢evsjnap Energy
st. Y= inKj
in which
(28)
, 1 I &K ~~
W pergy (05 0) = Zaz |v¢z| tg D @ + | o5 D aubidi.
ceey (KF) K; il=1

We notice that this construction is well-defined and the strategy is summarized in
Algorithm ENERGYMIN. As one can see, v is an extension of ¢ onto the oversampling
domain that achieves the minimum energy, defined in (28), and this extension is
crucial, as will be seen in the later analysis.

Remark 2. This is about a stable decomposition property. It is important that
the local basis functions satisfy a stable decomposition property. More precisely, the
sum of local energies is bounded by the global energy.

Next, we define the two bilinear operators ag,(-,-) and sk, (-,-), mentioned in
(13). For simplicity of notation, we use a?(-,-) and s’(-,-) instead. For the element
K, define

(29)

! ¢,77):i04¢ /K+V¢~5z"vﬁi+% > /¢z 1] / Zamﬁmu
i=1 j

ecEY(KF) il=1
m 1 m
:Zai Z i | gl + epini | + —3 Z aiLPuj; -
6K KT Kt €a
i=1 K K+ Fi J i,l=1

Using the above bilinear forms, a spectral problem is defined. On Kj, we look for
(¢7.,73) € V., x R such that

$nap
aj( 3o 1 ) f/\sj( 77) V1 € Viiap:
where the eigenvalues are ordered in the ascending way:
Aj1 S Aj2 <
For implementation, we define the following matrices:
(30) Ay =a (Y. ¢5)  and  S), =5 (¢),97) -

Then the pair ((bi, )\{C) is computed by solving
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(31) Aley, = \pSPc,  with ¢f = ch,pwg.
p

Suppose L; modes are used for each K;. This strategy is summarized in Algorithm
LocaLGEP. The offline space Vj is given by

(32) Vi =span{¢l ik =1---L;} and Vi =@V
J

This will be the approximation space for solving the system (9) in the scheme (18).

3.3. Algorithm summary. We finally summarize the algorithm. Largely speak-
ing, we prepare the basis functions in the offline step and patch them up in the online
step. The offline step is further divided into preparing a snapshot space in which
either all Green’s functions are accumulated or a good random selection is obtained,
and the basis selection step, in which the local GEP is computed and eigenfunctions
with highest energies are chosen. These basis functions are ultimately used in the on-
line step via the weak formulation (20). We summarize the procedure in Algorithm 1.

4. Analysis of the GMsFEM. In this section, we will present some analysis of
our GMsFEM. In section 4.1, we will prove the well-posedness of the discrete system
resulting from the GMsFEM, and in section 4.2, we will prove the convergence of the
method. Finally, in section 4.3, we will analyze the behavior of the method when e is
small.

4.1. Well-posedness. We first show the well-posedness of the GMSFEM (18).

THEOREM 1. Problem (18) has a unique solution, and the solution uy satisfies
the following stability condition:

m m
1 1
;O‘i (4 > Ivion|fum)? +/Q€u§1,i> +/Qea‘5”z_:1 QijWH,jUH,;

ecEy €

m
(33) <> i > [ Ivi-nlg.
i=1 ec'— v €

Proof. Since the system (18) is a square linear system, showing the existence and
uniqueness amounts to proving that a(u,w) + l(u,w) = 0 for all w € Vg only for
trivial solution u = 0.

We will first prove the following inequalities:

l(u,u) >0 and a(u,u)= Za(ui,ui) >0 YueVy.
i
First, { is nonnegative since the matrix (a;;) is a positive semidefinite matrix, as
discussed in Proposition 1. Next, the nonnegativity of a(-,-) is shown below:

(34)

a(u, u;) = —/ u; Vu; - v + Z /uj[uz] v+ Z uiv;-n
Q

ecgy, V¢ ec+ V¢
1
:_52/ufvi.n—i-Z/uj[ui].vi—&-Z u?v;-n
reTh V0T ec&?) ¢ ecl+ V¢
1 1 1 _2 2
—3 X [menl e g X [wenli+ 3 3 el (o7 -0)
e+ 7€ eer— "¢ ecg Ve
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Algorithm 1. Multiscale solver for Lu = 0 over 2 with u =g on I'”

1

2:

AN

: Domain decomposition
Partition domain into nonoverlapping patches Q = r K;.
: Offline stage:
Snapshot space
Form snapshot space by calling Vg, =DETLOCAL(Kj) or VI, =
RANLoCAL(K]).
Offline space
Form offline space by calling Vg,:LOCALGEP(Kj).
Vir = @, Vi; = span{s, }.
: Online stage:
Use global inflow boundary data g to determine U using (20).
: Return: approximated global solution uy =3 Up¢p.

