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Abstract
We show that the inverse problems for a class of kinetic equations  can be 
solved by classical tools in PDE analysis including energy estimates and the 
celebrated averaging lemma. Using these tools, we give a unified framework 
for the reconstruction of the absorption coefficient for transport equations in 
the subcritical and critical regimes. Moreover, we apply this framework to 
obtain, to the best of our knowledge, the first result in a nonlinear setting. We 
also extend the result of recovering the scattering coefficient in Choulli and 
Stefanov (1998 Osaka J. Math. 36 87–104) from 3D to 2D strictly convex 
domains.

Keywords: kinetic theory, optical tomography, inverse transport problems, 
averaging lemma

(Some figures may appear in colour only in the online journal)

1.  Introduction

Kinetic theory describes the behaviour of a large number of particles that follow the same 
physical laws in a statistical manner. Depending on the particular type of particles, various 
equations are derived. These include, among many others, the Boltzmann equation  for the 
rarified gas, Vlasov–Poisson equation  for charged plasma particles, the radiative transfer 
equation for photons, and the neutron transport equation for neutrons. In the kinetic theory, 
one uses f (t, x, v) to denote the density distribution function of the particles in the phase space 
(x, v) at time t. The kinetic equation that f  satisfies is of the form

∂tf + v · ∇xf + E · ∇vf = Q[ f ],
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where the terms on the left characterizes the trajectory of particles moving with velocity v and 
accelerated/decelerated by the external field E, namely,

ẋ = v, v̇ = E.

In practice, for example for the plasma system, E is the electric field generated by the electric 
potential. The term on the right collects information about particles colliding with each other 
and/or with the media. The specific form of Q depends on the particular type of particles 
studied.

During the past three decades, analysis of kinetic equations has seen drastic progresses. In 
particular, with the introduction of averaging lemma and application of the concept of entropy 
combined with traditional energy estimates, the well-posedness and the convergence to equi-
libria can now be shown for many kinetic equations.

Despite their wide applications for forward problems, such techniques are barely used in 
the inverse setting, where the goal is to recover certain unknown parameters (in E or Q for 
example). These parameters are usually set constitutively or ‘extracted’ from lab experiments. 
Mathematically, such ‘extraction’ is a process termed inverse problem, which is generally hard 
to solve rigorously. Aside from very limited examples [8, 9, 7, 14–16, 28, 30, 37–40] along 
with some analysis on stability [5, 6, 12, 22, 25, 27, 28, 32, 41, 42], it is unknown in general, 
what kind of data would be enough to guarantee a unique reconstruction or when the recon-
struction is stable. Moreover, in the few solved examples, the techniques used rely on careful 
and rather explicit calculation of the solutions to the PDEs, or on the experimental advances 
that involve hybrid imaging to reveal internal data [10, 17]. As a consequence, it is challeng-
ing to extend these results to general models (see reviews in [4, 36]). There are, however, a 
large amount of studies addressing the related computational issues [1, 13, 29, 31, 34, 35]  
(also see reviews in [2, 3, 33]).

In this paper we propose to use energy methods and the averaging lemma to investigate the 
unique reconstruction of parameters in transport equations in a rather general setup. Since our 
methods do not rely on fine details of the equation as much as in the previous works, we can 
apply our results to a class of models including a nonlinear transport equation. We are also 
able to extend the study of the radiative transport equation in the subcritical case in [16, 39] 
to a unified analysis in both subcritical and critical regimes. Further comments regarding the 
dimensionality can be found in section 1.2 where precise statements of the main results are 
shown.

1.1.  Singular decomposition

Throughout the paper we study the time-independent problem

v · ∇xf (x, v) = −σaf (x, v) + Ff (x), x ∈ Ω ⊆ R2, v ∈ S1,� (1.1)

where Ω is a bounded convex domain, S1 is the unit circle with a normalized measure, and 
Ff (x) maps f  into a function that only depends on x. For example, in the first case solved in 
theorem 1.1, we consider

F : L p(Ω× S1) → L p(Ω), p � 1.

The function space for f  may vary in different problems.
We assume that σa  is isotropic in the sense that σa = σa(x). One example is the radiative 

transfer equation (RTE) where Ff  is simply defined by taking the zeroth moment of f :
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Ff (x) = σs(x)
∫

S1
f (x, v)dv.

The data we will be using is of the Albedo type, namely, we can impose an incoming boundary 
condition and measure the associated outgoing boundary data and define the Albedo operator 
as

A : f |Γ− → f |Γ+
.

Here Γ± are the collections of all coordinates on the physical boundary with the velocity 
pointing either in or out of the domain defined by

Γ± = {(x, v) : x ∈ ∂Ω, ±n(x) · v � 0},

where n(x) is the outward normal at x ∈ ∂Ω. The goal is to reconstruct parameters in (1.1) 
such as σa  or unknown parameters in Ff  by taking multiple sets of incoming-to-outgoing data.

The basic approach we adopt here is the method of singular decomposition. It is introduced 
in [16] to recover the absorption and scattering kernel in the radiative transfer equation. The 
main idea of this method is built upon the observation that the solution f (x, v) to (1.1) can be 
decomposed into parts with different regularity. Each part contains information of different 
terms in equation (1.1). Hence if one is able to separate these parts with different regular-
ity by imposing proper test functions on Γ−, then there is hope to recover various terms in 
equation (1.1).

