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GENERALIZED MULTISCALE FINITE ELEMENT METHOD FOR
THE STEADY STATE LINEAR BOLTZMANN EQUATION∗

ERIC CHUNG† , YALCHIN EFENDIEV‡ , YANBO LI§ , AND QIN LI¶

Abstract. The Boltzmann equation, as a model equation in statistical mechanics, is used to
describe the statistical behavior of a large number of particles driven by the same physics laws.
Depending on the media and the particles to be modeled, the equation has slightly different forms.
In this article, we investigate a model Boltzmann equation with highly oscillatory media in the small
Knudsen number regime and study the numerical behavior of the generalized multiscale finite element
method (GMsFEM) in the fluid regime when high oscillation in the media presents. The GMsFEM
is a general approach [E. Chung, Y. Efendiev, and T. Y. Hou, J. Comput. Phys., 320 (2016), pp. 69–
95] to numerically treat equations with multiscale structures. The method is divided into the offline
and online steps. In the offline step, basis functions are prepared from a snapshot space via a well-
designed generalized eigenvalue problem (GEP), and these basis functions are then utilized to patch
up for a solution through DG formulation in the online step to incorporate specific boundary and
source information. We prove the well-posedness of the method on the Boltzmann equation and show
that the GEP formulation provides a set of optimal basis functions that achieve spectral convergence.
Such convergence is independent of the oscillation in the media, or the smallness of the Knudsen
number, making it one of the few methods that simultaneously achieve numerical homogenization
and asymptotic preserving properties across all scales of oscillations and the Knudsen number.
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1. Introduction. The Boltzmann equation is a fundamental model in statistical
mechanics. It traces the evolution of the distribution function on the phase space and
describes the dynamics of a large number of particles that follow the same physics
rules via a statistical manner. The equation encodes the particles’ free transport
and their interactions with the media and each other. Depending on the physics the
particles follow, the interaction term may differ, but to a large extent, many particles,
including neutrons, photons, and phonons, interact mainly with the media, making
the collision term linear. The dynamics then can be described by the linear Boltzmann
equation:

∂tu+ v · ∇u = σRu(x, v)− ηu , (x, v) ∈ Ω× V .(1)

In the equation, u is a function on the phase space (x, v) ∈ Ω×V . The evolution
is governed by v · ∇u, a free transport term, and the terms on the right side of the
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equation that represent the “collision” and quantify the particles’ interactions. These
interactions include a pure absorption term ηu, where η is the absorption coefficient,
and a scattering term σRu. The specific form of the operator R varies from particle
to particle, and it is typically a functional independent of x. The strength of the
interactions is governed by the size of σ and η. For photons specifically, the radiative
transfer equation is used; these coefficients are termed the optical thickness. In this
paper, for simplicity, we take R to be

Ru(x, v) =

∫
V

u(x, v′)dv′ − u(x, v) ,(2)

where dv is a normalized measure, i.e.,
∫
dv = 1, and we set η = 1.

The equation demonstrates different behavior in different regimes. One partic-
ularly interesting regime is called the diffusion regime, in which the scattering coef-
ficient is extremely strong and the pure absorption term is weak. Mathematically,
considering the steady state case, we model the equation to

v · ∇u+ ε u =
1

ε
σRu(x, v) .(3)

In this equation, ε is termed the Knudsen number, and it characterizes the ratio of
the mean free path and the typical domain length. Physically it reflects the number of
collisions a normal particle experiences inside Ω before emitting. When ε is small, the
number of collisions per particle is large, meaning the particle gets scattered many
times before emitting, and thus some kind of averaging effects take place, and the
local equilibrium is achieved. In the case of (2), the equilibrium reads

u(x, v) ∼ ρ(x) ,(4)

and through asymptotic analysis, one could mathematically derive that ρ satisfies the
diffusion equation:

C∇ ·
(

1

σ
∇ρ
)

= ρ ,(5)

where C depends on the dimension.
The convergence from (3) to the asymptotic limit (5) was conjectured in [4] and

was made rigorous in [3] for periodic boundary condition. In [29] the authors studied
the boundary layer effect with geometric corrections, and the asymptotic convergence
rate was shown to degrade [26, 27].

However, all the rigorous proofs are done assuming certain smoothness of σ. In
particular, it is assumed that σ is sufficiently smooth. At the current stage, very
limited work has been done when oscillations present in the media. Denoting δ the
small scale in the media, we rewrite our equation as

v · ∇u+ ε u =
1

ε
σδRu(x, v) ,(6)

where σδ(x) = σ(x, xσ ) to explicitly reflect the fast variable x
σ dependence. On the

theoretical level, to our best knowledge, except a few cases [22], the theory is largely
lacking, except a few cases [22], and to a large extent, we do not yet know the res-
onance of the two parameters and how they contribute in the asymptotic limits of
the equation. And on the computation level, the only numerical study known to the
authors is presented in [25], where the limits are taken in order: δ � ε� 1.
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The problem is very challenging on the numerical level. The small ε makes the
collision term extremely stiff, bringing ill-conditioning to the associated discrete sys-
tem, and thus create a severe stability issue; the small δ brings wild oscillations to the
media and the solution, and for accuracy of the numerical solution, high resolution is
needed and small discretization is necessary, driving up the numerical cost.

This is certainly unaffordable, especially in the zero limit of ε and δ. The main
goal of this paper is to develop a general numerical treatment that could deal with
the equation with a wide range of ε and δ, and perform uniformly well, with the error
term independent on the small parameters.

The approach we take is in the line of the generalized multiscale finite element
method (GMsFEM). This is an offline-online framework that builds a good set of
local basis functions during the offline step and patches local solutions up in the
online step, similarly to the original multiscale finite element method. One main
feature of GMsFEM is its basis selection procedure in the offline step where a special
generalized eigenvalue problem (GEP) is designed. This special GEP encodes the
oscillations and the ill-conditioning of the problem.

More explicitly, like many other multiscale methods, we build nested grids with
coarse grid H and fine grid h satisfying H � ε � h. In the offline step, local basis
functions are constructed within coarse mesh H on fine mesh h that capture fine
scale structure and preserve the heterogeneities in the media; in the online step, the
basis functions are patched up through Galerkin framework [2, 6, 17, 13, 15, 16, 20,
10, 11, 9, 19, 1, 24]. The online step is rather standard and different methods give
various algorithms in the offline step. What makes GMsFEM favorable is indeed
its offline step, in which the full list of a-harmonic functions are collected, and then
the most “representative” modes are selected through a specially designed GEP. The
definition of the matrices in the GEP is associated with the final error term, which
permits certain spectral error decay. We should mention GMsFEM was initially used
for elliptic equations containing strong heterogeneous media, a topic about which the
literature is extremely rich. For this particular problem, there is another category of
method: upscaling-type methods. In upscaling methods, either locally or globally an
effective media is numerically prepared so that equations can be computed on coarser
grids with the effective media replacing the heterogeneous one [12, 30, 18, 21]. But
this approach is not going to be pursued in this paper.

As a framework, the GMsFEM approach is rather easy to use, and the main
mathematical challenge, when utilized to tackle different equations, is to develop the
right GEP. For the linear Boltzmann equation with heterogeneous media, we frame the
problem in the discontinuous Galerkin setting and are able to find two matrices that
resemble the mass and stiffness matrices in the GEP of the elliptic equations, which
allows us to show the optimality of the basis functions with respect to a physically
meaningful norm. As the standard approach, these basis functions are then used in
the online computation.

The paper will be organized in the following way. In section 2, we introduce some
preliminaries. Both discrete ordinates, the standard kinetic solver and GMsFEM for
the elliptic equation will be presented. Some properties will be presented. We present
the algorithm in section 3, which is further divided into two subsections introducing
offline and online procedures. Section 4 contains the analysis where we present the
well-posedness and convergence results. The small ε limit of the method will also be
discussed. Numerical results will be shown in section 5.