: function DETLOCAL(K))
Prepare full list of multi-index Kronecker delta function d;e,, on J(Kj).
Find nwzj using (22).
Formulate V7, = {,0) :n=1,...,m, z; € J(K;)} according to (21).
Return: Local snapshot space V{,,.,.
end function

: function RANLOCAL(Kj)

Prepare k; random i.i.d. Gaussian vector r;e, on J(K;)
Find 9" using (25).
Formulate VJ,,, = {M/’lj’ﬂKj cn=1,...,m, l=1,...,,k;} according to (21).

Return: Local snapshot space V7, .
end function

N =

AN

: function LoOCALGEP(K)
‘/s]r‘;;_p = @chK; ‘/Sinap'
Compute 9 € Vit using (27).
Solve the GEP (31) for V}; =span{¢], : k=1---L;}.
Return: Offline space V7.
end function

+ 2 [lvenlur (@ =)+ 2 [ fvienlad

ecgy V¢ ec+ V¢
1 , 1 , 1 L 2
252 |Vi'n|ui+§z ‘Vi'“‘“i+§z [vi - nf (u —u;)
S ecl— 7€ ec&?, ¢
1
=3 > [ Ivion| ) >0.
e€€p V€

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/02/20 to 128.104.46.196. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

GMsFEM FOR LINEAR BOLTZMANN EQUATION 489

Assuming a(u, w) 4+ I(u, w) = 0 for any w € (V},)™, then setting w = u, we have

(35) ;ai< Z /|vl n|| uz /eul ) / o Z a;;U;0; = 0.

eclfy _
According to Proposition 1, we have
(36) U1:U2:~'-:@:0,

meaning u = 0, and the solution to (18) is thus unique. For stability, we start with

Zaz Z /gzuH iVi -

= eel'~
<Zazz/|vz nlg? + - Za, /|v, 0 [us.)?
= ecl'— e€fy
Considering a(ug,ug) + l(ug,ug) = F(ug), we conclude with the stability
inequality (33). d

We notice that the snapshot equation (26) has the same structure, and the well-
posedness is proved in the same way.

4.2. Convergence analysis. We now analyze the convergence of the proposed
method. The goal of this section is to estimate the difference between the snapshot
solution, Ugnap, computed in (26), and the multiscale coarse solution, uy, computed
n (18). To do so, we first define the following norms. We define the V-norm as

m
GOl =Y ol with =5 Y / v, - [u;)?
=1

eEEH

and the W-norm as
(58) [l = Zaz iy with il = 5 Z [ tvemla

We also extend them by incorporating the collision term:
2 2 2 2

(39) lulli = llully 4+ Uuw,u)  and  ullf = [ully + 1(u,u).
The total energy is now defined by

|| er ozz |Vuz|2 + — [u;]? QiU U -

Energy — cad

o Je O €a 1
PES 1,j=

Note that we have following propositions.
PROPOSITION 2. a(u,u) = ||ull}, and a(u,w) + l(u,u) = Hu||%~/

Proof. This proposition simply comes from the calculations in (34). 0
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PROPOSITION 3. If u € Vipap, we have

(40) Lol <37 8 (uli, s ulk, ),
j
(41) 2. Y d(ulk, ulk,) € Mlull By,
j

Here a’ and s’ are bilinear operator defined in (29). M = maxyg g{Mx, Mg}, where
My is the number of oversampled regions K;‘ ’s which have nonempty intersection with
coarse block K, and Mg 1is the number of oversampled regions K;‘ ’s whose interior
coarse edges 5%([(;) contain coarse edge E. They are both small numbers.

Proof. We denote u|g; by u/. Sou’ € V. According to (27), u’ has an energy

minimizing extension u/ € V£ that satisfies 4/ = u’ in Kj;. Then we have

Combining with the definition of ||ng7, we proved (40).