As an illustration, we explain the basic procedures to reconstruct σa  in (1.1). We start with 
splitting the solution as f = f1 + f2 where f1, f2  satisfy

{
v · ∇xf1 = −σaf1,
f1|Γ− = f |Γ−

and
{
v · ∇xf2 = −σaf2 + Ff ,
f2|Γ− = 0.

With a relatively singular and concentrated input, e.g. f |Γ− = φ( x−x0
ε )φ( v−v0

ε ), f 1 will be more 
singular compared with f 2: the information of f 1 propagates only in a narrow neighborhood 
of a ray while f 2 is more spread out. Hence one is able to isolate f 1 from f 2 by measuring the 
outgoing data only in a small neighborhood of the exit point for f 1. It is then clear from the 
equation for f 1 that the absorption coefficient σa  can be fully recovered once f 1 known. The 
details of such analysis is shown in section 2.

The method of singular decomposition has been extensively used in many variations of 
RTE, including the time-dependent model, when data is angular-averaging type, models with 
internal source, and models with adjustable frequencies, among some others [8, 9, 7, 28, 30, 
38–40]. See also reviews [2, 4, 33]. Stability was discussed in [5, 6, 12, 25, 27, 41, 42]. To our 
knowledge, all these discussions are centered around linear RTEs. Since linearity plays the 
central role, so far there has been no result in a nonlinear setup. One of our goals in this paper 
is to extend singular decomposition to a nonlinear system.

1.2.  Main results

We show two main results in this paper. The first result gives a general framework for recover-
ing the absorption coefficient. To present our idea in the simplest form, we set our proof in two 
dimension. General dimensions can be treated similarly.

The domain Ω considered in this paper is strictly convex with a C2 boundary. For such a 
domain, there exists a C2-function ξ : R2 → R (which is called the defining function of Ω) 
such that Ω  and its boundary are described by
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Ω = {x
∣∣ ξ(x) � 0} and ∂Ω = {x

∣∣ ξ(x) = 0}.� (1.2)

Moreover, ∇xξ(x) �= 0 for any x ∈ ∂Ω and there exists a constant D0  >  0 such that

2∑
i,j=1

∂ijξ(x)aiaj � D0|a|2, ∀ x ∈ Ω.� (1.3)

The construction of ξ uses the distance function dist(x, ∂Ω) whose regularity is the same as 
the regularity of ∂Ω. We refer the reader to section 14.6 in [21] for more details. The outward 
normal n(x) at x ∈ Ω is then given by

n(x) =
∇xξ(x)
|∇xξ(x)|

, ∀ x ∈ ∂Ω.

Theorem 1.1.  Let Ω ⊆ R2  be a strictly convex and bounded domain with a C2 boundary. 
Suppose σa � 0 is isotropic and σa ∈ C(Ω). Suppose there exists p � 1 such that for any 
given incoming data φ satisfying

φ ∈ L p(Γ−), φ � 0,

equation (1.1) with a given mapping Ff  has a unique solution with the bound

||Ff | |L p(Ω) � C0,F ||φ | |L p(Γ−),� (1.4)

where C0,F is independent of φ. Then with proper choices of the incoming data and outgoing 
measurements, the absorption coefficient σa  can be uniquely reconstructed. Moreover, such σa  
is independent of the particular form of Ff  as long as Ff  satisfies (1.4) with C0,F independent 
of the incoming data φ.

We remark that although the specific form of Ff  is not needed in the proof of theorem 1.1, 
when applying theorem 1.1 to particular examples, one needs to make use of the specific defi-
nition of Ff  to verify (1.4) and the well-posedness of (1.1) with such Ff . We also comment that 
this assumptions on Ff  is not as restrictive as they may appear. In fact it is common for a vast 
class of kinetic equations that Ff  only depends on the moments of f  and satisfies the bound in 
(1.4). Upon proving theorem 1.1 in section 2, we will give two examples to demonstrate its 
effectiveness.

In the second result, we show the unique recovery of the scattering coefficient σs in the 
classical RTE (radiative transfer equation):

v · ∇xf = −σaf + σs 〈f 〉 , x ∈ Ω ⊆ R2, v ∈ S1,� (1.5)

where 〈f 〉 =
∫
S1 fdv with dv normalized in the way that 

∫
1dv = 1. This equation describes the 

dynamics of photon particles in a bounded domain Ω. The media is characterized by the total 
cross section σa  and the scattering cross section σs, which are both functions of x. These cross 
sections are determined by the optical properties of the media.

Theorem 1.2.  Let Ω ⊆ R2  be a strictly convex and bounded domain with a C2 bound-
ary (see the precise definition in section  2). Suppose σa,σs ∈ C(Ω) with σa  given and 
0 < σ0 � σs � σa. Then with proper choices of the incoming data and outgoing measure-
ments, the scattering coefficient σs in (1.5) can be uniquely reconstructed from the measure-
ment of the outgoing data.
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Two comments are in place for theorem 1.2: first, we only show the result in R2 since this 
is the case not covered in [16]. Similar strategy used to prove theorem 1.2 can also be applied 
to any higher dimension by using the same incoming data and measurement as in [16]. In this 
sense, our result would be an extension of [16]. Second, in R2 so far we can only treat the case 
where σs is isotropic, that is, σs = σs(x). Similar as in [16], such constraint is not needed for 
higher dimensions. We also note that 2D case was studied in [39]. However, there smallness 
of the scattering kernel is assumed while we can deal with the critical and general subcritical 
cases.