To end the introduction, we comment that the scaling problem studied in this
paper is not mathematically artificial. In fact, as one redefines x → x

ε , σ(x) should
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have been automatically changed to highly oscillatory media σ(x/ε). Another practi-
cal example is to inject light into crystals, where the radiative transfer equation (one
particular linear Boltzmann equation) is utilized. In this case, the periodic crystal
structure should be encoded in the media and the period that corresponds to δ in our
math formulation is expected to be small.

2. Preliminaries. In this section we prepare some basic important concepts. In
particular, we will first present the discrete ordinate method for the linear Boltzmann
equation, and then give a brief account of the GMsFEM. They are the building blocks
for the algorithm designed in this paper.

2.1. Discrete ordinate method. The Boltzmann equation gives a statistical
description of particle dynamics. Its extensive use in all kinds of engineering problems
brought its great popularity, and literature on both theory and numerics has been
very rich. Among all numerical methods developed for the Boltzmann equation, the
discrete ordinate method stands out for its simplicity and intuitiveness and is the
method we will use in our GMsFEM. Essentially it discretizes the velocity domain,
and the semidiscrete system is a coupled PDE in the physical space.

We start the discussion with the following model equation:

v· ∇u(x,v) + εu(x,v) =
1

εaδ
Ru(x,v) in Ω× S1,

u(x,v) = g(x,v) on Γ−,
(7)

where x ∈ Ω ⊂ R2 is a bounded domain with a Lipschitz boundary ∂Ω. The velocity
is v ∈ S1, the unit circle. The media aδ presents fine scale structure at δ order,
and the stiffness of the collision operator R is determined by 1

ε � 1. We have the
inflow boundary condition, with the inflow data g(x,v) defined on Γ−, a collection of
coordinates on the boundary with velocity pointing into the domain:

Γ− =
{

(x, v) ∈ ∂Ω× S1 |v · nx < 0
}
.

Here nx is the unit outer normal direction at x ∈ ∂Ω. For simplicity, we use the
model collision operator with homogeneous scattering coefficient:

Ru(x,v) = u(x)− u(x,v) =
1

2π

∫
S1

u(x,v)dv − u(x,v) .

The discrete ordinate method, denoted by SN , is a standard method to discretize
the velocity domain. One first sample m quadrature points on S1 and each sample
point is associated with a weight, denoted by {(vi, αi), i = 1, . . . ,m}, where vi are the
quadrature points and αi are the corresponding positive weights. These quadrature
points and weights are chosen so that

m∑
i=1

αi = 1 and
1

2π

∫
S1

u(x,v)dv ≈
m∑
i=1

αiu(x,vi) .(8)

The equation then will be discretized into a semidiscrete system. Let ui(x) = u(x,vi);
the integrodifferential (7) is then transformed into a system of m coupled PDEs:
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vi · ∇ui + εui +
1

εaδ

ui − m∑
j=1

αjuj

 = 0 in Ω ,

ui = gi on Γ− ,

(9)

where gi = g(x,vi) is the inflow boundary data. Denote

aij =

{
αi − α2

i , i = j,
−αiαj , i 6= j.

(10)

Then (9) is further simplified to

vi · ∇ui + εui +
1

εaδαi

∑
j

aijuj = 0 .(11)

Since {aij} is basically the discrete version of the collision operator −R, it
resembles the properties of R. In particular, the matrix is positive semidefinite with
a known kernel.

Proposition 1. Define a matrix A so that Aij = aij, we claim
• A is positive semidefinite,
• u>Au = 0 if and only if u = (u1, u2, . . . , um) is isotropic, i.e., u1 = u2 =
· · · = um,
• v>Au = 0 if either u or v is isotropic.

Proof. The computation is straightforward:

u>Au =
m∑

i,j=1

aijujui =
m∑
i=1

(αi − α2
i )u

2
i − 2

∑
i<j

αiαjuiuj

=
m∑
i=1

αi
∑
j 6=i

αju
2
i − 2

∑
i<j

αiαjuiuj

=
∑
i<j

αiαj (ui − uj)2 ≥ 0 .

The equal sign is achieved only when ui = uj for all i 6= j.
To show the third bullet point, we note that the matrix A is symmetric; it suffices

to assume that u is isotropic: u1 = u2 = · · · = um = u. Then,

v>Au =

m∑
i,j=1

aijujvi =

m∑
i,j=1

aijuvi

m∑
i=1

uvi

m∑
j=1

aij

=
m∑
i=1

uvi

αi − α2
i +

∑
j 6=i

−αiαj


=

m∑
i=1

uviαi

1− αi −
∑
j 6=i

αj

 = 0,

where we have used the weight condition (8):
∑
i αi = 1.D
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The discrete ordinate method is a classical way of reformulating a Boltzmann-type
equation supported on an (x, v)-domain to a coupled system of advection-diffusion
equations that only have physical domain x-dependence. This reformulation quickly
allows one to apply many different methods developed to treat equations on physical
space. There are many choices. In this article, we confine ourselves to the GMsFEM
framework.

2.2. Generalized multiscale finite element method. The discrete ordinate
method is used to discretize the velocity domain, and for the spatial domain, we follow
the GMsFEM approach, which, by choosing “optimal basis functions” via a special
design of a GEP, we can obtain a reduced model that is robust for all values of ε and
δ. For the completeness of the paper, we now present a general idea of GMsFEM, and
its application to the heterogeneous Boltzmann equation will be discussed in detail in
section 3.

The GMsFEM uses two stages: offline and online. In the offline stage, a small
dimensional approximation space is constructed to solve the global problem for any
external source on a coarse grid, whose grid size does not need to resolve any scales of
the media and solution. The offline stage consists of two main concepts. The snapshot
space, V isnap, is constructed for a generic coarse element Ki. The snapshot solutions
are used to compute local multiscale basis functions. An appropriate snapshot space
can

• provide a faster convergence,
• provide problem relevant restrictions on the coarse spaces (e.g., divergence-

free solutions),
• reduce the cost associated with constructing the offline spaces.

Standard choices of snapshot spaces (see [7]) are (1) all fine grid functions; (2) snap-
shots of local solutions; (3) oversampling snapshots of local solutions; and (4) force-
based snapshots. In this paper, we will use snapshots of local solutions.

More specifically, these are functions η
(i)
l that satisfy

L
(
η

(i)
l

)
= 0 in Ki

subject to some boundary conditions, where L is the differential operator under con-
sideration, and l is the index for the boundary condition. One can use all fine grid
delta functions as boundary conditions or randomized boundary conditions [7, 5].

The offline space, VH , is computed for each Ki (with elements of the space denoted

ψ
(i)
l ). We perform a spectral decomposition in the snapshot space and select the

dominant eigenfunctions (corresponding to the smallest eigenvalues) to construct the
offline (multiscale) space. The convergence rate of the resulting method is proportional
to 1/Λ∗, where Λ∗ is the smallest eigenvalue that the corresponding eigenvector is not
included in the multiscale space. We would like to select a local spectral problem such
that we can remove many small eigenvalues with fewer multiscale basis functions. The
choice of spectral problems is usually problem dependent and is based on convergence
analysis. In general, the error is decomposed into coarse subdomains. If we take
the elliptic operator −∇ · (κ∇u) with heterogeneous coefficient κ as an example,
the energy functional corresponding to the domain Ω is denoted by aΩ(u, u), e.g.,
aΩ(u, u) =

∫
Ω
κ∇u · ∇u. Then,

aΩ(u− uH , u− uH) �
∑
K

aK
(
uK − uKH , uK − uKH

)
,(12)
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where K are coarse regions (Ki), and uK is the localization of the solution. The local
spectral problem is chosen to bound aK(uK − uKH , uK − uKH ). We seek the subspace
V iH such that for any η ∈ V isnap, there exists η0 ∈ V iH with

aKi(η − η0, η − η0) � βsKi(η − η0, η − η0),(13)

where sKi(·, ·) is an auxiliary bilinear form, and β is an accuracy parameter. The
auxiliary bilinear form needs to be chosen such that the solution is bounded in the
corresponding norm.

