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Abstract. The inverse radiative transfer problem finds broad applications in medical imaging,
atmospheric science, astronomy, and many other areas. This problem intends to recover optical prop-
erties, denoted as absorption and the scattering coefficient of the media, through source-measurement
pairs. A typical computational approach is to form the inverse problem as a PDE-constraint op-
timization, with the minimizer being the to-be-recovered coefficients. The method is tested to be
efficient in practice, but it lacks analytical justification: there is no guarantee of the existence or
uniqueness of the minimizer, and the error is hard to quantify. In this paper, we provide a different
algorithm by levering the ideas from singular decomposition analysis. Our approach is to decompose
the measurements into three components, two of which encode the information of the two coeffi-
cients, respectively. We then split the optimization problem into two subproblems and use those two
components to recover the absorption and scattering coefficients separately. In this regard, we prove
the well-posedness of the new optimization, and the error could be quantified with better precision.
In the end, we incorporate the diffusive scaling and show that the error is harder to control in the
diffusive limit.
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1. Introduction. The radiative transfer equation (RTE) describes the dynamics
of (photon) particles in materials with various optical properties. It has been used as
a basic model in atmospheric science, medical imaging, and many other areas. The
equation can take different forms, depending on the degrees of generality. Among
them, a stationary, frequency independent form reads

(1) v \cdot \nabla xf + \sigma (x)f =

\int 
k(x, v, v\prime )f(x, v\prime )dv\prime ,

where f(x, v), defined on phase space, is the distribution of particles at location x and
with velocity v. Here x \in \Omega \subset Rd with d = 2, 3, and v \in V = Sd - 1, the unit sphere
in Rd. k(x, v, v\prime ) is termed the scattering coefficient, representing the probability of
particles moving in direction v\prime changing to direction v at location x. \sigma (x) is the
total absorption coefficient that represents a certain amount of photon particles being
absorbed by the material. Here we assume that \sigma has no velocity dependence. The
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boundary is separated into an ``outgoing"" and an ``incoming"" part by defining

(2) \Gamma \pm = \{ (x, v) : x \in \partial \Omega ,\pm v \cdot nx > 0\} ,

where nx is the normal direction pointing out of \Omega at x \in \partial \Omega . In this way, \Gamma  - collects
all boundary coordinates that represent particles coming into the domain where \Gamma +

collects the opposite. For the well-posedness of RTE, we require an inflow boundary
condition, i.e., the data imposed on the ``incoming"" part of \Gamma  - :

(3) f | \Gamma  - = f - (x, v) , (x, v) \in \Gamma  - .

In many applications, light is sent to a bulk of material with unknown absorp-
tion and scattering properties, and light current propagating out of the material is
measured. Scientists need to adjust the sources and measurement locations for recov-
ering the material properties. This technique is used in medical imaging, where near
infrared light (NIR) is sent into biological tissue to determine tumor or bone struc-
ture [26, 27]. It is also used in astronomical studies: during its travel around Jupiter,
the unmanned spacecraft Galileo captured images using a near infrared mapping spec-
trometer (NIMS), and scientists recovered atmospheric components of Jupiter's moons
by inverting RTE, through which they found that Io is covered mainly by SO2 [16].

We study these problems from both a mathematical and computational point of
view. Mathematically, we typically assume that no prior information on \sigma and k is
known but that the entire incoming-to-outgoing map is given. This map is termed
the albedo operator:

(4) \scrA l : f - \mapsto \rightarrow f
\bigm| \bigm| 
\Gamma +
.

Then the goal of inverse RTE is to recover \sigma and k through the albedo operator.
The well-posedness of this problem was considered in [15], in which the authors

showed that, given the albedo operator (4), a full recovery of both \sigma and k is possible
in 3D, whereas in 2D only \sigma is recoverable. Some follow-up studies included utilizing
the Born series for the recovery [24]; the ill-posedness of the problem if the operator's
output was changed to flow current (having no velocity angle information) [7, 6]; the
passage to the ill-posedness in the fluid regime [13]; and studies on various scenarios [8,
5]. Most of these analytical studies use the technique termed ``singular decomposition""
introduced in [15]. In that paper, the authors separate the data according to the
singularities of different components in the measurement, each of which is in charge
of recovering one property. See also the review in [4]. However, despite its effectiveness
in analysis, singular decomposition is rarely used directly in computation because it is
not known whether the process could be repeated numerically or in a real experiment,
and because of the error analysis it lacks in practice.

From the computational viewpoint, the topic has been extensively studied in
many scenarios [33, 21, 30, 14, 1]. Reviews can be found in [2, 3, 29]. One typical
formulation is to first rewrite the equation in an optimization form and then run
optimization algorithms for the recovery. More specifically, one samples Nx and Nv

grids for x and v, respectively, and writes the equation in the following discrete form:

(\sansA + \sansB ) \cdot f = 0 with f | \Gamma  - = f - .

Here f is the solution sampled on all grid points,

(5) f=[f(x1,v1),f(x2,v1),... ,f(xn,v1),f(x1,v2),... ,f(xNx
,v2),... ,... ,f(xNx

,vNv
)]t,
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and f - is f - evaluated on grid points on \Gamma  - . Considering the dimension of x and v,
the subscript i and j can be multi-indexed. The equation

(6)  - \sansA = \sansV \otimes \nabla x + \sansI \otimes \sigma , \sansB = \Sigma k ,

shows the discrete version of the transport and the scattering operator, where \sansV is a
diagonal matrix of size Nv \times Nv with diagonal elements vi, and \nabla x is an Nx \times Nx

finite difference matrix in x (depending on the scheme one uses). \sigma is an Nx \times Nx

matrix with diagonals \sigma (xi), and \Sigma k is a block matrix with Nx blocks, where each
block is of size Nv \times Nv.

Given several rounds of experiments with \{ f (i) - , i = 1, . . . , NI\} as the inflow on \Gamma  - ,

and the measured data \{ \phi (i) , i = 1, . . . , NI\} as the outflow on \Gamma +, the typical setup
of the numerical inverse problem is to perform the following optimization problem:

(7)

\Biggl\{ 
min\sigma ,\Sigma k,\{ \bff (i)\} 

\sum 
i \| \sansE +f

(i)  - \phi (i)\| + regularization

s.t. (\sansA + \sansB ) \cdot f (i) = 0 , \sansE  - f
(i) = f

(i)
 - \forall i.

Here the superscript i denotes different experiments, and \sansE is the confining operator,

(8) \sansE \pm f = f | \Gamma \pm .

One advantage of this approach is that it is very straightforward, and the reg-
ularization could be adjusted to fit a priori information (for example, a TV norm
used on \sigma for piecewise constant cases). The disadvantage is obvious as well, as
mentioned in [29]: on one hand, it is not known whether the minimizer exists, or is
unique, and the problem tends to be either overdetermined or underdetermined; on
the other hand, the computational size is huge. There are Nx unknowns in \sigma and
NxNv unknowns in \Sigma k, and in the d = 3 case, Nx is approximately N3 and Nv is
approximately N2, with N being the number of grid points per direction. It is ex-
tremely expensive to update even one iteration in the optimization problem. Multiple
strategies are invented as modifications for better efficiency, such as utilizing the dif-
fusion approximation [32, 34], employing linearization [29], or computing the gradient
on-the-fly for the updating [31] instead of preparing the Jacobian function ahead of
time. However, despite all efforts the well-posedness results from the analysis do not
benefit the computation, and it is extremely hard to quantify the error of any of these
methods.

In this paper, we intend to bridge the gap between analysis and computation.
More specifically, we will design an algorithm that (a) is efficient, and (b) leverages as
much of the analysis results as possible. This allows us to spell out the well-posedness
and the error analysis in an exact fashion numerically. Our idea is based on singular
decomposition analysis, and we will numerically separate the three components in the
measurements, using one to recover \sigma and another for k.

More precisely, consider concentrated incoming data f - , and let \phi (x, v) be the
solution of (1) confined on \Gamma +: \phi = f

\bigm| \bigm| 
\Gamma +

; then the analysis in [15] tells us that

\phi = \phi 1+\phi 2+\phi 3 with its components enjoying different singularities and thus able to
be separated from one other. Specifically, with \phi 1 separated from the rest, it could
be used to recover \sigma ,

\scrR [\sigma ] =

\int \tau  - (x,v)

0

\sigma (x - sv)ds = ln

\biggl( 
f - (x - \tau  - (x, v)v, v)

\phi 1(x, v)

\biggr) 
,
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where \tau  - is the time needed for a nonscattering photon passing through \Omega and emit-
ting at (x, v) \in \Gamma +. \scrR is the X-ray transform that has been proved to be reversible.
We repeat this procedure numerically. Denote by \phi R,1 the first component that gets
extracted numerically from \phi ; we show that (see Theorem 3)

(9)
| \phi R,1  - \phi 1| 

| \phi 1| 
= \scrO (\varepsilon 1 - \delta 

1 \varepsilon ) for any \delta > 0 ,

with \varepsilon 1 and \varepsilon standing for the width of the concentrating inflow data and outflow mea-
surement, respectively. Consequently, the numerically recovered \sigma has the following
error estimate (see Theorem 4):

\| \Sigma  - \sigma dis\| 2 \lesssim (\varepsilon 1 - \delta 
1 \varepsilon +\Delta x2)1/2 ,

where \sigma dis is the true absorption coefficient evaluated at the grid points, and \Delta x is
the discretization in x. Here we only analyze the recovery of \sigma . We believe that
similar analysis can be done, for the scattering coefficient k, but it will be much more
involved, and so we leave it for future work. At the end of this paper, we also study
the inverse RTE in the diffusion regime using this approach. When the RTE can
be well approximated by the diffusion equation, one gains a large error in the data
separation step (9), and this error propagates in recovering \sigma . The whole scheme
therefore breaks down. This analysis indicates that our approach works only for the
weak scattering case.