This paper is laid out as follows. In section 2, we show the proof of theorem 1.1 together 
with its applications to the classical linear RTE and a nonlinear RTE coupled with a temper
ature equation. In section 3, we show the proof of theorem 1.2. Some technical parts in the 
proofs of these two theorems are left in the appendices.

2.  Absorption coefficient for radiative transfer equations

For each (x, v) ∈ Ω× S1, we use τ−(x, v) and τ+(x, v) to denote the nonnegative backward and 
forward exit times, which are the instances where

x− τ−(x, v)v ∈ ∂Ω, x+ τ+(x, v)v ∈ ∂Ω, for any (x, v) ∈ Ω× S1.
� (2.1)

Recall the basic properties of the backward exit time from lemma 2 in [24]:

Lemma 2.1 ([24]).  Suppose Ω ⊆ R2  is strictly convex and has a C2 boundary. Sup-
pose ξ is the characterizing function of Ω and ∂Ω which satisfies (1.2) and (1.3). For any 
(x, v) ∈ Ω× S1, let τ− be the backward exit time defined in (2.1) and x− ∈ ∂Ω be the exit point 
given by x− = x− τ−(x, v)v. Then

	(a)	�(τ−, x−) are uniquely determined for each (x, v) ∈ Ω× S1; 
	(b)	�Suppose ξ ∈ C1(R3) and v · n(x−) �= 0. Then τ−, x− are differentiable at (x, v) with

∇xτ−(x, v) =
n(x−)

v · n(x−)
, ∇vτ−(x, v) =

τ−n(x−)
v · n(x−)

,

∇xx−(x, v) = I −∇xτ− ⊗ v, ∇vx−(x, v) = −τ−I −∇vτ− ⊗ v.

The rest of this section is devoted to the proof of theorem 1.1. As introduced in the previous 
section, the idea of the proof is to separate the terms in the equations and compare the induced 
singularities. In particular, let f  the solution to the equation  (1.1) with boundary condition 
f |Γ− = φ(x, v). We separate it as f = f1 + f2 so that f 1 satisfies

v · ∇xf1 = −σaf1, f1
∣∣
Γ−

= φ(x, v),� (2.2)

and f 2 satisfies

v · ∇xf2 = −σaf2 + Ff (x), f2
∣∣
Γ−

= 0.� (2.3)

If we choose φ(x, v) to be a delta-like function concentrating at a point (xin, vin) ∈ Γ−, then it 
is clear through equation (2.2) that the leading singularity of f  will be propagating along the 
ray

x = xin + τvin, τ ∈ [0, τ+].
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Defining

vout = vin, xout = xin + τ+(xin, vin)vin,� (2.4)

and letting the test function ψ concentrate on (xout, vout), we will split the measurement of the 
outgoing data into two components (with dΓ+ = n(x) · vdSxdv):

Mψ( f ) =
∫ ∫

Γ+

ψ(x, v) f (x, v) dΓ+

=

∫ ∫

Γ+

ψ(x, v) f1(x, v) dΓ+ +

∫ ∫

Γ+

ψ(x, v) f2(x, v) dΓ+

= Mψ( f1) +Mψ( f2).

� (2.5)

The estimates in the proof are designated to show that

Mψ( f1) is determined by the X-ray transform of σa� (2.6)

and for concentrated incoming data φ and concentrated test function ψ,

Mψ( f2) � Mψ( f1).� (2.7)

The concentration of φ and ψ will be described by ε and δ in the proof.
From this separation one can reconstruct σa  via the unique recovery of σa  in the x-ray 

transform. Details of the proof are shown below. One convention that we follow in the rest of 
this paper is that we repeatedly use c0 and C0 to denote constants that may change from line 
to line.

Proof of theorem 1.1.  Let ε, δ > 0 be arbitrary constants to be chosen later and let φ0 be 
a smooth function on R  such that

0 � φ0(r) � 1, φ0 ∈ C∞
c ([0,∞)), φ0(0) = 1,

∫ ∞

0
φ0(r)dr = 1.

For any (xin, vin) ∈ Γ− such that

vin · n(xin) = −cin < 0,� (2.8)

choose the incoming data for equation (1.1) as

φ(x, v) =
1
εδ

φ0

(
|x− xin|

ε

)
φ0

(
|v− vin|

δ

)
, (x, v) ∈ Γ−.

Let (xout, vout) be defined in (2.4), and we take the test function for measurement to be:

ψ(x, v) = ψ0(x− xout)ψ0

(
v− vout

δ

)
= ψ0(x− xout)ψ0

(
v− vin

δ

)
, (x, v) ∈ Γ+,

where ψ0(r) is a smooth function that satisfies

0 � ψ0(r) � 1, ψ0 ∈ C∞
c ([0,∞)), ψ0(0) = 1,

∫ ∞

0
ψ0(r)dr = 1.

� (2.9)

We can solve along characteristics in (2.2) and (2.3) to obtain explicit and semi-explicit form
ulas for f 1 and f 2 as

Q Li and W Sun﻿Inverse Problems 36 (2020) 035011
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f1(x, v) = e−
∫ τ−(x,v)
0 σa(x−sv)dsφ(x− τ−(x, v)v, v), ∀ (x, v) ∈ Ω× S1� (2.10)

and

f2(x, v) =
∫ τ−(x,v)

0
e−

∫ s
0 σa(x−τv) dτFf (x− sv)ds, ∀ (x, v) ∈ Ω× S1.� (2.11)

For future use, define the sets S1x,+ and ∂Ω+
v  by

∂Ω+
v =

{
x ∈ ∂Ω

∣∣n(x) · v > 0
}
, for all v ∈ S1,� (2.12)

S1x,+ =
{
v ∈ S1

∣∣ v · n(x) > 0
}
, for all x ∈ ∂Ω.� (2.13)

We show (2.6) in two steps.