Finally, in the online stage, the space VH is used together with a suitable coarse
grid discretization to solve the problem. The same space VH is used for all input
sources.

3. GMsFEM for heterogeneous Boltzmann equation. We now apply the
GMsFEM approach to numerically study the heterogeneous Boltzmann equation,
expressed in the discrete ordinate system (9).

The numerical difficulties in solving this equation are summarized as follows.
First, the media aδ is highly oscillatory, which implies that the solution ui is also
highly oscillatory and of multiscale nature. In order to capture these scales, the mesh
size h has to be smaller than δ, which in turn brings prohibitive numerical cost.
Second, the operator L is scaled by 1

ε , and in the zero limit of ε, the term is extremely
stiff, and this brings concern in stability. It is our aim in this paper to develop a
multiscale method that can address these issues. In particular, inspired by GMsFEM,
we will design a numerical method that relies on offline basis construction and online
basis patching procedure, and its numerical error has limited dependence on the two
small parameters.

We will construct nested grids and call T h the partition of Ω into fine finite
elements and T H the partition into coarse elements, where h and H are the fine and
coarse mesh sizes, respectively. For simpler notation, we consider rectangular coarse
elements as shown in Figure 1. The basis functions and discretization are based on
the coarse grid, and the fine grid is used to numerically compute the basis functions.
We also denote the collection of coarse edges EH , and E0

H = EH\∂Ω the collection of
coarse edges in the interior of the domain.

The discontinuous Galerkin method allows one to pick different values of the
solution on different sides of the edges. Suppose two adjacent coarse blocks τi and
τj share an edge and that τi is the upwind block; then we denote w+ = w|τi and

Fig. 1. Left: an illustration of fine and coarse grids. Right: an illustration of a coarse neigh-
borhood and a coarse element.
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Fig. 2. An illustration of upwind and downwind blocks.

w− = w|τj . Notice that depending on the direction of a specific vi, a different block
could be picked as the upwind block, as shown in Figure 2.

For the fine scale approximation, we choose the discrete function space to be

Vh =
{
v ∈ L2(Ω) | v|τ ∈ Q1(τ) ∀τ ∈ T h and v|K ∈ C0(K) ∀K ∈ T H

}
,

and we seek numerical solution such that

uh = (uh,1, uh,2, . . . , uh,m) ∈ (Vh)m .

This means the numerical solution for each uh,i, when confined in each fine grid, is
a linear function and is continuous function across coarse grids. In the variational
formulation for all i = 1, 2, . . . ,m, we have

−
∫

Ω

uh,i∇wi · vi +
∑
e∈E0H

∫
e

u+
h,i[wi] · vi +

∑
e∈Γ+

∫
e

uh,iwivi · n +

∫
Ω

εuh,iwi(14)

+

∫
Ω

1

εaδ

uh,i − m∑
j=1

αjuh,j

wi = −
∑
e∈Γ−

∫
e

giwivi · n ∀wi ∈ Vh ,

or with the definition of {aij} in (10), they could be summed up to

m∑
i=1

αi

− ∫
Ω

uh,i∇wi · vi +
∑
e∈E0H

∫
e

u+
h,i[wi] · vi +

∑
e∈Γ+

∫
e

uh,iwivi · n +

∫
Ω

εuh,iwi


(15)

+

∫
Ω

1

εaδ

m∑
i,j=1

aijuh,jwi = −
m∑
i=1

αi
∑
e∈Γ−

∫
e

giwivi · n ∀w ∈ (Vh)m.

In the equation, we have used upwind approximation for vi · ∇ui and the jump
operator [·] is defined by

[w] =

w
−n− + w+n+ on E0

H ,
w−n− on Γ−,
w+n+ on Γ+.

For notational simplicity, we define two bilinear operators
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a(u,w) =
m∑
i=1

αiai(ui, wi) with

ai(ui, wi) = −
∫

Ω

ui∇wi · vi +
∑
e∈E0H

∫
e

u+
i [wi] · vi +

∑
e∈Γ+

∫
e

uiwivi · n ,

l(u,w) =
m∑
i=1

αi

∫
Ω

1

εaδ

ui − m∑
j=1

αjuj

wi +
m∑
i=1

αi

∫
Ω

εuiwi

=

∫
Ω

1

εaδ

m∑
i,j=1

aijujwi +
m∑
i=1

αi

∫
Ω

εuiwi,

and a linear operator

F (w) =
m∑
i=1

αiFi(wi) with Fi(wi) = −
∑
e∈Γ−

∫
e

giwivi · n .

With this notation, (15) is now written

a(uh, w) + l(uh, w) = F (w) ∀w ∈ (Vh)m .(16)

With h � min{ε , δ}, it is a standard result that uh ≈ u, with an error term
of size O(h2/min(ε, δ)). For significantly small h, the function uh is considered as a
reference solution in accessing the performance of our method.

However, using small h that resolves ε and δ leads to a very big system that is
numerically very costly. We would like to develop an algorithm that seeks solution
only on the coarse grid H and the corresponding solution uH ≈ uh ≈ u. To do that, an
offline-online procedure developed in [5] for the elliptic equation, that is, GMsFEM,
will be pursued. In the offline step, an approximate space VH is constructed to
replace Vh. This newly constructed space would have much fewer degrees of freedom
but preserves Vh’s important factors. The final multiscale solution will be computed
in the online step where the boundary condition g(x,v) will be taken into account to
determine the degrees of freedom in VH .

We quickly review the online stage in section 3.1, and the complicated offline step
will be discussed in detail in section 3.2.

3.1. Online computation. In the online stage, we will use the multiscale basis
functions together with a coarse grid discretization to solve the given problem. The
coarse grid discretization we used is a discontinuous Galerkin method with upwind
flux. Assume that a multiscale finite element space VH = span{φp} is determined,
and this space, in some sense, approximates (Vh)m. Then similar to the formulation
as in (15), the solution will be sought in

uH = (uH,1, uH,2, . . . , uH,m) ∈ VH

so that

m∑
i=1

αi

− ∫
Ω

uH,i∇wi · vi +
∑
e∈E0H

∫
e

u+
H,i[wi] · vi +

∑
e∈Γ+

∫
e

uH,iwivi · n +

∫
Ω

εuH,iwi


(17)

+

∫
Ω

1

εaδ

m∑
i,j=1

aijuH,jwi = −
m∑
i=1

αi
∑
e∈Γ−

∫
e

giwivi · n ∀w ∈ VH .
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Similar to (16), we use a compact notation:

a(uH , w) + l(uH , w) = F (w) ∀w ∈ VH .(18)

To implement the scheme above, we define the following matrices:

Apq = a(φp, φq) , Lpq = l(φp, φq) , and bp = F (φp) .(19)

Then the multiscale solution uH is formulated as

uH =
∑
p

Upφp ,(20)

where the coefficient vector U solves (A+ L)U = b.

3.2. Construction of VH . The key to the success of our method is the con-
struction of the space VH on the coarse mesh during the offline stage. We will give
the details here.

As discussed in section 2.2, the offline step is further decomposed into two sub-
stages: constructing the snapshot space, and selecting modes associated with small
eigenvalues. These two stages will be presented in sections 3.2.1 and 3.2.2, respec-
tively.

In the snapshot space construction stage, in each coarse region, the Boltzmann
solution will be solved multiple times together with all possible boundary conditions
resolved by the fine grid. This give a high dimensional space. However, some modes
in the snapshot space are more important than the others, and they dominate the nu-
merical solution. To identify these basis functions, a specially designed local spectral
problem (GEP) is formulated and solved. The modes that correspond to the smallest
eigenvalues are selected to form VH . The number of modes to be selected depends on
the error tolerance and the eigenvalues of the GEP. The design of the local spectral
problem is to encode the convergence error that is to be discussed in section 4.