The rest of the paper is organized as follows. In the next section, we recall
the singular decomposition theory used in proving the well-posedness of the inverse
problem, and we make an analogy in the discrete setting. In section 3, we set up the
new algorithm and provide details in the implementation. Section 4 is devoted to the
error analysis, which consists of two major parts: error in the data separation and
inversion. In section 5, we introduce a diffusive scaling to the RTE and revisit the
algorithms and error analysis in the presence of multiple scales.

2. Singular decomposition. The basis of our algorithm is the singular de-
composition to the measured data. In this section, we first review this technique,
developed in [15], and then extend it in the discrete setting that we will be working
on. Let us denote

(10) \scrA =  - v \cdot \nabla x  - \sigma (x), \scrB f =

\int 
k(x, v, v\prime )f(v\prime )dv\prime ;

then equation (1) can be rewritten as (\scrA + \scrB )f = 0. One sees that \scrA consists of a
free transport and damping, whereas \scrB encodes the scattering. We let

\tau \pm (x, v) = min\{ t \geq 0, x\pm tv \in \partial \Omega \} 

be the time for a free transport of a photon located at x with velocity v to travel out
of \Omega forward or backward, and we denote \tau = \tau  - + \tau +. We also assume that

\sigma (x) - 
\int 
k(x, v, v\prime )dv\prime \geq \nu > 0, for a.e. (x, v) \in \Omega \times V ,

in which case the forward problem (1) is well-posed, and the (\sigma , k) pair is called
admissible.

D
ow

nl
oa

de
d 

06
/0

2/
20

 to
 1

28
.1

04
.4

6.
20

6.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3362 QIN LI, RUIWEN SHU, AND LI WANG

2.1. Continuous setting. Singular decomposition is proposed in [15] for the
continuous setting. The idea is that when the incoming data are concentrated around
one point in \Omega \times \Gamma  - space, the solution to (1) can be decomposed into three parts
that enjoy different degrees of singularity, wherein the leading two singular terms can
be used to recover \sigma and k, respectively. Indeed, formally one can write the solution
to

(11)

\biggl\{ 
(\scrA + \scrB )f = 0, (x, v) \in \Omega \times V,
f
\bigm| \bigm| 
\Gamma  - 

= f - (x, v)

as

f = (I +\scrA  - 1\scrB ) - 1\scrJ f - 
= \scrJ f -  - (\scrA  - 1\scrB )\scrJ f - + (I +\scrA  - 1\scrB ) - 1(\scrA  - 1\scrB )2\scrJ f - 
:= f1 + f2 + f3 ,(12)

where \scrJ : \Gamma  - \rightarrow \Omega \times V is the solution to the pure transport and damping, i.e.,

(13) \scrA (\scrJ f - ) = 0, \scrJ f - 
\bigm| \bigm| 
\Gamma  - 

= f - .

It maps the boundary condition to the entire \Omega \times V , with an explicit form

(14) \scrJ f - (x, v) = e - 
\int \tau  - (x,v)

0 \sigma (x - sv)dsf - (x - \tau  - (x, v)v, v) .

The inverse of \scrA , denoted as \scrA  - 1 : \Omega \times V \rightarrow \Omega \times V, has the form

\scrA  - 1f =  - 
\int \tau  - (x,v)

0

e - 
\int t
0
\sigma (x - sv)dsf(x - tv, v)dt .

It satisfies \scrA (\scrA  - 1f) = f with (\scrA  - 1f)| \Gamma  - = 0.
From (12), one sees that f1 represents the solution with pure absorption, f2

denotes solution after one scattering, and f3 collects the rest.
The solution to (11), when confined on the boundary \Gamma +, is the outgoing data

that we measure. Let us denote it by \phi ; then

(15) \phi = f | \Gamma + and \phi i = fi| \Gamma + , i = 1, 2, 3 .

Immediately,

\phi =
3\sum 

i=1

\phi i = \scrA l[f - ] .

We now study the structure of \scrA l. For that we use a delta function as the
incoming data for f - , and we have the following theorem.

Theorem 1 ([15]). Assume that (\sigma , k) is admissible. Then the solution to (1)
with

(16) f - (x, v) = \delta (x - x\prime )\delta (v  - v\prime ), (x\prime , v\prime ) \in \Gamma  - ,

has the decomposition f(x, v;x\prime , v\prime ) = f1 + f2 + f3, where

f1 = | n(x\prime ) \cdot v\prime | 
\int \tau +(x\prime ,v\prime )

0

e - 
\int \tau  - (x,v)

0 \sigma (x - sv)ds\delta (x - x\prime  - tv)\delta (v  - v\prime )dt ;(17)
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(18)

f2 = | n(x\prime ) \cdot v\prime | 
\int \tau  - (x,v)

0

\int \tau +(x\prime ,v\prime )

0

e - 
\int s
0
\sigma (x - pv)dpe - 

\int \tau  - (x - sv,v\prime )
0 \sigma (x - sv  - pv\prime , v\prime )dp

\times k(x - sv, v\prime , v)\delta (x - x\prime  - sv  - tv\prime )dtds;

(min\{ \tau , \lambda \} ) - 1| n(x\prime ) \cdot v\prime |  - 1f3 \in L\infty (\Gamma  - ;\scrW ) .(19)

Here \lambda \geq 0 is an arbitrary constant, and

\scrW = \{ f : f \in L1(\Omega \times V ), v \cdot \nabla xf \in L1(\Omega \times V )\} .

The albedo operator only takes the information on \Gamma +, and we thus write the
distribution kernel \alpha i(x, v, x

\prime , v\prime ) as a confinement

\alpha i(x, v;x
\prime , v\prime ) := fi(x, v;x

\prime , v\prime )
\bigm| \bigm| 
(x,v)\in \Gamma +

, (x\prime , v\prime ) \in \Gamma  - , i = 1, 2, 3 .

It maps (x\prime , v\prime ) \in \Gamma  - to (x, v) \in \Gamma + and could be explicitly expressed as follows.

Theorem 2 ([15]). Assume that (\sigma , k) is admissible. Then \alpha (x, v;x\prime , v\prime ) =
\alpha 1 + \alpha 2 + \alpha 3, where

\alpha 1(x, v;x
\prime , v\prime ) =

| n(x\prime ) \cdot v\prime | 
n(x) \cdot v

e - 
\int \tau  - (x,v)

0 \sigma (x - sv)ds\delta (x - x\prime  - \tau +(x
\prime , v\prime )v\prime )\delta (v  - v\prime ) ;(20)

\alpha 2(x, v;x
\prime , v\prime ) =

| n(x\prime ) \cdot v\prime | 
n(x) \cdot v

\int \tau +(x\prime ,v\prime )

0

e - 
\int \tau +(x\prime +tv\prime ,v)

0 \sigma (x - pv)dpe - 
\int t
0
\sigma (x+pv\prime )dp(21)

\times k(x+ tv\prime , v\prime , v)\delta (x - x\prime  - tv\prime  - \tau +(x
\prime + tv\prime , v)v)dt ;

min\{ \tau (x\prime , v\prime ), \lambda \}  - 1| n(x\prime ) \cdot v\prime |  - 1\alpha 3 \in L\infty (\Gamma  - ;L
1(\Gamma +, d\xi )) .(22)

We conclude that, for any incoming data f - (x, v),

(23) \phi (x, v) = \scrA l[f - ](x, v) =
3\sum 

i=1

\phi i =

\int 
\Gamma  - 

3\sum 
i=1

\alpha i(x, v;x
\prime , v\prime )f - (x

\prime , v\prime )d\xi (x\prime , v\prime ) ,

where d\xi (x\prime , v\prime ) = | n(x\prime ) \cdot v| d\mu (x\prime )dv is the measure on \Gamma  - , and the three components
have very different singularities as follows:

\alpha 1 is a delta function in both x and v. It is a nonnegative measure on \Omega \times V
and contains information only from \sigma and not from k.

\alpha 2 is an integration of a delta function over a one-dimensional manifold. The two
exponentials reflect the particle traveling from x\prime to x\prime + tv\prime and from x\prime + tv\prime 

to x, respectively. The particle changes its velocity from v\prime to v at x\prime + tv\prime 

with the probability k(x+tv\prime , v\prime , v). This term encodes the information about
particles which travel and change directions once.

\alpha 3 collects the rest of the information.

2.2. Discrete setting. The same formulation can be written on the discrete
level. Using the notation from the introduction, we write the following equation,
incorporating the boundary conditions:

(24) (\sansI + \sansA  - 1\sansB )f = \sansA  - 1\sansJ 0f - ,

where f is defined as in (5). Here \sansJ 0 numerically resembles \scrJ . Denote by Nb\pm the
number of grid points (x, v) on \Gamma \pm ; then \sansJ 0 is a matrix of size NxNv \times Nb - .
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Using the Neumann expansion,

(\sansI + \sansX ) - 1
= \sansI  - (\sansI + \sansX ) - 1 \sansX ,

= \sansI  - 
\Bigl( 
\sansI  - (\sansI + \sansX ) - 1 \sansX 

\Bigr) 
\sansX 

= \sansI  - \sansX + (\sansI + \sansX ) - 1 \sansX 2 ,

we let \sansX = \sansA  - 1\sansB and separate the solution of (24) into

f = \sansA  - 1\sansJ 0f -  - \sansA  - 1\sansB \sansA  - 1\sansJ 0f - + (\sansI + \sansA  - 1\sansB ) - 1(\sansA  - 1\sansB )2\sansJ 0f - 

:= f1 + f2 + f3 .(25)

Comparing it with (12), we see that the three vectors are simply counterparts of
fi. As suggested by Theorem 1, these three vectors should have different sparsities.
Similar to the discussion for the continuous setting, here we see that f1 includes
information on \sansA only, which could be used to recover \sigma , while f2 takes up information
from \sansB that is equivalent to \Sigma k.