Step 1: limit of Mψ( f1) Using (2.10), we have

Mψ( f1) =
∫ ∫

Γ+

ψ(x, v)e−
∫ τ−(x,v)
0 σa(x−sv)dsφ(x− τ−(x, v)v, v) dΓ+� (2.14)

=
1
εδ

∫

∂Ω

∫

S1x,+
e−

∫ τ−(x,v)
0 σa(x−sv)dsψ0(x− xout)ψ0

(∣∣v− vin
∣∣

δ

)

× φ0

(∣∣x− τ−(x, v)v− xin
∣∣

ε

)
φ0

(∣∣v− vin
∣∣

δ

)
n(x) · vdvdSx

=
1
ε

∫

∂Ω

ψ0(x− xout)Gε,δ(x)dSx,

�

(2.15)

where Gε,δ(x) denotes the inner integral and it can be further simplified in notation as

Gε,δ(x) =
1
δ

∫

S1x,+
e−

∫ τ−(x,v)
0 σa(x−sv)dsψ0

(∣∣v− vin
∣∣

δ

)

× φ0

(∣∣x− τ−(x, v)v− xin
∣∣

ε

)
φ0

(∣∣v− vin
∣∣

δ

)
n(x) · vdv

=
1
δ

∫

S1x,+
Hε(x, v)ψ0

(∣∣v− vin
∣∣

δ

)
φ0

(∣∣v− vin
∣∣

δ

)
dv

with

Hε(x, v) = e−
∫ τ−(x,v)
0 σa(x−sv)dsφ0

(∣∣x− τ−(x, v)v− xin
∣∣

ε

)
n(x) · v.� (2.16)

We will first pass δ → 0 and then ε → 0 in (2.15). Note that for each fixed ε and x ∈ ∂Ω, the 
inner integral Gε,δ satisfies
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0 � Gε,δ(x) �
1
δ

∫

S1x,+
ψ0

(∣∣v− vin
∣∣

δ

)
dv �

1
δ

∫ 2π

0
ψ0

(
sin θ/2
δ/2

)
dv

�
1
δ

∫ α0δ

0
ψ0

(
sin θ/2
δ/2

)
dv+

1
δ

∫ 2π

2π−α0δ

ψ0

(
sin θ/2
δ/2

)
dv � 2α0,

where α0 only depends on the size of the support of ψ0. Such uniform bound ensures that the 
Lebesgue Dominated Convergence theorem can be applied when taking the δ-limit in (2.15). 
To compute the pointwise δ-limit of Gε,δ, we denote Dφ0 as the set where

Dφ0 =

{
(x, v) ∈ Γ+

∣∣∣
∣∣v− vin

∣∣
δ

,
|x− − xin|

ε
∈ Suppφ0

}
, x− = x− τ−(x, v)v.

Then the measurement Mψ( f1) becomes

Mψ( f1) =
∫∫

Dφ0

ψ(x, v)e−
∫ τ−(x,v)
0 σa(x−sv)dsφ(x− τ−(x, v)v, v) dΓ+.

By the non-degeneracy condition of (xin, vin) in (2.8) and the support of φ0, the normal direc-
tion n(·) is continuous in a small neighbourhood of xin. Hence, if we choose δ, ε to be small 
enough, then for any (x, v) ∈ Dφ0, we have

v · n(x−) < −1
2
cin < 0, x− = x− τ−(x, v)v.� (2.17)

Application of lemma 2.1 gives that

τ−(x, v) ∈ C1(Dφ0),

which implies that τ−(x, v) is uniformly continuous on Dφ0. Together with the continuity of 
σa , and φ0, we deduce that for each ε, the function Hε(·, ·) : Dφ0 → R is continuous. Hence 
Hε is uniformly continuous on Dφ0 and thus

1
δ

∫

S1x,+

∣∣Hε(x, v)− Hε(x, vin)
∣∣ψ0

(∣∣v− vin
∣∣

δ

)
φ0

(∣∣v− vin
∣∣

δ

)
dv → 0 as δ → 0 uniformly in x.

Therefore, for each x ∈ Ω,

lim
δ→0

Gε,δ(x) = Hε(x, vin)

(
1
δ
lim
δ→0

∫

S1x,+
ψ0

(∣∣v− vin
∣∣

δ

)
φ0

(∣∣v− vin
∣∣

δ

)
dv

)
→ Cψ0,φ0Hε(x, vin),

where the constant Cψ0,φ0 is given by

Cψ0,φ0 =
1
δ
lim
δ→0

∫

S1x,+
ψ0

(∣∣v− vin
∣∣

δ

)
φ0

(∣∣v− vin
∣∣

δ

)
dv =

∫

R
φ0(r)ψ0(r)dr.
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Applying the Lebesgue Dominated Convergence theorem we obtain

lim
δ→0

Mψ( f1)

=
Cψ0,φ0

ε

∫

∂Ω

ψ0(x− xout)Hε(x, vin)dSx

=
Cψ0,φ0

ε

∫

∂Ω

ψ0(x− xout) e−
∫ τ−(x,vin)
0 σa(x−svin)dsφ0

(∣∣x− τ−(x, vin)vin − xin
∣∣

ε

)
n(x) · vindSx.