3.2.1. Snapshot space. We present the construction of the snapshot spaces in
this subsection. The procedure is the same in each coarse element, and we take the
coarse element Kj as an example. The snapshot space for this particular element is
denoted by V jsnap. We use the notation J i(D) to denote the set of all nodes of the

fine mesh T h lying in the upwind part of ∂D associated with velocity vi. And we
also use J(D) =

⊕m
i=1 J

i(D) to denote the union. Then the snapshot space is simply
the linear span of solutions to the local Boltzmann equation with delta function as
boundary condition, namely,

V jsnap =
{
nψ

j
l : n = 1, . . . ,m, xl ∈ J(Kj)

}
,(21)

where nψ
j
l = (nψ

j
l,1, nψ

j
l,2, . . . , nψ

j
l,m) solves

{
vi·∇nψ

j
l,i+εnψ

j
l,i+

1
εaδ

(
nψ

j
l,i−

∑m
q=1 αqnψ

j
l,q

)
= 0 in Kj ∀ i = 1, 2, . . . ,m ,

nψ
j
l = δlen on J(Kj) .

(22)

Here we use multi-index Kronecker delta function δlen, where en is the standard basis
in Rm and δl is the standard Kronecker delta function:

δl(xk) =

{
1, k = l,
0, k 6= l,

xk ∈ J(Kj) .
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This strategy is summarized in Algorithm DetLocal.
The full snapshot space is given by

Vsnap =
⊕
j

V jsnap .(23)

Remark 1. Numerically to prepare all snapshot basis functions is hard. It requires
the computation of the local Boltzmann equation with a large number of possible
incoming delta functions. To reduce the cost of computation, we use the idea of
oversampling [15]. To do so, the local computational domain is slightly enlarged to
K+
j (see Figure 1), and a collection of random boundary condition is imposed on K+

j .
The low rank structure of the solution space allows one to correctly capture the range,
even with a limited sampling. In particular, we define the snapshot space

V jsnap =
{
nψ

j,+
l |Kj : n = 1, . . . ,m, l = 1, . . . , kj

}
,(24)

where kj is the number of snapshot functions we could customize, and nψ
j,+
l =

(nψ
j,+
l,1 , nψ

j,+
l,2 , . . . , nψ

j,+
l,m) solves

vi · ∇nψ
j,+
l,i + εnψ

j,+
l,i + 1

εaδ

(
nψ

j,+
l,i −

∑m
q=1 αqnψ

j,+
l,q

)
= 0 in K+

j

∀ i = 1, 2, . . . ,m ,

nψ
j
l = rlen on J(K+

j ) ,

(25)

where rl are random independent and identically distributed (i.i.d.) Gaussian sampling
on J(K+

j ). The solutions nψ
j,+
l confined on Kj are then used to form the snapshot

spaces. We remark that the use of randomized boundary conditions on oversampling
domains is able to reduce the offline computational cost as there is no need to impose
delta function boundary conditions as in (22).

This strategy is summarized in Algorithm RanLocal.

Similar to (16) and (18), we can solve the snapshot solution usnap ∈ Vsnap by the
following equation:

a(usnap, w) + l(usnap, w) = F (w) ∀w ∈ Vsnap .(26)

We note that the snapshot solution can be considered as a reference solution. The
error of the snapshot solution is related to the approximation property of the snapshot
space in the fine scale space.

3.2.2. Offline space. Now, we will present the construction of the solution
space VH , with the property we mentioned in (13). In the end VH , when confined
on each coarse element, say, Kj , will be a subspace of V jsnap, and the construction of

VH is the choice of the most appropriate basis functions in V jsnap to be included. The
procedure is further divided into two substeps: the energy minimizing oversampling,
and a design of a GEP, as used in [8].

We first denote the local oversampled snapshot space
⊕

Ki⊂K+
j
V isnap by V j,+snap.

Notice that, for a given coarse element Kj and its corresponding oversampling region
K+
j , the space V j,+snap is the union of all snapshot spaces V isnap with the condition that

Ki ⊂ K+
j .
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Then the energy minimizing snapshots are calculated. For any snapshot function
ψ ∈ V jsnap, its energy minimizing extension ψ̃ has the smallest energy in some norm

ajEnergy(·, ·) and is sought in the local oversampled snapshot space V j,+snap with the

constraint ψ̃|Kj = ψ|Kj . In mathematical expression, for any ψ ∈ V jsnap, we seek

ψ̃ ∈ V j,+snap so that

ψ̃ = argminφ̃∈V j,+snap
ajEnergy(φ̃, φ̃)

s.t. ψ̃ = ψ in Kj

(27)

in which

ajEnergy(φ̃, φ̃) =
m∑
i=1

αi

∫
K+
j

|∇φ̃i|2 +
1

H

∑
e∈E0H(K+

j )

∫
e

[φ̃i]
2

+

∫
K+
j

1

εaδ

m∑
i,l=1

ailφ̃lφ̃i .

(28)

We notice that this construction is well-defined and the strategy is summarized in
Algorithm EnergyMin. As one can see, ψ̃ is an extension of ψ onto the oversampling
domain that achieves the minimum energy, defined in (28), and this extension is
crucial, as will be seen in the later analysis.

Remark 2. This is about a stable decomposition property. It is important that
the local basis functions satisfy a stable decomposition property. More precisely, the
sum of local energies is bounded by the global energy.

Next, we define the two bilinear operators aKj (·, ·) and sKj (·, ·), mentioned in
(13). For simplicity of notation, we use aj(·, ·) and sj(·, ·) instead. For the element
Kj , define

aj(φ, η) =
m∑
i=1

αi

∫
K+
j

∇φ̃i · ∇η̃i +
1

H

∑
e∈E0H(K+

j )

∫
e

[φ̃i][η̃i]

+

∫
K+
j

1

εaδ

m∑
i,l=1

ailφ̃lη̃i ,

sj(φ, η) =

m∑
i=1

αi

1

2

∑
K⊂K+

j

∫
∂K

|vi · n| φ̃iη̃i +

∫
K+
j

εφ̃iη̃i

+

∫
K+
j

1

εaδ

m∑
i,l=1

ailφ̃lη̃i .

(29)

Using the above bilinear forms, a spectral problem is defined. On Kj , we look for

(φjk, λ
j
k) ∈ V jsnap × R such that

aj
(
φjk, η

)
= λsj

(
φjk, η

)
∀η ∈ V jsnap,

where the eigenvalues are ordered in the ascending way:

λj,1 ≤ λj,2 ≤ · · · .

For implementation, we define the following matrices:

Ajpq = aj
(
ψjp, ψ

j
q

)
and Sjpq = sj

(
ψjp, ψ

j
q

)
.(30)

Then the pair (φjk, λ
j
k) is computed by solving
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Ajck = λkS
jck with φjk =

∑
p

ck,pψ
j
p .(31)

Suppose Lj modes are used for each Kj . This strategy is summarized in Algorithm
LocalGEP. The offline space VH is given by

V jH = span
{
φjk : k = 1 · · ·Lj

}
and VH =

⊕
j

V jH .(32)

This will be the approximation space for solving the system (9) in the scheme (18).

3.3. Algorithm summary. We finally summarize the algorithm. Largely speak-
ing, we prepare the basis functions in the offline step and patch them up in the online
step. The offline step is further divided into preparing a snapshot space in which
either all Green’s functions are accumulated or a good random selection is obtained,
and the basis selection step, in which the local GEP is computed and eigenfunctions
with highest energies are chosen. These basis functions are ultimately used in the on-
line step via the weak formulation (20). We summarize the procedure in Algorithm 1.