3. Numerical algorithm. As mentioned in the introduction, most of the cur-
rently available algorithms are based on optimization and typically are written as

(26)

\Biggl\{ 
min\Sigma ,\Sigma k,\{ \bff (i)\} 

\sum 
i \| \sansE +f

(i)  - \phi (i)\| + regularization

s.t. (\sansA + \sansB )f (i) = 0 , f (i)
\bigm| \bigm| 
\Gamma  - 

= f
(i)
 - , i = 1, 2, . . . , NI ,

where the superscript i denotes different rounds of experiments, NI is the total num-
ber of experiments conducted, and \sansE + is defined as in (8). The approach is straight-
forward, but it lacks analytical justification because there is no guarantee that the
minimizer exists and will be unique, and it does tell us how to choose the correct
regularization and what the error will be. What is more, \sigma and \Sigma k are recovered
simultaneously, which requires a lot of computation in each optimization iteration
step.

In this section, we set up a new optimization framework in recovering \sigma (x) and
k(x, v, v\prime ) separately. As indicated by the singular decomposition method from [15],
the measurement could be separated into three parts based on the different regularities
they enjoy, and the first two terms encode information for \sigma and k, respectively. Based
on this, we propose a new recovery approach which comes with more rigorous error
quantification.

3.1. Algorithm setup. We first write the algorithm in the continuous sense,
following the ideas in [15]. From here on, we will assume that the experiments are
well set in the sense that the measurement is placed at the boundary where free
transport photons emit, corresponding to the input stimulus. Then the algorithm
reads as follows.
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Algorithm (continuous)

Input: concentrated source f - (x
\prime , v\prime ) \forall (x\prime , v\prime ) \in \Gamma  - ; measurement \phi (x, v)

\forall (x, v) \in \Gamma +

Output: \sigma (x), k(x, v, v\prime )
Step 0) Decompose data \phi = \phi 1 + \phi 2 + \phi 3;
Step 1) Recover \sigma (x) by solving the following problem:

(27) min
\sigma 

\scrF (\scrR [\sigma ](x, v) - a(x, v)) ;

Step 2) Recover k(x, v, v\prime ) by solving

(28)

\Biggl\{ 
mink,f \scrF 

\Bigl( 
f
\bigm| \bigm| 
\Gamma +

 - \phi 1  - \phi 2

\Bigr) 
s.t. (\scrA (\sigma ) + \scrB )f = 0, f

\bigm| \bigm| 
\Gamma  - 

= f - .

In the problem we formulated, \scrF is a nonnegative convex fit-to-data function. \scrR 
is the X-ray transform

\scrR [\sigma ](x, v) =

\int \tau  - (x,v)

0

\sigma (x - sv)ds \forall (x, v) \in \Gamma + ,

and a is calculated from the data as follows:

(29) a(x, v) = ln

\biggl( 
f - (x - \tau  - (x, v)v, v)

\phi 1(x, v)

\biggr) 
.

To justify the validity of this algorithm, we note the following:
\bullet Step 0 can be done due to the different singularities of \phi i according to The-
orem 2, once the incoming data are made concentrated.

\bullet Step 1 is written in an optimization form for later convenience, but in fact, the
minimum could be achieved and is zero. Indeed, according to the definition
in (15) and (14), one immediately sees that for all (x, v) \in \Gamma +, given x - x\prime //v
and v = v\prime ,

(30) \scrR [\sigma ](x, v) =

\int \tau  - (x,v)

0

\sigma (x - sv)ds = ln [f - (x
\prime , v\prime )/\phi 1(x, v)] ,

which is the same as a(x, v) in (29).
\bullet Step 2 is also written in the optimization form. From the theory in [15],
a unique recovery of k is available once \sigma a is obtained from the first step.
Therefore, the minimum could be achieved and is zero.

Remark 1. Another straightforward solver is to replace the optimization problem
in Step 1 by

(31)

\Biggl\{ 
min\sigma ,f \scrF 

\Bigl( 
f
\bigm| \bigm| 
\Gamma +

 - \phi 1

\Bigr) 
s.t. \scrA f = 0, f

\bigm| \bigm| 
\Gamma  - 

= f - .

However, as we can see, \sigma here is involved in a nonlinear way, making the optimization
problem harder to analyze.

The same procedure could be taken in the discrete setting for numerical simula-
tion.
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Algorithm (discrete)

Input: concentrated source f
(i)
 - , concentrating around (x(i), v(i)) \in \Gamma  - ; mea-

surement \phi (i). i = 1, . . . , NI .
Output: \Sigma , \Sigma k

Step 0) Decompose data \phi (i) = \phi 
(i)
R,1 + \phi 

(i)
R,2 + \phi 

(i)
R,3 \forall i ;

Step 1) Recover \Sigma by solving the following problem:

(32) min
\Sigma 

\scrF (\sansR \cdot \Sigma  - a) ;

Step 2) Recover \Sigma k by solving

(33)

\left\{     min\Sigma k,\{ \bff (i)\} \scrF 
\biggl( \Bigl\{ 

\sansE +f
(i)  - \phi 

(i)
1  - \phi 

(i)
2

\Bigr\} 
i=1,2,...,NI

\biggr) 
s.t. (\sansA (\Sigma ) + \sansB )f (i) = 0, f (i)

\bigm| \bigm| 
\Gamma  - 

= f
(i)
 - , i = 1, 2, . . . , NI .

Here the subindex R in Step 0 indicates the numerical recovery. \scrF is the discrete
version of the fit-to-data function, and \sansR is the numerical integration of the X-ray
transform in (30), with each of its rows representing one experiment. Vector a consists
of data collected at a specific grid point as follows:

(34) aj = ln

\Biggl( 
f
(j)
 - (x(j), v(j))

\phi 
(j)
R,1(x

(j)
\ast , v

(j)
\ast )

\Biggr) 
,

where (x(j), v(j)) \in \Gamma  - , and its counterpart denoted as (x
(j)
\ast , v

(j)
\ast ) takes the form

(35) x
(j)
\ast = x(j) + \tau +(x

(i), v(i))v(i), v
(j)
\ast = v(j) .

As written, these steps are identical to those of the algorithm in the continuous
setting, and each step requires a specially designed implementation to ensure the
well-posedness and controllable error. We discuss the implementation in the following
subsection, and the error analysis is left to section 4.

Remark 2. An immediate advantage of our new formulation (32) over the conven-
tional one (26) is the size reduction: instead of looking for \Sigma and \Sigma k simultaneously,
which is a problem of size (NxNv + Nx)

2, we find \Sigma first and then find \Sigma k, and the
former is of a much reduced size.

3.2. Implementation. In this section, we will make clear how each of those
steps in the discrete algorithms can be performed.

3.2.1. Decomposition. Given concentrated incoming data f
(i)
 - on \Gamma  - , one

could collect the outgoing data \phi (i) on \Gamma +, which analytically can be separated into

three parts \phi 
(i)
1/2/3. Numerically, however, it is not possible to conduct the separation

exactly. Instead, we obtain the recovered data, denoted as \phi 
(i)
R,1/2/3. Therefore, we

need to find a simple way to define \phi 
(i)
R,j so that it is close enough to \phi 

(i)
j with a small

error. To this end, let us first assume that f
(i)
 - is concentrated around (x(i), v(i)),

with the width smaller than \Delta x and \Delta v. Therefore, f
(i)
 - has only one nonzero value

located at (x(i), v(i)) grid. Then we simply set
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(36)

\phi 
(i)
R,1(x, v) =

\Biggl\{ 
\phi (x, v) , x = x

(i)
\ast , v = v

(i)
\ast ,

0 elsewhere,
(x(i), v(i)) \in \Gamma  - , (x

(i)
\ast , v

(i)
\ast ) \in \Gamma + ;

\phi 
(i)
R,2(x, v) =

\Biggl\{ 
\phi (x, v) , \exists (s, t) s.t. x - sv = x(i) + tv(i), v \not = v(i),

0 elsewhere;

\phi 
(i)
R,3 = \phi  - \phi R,1  - \phi R,2 .

3.2.2. Recovering \Sigma . To recover \sigma from \phi 1, one just needs to conduct an in-
verse X-ray transform as displayed in (30). Since the X-ray transform has an explicit
inversion formula (which will be detailed below) and is in integral form, one way to
do this in the discrete setting is to use quadrature rules to approximate the inversion
formula. This requires evaluating the integrand on the grids and performing the sum-
mation. However, the process is well known to be numerically very unstable [10, 28].
To overcome this difficulty, many strategies have been invented, including the alge-
braic reconstruction technique and direct algebraic methods, among many others [28].
In the early 2000s, more attention was placed on using the optimization framework
instead of employing a direct inversion along with adopting Tikhonov regularization
to overcome large conditioning. This is the approach that we will be taking.

Specifically, in Step 1 we modify the optimization with a regularizer:

(37) min
\Sigma 

\| \sansR \cdot \Sigma  - a\| X + \lambda \| \Sigma \| Y ,

where the first term represents the mismatch and the second term is the regularizer
ensuring that the error in the measurement stays controlled. Both terms are convex,
and existence and uniqueness of the minimizer are obvious. Note that we do not
pick a specific optimization algorithm here. The performance of varying optimiza-
tion algorithms could be drastically different. In recent years it was discovered that
stochastic optimization advances the traditional method, and it has been used in op-
tical tomography for recovering coefficients in RTE [11]. We omit the discussion here.
In the next section, we will analyze the error brought about by the introduction of
the regularizer.