Furthermore if we make the change of variables using

y = x−(x, vin) = x− τ−(x, vin)vin,

then by the non-degeneracy in (2.17), the mapping is invertible and we claim that
∣∣n(y) · vin∣∣ dSy = −n(y) · vindSy =

∣∣n(x) · vin∣∣ dSx = n(x) · vindSx.� (2.18)

This relation can be justified through the physical meanings of 
∣∣n(x) · vin∣∣ dSx  and 

∣∣n(y) · vin∣∣ dSy 
as the effective fluxes into and out of the boundary. The mathematical proof for (2.18) is given 
in appendix B. Making such change of variables, we obtain that

lim
ε→0

lim
δ→0

Mψ( f1)� (2.19)

= lim
ε→0

Cψ0,φ0

ε

∫

∂Ω

ψ0(x(y)− xout) e−
∫ τ−(x(y),vin)
0 σa(x(y)−svin)dsφ0

(∣∣y− xin
∣∣

ε

)∣∣n(y) · vin∣∣ dSy

= Cψ0,φ0

∣∣n(xin) · vin∣∣ e−
∫ τ−(xout ,vin)
0 σa(xout−svin)ds

= Cψ0,φ0

∣∣n(xin) · vout∣∣ e−
∫ τ−(xout ,vout)
0 σa(xout−svout)ds,

� (2.20)

where we have applied the differential relation dSy = d|y− xin| and ψ0(0) = 1. Note that the 
last term involves the x-ray transformation of σa .

Step 2: limit of Mψ( f2) By (2.11), the contribution of f 2 toward the measurement is

Mψ( f2) =
∫

S1

∫

∂Ω+
v

∫ τ−(x,v)

0
ψ(x, v)e−

∫ s
0 σa(x−τv) dτFf (x− sv)n(x) · vdsdSxdv.

� (2.21)

Make a change of variables in the above integral with

y = x− sv, for x ∈ ∂Ω+
v and s ∈ (0, τ−(x, v)).� (2.22)

Note that y → (x, s) is a one-to-one mapping with the relation (verified in appendix B)

dy = n(x) · vdsdSx� (2.23)

and the inverse map is

s = τ+(y, v), x = y+ τ+(y, v)v.
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Hence one can rewrite the integral in (2.21) as

Mψ( f2) =
∫

S1

∫

Ω

ψ(y+ τ+(y, v)v, v)e−
∫ τ+(y,v)
0 σa(y+τ+(y,v)v−τv) dτFf (y)dydv.

With the definition of ψ and the bound for Ff  in (1.4), we obtain that

|Mψ( f2)| �
∫

S1

∫

Ω

ψ0

(
v− vin

δ

)
|Ff (y)| dydv

=

(∫

S1
ψ0

(
v− vin

δ

)
dv
)(∫

Ω

|Ff (y)| dy
)

� CΩδ ||Ff | |L p(Ω) � CΩ,Fδ ||φ | |L p(Γ−)

�

(2.24)

where the constant CΩ,F is independent of φ. The Lp -norm of φ can be estimated using its 
definition:

||φ | | pL p(Γ−) =

∫ ∫

Γ−

φ p(x, v) |n(x) · v| dSxdv

=
1

ε pδ p

∫ ∫

Γ−

φ p
0

(
|x− xin|

ε

)
φ p
0

(
|v− vin|

δ

)
|n(x) · v| dSxdv

�
1

ε pδ p

(∫

∂Ω

φ0

(
|x− xin|

ε

)
dSx

)(∫

S1
φ0

(
|v− vin|

δ

)
dv
)

� Cφ0ε
−( p−1)δ−( p−1).

Plugging such bound back in (2.24) we obtain

lim
ε→0

lim
δ→0

|Mψ( f2)| � CΩ,φ0 lim
ε→0

lim
δ→0

ε−
p−1
p δ

1
p = 0.� (2.25)

Finally, by combining (2.20) and (2.25) we have

lim
ε→0

lim
δ→0

Mψ( f ) =
∫∫

Γ+

ψ(x, v) f (x, v) dΓ+ = Cφ0,ψ0

∣∣n(xin) · vin∣∣ e−
∫ τ−(xout ,vout)
0 σa(xout−svout)ds.

Therefore, the x-ray transformation of σa  is uniquely determined by the measurement, which 
in turn implies that σa  is uniquely recoverable by the measurement. Moreover, since Cφ0,ψ0 
is independent of the particular form of Ff  and the step in showing Mψ( f2) only relies on the 
bound (1.4), we conclude that σa  is also independent of Ff  as long as (1.4) holds.� □ 

2.1.  Examples

Theorem 1.1 is rather general and one only needs to verify two conditions in order to apply 
it: the well-posedness of the forward problem and the bound (1.4). For many kinetic equa-
tions these conditions follow from energy methods. Below we give two examples.

The first example is the classical linear RTE with Ff = σs 〈f 〉 and the equation reads

v · ∇xf = −σaf + σs 〈f 〉 .� (2.26)

The statement of the unique solvability of σa  is
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Theorem 2.1.  Suppose Ω is a strictly convex and bounded domain with a C2 boundary. 
Suppose there exists a constant σ0 > 0 such that

σa ∈ C(Ω), σa � σs � σ0 > 0.

Then with proper choices of the incoming data, the absorption coefficient σa  can be uniquely 
recovered from the measurement of the outgoing data.