Next, we denote u/"™ = u| .+ € VSJI;;‘p. By the definition of the energy minimizing
J

extension in (27), we have

a’ (u? u?)
m ~12 1 ~q2 1 & ~ ~
=) o Vul| + = [uj} + — a;ul !
cegd (K) ; il=
- IR Ji2 RS o+, gt
SZai /+V“i ‘ +E Z /[u2 ] +/+€a—52ailul (AR
i=1 K; e (K ) ¢ K; i,l=1

S eSS [ et eg 5 fu
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< zm:ai ZMKj/ lvuf 2+i Z J\Ie/[“ﬂ2
i=1 j K H e, ¢
+;MKJ Aj % Z ailu{ug

il=1

< M|ullEnergy -

and thus we have (41). |

For the convergence analysis, we first examine the best approximation property.
For that, we have the following.

LEMMA 1. Let uspqp e the snapshot solution to (26) and let ugy be the multiscale
solution to (18). Then

(42) [tonap — s < € nf [ty — 0l
where C' is a constant independent of €, a’, and the mesh size.
Proof. Using (26) and (18), and the fact that Viy C Vipap, we have
(43) a(Usnap — U, W) + U(Usnap — up, w) = F(w) — F(w) =0 Yw € Vipap -
Then for all w € V,

a(usnap — UH, Usnap — UH) + l(usnap — UH, Usnap — uH)

= a(usnap — Ug, Usnap — ’U)) + l(usnap — UH, Usnap — ’U.)) .
Using Proposition 2, we have
(44) ||Usnap - UH”%”/ = a(usnap — UH, Usnap — w) + l(usnap — UH, Usnap — ’LU) .

To obtain (42), noticing that usnap — g and Ugnap — w are both in Vinap, it amounts
to showing that

(45) a(u, w) + l(u,w) < Cllully ||w||W YVu, w € Venap -
In fact it suffices to show that
(46) a(u, w) + (u,w) < V2|Jully [wlly Vi, w € Vinap ,

since it is obvious that ||ully < [Jul|g.
To show (46), we first use integration by parts to obtain

iai (—/Quini-vi) :iai /inui-vi— Z/

V; - NuU;w;
i=1 L reTh /o7

m
:E Q; g / Vui-viwi—g / Vi - N W;
i=1 K; 7K K; oK
m

:fl(u,w)fg aiZ/ Vi - nuw;

i=1
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where we have used the continuity accross fine scales 97 and the assumption that, in
each K, u satisfies the following equation:

(47)

7/ ul-lewvl-qL/ uiwivi~n+/
K oK, K,

J J J

€u; Wi + /K s ( Zaquq> w; =0

for all ¢ = 1,2,...,m. Here w could be any function in (Vi)™ restricted on K;. In
particular, (47) Works for w € VJ

snap
Using the definition of a(-, -) and direct calculations, we have

a(u,w)Jrl(u,w)iai(;/aKj Snu;w; + ezg:o/e [w;] - v;
+ ) /uwv )

ecl't
m 1 m
—l—ZaiZ (/K €u;w; + o (ul - Zaquq> wi>
i=1 K i q=1
m
=3 o z/ w; Z/uzwvl.
=1 ecEY e€l'~

Then, applying the Cauchy—Schwarz inequality, we have

1/2
a(u, w) + l(u, w) < Zaz Z/|Vz n| [u;] +Z/|Vz n|u?
e€d ¢ e€l~
1/2
(48) Zaz Z/m njw;* + Z/m n| w?
ecgy, V¢ e€l'—

The two terms on the right-hand side are taken care of separately. To handle the first
term, recalling the definition of V-norm in (37), we have

Em:ai /|V7, n|[u]” + Y /|vz n| u? <Zaz > /|v2 n| [u;]?
=1 €

ec&?) ecl'— e€fy
(49) = V2ull} .

And to compute the second term, we notice that

oziaiz<—/K inwi-vi—&-/

j oK

1
; —f/ w?vi-n—i—/ w?vi-n | + (w, w)
2 Jok; K,

wiv; - n) + l(w, w)

I
NE
£

i=1 K

:;ialz/w{ v - nw} + l(w,w)
J

i=1 K
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(- 3 [rnid +z/|w al}

ecl'— eel’t
+ 3 [vinl (v )>+z<w,w>,
ec& V¢

which in turn gives

(50) ia > [lvinlur+ 3 [1venlu?

ecEY, ecl'~
ZZ%<Z/|V2 n|w? + Z/|Vz n|w?
ecl’'— eel't
+ Z/\w n| (w;” +w; )>+l<w,w)
ec&Y, ¢
1 m
2
=_ v -n|w; + l(w,w
LD, enlet )
= il -

Plugging (49) and (50) into (48), we have proved the desired boundedness condition
(46), which concludes the proof of (42). O

Now, we are ready to prove our main convergence result in this section.