We remark here that a more straightforward form in recovering \sigma in our problem
could be \Biggl\{ 

min\sigma ,\{ \bff (i)\} 
\sum NI

i=1 \| \sansE +f
(i)  - \phi 

(i)
1 \| X + \lambda \| \sigma \| Y

s.t. \sansA f (i) = 0, f (i)
\bigm| \bigm| 
\Gamma  - 

= f
(i)
 - , i = 1, 2, . . . , NI ,

which can be considered as a numerical implementation of (31). However, as claimed
before, here \sigma is involved in the problem in a nonlinear fashion, and it is not clear
why the minimizer exists, or is unique, and the error would be hard to quantify.

To end this section, we include the inversion formula for the X-ray transform for
completeness. In 2D (x, v \in R2), the X-ray transform is equivalent to the Radon
transform, which admits the following unique inversion formula [9]:

(38) \sigma (x) =
1

2\pi 2

\int \pi 

0

\scrR [\sigma (\cdot , \theta ) \ast h](x1 cos \theta + x2 sin \theta )d\theta .

Here h is the inverse Fourier transform of | k| , and \scrR [\sigma ] is defined as in (30). For
dimension higher than two, the X-ray transform is different from the Radon transform,
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and one needs to first translate a series of X-ray projections into a Radon projection
and then perform the inverse Radon transform [18, 19, 20]. Specifically, for helical
source trajectories, denote

\scrD (y, v) =

\int \tau  - (y,v)

0

\sigma (y  - sv)ds ,

and then for a properly chosen vector e\nu (p, x) and weight \mu \nu , the reconstruction
formula is

(39) \sigma (x) =  - 1

2\pi 

\int 
IBP (x)

I(p, x)

| x - y(p)| 
dp ,

where

I(p, x) =

Ne\sum 
\nu 

\mu \nu 

\int \pi 

 - \pi 

\scrD \prime (y(p), cos \gamma b+ sin\gamma e\mu )
1

sin \gamma 
d\gamma ,

and the derivative of \scrD is with respect to the first variable. IBP (x) is the back-
projection interval [9]. Here, in either case, we see that analytically a unique recon-
struction of \sigma (x) is available.

4. Error analysis. This section is devoted to analyzing the reconstruction error
\| \Sigma  - \sigma dis

a \| 2, where \Sigma is obtained from solving (37) with \phi R,1 given in (36). \sigma dis
a is

the true media sampled on the grid points, with the superscript ``dis"" indicating that
it is the discrete version. The analysis below is confined in three dimensions.

In the recovery for \Sigma , two steps are taken: the separation of data and the mini-
mization for the inverse X-ray transform. We cumulatively analyze them as follows:

(1) Data separation: to extract \phi 
(i)
1 from the measurement \phi (i), some assumptions

have been made, and we need to study \| \phi (i)R,1  - \phi 
(i)
1 \| , the distance between

the recovery (36) and the true data.
(2) Determine \Sigma from (37) using the discrete reconstruction formula. The reg-

ularization has been added to control the error from (1), but it inevitably
introduces the regularizing error.

We examine each error closely in the following two subsections.

4.1. Study of \bfitphi \bfitR ,\bfone  - \bfitphi \bfone . According to (36), incoming data are placed at
(x0, v0), and \phi R,1 is defined as zero except for the particular point (x0+\tau +(x0, v0)v0, v0)
which is the counterpart of (x0, v0) on \Gamma +, and at this point, \phi R,1 simply takes the
value of \phi , with the intuition that both \phi 2 and \phi 3 make very limited contributions
at this particular point. In this section we quantify the error produced by ignoring
\phi 2/3's contribution.

More precisely, assume that the incoming source f - (x
\prime , v\prime ) = \psi ( | x

\prime  - x0| 
\varepsilon )\psi ( | v

\prime  - v0| 
\varepsilon )

is concentrated at (x0, v0) \in \Gamma  - and that the measurement is taken in the neighbor-
hood of its counterpart coordinate (x0\ast , v0\ast ) := ((x0 + \tau +(x0, v0)v0, v0) \in \Gamma +, i.e.,

Ei =

\int 
\Gamma +

\phi i(x, v)\psi 

\biggl( 
| x - (x0 + \tau +(x0, v0)v0)| 

\varepsilon 1

\biggr) 
\psi 

\biggl( 
| v  - v0| 
\varepsilon 1

\biggr) 
d\xi (x, v) .

Here \varepsilon and \varepsilon 1 denote the concentration of the source and measurement, respectively.
\psi is a smooth positive function supported on [ - 1, 1] with \psi = 1 on [ - 1/2, 1/2]. Then
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using (23), Ei reads

Ei =

\int 
\Gamma  - 

\int 
\Gamma +

\alpha i(x, v;x
\prime , v\prime )\psi 

\biggl( 
| x\prime  - x0| 

\varepsilon 

\biggr) 
\psi 

\biggl( 
| v\prime  - v0| 

\varepsilon 

\biggr) 
\psi 

\biggl( 
| x - (x0 + \tau +(x0, v0)v0)| 

\varepsilon 1

\biggr) 
\psi 

\biggl( 
| v  - v0| 
\varepsilon 1

\biggr) 
d\xi (x, v)d\xi (x\prime , v\prime ) .

(40)

We will show that E1 is much larger than E2,3 for small \varepsilon and \varepsilon 1, which implies that,
at this particular point, the error \phi R,1 - \phi 1 = \phi  - \phi 1 = \phi 2+\phi 3 is small. In particular,
we have the following.

Theorem 3. Consider the incoming data given by f - (x
\prime , v\prime )=\psi ( | x

\prime  - x0| 
\varepsilon )\psi ( | v

\prime  - v0| 
\varepsilon )

and by Ei defined in (40). Assume there exist positive constants C1 such that

\sigma (x) \leq C1, k(x, v, v\prime ) \leq C1 \forall x, v, v\prime ,

and \tau + is Lipschitz continuous near (x0, v0). Then there exist constants c, C, and C\delta 

such that

E1 \geq c\varepsilon 41, E2 \leq C\varepsilon 4\varepsilon 21, E3 \leq C\delta \varepsilon 
2 - \delta 
1 \varepsilon 4

for any \delta > 0. Consequently, we have

(41)
E2 + E3

E1
= \scrO (\varepsilon  - 2 - \delta 

1 \varepsilon 4) for any \delta > 0 ,

and thus the relative error is

(42)
| \phi R,1  - \phi 1| 

| \phi 1| 
= O(\varepsilon  - 2 - \delta 

1 \varepsilon 4).

To get the relationship among the Ei's, we need to estimate their magnitudes
individually. From the relation (40) and the expression of \alpha 1 and \alpha 2 in (20) and
(22), E1 and E2 can be evaluated straightforwardly. On the contrary, E3 needs more
sophisticated analysis, and as such we first bound \alpha 3, the kernel of the third part of
the albedo operator, in the following proposition.

Proposition 1. \alpha 3(x, v;x
\prime , v\prime ) \in L\infty (\Gamma  - , L

p(\Gamma +, d\xi )) if p < 2.

To prove this theorem, notice that \alpha 3 = f3
\bigm| \bigm| 
(x,v)\in \Gamma +

, f3 = (\scrA  - 1\scrB )2f , and by

Proposition 2.3 of [15], \| f\| L1(\Omega \times V ) \leq C\| f - \| L1(d\xi ); therefore we basically need the
boundedness of \scrA  - 1 and \scrB \scrA  - 1\scrB (Lemmas 1 and 2). We will also show that the
operator \scrB \scrA  - 1\scrB could send L1 data to Lp (Lemma 4). The results are summarized
in Lemmas 1--4.

Lemma 1. Let g be a function defined on \Omega \times V , and let 1 \leq p < \infty . Then \exists C
such that

\| \scrA  - 1g| \Gamma +
\| Lp(d\xi ) \leq C\| g\| Lp(\Omega \times V ).
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Proof.

\| \scrA  - 1g| \Gamma +
\| pLp(d\xi ) =

\int 
\Gamma +

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int \tau  - (x,v)

0

e - 
\int t
0
\sigma (x - sv,v)dsg(x - tv, v)dt

\bigm| \bigm| \bigm| \bigm| \bigm| 
p

d\xi (x, v)

\leq 
\int 
\Gamma +

\Biggl[ \int \tau  - (x,v)

0

| g(x - tv, v)| dt

\Biggr] p
d\xi (x, v)

\leq C

\int 
\Gamma +

\int \tau  - (x,v)

0

| g(x - tv, v)| pdtd\xi (x, v)

= C\| g\| pLp(X\times V ),

where the second inequality uses the H\"older inequality, and C = supx,v \tau  - (x, v)
p/p\prime 

,
1
p + 1

p\prime = 1.

Lemma 2. Let g be a function defined on \Omega \times V . Assume that k(x, v, v\prime ) \leq C1.
If p \geq 1 and q < 3p

3 - p <\infty , then

\| \scrB \scrA  - 1\scrB g\| Lq(\Omega \times V ) \leq C(p, q)\| g\| Lp(\Omega \times V ) .

Proof.

(\scrB \scrA  - 1\scrB g)(x, v) = - 
\int 
V

k(x, v\prime , v)

\int \tau  - (x,v\prime )

0

e - 
\int t
0
\sigma (x - sv\prime )ds(\scrB g)(x - tv\prime , v\prime )dtdv\prime 

= - 
\int 
\Omega x

k(x, v\prime , v)e - 
\int t
0
\sigma (x - sv\prime )ds(\scrB g)(y, v\prime )t - 2dy

= - 
\int 
\Omega x

k(x, v\prime , v)e - t
\int 1
0
\sigma ((1 - s\prime )x+s\prime y)ds\prime 

\int 
V

k(y, w, v\prime )g(y, w)dwt - 2dy

=

\int 
\Omega 

\int 
V

K1(x, v, y, w)g(y, w)dwdy,

(43)

with the change of variable

y = x - tv\prime , dy = t2dtdv\prime , t = | x - y| , v\prime =
x - y

| x - y| 
,

and \Omega x, the integration domain of y, is the set of y \in \Omega such that the segment from
x to y is contained in \Omega .