4. Analysis of the GMsFEM. In this section, we will present some analysis of
our GMsFEM. In section 4.1, we will prove the well-posedness of the discrete system
resulting from the GMsFEM, and in section 4.2, we will prove the convergence of the
method. Finally, in section 4.3, we will analyze the behavior of the method when ε is
small.

4.1. Well-posedness. We first show the well-posedness of the GMsFEM (18).

Theorem 1. Problem (18) has a unique solution, and the solution uH satisfies
the following stability condition:

m∑
i=1

αi

(
1

4

∑
e∈EH

∫
e

|vi · n| [uH,i]2 +

∫
Ω

εu2
H,i

)
+

∫
Ω

1

εaδ

m∑
i,j=1

aijuH,juH,i

≤
m∑
i=1

αi
∑
e∈Γ−

∫
e

|vi · n| g2
i .(33)

Proof. Since the system (18) is a square linear system, showing the existence and
uniqueness amounts to proving that a(û, w) + l(û, w) = 0 for all w ∈ VH only for
trivial solution û = 0.

We will first prove the following inequalities:

l(u, u) ≥ 0 and a(u, u) =
∑
i

a(ui, ui) ≥ 0 ∀u ∈ VH .

First, l is nonnegative since the matrix (aij) is a positive semidefinite matrix, as
discussed in Proposition 1. Next, the nonnegativity of a(·, ·) is shown below:

a(ui, ui) = −
∫

Ω

ui∇ui · vi +
∑
e∈E0H

∫
e

u+
i [ui] · vi +

∑
e∈Γ+

∫
e

u2
ivi · n

(34)

= −1

2

∑
τ∈T h

∫
∂τ

u2
ivi · n +

∑
e∈E0H

∫
e

u+
i [ui] · vi +

∑
e∈Γ+

∫
e

u2
ivi · n

= −1

2

∑
e∈Γ+

∫
e

|vi · n|u2
i +

1

2

∑
e∈Γ−

∫
e

|vi · n|u2
i +

1

2

∑
e∈E0H

∫
e

|vi · n|
(
u−i

2−u+
i

2
)D
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Algorithm 1. Multiscale solver for Lu = 0 over Ω with u = g on Γ−

1: Domain decomposition

2: Partition domain into nonoverlapping patches Ω =
⋃
j Kj .

3: Offline stage:

4: Snapshot space

5: Form snapshot space by calling V jsnap=DetLocal(Kj) or V jsnap=

RanLocal(K+
j ).

6: Offline space

7: Form offline space by calling V jH=LocalGEP(Kj).

8: VH =
⊕

j V
j
H = span{φp}.

9: Online stage:

10: Use global inflow boundary data g to determine U using (20).

11: Return: approximated global solution uH =
∑
p Upφp.

1: function DetLocal(Kj)
2: Prepare full list of multi-index Kronecker delta function δlen on J(Kj).

3: Find nψ
j
l using (22).

4: Formulate V jsnap = {nψ
j
l : n = 1, . . . ,m, xl ∈ J(Kj)} according to (21).

5: Return: Local snapshot space V jsnap.
6: end function

1: function RanLocal(Kj)
2: Prepare kj random i.i.d. Gaussian vector rlen on J(K+

j ).

3: Find nψ
j,+
l using (25).

4: Formulate V jsnap = {nψ
j,+
l |Kj : n = 1, . . . ,m, l = 1, . . . , , kj} according to (21).

5: Return: Local snapshot space V jsnap.
6: end function

1: function LocalGEP(Kj)
2: V j,+snap =

⊕
Ki⊂K+

j
V isnap.

3: Compute ψ̃ ∈ V j,+snap using (27).

4: Solve the GEP (31) for V jH = span{φjk : k = 1 · · ·Lj}.
5: Return: Offline space V jH .
6: end function

+
∑
e∈E0H

∫
e

|vi · n|u+
i

(
u+
i − u

−
i

)
+
∑
e∈Γ+

∫
e

|vi · n|u2
i

=
1

2

∑
e∈Γ+

∫
e

|vi · n|u2
i +

1

2

∑
e∈Γ−

∫
e

|vi · n|u2
i +

1

2

∑
e∈E0H

∫
e

|vi · n|
(
u+
i − u

−
i

)2
=

1

2

∑
e∈EH

∫
e

|vi · n| [ui]2 ≥ 0.D
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Assuming a(û, w) + l(û, w) = 0 for any w ∈ (Vh)m, then setting w = û, we have

m∑
i=1

αi

(
1

2

∑
e∈EH

∫
e

|vi · n| [ûi]2 +

∫
Ω

εûi
2

)
+

∫
Ω

1

εaδ

m∑
i,j=1

aij ûj ûi = 0.(35)

According to Proposition 1, we have

û1 = û2 = · · · = ûm = 0 ,(36)

meaning û = 0, and the solution to (18) is thus unique. For stability, we start with

F (uH) =−
m∑
i=1

αi
∑
e∈Γ−

∫
e

giuH,ivi · n

≤
m∑
i=1

αi
∑
e∈Γ−

∫
e

|vi · n| g2
i +

1

4

m∑
i=1

αi
∑
e∈EH

∫
e

|vi · n| [uH,i]2 .

Considering a(uH , uH) + l(uH , uH) = F (uH), we conclude with the stability
inequality (33).

We notice that the snapshot equation (26) has the same structure, and the well-
posedness is proved in the same way.

4.2. Convergence analysis. We now analyze the convergence of the proposed
method. The goal of this section is to estimate the difference between the snapshot
solution, usnap, computed in (26), and the multiscale coarse solution, uH , computed
in (18). To do so, we first define the following norms. We define the V -norm as

‖u‖2V =
m∑
i=1

αi ‖ui‖2V i with ‖ui‖2V i =
1

2

∑
e∈EH

∫
e

|vi · n| [ui]2(37)

and the W -norm as

‖u‖2W =
m∑
i=1

αi ‖ui‖2W i with ‖ui‖2W i =
1

2

∑
Kj

∫
∂Kj

|vi · n|u2
i .(38)

We also extend them by incorporating the collision term:

‖u‖2Ṽ = ‖u‖2V + l(u, u) and ‖u‖2
W̃

= ‖u‖2W + l(u, u) .(39)

The total energy is now defined by

‖u‖2Energy =
m∑
i=1

αi

∫
Ω

|∇ui|2 +
1

H

∑
e∈E0H

∫
e

[ui]
2

+

∫
Ω

1

εaδ

m∑
i,j=1

aijujui .

Note that we have following propositions.

Proposition 2. a(u, u) = ‖u‖2V , and a(u, u) + l(u, u) = ‖u‖2
Ṽ
.

Proof. This proposition simply comes from the calculations in (34).
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Proposition 3. If u ∈ Vsnap, we have

1. ‖u‖2
W̃
≤
∑
j

sj(u|Kj , u|Kj ),(40)

2.
∑
j

aj(u|Kj , u|Kj ) ≤M‖u‖2Energy.(41)

Here aj and sj are bilinear operator defined in (29). M = maxK,E{MK ,ME}, where
MK is the number of oversampled regions K+

j ’s which have nonempty intersection with

coarse block K, and ME is the number of oversampled regions K+
j ’s whose interior

coarse edges E0
H(K+

j ) contain coarse edge E. They are both small numbers.

Proof. We denote u|Kj by uj . So uj ∈ V jsnap. According to (27), uj has an energy

minimizing extension ũj ∈ V j,+snap that satisfies ũj = uj in Kj . Then we have

m∑
i=1

αi

1

2

∑
Kj

∫
∂Kj

|vi · n| (uji )
2 +

∫
Kj

ε(uji )
2

+

∫
Kj

1

εaδ

m∑
i,l=1

ailu
j
lu
j
i

=
m∑
i=1

αi

1

2

∑
Kj

∫
∂Kj

|vi · n| (ũji )
2 +

∫
Kj

ε(ũji )
2

+

∫
Kj

1

εaδ

m∑
i,l=1

ailũ
j
l ũ
j
i

≤
m∑
i=1

αi

1

2

∑
K⊂K+

j

∫
∂K

|vi · n| (ũji )
2 +

∫
K+
j

ε(ũji )
2

+

∫
K+
j

1

εaδ

m∑
i,l=1

ailũ
j
l ũ
j
i

= sj
(
uj , uj

)
.