THEOREM 2. Let Ugnqp be the snapshot solution to problem (26) and let upy be
the multiscale solution to problem (18). Then
CM

2
||Usnap - UHHV < T* HUSWWHEnergy’

where A, = min; \; .41, C is the same constant from Lemma 1, and M is the same
constant from Proposition 3.

Proof. We first denote

_ § : - E i = E Y
Usnap = usnap|Kj - Usnap = d]vld)l ’
J J Jil

where qﬁ‘ is the [th multiscale basis function for the coarse element K; (31). Note

that Span{¢] } covers the entire snapshot space. We then define a projection of uf,,,,

into VIZ[, as well as a projection of Ugnap into Va:

snap Z d; ,l¢l s P uanap Z Z d; ,l¢l

I<L; j I<L;

It is easy to see that P7(ul,, ) = P(usnap)|k,. Combining with Proposition 3, we
have

wlen‘ﬁH | tsnap — ngVT/ < H“snap - P(usnap)”%

< Z Gnap (ugnap) augnap - Pj (ugnap))
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E ubnapu ;s Usnap,j )

7 L +1
1 : . :
A Z o (ugnam ugnap)
Y
M 2
< 5 ltonap [Bnergy -

Combining with Lemma 1, we proved the theorem. 0

In the above theorem, we estimate the error between the snapshot solution usnap
and the multiscale solution uz. We see that the error is inversely proportional to
the eigenvalues. This shows that the multiscale space gives a good approximation
property in the snapshot space. In our analysis, we assume that the snapshot functions
satisfy the PDE in the strong sense, that is, (47). On the other hand, there is an error
between the snapshot solution ugnap and the fine scale solution uy, if we use Algorithm
RANLOCAL in section 3.2. This amounts to an irreducible error, and the analysis of
this is beyond the scope of this paper.

We should emphasize that the difficulty brought by small § is encoded in the
quality of A, and thus is not explicitly expressed in the error analysis.

4.3. Small € regime. An important property the algorithm satisfies is that it
is robust with respect to the parameters. In the limiting regime of ¢ — 0, A, has
a positive lower bound, and this serves as the stability argument that allows the
algorithm to be effective across regimes. In particular we will show the following.

THEOREM 3. Denote \;;, the kth eigenvalue of the GEP defined in (31) for coarse
element K;. It has an asymptotic limit in the zero limit of €, meaning there is a
constant /\?’,C so that

[ Ajk = AV = OCe).
This theorem, when combined with our main Theorem 2, indicates that the error
bound, which is controlled by A. will not grow in € and thus the error

is uniformly bounded.
To show the theorem, we first start with a lemma.

_ 1
- minj{AJULj-H 1’

LEMMA 2. For every coarse element K;, we have
AT = AT+ O(e), and S =804 0(e),

where entries in A0 and S70 are defined by

) m . 1
(51) AL =D /I(+vwi,:? Vi + 5 > /WO ” ;
i=1 J

ec€% (K
and
m
3,0 _ ) 713,0,773,0
(52 si= |y X[ venldae |
i=1 KCK+
where ngp = span{wg}, and 1/)2 is the basis functions’ energy minimizing extension.

We further denote @;’0 the leading order asymptotic expansion of @D
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Proof. To proceed we notice that W € Vg4 can be written as the sum of some

¥*’s, where ¢* € Vi, and K C K;‘. Recall the assumption of (47). Then in each
KS and for all i = 1,2,...,m, we have

/ W Vw; - v; + / 1/1 S0V /K

J

1 m

3 ] ) _

ewp,iwi +/ cad i T Z alwp’l w; = 0.
K 1=1

Here w could be any function in (V)™ restricted on Kj.
Therefore we have

(54)

Zaz ( / ¢J Nw; - v; + / Jzyiwivi . n+/ 61/) wl> / Z ambplwz =0.
OK; K

i,l=1
Take the asymptotic expansion for Jg),
(55) Ul =00+ et + 0 ()
set w = 1;17;’0, and plug them back into (54). We have, in the leading order of 2,

m
D autyiuns =
i,0=1

meaning z/JIZ’O is isotropic in each K, due to Proposition 1. Therefore wg;,o is isotropic.