The integral kernel K1 is given by

K1(x, v, y, w) = 1\Omega x
(y)k(x, v\prime , v)e - t

\int 1
0
\sigma ((1 - s\prime )x+s\prime y)ds\prime k(y, w, v\prime )| x - y|  - 2 .

Thus, by the assumption that k \in L\infty , one has

(44) | K1(x, v, y, w)| \leq C| x - y|  - 2 .

Using this estimate, we can finish the proof by the Hardy--Littlewood--Sobolev (HLS)
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inequality as follows:

\| \scrB \scrA  - 1\scrB g\| qLq(X\times V ) \leq C\| | x|  - 2 \ast x,v g\| qLq(X\times V )

= C

\int 
\Omega \times V

\bigm| \bigm| \bigm| \bigm| \int 
\Omega \times V

| x - y|  - 2g(y, w)dydw

\bigm| \bigm| \bigm| \bigm| q dxdv
\leq C

\int 
\Omega 

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

| x - y|  - 2\~g(y)dy

\bigm| \bigm| \bigm| \bigm| q dx
= C\| | x|  - 2 \ast x \~g\| qLq(\Omega )

\leq C\| \~g\| qLp(\Omega ) ,

where \~g(x) =
\int 
V
g(x, v)dv, and the last inequality uses the HLS inequality in \Omega ,

hereby imposing the restrictions on p and q. Then notice from the H\"older inequality
that

\| \~g\| pLp(\Omega ) =

\int 
\Omega 

\bigm| \bigm| \bigm| \bigm| \int 
V

g(x, v)dv

\bigm| \bigm| \bigm| \bigm| p dx \leq C

\int 
\Omega 

\int 
V

| g| pdvdx = C\| g\| pLp(\Omega \times V ) ,

and the result directly follows.

Lemma 3. Let f1 be defined as in (17); then for p < 2,

\| \scrB \scrA  - 1\scrB f1\| Lp(\Omega \times V ) \leq Cp .

Proof. Recall f1,

f1(x, v) = | n(x\prime ) \cdot v\prime | 
\int \tau +(x\prime ,v\prime )

0

e - 
\int \tau  - (x,v)

0 \sigma (x - sv)ds\delta (x - x\prime  - tv)\delta (v  - v\prime )dt .

Then

| \scrB \scrA  - 1\scrB f1(x, v)| \leq C

\int 
\Omega 

\int 
V

\int \tau +(x\prime ,v\prime )

0

| x - y|  - 2\delta (y  - x\prime  - tw)\delta (w  - v\prime )dtdwdy

= C

\int \tau +(x\prime ,v\prime )

0

| x - (x\prime + tv\prime )|  - 2dt

thanks to (43) and (44).
For any x \in X, write the parallel and perpendicular components of x  - x\prime with

respect to v\prime as

x = x\prime + x\| + x\bot , with x\| = ((x - x\prime ) \cdot v\prime )v\prime ,

and then one sees that\int \infty 

 - \infty 
| x - (x\prime + tv\prime )|  - 2dt =

\int \infty 

 - \infty 
(| x\|  - tv\prime | 2 + | x\bot | 2) - 1dt =

\int \infty 

 - \infty 
(| x\|  - t| 2 + | x\bot | 2) - 1dt

=

\int \infty 

 - \infty 
(| t| 2 + | x\bot | 2) - 1dt = \pi | x\bot |  - 1 .D
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Therefore, for any q < 2,

\| \scrB \scrA  - 1\scrB f1\| qLq \leq C

\int 
\Omega 

\int 
V

| x\bot |  - qdvdx = C

\int R

 - R

\int 
| x\bot | \leq R

| x\bot |  - qdx\bot d| x\| | \leq C ,

where R is the diameter of \Omega , since x\bot lives in a 2D space.

Lemma 4. Let f be the solution to (1) with incoming data (16); then for p < 2
there is C such that \| \scrB \scrA  - 1\scrB f\| Lp(\Omega \times V ) \leq C .

Proof. From the previous lemma, we know that \| \scrB \scrA  - 1\scrB f1\| Lp(\Omega \times V ) \leq C for any
p < 2. Then notice that \scrA  - 1 and \scrB are bounded operators on Lp (which is obvi-
ous from their explicit expressions). Then, since \scrB \scrA  - 1\scrB f2 =  - \scrB \scrA  - 1\scrB (\scrA  - 1\scrB f1) =
 - \scrB \scrA  - 1(\scrB \scrA  - 1\scrB f1), one gets \| \scrB \scrA  - 1\scrB f2\| Lp(\Omega \times V ) \leq C. Finally, from the fact that
\| f\| L1(\Omega \times V ) \leq C, one gets \| f3\| Lq(\Omega \times V ) = \| \scrA  - 1\scrB \scrA  - 1\scrB f\| Lq(\Omega \times V ) \leq C by Lemma
2 if q < 3/2. Then using Lemma 2 again gives \| \scrB \scrA  - 1\scrB f3\| Lp(\Omega \times V ) \leq C for any
p < 3.

Finally, given the fact that f3 = (\scrA  - 1\scrB )2f , Lemmas 1 and 4 imply Proposition
1. The proof of Theorem 3 is now in order.

Proof of Theorem 3. Using (20), one can see that

E1 =

\int 
\Gamma  - 

\int 
\Gamma +

| n(x\prime ) \cdot v\prime | 
n(x) \cdot v

e - 
\int \tau  - (x,v)

0 \sigma (x - sv)ds\delta (x - x\prime  - \tau +(x
\prime , v\prime )v\prime )\delta (v  - v\prime )

\psi 

\biggl( 
| x\prime  - x0| 

\varepsilon 

\biggr) 
\psi 

\biggl( 
| v\prime  - v0| 

\varepsilon 

\biggr) 
\psi 

\biggl( 
| x - (x0 + \tau +(x0, v0)v0)| 

\varepsilon 1

\biggr) 
\psi 

\biggl( 
| v  - v0| 
\varepsilon 1

\biggr) 
d\xi (x, v)d\xi (x\prime , v\prime )

=

\int 
\Gamma  - 

| n(x\prime ) \cdot v\prime | e - 
\int \tau  - ((x\prime +\tau +(x\prime ,v\prime )v\prime ),v\prime )
0 \sigma ((x\prime +\tau +(x\prime ,v\prime )v\prime ) - pv\prime )dp

\psi 

\biggl( 
| x\prime  - x0| 

\varepsilon 

\biggr) 
\psi 

\biggl( 
| v\prime  - v0| 

\varepsilon 

\biggr) 
\psi 

\biggl( 
| (x\prime + \tau +(x

\prime , v\prime )v\prime ) - (x0 + \tau +(x0, v0)v0)| 
\varepsilon 1

\biggr) 
\psi 

\biggl( 
| v\prime  - v0| 
\varepsilon 1

\biggr) 
d\xi (x\prime , v\prime ) .

(45)

Due to the Lipschitz continuity of \tau +, there exists a small constant c < 1
2 such that

| x\prime  - x0| < c\varepsilon 1, | v\prime  - v0| < c\varepsilon 1 implies | (x\prime + \tau +(x
\prime , v\prime )v\prime ) - (x0 + \tau +(x0, v0)v0)| < 1

2\varepsilon 1.
Also, since \tau  - and \sigma have upper bounds, the exponential term has a lower bound.
Thus,

| E1| \geq 
\int 
| x\prime  - x0| <c\varepsilon 1,| v\prime  - v0| <c\varepsilon 1

d\xi (x\prime , v\prime ) \geq c\varepsilon 41 .
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To estimate E2, one uses (22) to get

| E2| =
\int 
\Gamma  - 

\int 
\Gamma +

\int \tau +(x\prime ,v\prime )

0

| n(x\prime ) \cdot v\prime | 
n(x) \cdot v

e - 
\int \tau +(x\prime +tv\prime ,v)

0 \sigma (x - pv)dpe - 
\int t
0
\sigma (x+pv\prime )dpk(x+ tv\prime , v\prime , v)

\delta (x - x\prime  - tv\prime  - \tau +(x
\prime + tv\prime , v))dt\psi 

\biggl( 
| x\prime  - x0| 

\varepsilon 

\biggr) 
\psi 

\biggl( 
| v\prime  - v0| 

\varepsilon 

\biggr) 
\psi 

\biggl( 
| x - (x0 + \tau +(x0, v0)v0)| 

\varepsilon 1

\biggr) 
\psi 

\biggl( 
| v  - v0| 
\varepsilon 1

\biggr) 
d\xi (x, v)d\xi (x\prime , v\prime )

\leq C sup
t

\int 
\Gamma  - 

\int 
V

| n(x\prime ) \cdot v\prime | | n(x\prime + tv\prime + \tau +(x
\prime + tv\prime , v)v) \cdot v| 

n(x\prime + tv\prime + \tau +(x\prime ,+tv\prime , v)v) \cdot v
\psi 

\biggl( 
| x\prime  - x0| 

\varepsilon 

\biggr) 
\psi 

\biggl( 
| v\prime  - v0| 

\varepsilon 

\biggr) 
\psi 

\biggl( 
| (x\prime + tv\prime + \tau +(x

\prime + tv\prime , v)v) - (x0 + \tau +(x0, v0)v0)| 
\varepsilon 1

\biggr) 
\psi 

\biggl( 
| v  - v0| 
\varepsilon 1

\biggr) 
dvd\xi (x\prime , v\prime )

\leq C

\int 
| x\prime  - x0| <\varepsilon ,| v\prime  - v0| <\varepsilon ,| v - v0| <\varepsilon 1

dvd\xi (x\prime , v\prime ) \leq C\varepsilon 4\varepsilon 21 ,

where in the first inequality we bound the exponential terms and the k term by C
and then integrate out the x variable.