Combining with the definition of ‖·‖2
W̃

, we proved (40).
Next, we denote uj,+ = u|K+

j
∈ V j,+snap. By the definition of the energy minimizing

extension in (27), we have

aj(uj , uj)

=

m∑
i=1

αi

∫
K+
j

∣∣∣∇ũji ∣∣∣2 +
1

H

∑
e∈E0H(K+

j )

∫
e

[
ũji

]2+

∫
K+
j

1

εaδ

m∑
i,l=1

ailũ
j
l ũ
j
i

≤
m∑
i=1

αi

∫
K+
j

∣∣∣∇uj,+i ∣∣∣2 +
1

H

∑
e∈E0H(K+

j )

∫
e

[uj,+i ]2

+

∫
K+
j

1

εaδ

m∑
i,l=1

ailu
j,+
l uj,+i .

Hence,

∑
j

aj(uj , uj) ≤
∑
j

m∑
i=1

αi

∫
K+
j

∣∣∣∇uj,+i ∣∣∣2 +
1

H

∑
e∈E0H(K+

j )

∫
e

[uj,+i ]2


+
∑
j

∫
K+
j

1

εaδ

m∑
i,l=1

ailu
j,+
l uj,+i
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≤
m∑
i=1

αi

∑
j

MKj

∫
Kj

∣∣∣∇uji ∣∣∣2 +
1

H

∑
e∈E0H

Me

∫
e

[uji ]
2


+
∑
j

MKj

∫
Kj

1

εaδ

m∑
i,l=1

ailu
j
lu
j
i

≤M‖u‖2Energy ,

and thus we have (41).

For the convergence analysis, we first examine the best approximation property.
For that, we have the following.

Lemma 1. Let usnap be the snapshot solution to (26) and let uH be the multiscale
solution to (18). Then

‖usnap − uH‖2Ṽ ≤ C inf
w∈VH

‖usnap − w‖2W̃ ,(42)

where C is a constant independent of ε, aδ, and the mesh size.

Proof. Using (26) and (18), and the fact that VH ⊂ Vsnap, we have

a(usnap − uH , w) + l(usnap − uH , w) = F (w)− F (w) = 0 ∀w ∈ Vsnap .(43)

Then for all w ∈ VH ,

a(usnap − uH , usnap − uH) + l(usnap − uH , usnap − uH)

= a(usnap − uH , usnap − w) + l(usnap − uH , usnap − w) .

Using Proposition 2, we have

‖usnap − uH‖2Ṽ = a(usnap − uH , usnap − w) + l(usnap − uH , usnap − w) .(44)

To obtain (42), noticing that usnap − uH and usnap −w are both in Vsnap, it amounts
to showing that

a(u,w) + l(u,w) ≤ C ‖u‖Ṽ ‖w‖W̃ ∀u,w ∈ Vsnap .(45)

In fact it suffices to show that

a(u,w) + l(u,w) ≤
√

2 ‖u‖V ‖w‖W̃ ∀u,w ∈ Vsnap ,(46)

since it is obvious that ‖u‖V ≤ ‖u‖Ṽ .
To show (46), we first use integration by parts to obtain

m∑
i=1

αi

(
−
∫

Ω

ui∇wi · vi
)

=
m∑
i=1

αi

∫
Ω

wi∇ui · vi −
∑
τ∈T h

∫
∂τ

vi · nuiwi


=

m∑
i=1

αi

∑
Kj

∫
Kj

∇ui · viwi −
∑
Kj

∫
∂Kj

vi · nuiwi


=− l(u,w)−

m∑
i=1

αi
∑
Kj

∫
∂Kj

vi · nuiwi ,D
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where we have used the continuity accross fine scales ∂τ and the assumption that, in
each Kj , u satisfies the following equation:

−
∫
Kj

ui∇wi · vi +

∫
∂Kj

uiwivi · n +

∫
Kj

εuiwi +

∫
Kj

1

εaδ

(
ui −

m∑
q=1

αquq

)
wi = 0

(47)

for all i = 1, 2, . . . ,m. Here w could be any function in (Vh)m restricted on Kj . In
particular, (47) works for w ∈ V jsnap.

Using the definition of a(·, ·) and direct calculations, we have

a(u,w) + l(u,w) =
m∑
i=1

αi

(
−
∑
Kj

∫
∂Kj

vi · nuiwi +
∑
e∈E0H

∫
e

u+
i [wi] · vi

+
∑
e∈Γ+

∫
e

uiwivi · n

)

+
m∑
i=1

αi
∑
Kj

(∫
Kj

εuiwi +
1

εaδ

(
ui −

m∑
q=1

αquq

)
wi

)

=

m∑
i=1

αi

− ∑
e∈E0H

∫
e

w−i [ui] · vi −
∑
e∈Γ−

∫
e

uiwivi · n

 .

Then, applying the Cauchy–Schwarz inequality, we have

a(u,w) + l(u,w) ≤

 m∑
i=1

αi

∑
e∈E0H

∫
e

|vi · n| [ui]2 +
∑
e∈Γ−

∫
e

|vi · n|u2
i

1/2

+

 m∑
i=1

αi

∑
e∈E0H

∫
e

|vi · n|w−i
2

+
∑
e∈Γ−

∫
e

|vi · n|w2
i

1/2

.(48)

The two terms on the right-hand side are taken care of separately. To handle the first
term, recalling the definition of V -norm in (37), we have

m∑
i=1

αi

∑
e∈E0H

∫
e

|vi · n| [ui]2 +
∑
e∈Γ−

∫
e

|vi · n|u2
i

 ≤ m∑
i=1

αi
∑
e∈EH

∫
e

|vi · n| [ui]2

=
√

2 ‖u‖2V .(49)

And to compute the second term, we notice that

0 =
m∑
i=1

αi
∑
Kj

(
−
∫
Kj

wi∇wi · vi +

∫
∂Kj

w2
i vi · n

)
+ l(w,w)

=
m∑
i=1

αi
∑
Kj

(
−1

2

∫
∂Kj

w2
i vi · n +

∫
∂Kj

w2
i vi · n

)
+ l(w,w)

=
1

2

m∑
i=1

αi
∑
Kj

∫
∂Kj

vi · nw2
i + l(w,w)
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=
1

2

m∑
i=1

αi

(
−
∑
e∈Γ−

∫
e

|vi · n|w2
i +

∑
e∈Γ+

∫
e

|vi · n|w2
i

+
∑
e∈E0H

∫
e

|vi · n|
(
w+
i

2 − w−i
2
))

+ l(w,w) ,

which in turn gives

m∑
i=1

αi

∑
e∈E0H

∫
e

|vi · n|w−i
2

+
∑
e∈Γ−

∫
e

|vi · n|w2
i

(50)

=
1

2

m∑
i=1

αi

( ∑
e∈Γ−

∫
e

|vi · n|w2
i +

∑
e∈Γ+

∫
e

|vi · n|w2
i

+
∑
e∈E0H

∫
e

|vi · n|
(
w+2
i + w−2

i

))
+ l(w,w)

=
1

2

m∑
i=1

αi
∑
Kj

∫
∂Kj

|vi · n|w2
i + l(w,w)

= ‖w‖2
W̃
.

Plugging (49) and (50) into (48), we have proved the desired boundedness condition
(46), which concludes the proof of (42).

Now, we are ready to prove our main convergence result in this section.