The same analysis is applied to 1221"0.
Recalling the definition of A7 and a™ in (29), we have

o i ~ ~ 1
— § J J E
J( ;711).;) - o Q5 \/I(+ va7i . v/l/}q,i + E /

6650 I(Jr

1 & o~
+ / e DI AR
K; il=1
1
L
€ K+

i,l=1

+1Za1/. N ;{Z/w

ec&Y, (K+

e [ 43 i

i,0=1 i,0=1
+ O(e).
Due to Proposition 1, we have

[ i = [ e = [ S il -

i,0=1 i,0=1 i,0=1
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and thus
b =Y | [ varvite g > [][] ] vow

i=1 K 0 +

i J ecEY K

m - . 1

SO VIR RS A S A
i=1 Kf 7 ’ H 0 +
i J e€EY (K])
The proof for s/ is the same and is omitted here. 0

Theorem 3 is a straightforward consequence of the following perturbation theo-
rem.

Proof for Theorem 3. According to Lemma 2, A7 and S7 have expansions A’ =
AI0 L O(e) =: A10 4 €Al and 7 = S90 4 O(e) =: $70 + 571, We also define x°
as the kth generalized eigenvector of the two matrices 470 and $7:, i.e.,

(56) APOx0 = N0 5700

Using the absolute Weyl theorem for GEPs in [28], when € is small enough such that
€ HSJ 1“ < Amin(S79), we have

[leA%t]] [ A70]], + [leA™ | :
‘)‘j,k - )‘?,k| < /\min(Sj,g) + /\min(Sj,O)()\mzin(Sj,O) _ ||2€Sj,1H2) HESJ 1H2

_ 6||A]71_H2 n "’ALOH2+6_||AJ71H2 ' €HSMH
/\min(Sj’O) )‘min(SJ’O)()‘min(SJ’o) — € ||S]’1 2) 2

_€0(1) O(1) + eO(1)

=om T omo) - om "

= O<€)’

where ||-||, is the spectral norm of a matrix. d

According to the formula for A7° and S0 in (51) and (52), the eigenvalues are
positive except that the smallest one is 0 with constant as corresponding eigenvector.
So A, has positive limit in the limiting regime of € — 0.

5. Numerical results. We take boundary condition g(x,v) = cos(2m(z1 +
22)) + 1. And we set m = 6, and use the Gaussian quadrature rule to define
{(vi,i),i = 1,...,m}. As for a’, we give two examples. In the first example,

we will choose a® to be based on a high contrast media shown in Figure 3 (left) and
choose a® to be an oscillatory function for the second example used in [25, 14, 23],
shown in Figure 3 (right), with the expression

s 2+ 1.8sin(107xy) 2 4 sin(107zs)
~ 2+ 1.8cos(10mxa) 2+ 1.8sin(107aq)’

The space domain (2 is taken as the unit square [0, 1] x [0,1] and is divided into
10x 10 coarse blocks consisting of uniform squares. Each coarse element is then divided
into 10 x 10 fine elements consisting of uniform squares. That is, €2 is partitioned by
100 x 100 square fine elements. And we use the oversampling technique in (24)—(25)
to obtain the snapshot space. We define an oversampling region K;‘ by enlarging K;
by one coarse grid layer.
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10000 1

0.9 9000 0.9
0.8 8000 0.8
0.7 7000 0.7
0.6 6000 0.6
0.5 5000 0.5
0.4 4000 0.4
0.3 3000 0.3
0.2 2000 0.2
0.1 1000 0.1
0 0 0

0 0.2 0.4 0.6 0.8 1

FIG. 3. Left: a® for Example 1. Right: a® for Example 2.

0 0.2 0.4 0.6 0.8 1

TABLE 1
Errors for Example 1 with ¢ = 10~! and a® = r*.

L Snapshot ratio el €es

1 0.79% 19.64% | 9.41%
2 1.59% 17.68% | 8.53%
3 2.38% 14.41% | 7.40%
5 3.97% 8.11% 4.92%
7 5.56% 6.16% 3.62%
10 7.94% 3.44% 1.62%
15 11.90% 2.24% 1.04%
20 15.87% 1.64% 0.68%

To compare the accuracy, we will use the following error quantities:

N 1/2
o (2?;1%]9 |uuH> o (fgmum?) /
1= 2 — r —9
Dty i Jo lun,|? 7 Jo [anl? ’

where @ is defined as w =Y\~ ou;.