For E3, we have

| E3| \leq 
\int 
| x\prime  - x0| <\varepsilon ,| x - (x0+\tau +(x0,v0)v0| <\varepsilon 1,| v\prime  - v0| <\varepsilon ,| v - v0| <\varepsilon 1

\alpha 3(x, v;x
\prime , v\prime )d\xi (x, v)d\xi (x\prime , v\prime )

\leq 
\int 
| x\prime  - x0| <\varepsilon ,| v\prime  - v0| <\varepsilon 

\| \alpha 3(\cdot , \cdot ;x\prime , v\prime )\| Lp(d\xi )

\| 1| x - (x0+\tau +(x0,v0)v0| <\varepsilon 1,| v - v0| <\varepsilon 1\| Lp\prime (d\xi )d\xi (x
\prime , v\prime )

\leq Cp\varepsilon 
4/p\prime 

\int 
| x\prime  - x0| <\varepsilon ,| v\prime  - v0| <\varepsilon 

d\xi (x\prime , v\prime )

\leq Cp\varepsilon 
4/p\prime 

1 \varepsilon 4

thanks to Proposition 1 and the H\"older inequality. Notice that 4/p\prime = 2  - \delta if
p = 2

1+\delta /2 < 2, and (41) directly follows. To go from (41) to (42), one just needs to

notice that \phi 1 = lim\varepsilon \rightarrow 0,\varepsilon 1\rightarrow 0E1 and \phi R,1 = lim\varepsilon \rightarrow 0,\varepsilon 1\rightarrow 0E.

4.2. Study of \Sigma  - \bfitsigma . We study the error in the final recovery. Comparing (27)
and (37), we see that the true media \sigma minimizes,

min
\sigma 

\scrF (\scrR [\sigma ](x, v) - a(x, v)) ,

or directly,

\scrR [\sigma ](x, v) = a(x, v) ,

while the numerical recovery \Sigma satisfies

min
\Sigma 

\| \sansR \cdot \Sigma  - a\| X + \lambda \| \Sigma \| Y ,
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with a and a defined as in (29) and (34), respectively.
The difference between \scrR [\sigma ] and \sansR \cdot \Sigma is governed by the accuracy of the quadra-

ture rule. Suppose the second order trapezoidal rule is used to approximate the line
integral of \scrR , and then the truncation error is given by, for each experiment,

(46) \scrR [\sigma ](x(k), v(k)) - (\sansR \cdot \sigma dis
a )k = \scrO (\Delta x2) .

The difference between a and a, according to the definition, is due to the error in
\phi 1.

Lemma 5. With incoming data given by f - (x
\prime , v\prime ) = \psi ( | x

\prime  - x(j)| 
\varepsilon )\psi ( | v

\prime  - v(j)| 
\varepsilon ), the

analytical a(x, v) and the discrete a differ by \scrO (\varepsilon  - 2 - \delta 
1 \varepsilon 4) (with arbitrary small \delta > 0),

i.e.,

a(x
(j)
\ast , v

(j)
\ast ) - aj = ln

\Biggl( 
f - (x

(j), v(j))

\phi 1(x
(j)
\ast , v

(j)
\ast )

\Biggr) 
 - ln

\Biggl( 
f - (x

(j), v(j))

\phi R,1(x
(j)
\ast , v

(j)
\ast )

\Biggr) 
= \scrO (\varepsilon  - 2 - \delta 

1 \varepsilon 4) ,

where (x(j), v(j)) \in \Gamma  - , and (x
(j)
\ast , v

(j)
\ast ) \in \Gamma + is defined as in (35), and both are on

the grid points.

Proof. It is an immediate consequence of Theorem 3 and the definition of a.

We then have the following theorem.

Theorem 4. If the norms in (37) are both taken as the L2 norm and assume the
range condition, then there exists a vector z such that

(47) \sigma dis = \sansR T z .

Then by choosing

(48) \lambda =
\varepsilon  - 2 - \delta 
1 \varepsilon 4 +\Delta x2

\| z\| 2

in (37) with \delta > 0, one has the error estimate

(49) \| \Sigma  - \sigma dis\| 2 \leq C\| z\| 1/22 (\varepsilon  - 2 - \delta 
1 \varepsilon 4 +\Delta x2)1/2 .

Proof. The major part of the proof follows a standard result from Tikhonov reg-
ularization, as summarized in [35, 17]. First, according to Lemma 5 and (46), one
has

a = a(x, v) +\scrO (\varepsilon  - 2 - \delta 
1 \varepsilon 4) = \sansR \cdot \sigma dis +\scrO (\varepsilon  - 2 - \delta 

1 \varepsilon 4 +\Delta x2) ,

and thus,

(50) \sansR \cdot \sigma dis = a+ C
\bigl( 
\varepsilon  - 2 - \delta 
1 \varepsilon 4 +\Delta x2

\bigr) 
.

If we consider the L2 norm, i.e., (37) reads

min
\Sigma 

\| \sansR \cdot \Sigma  - a\| 22 + \lambda \| \Sigma \| 22 ,

then the minimizer \Sigma reads

(51) \Sigma = (\sansR T\sansR + \lambda \sansI ) - 1\sansR Ta .
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Comparing (50) and (51), we see that their error can be computed as

\Sigma  - \sigma dis = (\sansR T\sansR + \lambda \sansI ) - 1\sansR T\sansR \sigma dis  - \sigma dis  - (\sansR T\sansR + \lambda \sansI ) - 1\sansR TC(\varepsilon  - 2 - \delta 
1 \varepsilon 4 +\Delta x2)

=
\bigl[ 
(\sansR T\sansR + \lambda \sansI ) - 1\sansR T\sansR \sigma dis  - \sigma dis

\bigr] 
 - (\sansR T\sansR + \lambda \sansI ) - 1\sansR TC(\varepsilon  - 2 - \delta 

1 \varepsilon 4 +\Delta x2)

= ereg + equa ,

where the first part ereg is the regularization error, and the second equa is the error
from computing a and may get amplified in the optimization process.

Now write the singular value decomposition of \sansR = U\Lambda V T , and denote the
columns of U and V as ui and vi, respectively, and the elements in \Lambda as si. Then we
have

\| equa\| 2 =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
i

vi(s
2
i + \lambda ) - 1siu

T
i C(\varepsilon 

 - 2 - \delta 
1 \varepsilon 4 +\Delta x2)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq C\surd 
\lambda 
(\varepsilon  - 2 - \delta 

1 \varepsilon 4 +\Delta x2) ,(52)

where we have used the Cauchy--Schwarz inequality and the fact that si/(s
2
i +\lambda ) \leq 1\surd 

\lambda 

to get the inequality. For ereg, using the range condition (47), we have

ereg =
\sum 
i

vi
 - \lambda 

s2i + \lambda 
si(u

T
i z) ,

and therefore,

\| ereg\| =
\sum 
i

\biggl( 
\lambda si

\lambda + s2i

\biggr) 
(uTi z)

2 \leq \| z\| 22 max
i

\biggl( 
\lambda si

\lambda + s2i

\biggr) 2

\leq C\lambda \| z\| 22 .(53)

Combining (53) and (52), we have

\| \Sigma  - \sigma dis\| 2 \leq C

\biggl( \surd 
\lambda \| z\| 2 +

1\surd 
\lambda 
(\varepsilon  - 2 - \delta 

1 \varepsilon 4 +\Delta x2)

\biggr) 
;

then choosing \lambda from (48), we see that the result (49) directly follows.

Using the same idea, we give an estimate for the sensitivity of the recovery of \sigma 
on the measurement error of \phi R,1.

Corollary 1. Assume that the measurement of \phi R,1(x
(j)
\ast , v

(j)
\ast ) has an error up

to \varepsilon m > 0, being sufficiently small. Then, under the condition (47) and choosing

(54) \lambda =
\varepsilon  - 2 - \delta 
1 \varepsilon 4 + \varepsilon m +\Delta x2

\| z\| 2
,

one has the error estimate

(55) \| \Sigma  - \sigma dis\| 2 \leq C\| z\| 1/22 (\varepsilon  - 2 - \delta 
1 \varepsilon 4 + \varepsilon m +\Delta x2)1/2 .

Proof. Denote \~\phi R,1(x
(j)
\ast , v

(j)
\ast ) as the measurement of \phi R,1(x

(j)
\ast , v

(j)
\ast ) with error,

and denote

(56) \~aj = ln

\Biggl( 
f - (x

(j), v(j))

\~\phi R,1(x
(j)
\ast , v

(j)
\ast )

\Biggr) D
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as the corresponding data at the grid points. By assumption | \phi R,1(x
(j)
\ast , v

(j)
\ast )  - 

\~\phi R,1(x
(j)
\ast , v

(j)
\ast )| < \varepsilon m, one clearly has

(57) aj  - \~aj = ln

\Biggl( 
f - (x

(j), v(j))

\phi R,1(x
(j)
\ast , v

(j)
\ast )

\Biggr) 
 - ln

\Biggl( 
f - (x

(j), v(j))

\~\phi R,1(x
(j)
\ast , v

(j)
\ast )

\Biggr) 
= \scrO (\varepsilon m)

if \varepsilon m is small enough to guarantee that \~\phi R,1(x
(j)
\ast , v

(j)
\ast ) is away from zero. Thus, by

Lemma 5 one obtains

a(x
(j)
\ast , v

(j)
\ast ) - \~aj = \scrO (\varepsilon  - 2 - \delta 

1 \varepsilon 4 + \varepsilon m) .

Then replacing a with \~a in the proof of Theorem 4 gives the error estimate (55) under
the choice (54).