Theorem 2. Let usnap be the snapshot solution to problem (26) and let uH be
the multiscale solution to problem (18). Then

‖usnap − uH‖2Ṽ ≤
CM

Λ∗
‖usnap‖2Energy ,

where Λ∗ = minj λj,Lj+1, C is the same constant from Lemma 1, and M is the same
constant from Proposition 3.

Proof. We first denote

usnap =
∑
j

usnap|Kj =
∑
j

ujsnap =
∑
j,l

dj,lφ
j
l ,

where φjl is the lth multiscale basis function for the coarse element Kj (31). Note

that span{φjl } covers the entire snapshot space. We then define a projection of ujsnap

into V jH , as well as a projection of usnap into VH :

P j(ujsnap) =
∑
l≤Lj

dj,lφ
j
l , P (usnap) =

∑
j

∑
l≤Lj

dj,lφ
j
l .

It is easy to see that P j(ujsnap) = P (usnap)|Kj . Combining with Proposition 3, we
have

inf
w∈VH

‖usnap − w‖2W̃ ≤ ‖usnap − P (usnap)‖2
W̃

≤
∑
j

sj
(
ujsnap − P j

(
ujsnap

)
, ujsnap − P j

(
ujsnap

))D
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≤
∑
j

1

λ
(j)
Lj+1

aj (usnap,j , usnap,j)

≤ 1

Λ∗

∑
j

aj
(
ujsnap, u

j
snap

)
≤ M

Λ∗
‖usnap‖2Energy .

Combining with Lemma 1, we proved the theorem.

In the above theorem, we estimate the error between the snapshot solution usnap

and the multiscale solution uH . We see that the error is inversely proportional to
the eigenvalues. This shows that the multiscale space gives a good approximation
property in the snapshot space. In our analysis, we assume that the snapshot functions
satisfy the PDE in the strong sense, that is, (47). On the other hand, there is an error
between the snapshot solution usnap and the fine scale solution uh if we use Algorithm
RanLocal in section 3.2. This amounts to an irreducible error, and the analysis of
this is beyond the scope of this paper.

We should emphasize that the difficulty brought by small δ is encoded in the
quality of Λ∗ and thus is not explicitly expressed in the error analysis.

4.3. Small ε regime. An important property the algorithm satisfies is that it
is robust with respect to the parameters. In the limiting regime of ε → 0, Λ∗ has
a positive lower bound, and this serves as the stability argument that allows the
algorithm to be effective across regimes. In particular we will show the following.

Theorem 3. Denote λj,k the kth eigenvalue of the GEP defined in (31) for coarse
element Kj. It has an asymptotic limit in the zero limit of ε, meaning there is a
constant λ0

j,k so that ∣∣λj,k − λ0
j,k

∣∣ = O(ε) .

This theorem, when combined with our main Theorem 2, indicates that the error
bound, which is controlled by Λ∗ = 1

minj{λj,Lj+1
} , will not grow in ε and thus the error

is uniformly bounded.
To show the theorem, we first start with a lemma.

Lemma 2. For every coarse element Kj, we have

Aj = Aj,0 +O(ε), and Sj = Sj,0 +O(ε) ,

where entries in Aj,0 and Sj,0 are defined by

Aj,0pq =
m∑
i=1

αi

∫
K+
j

∇ψ̃j,0p,i · ∇ψ̃
j,0
q,i +

1

H

∑
e∈E0H(K+

j )

∫
e

[
ψ̃j,0p,i

] [
ψ̃j,0q,i

] ,(51)

and

Sj,0pq =
m∑
i=1

αi

1

2

∑
K⊂K+

j

∫
∂K

|vi · n| ψ̃j,0p,i ψ̃
j,0
q,i

 ,(52)

where V jsnap = span{ψjp}, and ψ̃jp is the basis functions’ energy minimizing extension.

We further denote ψ̃j,0p the leading order asymptotic expansion of ψ̃jp.
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Proof. To proceed we notice that ψ̃jp ∈ V j,+snap can be written as the sum of some

ψs’s, where ψs ∈ V ssnap and Ks ⊂ K+
j . Recall the assumption of (47). Then in each

Ks and for all i = 1, 2, . . . ,m, we have

−
∫
Kj

ψ̃jp,i∇wi · vi +
∫
∂Kj

ψ̃jp,iwivi · n+

∫
Kj

εψ̃jp,iwi +

∫
Kj

1

εaδ

(
ψ̃jp,i −

m∑
l=1

αlψ̃
j
p,l

)
wi = 0.

(53)

Here w could be any function in (Vh)m restricted on Kj .
Therefore we have

m∑
i=1

αi

(
−
∫
Kj

ψ̃jp,i∇wi · vi +
∫
∂Kj

ψ̃jp,iwivi · n+

∫
Kj

εψ̃jp,iwi

)
+

∫
Kj

1

εaδ

m∑
i,l=1

ailψ̃
j,0
p,lwi = 0.

(54)

Take the asymptotic expansion for ψ̃jp,

ψ̃jp = ψ̃j,0p + εψ̃j,1p +O
(
ε2
)
,(55)

set w = ψ̃j,0p , and plug them back into (54). We have, in the leading order of 1
ε ,

m∑
i,l=1

ailψ̃
j,0
p,l ψ̃

j,0
p,i = 0 ,

meaning ψ̃j,0p is isotropic in each Ks due to Proposition 1. Therefore ψ̃j,0p is isotropic.

The same analysis is applied to ψ̃j,0q .

Recalling the definition of Aj and an in (29), we have

aj(ψjp, ψ
j
q) =

m∑
i=1

αi

∫
K+
j

∇ψ̃jp,i · ∇ψ̃
j
q,i +

1

H

∑
e∈E0H(K+

j )

∫
e

[
ψ̃jp,i

] [
ψ̃jq,i

]
+

∫
K+
j

1

εaδ

m∑
i,l=1

ailψ̃
j
p,lψ̃

j
q,i

=
1

ε

∫
K+
j

1

aδ

m∑
i,l=1

ailψ̃
j,0
p,l ψ̃

j,0
q,i


+ 1

 m∑
i=1

αi

∫
K+
j

∇ψ̃j,0p,i · ∇ψ̃
j,0
q,i +

1

H

∑
e∈E0H(K+

j )

∫
e

[
ψ̃j,0p,i

] [
ψ̃j,0q,i

]
+

∫
K+
j

1

aδ

m∑
i,l=1

ailψ̃
j,0
p,l ψ̃

j,1
q,i +

∫
K+
j

1

aδ

m∑
i,l=1

ailψ̃
j,1
p,l ψ̃

j,0
q,i


+O(ε) .

Due to Proposition 1, we have∫
K+
j

1

aδ

m∑
i,l=1

ailψ̃
j,0
p,l ψ̃

j,0
q,i =

∫
K+
j

1

aδ

m∑
i,l=1

ailψ̃
j,0
p,l ψ̃

j,1
q,i =

∫
K+
j

1

aδ

m∑
i,l=1

ailψ̃
j,1
p,l ψ̃

j,0
q,i = 0 ,
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and thus

aj(ψjp, ψ
j
q) =

m∑
i=1

αi

∫
K+
j

∇ψ̃j,0p,i · ∇ψ̃
j,0
q,i +

1

H

∑
e∈E0H(K+

j )

∫
e

[
ψ̃j,0p,i

] [
ψ̃j,0q,i

]+O(ε)

→
m∑
i=1

αi

∫
K+
j

∇ψ̃j,0p,i · ∇ψ̃
j,0
q,i +

1

H

∑
e∈E0H(K+

j )

∫
e

[
ψ̃j,0p,i

] [
ψ̃j,0q,i

] .

The proof for sj is the same and is omitted here.

Theorem 3 is a straightforward consequence of the following perturbation theo-
rem.