This is the example studied in the original singular decomposition work [16] where the 
subcritical case with σa − σs > 0 is considered. We are now able to treat the critical and sub-
critical cases with σa � σs in a unified way.

Proof.  Let φ be a nonnegative incoming data such that φ ∈ L2(Γ−). Then the positivity of f  
follows from the maximum principle of the linear RTE and the unique solvability is classical 
[18]. In equation (2.26) we have Ff (x) = σs 〈f 〉. To obtain an L2-bound of Ff , multiply (2.26) 
by 2f  and integrate in (x, v). This gives
∫

Ω

∫

S1
v · ∇xf 2 = −2

∫

Ω

∫

S1
σs (f − 〈f 〉)2 − 2

∫

Ω

∫

S1
(σa − σs) f 2 � −2σ0 ||f − 〈f 〉 | |2L2(Ω×S1).

By integration by parts, the left-hand satisfies
∫

Ω

∫

S1
v · ∇xf 2 =

∫

∂Ω

∫

S1
(n(x) · v) f 2 �

∫∫

Γ−

(n(x) · v) f 2 = − ||φ | |2L2(Γ−).

Combining the above two inequalities we have

||f − 〈f 〉 | |2L2(Ω×S1) �
1
2σ0

||φ | |2L2(Γ−).� (2.27)

Denote g = f − 〈f 〉. Since f � 0, we have

v · ∇f � −σsg.� (2.28)

Solving along charateristics, we have

f (x+ tv, v) � φ(x, v)−
∫ t

0
σs(x+ τv)g(x+ τv, v) dτ , (x, v) ∈ Γ−, t ∈ [0, τ+(x, v)].

Hence, for any (x, v) ∈ Γ− and t ∈ [0, τ+(x, v)], it holds that

f 2(x+ tv, v) � 2φ2(x, v) + 2

(∫ τ+(x,v)

0
σs(x+ τv) |g(x+ τv, v)| dτ

)2

� 2φ2(x, v) + 2 (diam(Ω)) ||σs | |2L∞(Ω)

∫ τ+(x,v)

0
g2(x+ τv, v) dτ .
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Integrating in (x, v) ∈ Γ− and t ∈ [0, τ+(x, v)], we obtain that
∫ ∫

Γ−

∫ τ+(x,v)

0
f 2(x+ tv, v)dtdΓ− � 2 (diam(Ω)) ||φ | |2L2(Γ−)

+ 2 (diam(Ω))
2 ||σs | |2L∞(Ω)

∫ ∫

Γ−

∫ τ+(x,v)

0
g2(x+ τv, v) dτdΓ−.

Using a similar changing of variables as in (2.22) by letting z = x+ τv, we then derive that

||f | |2L2(Ω×S1) � CΩ ||φ | |2L2(Γ−) + CΩ ||g | |2L2(Ω×S1) � CΩ ||φ | |2L2(Γ−),

where the last inequality follows from (2.27). Hence, we derive that

||Ff | |L2(Ω×S1) = ||σs 〈f 〉 | |L2(Ω×S1) � ||σs | |L∞(Ω) ||f | |L2(Ω×S1) � CΩ ||φ | |L2(Γ−),

which combined with theorem 1.1 gives the desired unique solvability of σa .� □ 

In the second example we consider a nonlinear RTE, which couples the temperature and 
the intensity of the rays. The equation has the form [26]:

v · ∇xI = −σaI + σaT4,

∆xT = σaT4 − σa 〈I〉 .

In our proof of reconstruction, we will use an incoming condition for I and a zero-boundary 
condition for T. The final system reads

v · ∇xI = −σaI + σaT4, I
∣∣
Γ−

= φ(x, v),� (2.29)

∆xT = σaT4 − σa 〈I〉 . T
∣∣
∂Ω

= 0.� (2.30)

For a given I, the temperature T is uniquely determined in terms of 〈I〉 by solving (2.30). This 
defines a valid functional T on 〈I〉.

The statement of the unique solvability of σa  in (2.29) and (2.30) is

Theorem 2.2.  Suppose Ω is a strictly convex and bounded domain with a C2 boundary. 
Suppose there exists a constant σ0 > 0 such that

σa � σ0 > 0, σa ∈ C(Ω),

Then with proper choices of the incoming data, the absorption coefficient σa  can be uniquely 
recovered from the measurement of the outgoing data.

Proof.  Given an incoming data φ for I and a zero boundary condition TB for T, we show the 
well-posedness of (2.29) and (2.30) in appendix A. The non-negativity of I follows directly 
from the observation that σaT4 � 0. Now we have Ff = σaT4 and we want to show that there 
exists a constant C0 such that

∣∣|σaT4
∣∣ |L2(Ω) � C0 ||φ | |L2(Γ−).� (2.31)

Such L2-bound can be obtained by the energy method along a similar line as in [26]. For the 
convenience of the reader we include the details here. The full equation with the boundary 
conditions reads
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v · ∇xI = −σaI + σaT4, I
∣∣
Γ−

= φ(x, v),� (2.32)

∆xT = σaT4 − σa 〈I〉 , T
∣∣
∂Ω

= 0.� (2.33)

Multiply (2.32) by I and (2.33) by T4. Then integrate both equations in (x, v) and take their 
difference. By rearranging terms we get

1
2

∫

∂Ω

∫

S1
(n(x) · v)I2 + 4

∫

Ω

T3 |∇xT|2 = −
∫

Ω

∫

S1
σaI2 + 2

∫

Ω

∫

S1
σa 〈I〉 T4 −

∫

Ω

∫

S1
σaT8.