5. Discussion in diffusive regime. As demonstrated in previous sections, in
most optimization formulations of the inverse problem, one always needs a repeated
use of the forward solver. However, the RTE resides in a high dimensional phase
space, which requires a large amount of computational effort. A well-accepted ap-
proximation is the diffusion approximation, which gives rise to a model that only
varies in spatial domain. This approximation turns out to be very efficient in the
forward setting, but it brings about a huge error in the inverse problem. Studies
have shown that, in the case when such an approximation can be made, the recovery
of the scattering and absorption coefficient becomes unstable and inaccurate. This
phenomena was systematically studied in [13] for the stationary case and in [12] for
the time-dependent case, where the Knudsen number (\sansK \sansn ) denotes the regime of the
equation: a smaller Knudsen number means better approximation of the diffusion
limit. Then it is shown that, as the Knudsen number shrinks to zero, in the forward
setting, the RTE converges to the diffusion equation, with its scattering and absorp-
tion coefficients becoming the diffusion and the damping coefficients in the diffusion
equation, respectively. For the inverse setting, however, the recovery becomes very
bad, with the so-defined indistinguishability coefficient---a quantity that measures the
accuracy of the recovery---blowing up to infinity in the diffusion regime.

In this section, we will revisit this result in our numerical optimization frame-
work and show that, in a 3D diffusive regime, E1 cannot be separated from E2 and
E3, making the algorithm invalid in the very first step. More precisely, the original
equation (1) in the diffusive scaling is rewritten as

(58) v \cdot \nabla xf +

\biggl( 
\sansK \sansn \sigma a(x) +

1

\sansK \sansn 
\sigma \nu (x, v)

\biggr) 
f =

1

\sansK \sansn 

\int 
k(x, v, v\prime )f(x, v\prime )dv\prime ,

where the Knudsen number \sansK \sansn represents the ratio of the mean free path and the
domain length and is an indicator of the regime the equation is in. Here we decompose
the total absorption \sigma in (1) into two components, \sigma a and \sigma \nu . The former is a pure
absorption, and the latter is the absorption caused by scattering, i.e., \sigma \nu (x, v) =\int 
k(x, v, v\prime )dv\prime . As written in (58), \sigma a and \sigma \nu are rescaled differently. In this new

form, the inverse problem will recover either (\sigma , k) or (\sigma a, k).
For simplicity, we consider the domain \Omega =

\bigl\{ 
x = (x1, x2, x3) \in R3, 0 \leq x1 \leq 1

\bigr\} 
,

and thus \partial \Omega are two infinite size parallel walls located at xl = (0, 0, 0) and xr =
(1, 0, 0), respectively. The outer normal directions are then nl = (1, 0, 0) and nr =
( - 1, 0, 0). The main theorem is stated as follows.

D
ow

nl
oa

de
d 

06
/0

2/
20

 to
 1

28
.1

04
.4

6.
20

6.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A NUMERICAL APPROACH TO INVERSE TRANSPORT EQUATION 3377

Theorem 5. In three dimensions, consider the incoming data given by f - (x
\prime , v\prime ) =

\psi ( | x
\prime  - x0| 
\varepsilon )\psi ( | v

\prime  - v0| 
\varepsilon ), with x0 = (0, x2, x3), and Ei defined as in (40). Assuming that

\partial \Omega is C1 in the neighborhood of x\ast = x0 + \tau +(x0, v0)v0, one has

(59) E1 \leq C1\varepsilon 
4 exp ( - C2/\sansK \sansn ) , E3 \geq c\varepsilon 4\varepsilon 41\sansK \sansn 

q ,

where C1, C2, c, and q are positive constants, and q depends on the dimension of the
problem. Consequently, if

\sansK \sansn \leq \scrO 
\biggl( 
 - 1

ln \varepsilon 1

\biggr) 
,

then the algorithm breaks down since E3 can no longer be distinguished from E1.

The proof of this theorem relies on asymptotic and boundary layer analysis. For
this reason, we first consider a 3D case with slab geometry, which essentially reduces
to a problem in one dimension. Indeed, denote x = (x1, x2, x3), and then in slab
geometry the dependent functions are assumed to be homogeneous in x2 and x3, and
the velocity is v = (cos \theta , 0, 0), where \theta is the angle between the direction of the flight
and positive x1 direction. Therefore, the photon dynamics varies only along x1 and
v1, and the problem (58) reduces to the 1D problem

(60)

\left\{     
v1\partial x1f = 1

\sansK \sansn (\langle f\rangle  - f) , (x1, v1) \in [0, 1]\times [ - 1, 1] ,

f | x1=0,v1>0 = \phi (v1) ,

f | x1=1,v1<0 = 0 .

Here we assume that the boundary is placed at x1 = 0 and x1 = 1. At the left
boundary x1 = 1, there are incoming data \phi (v1), which could be designed as a con-
centrated source term. We also assume that \sigma a \equiv 0 just for the ease of computation
that follows.

When \sansK \sansn = 1, equation (60) is a reduced version of RTE (1) in one dimension with
\sigma = k = 1. Also as \sansK \sansn \rightarrow 0, physically it means the interactions between particles
become intense, driving the equation to the diffusive regime. More specifically, we
have the next proposition (here we omitted the subscript ``1"").

Proposition 2. In the \sansK \sansn \rightarrow 0 limit, the solution to (60) can be well approxi-
mated by

(61) f(x, v) = fA + EA = fL
\Bigl( x

\sansK \sansn 
, v
\Bigr) 
+ f I(x, v) + EA(x, v) ,

where fA is the approximate solution and has two parts: the layer part, denoted by
fL, and the interior part, denoted by f I . EA is the approximation error. There exists
a constant \eta , such that the layer, the interior, and the error satisfy the following
equations, respectively:

fL: The layer lives only within \sansK \sansn distance from x = 1, and with change of
variables y = x

\sansK \sansn , it satisfies

(62)

\left\{     
v\partial yf

L = \langle fL\rangle  - fL ,

fL(y = 0, v > 0) = \phi (v) - \eta ,

fL(y = \infty ) = 0 .
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f I : The interior is defined as

f I(x, v) = \theta  - \sansK \sansn v\partial x\theta ,

and with \theta satisfies

(63)

\Biggl\{ 
\partial 2x\theta = 0 ,

\theta (x = 0) = \eta , \theta (x = 1) = 0 .

It also means that f I satisfies

(64)

\left\{     
v\partial xf

I = 1
\sansK \sansn 

\bigl( 
\langle f I\rangle  - f I

\bigr) 
,

f I(x = 0, v > 0) = \eta  - \sansK \sansn v\partial x\theta ,

f I(x = 1, v < 0) = 0 .

EA: The error term satisfies

(65)

\left\{     
v\partial xE

A = 1
\sansK \sansn 

\bigl( 
\langle EA\rangle  - EA

\bigr) 
,

EA(x = 0, v > 0) = \sansK \sansn v\partial x\theta ,

EA(x = 1, v < 0) =  - fL( 1
\sansK \sansn , v).

Moreover, in a neighborhood of the right wall, with x \in (1 - 2\sansK \sansn , 1),

(66) f I(x) = 1 - x , fL(x) \sim e - x/\sansK \sansn , EA \sim e - x/\sansK \sansn .

Proof. To show (61), one simply needs to add up the three equations (62), (64),
and (65). The properties in (66) are from the solution to the diffusion equation and
the behavior of the layer equation [22]. \eta is termed the extrapolation length, and its
existence is proved in [22], but it cannot be computed explicitly.

Remark 3. In a more general 3D case, the analysis can be a bit complicated. As
mentioned earlier in this section, we still assume that the boundaries are two infinite
size parallel walls located at xl = (0, 0, 0) and xl = (1, 0, 0), respectively. Then the
equation reads\left\{     
v1\partial x1f + v2\partial x2f + v3\partial x3f = 1

\sansK \sansn \scrL [f ] , (x1, x2, x3) \in [0, 1]\times R2 ,
\sum 3

i=1 v
2
i = 1 ,

f | x1=0,v1>0 = \phi x(x2, x3)\phi 
v(v) ,

f | x1=1,v1<0 = 0 .

Here \scrL [f ] = \langle f\rangle  - f is an abbreviation of the collision term, and \phi x and \phi v are
two functions concentrated at x0 = (0, 0, 0) and v0 = (1, 0, 0). Namely, the particles
getting into the domain are mainly from the origin with speed pointing directly to
the wall on the right. As \sansK \sansn goes to zero, the layer appears only on the left side along
the x1 direction, and by setting

y =
x1
\sansK \sansn 

,

we separate the layer equation and the interior equation as follows:
\bullet Layer:

(67)

\left\{     
v1\partial yf

L = \scrL [fL] , y \in [0,\infty ) ,

fL| y=0,v1>0 = \phi x(x2, x3) (\phi 
v(v) - \eta ) ,

fL| y=\infty = 0 .
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\bullet Interior:
(68)\left\{     

v1\partial x1
f I + v2\partial x2

f I + v3\partial x3
f I = 1

\sansK \sansn \scrL [f
I ] , (x1, x2, x3) \in [0, 1]\times R2 ,

f I | x1=0,v1>0 = \eta \phi x(x2, x3) ,

f | x1=1,v1<0 = 0 .

\bullet Error: the error is defined by

EA = f  - fA = f  - fL  - f I ,

and taking (67) and (68) into account, one gets

(69)

\left\{         
(v1\partial x1

+ v2\partial x2
+ v3\partial x3

)EA = 1
\sansK \sansn \scrL [E

A] - (v2\partial x2
+ v3\partial x3

)fL,

(x1, x2, x3) \in [0, 1]\times R2 ,

EA| x1=0,v1>0 = 0 ,

EA| x1=1,v1<0 =  - fL( 1
\sansK \sansn , x2, x3, v) .