Proof for Theorem 3. According to Lemma 2, Aj and Sj have expansions Aj =
Aj,0 +O(ε) =: Aj,0 + εAj,1 and Sj = Sj,0 +O(ε) =: Sj,0 + εSj,1. We also define xj,0k
as the kth generalized eigenvector of the two matrices Aj,0 and Sj,0, i.e.,

Aj,0xj,0k = λ0
j,kS

j,0xj,0k .(56)

Using the absolute Weyl theorem for GEPs in [28], when ε is small enough such that
ε
∥∥Sj,1∥∥

2
< λmin(Sj,0), we have

∣∣λj,k − λ0
j,k

∣∣ ≤ ∥∥εAj,1∥∥
2

λmin(Sj,0)
+

∥∥Aj,0∥∥
2

+
∥∥εAj,1∥∥

2

λmin(Sj,0)(λmin(Sj,0)− ‖εSj,1‖2)

∥∥εSj,1∥∥
2

=
ε
∥∥Aj,1∥∥

2

λmin(Sj,0)
+

∥∥Aj,0∥∥
2

+ ε
∥∥Aj,1∥∥

2

λmin(Sj,0)(λmin(Sj,0)− ε ‖Sj,1‖2)
ε
∥∥Sj,1∥∥

2

=
εO(1)

O(1)
+

O(1) + εO(1)

O(1)(O(1)− εO(1))
εO(1)

= O(ε),

where ‖·‖2 is the spectral norm of a matrix.

According to the formula for Aj,0 and Sj,0 in (51) and (52), the eigenvalues are
positive except that the smallest one is 0 with constant as corresponding eigenvector.
So Λ∗ has positive limit in the limiting regime of ε→ 0.

5. Numerical results. We take boundary condition g(x,v) = cos(2π(x1 +
x2)) + 1. And we set m = 6, and use the Gaussian quadrature rule to define
{(vi, αi), i = 1, . . . ,m}. As for aδ, we give two examples. In the first example,
we will choose aδ to be based on a high contrast media shown in Figure 3 (left) and
choose aδ to be an oscillatory function for the second example used in [25, 14, 23],
shown in Figure 3 (right), with the expression

aδ =
2 + 1.8 sin(10πx1)

2 + 1.8 cos(10πx2)
+

2 + sin(10πx2)

2 + 1.8 sin(10πx1)
.

The space domain Ω is taken as the unit square [0, 1]× [0, 1] and is divided into
10×10 coarse blocks consisting of uniform squares. Each coarse element is then divided
into 10× 10 fine elements consisting of uniform squares. That is, Ω is partitioned by
100× 100 square fine elements. And we use the oversampling technique in (24)–(25)
to obtain the snapshot space. We define an oversampling region K+

j by enlarging Kj

by one coarse grid layer.
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Fig. 3. Left: aδ for Example 1. Right: aδ for Example 2.

Table 1
Errors for Example 1 with ε = 10−1 and aδ = κ4.

L Snapshot ratio e1 e2
1 0.79% 19.64% 9.41%
2 1.59% 17.68% 8.53%
3 2.38% 14.41% 7.40%
5 3.97% 8.11% 4.92%
7 5.56% 6.16% 3.62%
10 7.94% 3.44% 1.62%
15 11.90% 2.24% 1.04%
20 15.87% 1.64% 0.68%

To compare the accuracy, we will use the following error quantities:

e1 =

(∑m
i=1 αi

∫
Ω
|uhi − uH,i|2∑m

i=1 αi
∫

Ω
|uhi |2

)1/2

, e2 =

(∫
Ω
|uh − uH |2∫

Ω
|uh|2

)1/2

,

where u is defined as u =
∑m
i=1 αiui.

For Example 1, we first fix aδ = κ4 and give the error tables for Knudsen number
ε = 10−1, 10−2, 10−3, respectively. And L is the number of multiscale bases chosen
from each coarse element, and snapshot ratio is defined by

snapshot ratio =
dim(VH)

dim(Vsnap)
.

From Tables 1, 2, and 3, we can see this framework works for all Knudsen number
ε, which verifies our proved conclusion. In addition, we see clearly the reduction of
error when more basis functions are used, and the reduction of error is more rapid
when fewer basis functions are used. We also observe that the method gives reasonable
error levels with small snapshot ratios. On the other hand, Figure 4 shows the fine
and multiscale solutions with ε = 10−2 and L = 5. From these figures, we observe
very good agreements between the fine scale and multiscale solutions

Next, we fix ε = 10−2 and change the high contrast value of aδ. We set aδ =
κ2, κ4, κ6, respectively. From Table 4, we can see that contrast values do not affect
the error.

For Example 2, we give the error tables for ε = 5×10−2, 5×10−3, 5×10−4, respec-
tively. We present the errors for using various choices of number of basis functions in
Tables 5, 6, and 7. We clearly see that, with a very small snapshot ratio, our method
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Table 2
Errors for Example 1 with ε = 10−2 and aδ = κ4.

L Snapshot ratio e1 e2
1 0.79% 12.05% 11.69%
2 1.59% 15.35% 15.17%
3 2.38% 3.73% 3.44%
5 3.97% 2.90% 2.64%
7 5.56% 2.61% 2.41%
10 7.94% 1.86% 1.67%
15 11.90% 1.20% 0.98%
20 15.87% 1.04% 0.83%

Table 3
Errors for Example 1 with ε = 10−3 and aδ = κ4.

L Snapshot ratio e1 e2
1 0.79% 12.80% 12.80%
2 1.59% 26.43% 26.42%
3 2.38% 17.86% 17.85%
5 3.97% 4.45% 4.43%
7 5.56% 3.60% 3.59%
10 7.94% 3.55% 3.53%
15 11.90% 3.20% 3.18%
20 15.87% 3.19% 3.17%

Fig. 4. Fine solution and multiscale solution for Example 1. Top left: uh,1. Top right: uh.
Bottom left: uH,1. Bottom right: uH .
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Table 4
e2 for Example 1 with different high contrast values of aδ.

L κ2 κ4 κ6

1 11.70% 11.69% 11.68%
2 15.19% 15.17% 15.17%
3 3.41% 3.44% 3.45%
5 2.60% 2.64% 2.64%
7 2.37% 2.41% 2.41%
10 1.64% 1.67% 1.67%
15 0.96% 0.98% 0.98%
20 0.81% 0.83% 0.83%

Table 5
Errors for Example 2 with ε = 5 × 10−2.

L Snapshot ratio e1 e2
1 0.79% 22.70% 9.73%
2 1.59% 20.36% 8.43%
3 2.38% 16.97% 8.13%
5 3.97% 11.94% 6.86%
7 5.56% 8.09% 4.64%
10 7.94% 4.70% 1.99%
15 11.90% 2.48% 1.22%
20 15.87% 1.86% 0.91%

Table 6
Errors for Example 2 with ε = 5 × 10−3.

L Snapshot ratio e1 e2
1 0.79% 12.76% 11.98%
2 1.59% 11.02% 10.64%
3 2.38% 3.40% 2.97%
5 3.97% 2.04% 1.67%
7 5.56% 1.77% 1.43%
10 7.94% 1.50% 1.21%
15 11.90% 1.38% 1.15%
20 15.87% 1.17% 0.95%

Table 7
Errors for Example 2 with ε = 5 × 10−4.

L Snapshot ratio e1 e2
1 0.79% 14.12% 14.11%
2 1.59% 20.87% 20.86%
3 2.38% 11.69% 11.69%
5 3.97% 2.95% 2.95%
7 5.56% 2.71% 2.71%
10 7.94% 2.71% 2.71%
15 11.90% 2.88% 2.88%
20 15.87% 2.93% 2.92%

is able to obtain solutions with very good accuracy. Furthermore, we observe a faster
decay of the error when smaller numbers of basis functions are used. In Figure 5, we
present the fine and multiscale solutions with ε = 5 × 10−3 and L = 5. We observe
very good agreement of both solutions.
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Fig. 5. Fine solution and multisciale solution for Example 2. Top left: uh,1. Top right: uh.
Bottom left: uH,1. Bottom right: uH .
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