= −
∫

Ω

∫

S1
σa

(
〈I〉 − T4)2 −

∫

Ω

∫

S1
σa

(
I2 − 〈I〉2

)
.

where it has been shown in theorem A.1 that T � 0 given φ non-negative. Dropping the term 
involving T3, we have

σ0
∣∣| 〈I〉 − T4

∣∣ |2L2(Ω) �
∫

Ω

∫

S1
σa

(
〈I〉 − T4)2 � 1

2
||φ | |2Γ−� (2.34)

and

σ0 ||I − 〈I〉 | |2L2(Ω) �
∫

Ω

∫

S1
σa (I − 〈I〉)2 =

∫

Ω

∫

S1
σa

(
I2 − 〈I〉2

)
�

1
2
||φ | |2Γ−

.

� (2.35)

Combining (2.34) with (2.35), we obtain that

∣∣|σa(I − T4)
∣∣ |L2(Ω×S1) � ||σa | |L∞

(
||I − 〈I〉 | |L2(Ω×S1) +

∣∣| 〈I〉 − T4
∣∣ |L2(Ω×S1)

)
�

||σa | |L∞
σ0

||φ | |2Γ−
.

Since σa(T4 − I) is simply the forcing term in (2.32), we can apply the bound for (2.28) to 
derive that

||I | |L2(Ω×S1) � CΩ ||φ | |2Γ−
.

This implies that
∣∣|σaT4

∣∣ |L2(Ω) � ||σa | |L∞
(
||I | |L2(Ω×S1) +

∣∣|I − T4
∣∣ |L2(Ω×S1)

)
� CΩ(||σa | |L∞ ,σ0) ||φ | |2Γ−

,

which is the desired bound in (2.31). The unique solvability of σa  then follows from theorem 
1.1.� □ 

3.  Recovery of the scattering coefficient: averaging lemma

In this section, we show how to use the celebrated averaging lemma for kinetic equations to 
recover the scattering coefficient. We will work out a specific example as an illustration. The 
equation under consideration is (2.26), which we recall as

v · ∇xf = −σaf + σs 〈f 〉 .� (3.1)
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Since σa  has been found by theorem 2.1, in what follows we assume that σa  is given and focus 
on finding σs.

First we recall the statement of the averaging lemma. For the purpose of the current work, 
we only need the most basic version which is stated as

Theorem 3.1 ([11, 19, 23]).  Suppose 0 < σ0 � σs � σa with σa ∈ C(Ω) where Ω is open 
and bounded. Suppose φ ∈ L p(Γ−) and g ∈ L p(Ω× S1) for some p   >  1 and f  satisfies the 
equation

v · ∇xf = −σaf + σs 〈f 〉+ g, f
∣∣
Γ−

= φ(x, v).� (3.2)

Then for any γ � inf{ 1
p , 1−

1
p}, the velocity average of f  satisfies 〈f 〉 ∈ Wγ,p(Ω) with the 

bound

|| 〈f 〉 | |Wγ,p(Ω) � C0
(
||φ | |L p(Γ−) + ||g | |L p(Ω×S1)

)
.

We also recall the basic Lp  energy estimate [20] for equation (3.2):

Theorem 3.2 ([20]).  Suppose φ ∈ L p(Γ−) and g ∈ L p(Ω× S1) for some p ∈ [1,∞]. Then 
f ∈ L p(Ω× S1) with the bound

||f | |L p(Ω×S1) � C0
(
||φ | |L p(Γ−) + ||g | |L p(Ω×S1)

)
.

Our main result in this part is

Theorem 3.3.  Let Ω ⊆ R2  be a strictly convex and bounded domain with a C2 boundary. 
Suppose 0 < σ0 � σs � σa with σa ∈ C(Ω) given. Then with proper choices of the incoming 
data, the scattering coefficient σs in (3.1) can be uniquely recovered from the measurement of 
the outgoing data.

Proof.  For any given φ, let f  be the solution to (3.2). Decompose it into three parts: 
f = f1 + f2 + f3, where

v · ∇xf1 = −σaf1, f1
∣∣
Γ−

= φ(x, v),� (3.3)

v · ∇xf2 = −σaf2 + σs 〈f1〉 , f2
∣∣
Γ−

= 0,� (3.4)

v · ∇xf3 = −σaf3 + σs 〈f2〉+ σs 〈f3〉 , f3
∣∣
Γ−

= 0.� (3.5)

Note that given σa,σs, the first two functions f1, f2  are explicitly solvable. The idea of the 
proof is to show f 3 is more regular than f 2, which in turn more regular than f 1, using the aver-
aging lemma. By posing the correct geometry for the incoming and measuring functions, one 
can show f 2 dominates the data, and is used to reconstruct σs.

Incoming and Measurement First we need to specify the incoming data φ and the measure-
ment function ψ. Fix (xin, vin) ∈ Γ− and (xout, vout) ∈ Γ+ such that

vin ∦ vout, vin · vout > 0.� (3.6)

Let �1 be the ray initiated at xin along the direction vin and �2 the ray initiated at xout along the 
direction −vout . Since vin ∦ vout , the two rays �1 and �2 have a unique intersection inside Ω, 
which we denote as x0. For later use, let s0  >  0 be the exit time associated with x0 in the direc-
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tion of vout, or more explicitly,

x0 = xout − s0vout = xin + s′0v
in.� (3.7)

The main goal is to find σs(x0). Define vin⊥ as the unit vector such that

vin⊥ · vin = 0, and η := vin⊥ · vout > 0.� (3.8)

For the illustration of the geometry, see figure 1.
Let φ0 be a smooth even function on R  such that

0 � φ0(r) � 1, Suppφ0 = [−1, 1], φ0(0) = 1,
∫

R
φ0(r)dr = 1.