For Example 1, we first fix a® = x* and give the error tables for Knudsen number
e = 1071,1072,1073, respectively. And L is the number of multiscale bases chosen
from each coarse element, and snapshot ratio is defined by

dim(VH)
dim(‘/snap) .

1/2

snapshot ratio =

From Tables 1, 2, and 3, we can see this framework works for all Knudsen number
€, which verifies our proved conclusion. In addition, we see clearly the reduction of
error when more basis functions are used, and the reduction of error is more rapid
when fewer basis functions are used. We also observe that the method gives reasonable
error levels with small snapshot ratios. On the other hand, Figure 4 shows the fine
and multiscale solutions with € = 1072 and L = 5. From these figures, we observe
very good agreements between the fine scale and multiscale solutions

Next, we fix € = 1072 and change the high contrast value of a®. We set a’ =
k2, k*, KO, respectively. From Table 4, we can see that contrast values do not affect
the error.

For Example 2, we give the error tables for e = 5x1072,5x 1073, 5x 104, respec-
tively. We present the errors for using various choices of number of basis functions in
Tables 5, 6, and 7. We clearly see that, with a very small snapshot ratio, our method
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TABLE 2
Errors for Example 1 with e = 1072 and a® = k4.

L | Snapshot ratio el )

1 0.79% 12.05% | 11.69%
2 1.59% 15.35% | 15.17%
3 2.38% 3.73% 3.44%
5 3.97% 2.90% 2.64%
7 5.56% 2.61% 2.41%
10 7.94% 1.86% 1.67%
15 11.90% 1.20% 0.98%
20 15.87% 1.04% 0.83%

TABLE 3
Errors for Ezample 1 with ¢ = 1073 and a® = x*.

L | Snapshot ratio el )

1 0.79% 12.80% | 12.80%
2 1.59% 26.43% | 26.42%
3 2.38% 17.86% | 17.85%
5 3.97% 4.45% 4.43%
7 5.56% 3.60% 3.59%
10 7.94% 3.55% 3.53%
15 11.90% 3.20% 3.18%
20 15.87% 3.19% 3.17%

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

FiG. 4. Fine solution and multiscale solution for Example 1. Top left: wup 1. Top right: Ty
Bottom left: up, 1. Bottom right: ug.
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TABLE 4
ey for Ezample 1 with different high contrast values of a®.

H2 I{4 K

11.70% | 11.69% | 11.68%
15.19% | 15.17% | 15.17%
3.41% 3.44% 3.45%
2.60% 2.64% 2.64%
2.37% 2.41% 2.41%
1.64% 1.67% 1.67%
0.96% 0.98% 0.98%
20 | 0.81% 0.83% 0.83%

6

S S]] o wof ro| =

TABLE 5
Errors for Example 2 with e = 5 x 1072,

L Snapshot ratio el eo

1 0.79% 22.70% | 9.73%
2 1.59% 20.36% | 8.43%
3 2.38% 16.97% | 8.13%
5 3.97% 11.94% | 6.86%
7 5.56% 8.09% 4.64%
10 7.94% 4.70% 1.99%
15 11.90% 2.48% 1.22%
20 15.87% 1.86% 0.91%

TABLE 6

Errors for Example 2 with e =5 x 1073,

L Snapshot ratio el €es

1 0.79% 12.76% | 11.98%
2 1.59% 11.02% | 10.64%
3 2.38% 3.40% 2.97%
5 3.97% 2.04% 1.67%
7 5.56% 1.77% 1.43%
10 7.94% 1.50% 1.21%
15 11.90% 1.38% 1.15%
20 15.87% 1.17% 0.95%

TABLE 7

Errors for Example 2 with e = 5 x 1074,

L | Snapshot ratio el e2

1 0.79% 14.12% | 14.11%
2 1.59% 20.87% | 20.86%
3 2.38% 11.69% | 11.69%
5 3.97% 2.95% 2.95%
7 5.56% 2.71% 2.71%
10 7.94% 2.71% 2.71%
15 11.90% 2.88% 2.88%
20 15.87% 2.93% 2.92%

is able to obtain solutions with very good accuracy. Furthermore, we observe a faster
decay of the error when smaller numbers of basis functions are used. In Figure 5, we
present the fine and multiscale solutions with € = 5 x 1072 and L = 5. We observe
very good agreement of both solutions.
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Fi16. 5. Fine solution and multisciale solution for Example 2. Top left: uy 1. Top right: Wy,.
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Bottom left: up1. Bottom right: Ug.
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