It has been shown in [22] that fL(y, v) \in L2
\bigl( 
e\beta ydy, L2(dx)

\bigr) 
; then in the neigh-

borhood of x0\ast = (1, 0, 0), v0\ast = (1, 0, 0),

fL(x, v) \sim e - 
x1
\sansK \sansn , EA(x, v) \sim e - 

x1
\sansK \sansn ,

and thus f \sim f I around x1 = 1. The standard asymptotic analysis applied on f I

shows that

f I = \theta  - \sansK \sansn v \cdot \nabla x\theta + \sansK \sansn 2(v \cdot \nabla x)
2\theta + \cdot \cdot \cdot ,

\int 
f Idv = \theta ,

where

\Delta x\theta = 0 , \theta | x1=0 = \eta \phi x(x2, x3) , \theta | x1=1 = 0 , x\ast = (1, 0, 0) .

In summary, around x0\ast , asymptotically we have\int 
fdv \sim 

\int 
f Idv = \theta \sim | x - x0\ast | q,

with q depending on the dimension (q = 1 in one dimension, for example).
We would like to point out that the choice of x0 and v0 is arbitrary as long as

they reside on the left wall. Here we pick x0 = (0, 0, 0) and v0 = (1, 0, 0) just as an
example. In the following proof of Theorem 5, we still make this choice, and again it
can be easily adapted to other choices.

Proof of Theorem 5. It follows from (45) that

E1 \leq e - C2/\sansK \sansn 

\int 
| x\prime  - x0| <\varepsilon ,| v\prime  - v0| <\varepsilon 

d\xi (x\prime , v\prime ) ,

where C2 = minx\prime ,v\prime \tau  - ((x
\prime + \tau +(x

\prime , v\prime )v\prime ), v\prime ) > 0, the minimum taken over all possi-
ble (x\prime , v\prime ) for which the integrand in (45) is nonzero. Then the upper bound for E1

(59) follows.
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In order to estimate E3, first notice that for the input \psi ( | x
\prime  - x0| 
\varepsilon )\psi ( | v

\prime  - v0| 
\varepsilon ) with

x0 = (0, 0, 0) and v0 = (1, 0, 0), the asymptotic analysis gives

f(x, v) = \theta (x) +\scrO (e - 1/\sansK \sansn ), \theta (x) \geq c| x - x\ast | q,

for some c > 0, where x0\ast = (1, 0, 0). This means that at the receiver placed at x0\ast ,
\theta (x) has a polynomial lower bound. Then, for x with | x  - x0\ast | \leq \sansK \sansn , by using (43),
we estimate

(\scrB \scrA  - 1\scrB f)(x, v) =
\int 
\Omega 

\int 
V

K1(x, v, y, w)f(y, w)dwdy

= \sansK \sansn  - 2

\int 
\Omega x

e - | x - y| /\sansK \sansn \theta (y)

| x - y| 2
dy

\geq c\sansK \sansn  - 2

\int 
\Omega x

\bigcap 
\{ | x - y| \leq \sansK \sansn \} 

| y  - x\ast | q

| x - y| 2
dy

\geq c\sansK \sansn  - 2

\int 
\Omega x

\bigcap 
\{ | x - y| \leq | x - x\ast | /2\} 

| y  - x\ast | q

| x - y| 2
dy .

Note that if | x - y| \leq | x - x\ast | /2, then | y  - x\ast | \geq | x - x\ast | /2. Thus,

(\scrB \scrA  - 1\scrB f)(x, v) \geq c\sansK \sansn  - 2| x - x\ast | q
\int 
\Omega x

\bigcap 
\{ | x - y| \leq | x - x\ast | /2\} 

1

| x - y| 2
dy \geq c\sansK \sansn  - 2| x - x\ast | q+1 .

Since \alpha 3 relates to \scrA  - 1
\bigl( 
\scrB \scrA  - 1\scrB 

\bigr) 
, and by using the assumption that \partial \Omega is C1 at x0\ast ,

we have

\alpha 3(x\ast , v;x
\prime , v\prime ) =

\int \tau  - (x\ast ,v)

0

e - 
1
\sansK \sansn 

\int t
0
\sigma \nu (x\ast  - sv,v)ds(\scrB \scrA  - 1\scrB f)(x\ast  - tv, v)dt

\geq c\sansK \sansn  - 2

\int \sansK \sansn 

0

| (x\ast  - tv) - x\ast | q+1dt = c\sansK \sansn q .

Then the lower bound of E3 follows directly from its definition in (40). Comparing
E3 and E1, we see that as long as \sansK \sansn \leq \scrO ( - 1

ln \varepsilon 1
), E3 is no longer much smaller than

E1, and the separation cannot be done.

6. Numerical results. We demonstrate numerical evidence in this section.
More specifically, we will numerically show the results in Theorem 3: as \varepsilon becomes
small, the input becomes more like a \delta -function, and the light propagates more like
a beam. When this happens, E1, the light intensity provided by the ballistic part,
becomes dominant, and E2 + E3, which contains the intensity of scattered photons,
diminishes.

For the numerical experiment, we use the following simplified equation (with \sansK \sansn 
being the Knudsen number):

(70) v \cdot \nabla xf +

\biggl( 
\sansK \sansn \sigma a(x) +

1

\sansK \sansn 

\biggr) 
f =

1

2\pi \sansK \sansn 

\int 
fdv on (x, \theta ) \in [0, 1]2 \times [ - \pi , \pi ] ,

where v = (cos \theta , sin \theta ) and we have set \sigma \nu = k = 1, and the absorption coefficient is

\sigma a(x, y) = 1 + 0.1\chi (x - 0.5)2+(y - 0.5)2\leq 0.09,

where \chi is a characteristic function.
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For this specific geometry, the inflow boundary consists of the four parts

\Gamma  - = \{ x = 0, cos \theta > 0\} \cup \{ x = 1, cos \theta < 0\} \cup \{ y = 0, sin \theta > 0\} \cup \{ y = 1, sin \theta < 0\} ,

and the incoming data are given by

f\Gamma  - = \psi 

\biggl( 
| x - x0| 

\varepsilon 

\biggr) 
\psi 

\biggl( 
| v  - v0| 

\varepsilon 

\biggr) 
.

They converge to a \delta -function as \varepsilon shrinks.
For discretization, we sample (Nx+1)2 in the spatial domain, located at (i\Delta x, j\Delta x),

i, j = 0, . . . , Nx, with \Delta x = 1/Nx, and N\theta grid points in \theta , located at  - \pi +(i+1/2)\Delta \theta ,
with \Delta \theta = 2\pi /N\theta . A GMRES-type algorithm is used [23]. Numerically the boundary
condition is set as

f | \Gamma  - =

\Biggl\{ 
c\varepsilon if x = 0, | y  - 1/2| \leq \varepsilon , | \theta | \leq \pi \varepsilon ,

0 otherwise.

Here c\epsilon > 0 is a normalizing constant such that the local intensity \rho (x, y) =\int 
f(x, y, \theta )d\theta of the solution to (58) has maximum 1. For accuracy, we set Nx =

N\theta = 160, and the computation is done with \varepsilon = 2 - 3, 2 - 4, 2 - 5, 2 - 6 for \sansK \sansn being 1,
2 - 1, and 2 - 2. We have to emphasize that the geometry and the inflow condition in
this example are simple enough for the direct GMRES to be applied, but typically
the beam inserted at (xj , vj) \in \Gamma  - may not have its counterpart on the discretized
\Gamma +, and more sophisticated sampling strategies are called for, as shown in [25].

The goal is to show that as \varepsilon shrinks, E1 becomes dominant. Since E1 presents
the intensity contained in the ballistic part, we can consider it as the integration at
the boundary of f , the solution to the following equation:

(71) v \cdot \nabla xf +

\biggl( 
\sansK \sansn \sigma a(x) +

1

\sansK \sansn 

\biggr) 
f = 0 on (x, \theta ) \in [0, 1]2 \times [ - \pi , \pi ] .

Then comparing E1 to E1 + E2 + E3 amounts to comparing the solutions to (70)
and (71). The two solutions should demonstrate more similarity when \varepsilon is small, and
in the small \sansK \sansn regime, the scattering term is magnified and strong, and the two
solutions are more distinct.

These are numerically justified in Figures 1 and 2. In particular, in Figure 1 we
compare

\int 
fdv computed from (70) and (71) with different \varepsilon for three sets of \sansK \sansn . For

all \sansK \sansn , as \varepsilon shrinks, the two solutions are visually more equivalent, and small \sansK \sansn gives
more distinct solutions.

In Figure 2, we compare the intensity of the outflow at boundary \{ x=1, cos \theta >0\} .
We plot

(72) g(y) =

\int 
cos \theta >0

f(1, y, \theta ) cos \theta d\theta 

as a function of y. It is also clear that larger \sansK \sansn and smaller \varepsilon lead to closer intensities
between the two solutions.
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Fig. 1. For \sansK \sansn = 1, 2 - 1, and 2 - 2, we compare the solution to the RTE (70) and the solution
to the equation without the scattering term (X-ray transform), written in (71), using different \varepsilon 
in the incoming data. For each \sansK \sansn , the top row shows \rho computed from (70), and the second
row shows the solution to (71), the X-ray transform solution that contains the ballistic part of the
information. It is obvious that for \sansK \sansn = 1, a smaller \varepsilon , which means finer incoming data, leads to
better approximations: the two solutions are more similar. The same trend is observed for \sansK \sansn = 2 - 1

and \sansK \sansn = 2 - 2. The difference between the two solutions also depends on the regime that the system
is in: a smaller \sansK \sansn leads to stronger scattering, which means the solutions to the RTE and the X-ray
transform are increasingly different.
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Fig. 2. Outflow intensity g(y) from (72): in all of the plots, the star line shows the solution to
the X-ray transform, the intensity given by the solution to (71), and the solid line shows the solution
to the RTE (70), with different sets of \sansK \sansn and \varepsilon in the incoming data. As \varepsilon becomes small, the
ballistic part dominates and the solution to the two equations converges, and as \sansK \sansn becomes small,
the scattering effect is strong and the disparities between the two solutions becomes strong.
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