Let ψ0 be the same smooth function defined in (2.9) with Suppψ0 = [−1, 1]. We choose the 
incoming data φ and the measurement function ψ as

φ(x, v) =
1
εδ

φ0

(
(x− xin) · vin⊥

εη

)
φ0

(
|v− vin|

δ

)
, (x, v) ∈ Γ−,

ψ(x, v) =
1
θβ

ψ0

(
|x− xout|

θ

)
ψ0

(
|v− vout|

β

)
, (x, v) ∈ Γ+.

Quickly, we have

Mψ( f ) =
∫ ∫

Γ−

ψfdΓ− = Mψ( f1) +Mψ( f2) +Mψ( f3).

The essence of the proof is to show that Mψ( f1) and Mψ( f3) are negligible while Mψ( f2) 
is used to reconstruct σs(x0). The estimate for Mψ( f3) relies on the averaging lemma, and the 
estimate for Mψ( f1) follows from a basic geometric argument.

As a preparation, we first give an estimate of Lr-bound of φ (with r to be determined later):
∫ ∫

Γ−

φr(x, v)|v · n|dSxdv =
1

εrδr

∫

∂Ω

∫

S1x,+
φr
0

(
(x− xin) · vin⊥

εη

)
φr
0

(
|v− vin|

δ

)
|v · n|dSxdv

�

(
1
δr

∫

S1
φr
0

(
|v− vin|

δ

)
dv
)(

1
εr

∫

∂Ω

φr
0

(
(x− xin) · vin⊥

εη

)
dSx

)
,

vin

vout

vout

vin⊥

x0

s0

η xout

xinnn Ω

∂Ω

δ

β

Figure 1.  Geometry and some physical quantities.
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where the v-integral is bounded as

1
δr

∫

S1
φr
0

(
|v− vin|

δ

)
dv =

1
δr

∫ 2π

0
φr
0

(
| sinω/2|

δ/2

)
dω �

1
δr

∫ 2π

0
φ0

(
| sinω/2|

δ/2

)
dω � c0δ−(r−1).

In order to estimate the boundary integral, we take vin⊥ as the horizontal axis and take εη  small 
enough such that ∂Ω is a graph parametrized by

x2 = f (x1), x1 ∈ (xin1 − εη, xin1 + εη), x = (x1, x2),

where f ∈ C1[xin1 − h0, xin1 + h0] for some fixed h0. Then the boundary integral satisfies

1
εr

∫

∂Ω

φr
0

(
(x− xin) · vin⊥

εη

)
dSx =

1
εr

∫ xin1 +εη

xin1 −εη

φr
0

(
x1 − xin1

εη

)√
1+ |f ′(x1)|2dx1

�
c0
εr

∫ xin1 +εη

xin1 −εη

φ0

(
x1 − xin1

εη

)
dx1 � c0ε−(r−1)η,

where c0 depends on the C1-norm of f , which is assumed to be bounded since ∂Ω is C1. Note 
that such bound is independent of xin since ∂Ω is compact. Combining the two integrals, we 
have

||φ | |Lr(Γ−) �

(∫ ∫

Γ−

φr(x, v)|v · n|dSxdv

)1/r

� c0ε−
r−1
r δ−

r−1
r η

1
r , r > 1.

Averaging lemma Now we apply the Lr-energy bound and the averaging lemma to obtain a 
bound for 〈f1〉, 〈f2〉, and f 3. First, a direct application of theorem 3.1 gives

|| 〈f1〉 | |Ws0,r � c0 ||φ | |Lr(Γ−) � c0ε−
r−1
r δ−

r−1
r η

1
r ,

where s0 = inf{ 1
r , 1−

1
r }. By the Sobolev embedding, we have

|| 〈f1〉 | |L p1 (Ω) � c0 || 〈f1〉 | |Ws0,r � c0 ε−
r−1
r δ−

r−1
r η

1
r , ∀ p1 �

1
1
r −

s0
2

.

Since 〈f1〉 is the source term in the equation for f 2, we apply the averaging lemma again and get

|| 〈f2〉 | |L p2 (Ω) � c0 || 〈f2〉 | |Ws1,p1 (Ω) � c0 || 〈f1〉 | |L p1 (Ω×S1) � c0ε−
r−1
r δ−

r−1
r η

1
r ,

� (3.9)

where the exponents satisfy that

s1 = inf

{
1
p1

, 1− 1
p1

}
, p2 �

1
1
p1
− s1

2

.

By theorem 3.2, we also have

|| 〈f3〉 | |L p2 (Ω) � ||f3 | |L p2 (Ω×S1) � c0 || 〈f2〉 | |L p2 (Ω).� (3.10)
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Contribution from f 3 Using the change of variables in (2.23), we obtain the contribution of 
f 3 to the measurement of the outgoing data as
∣∣∣∣∣
∫ ∫

Γ+

ψ(x, v) f3(x, v) dΓ+

∣∣∣∣∣ � ||σs | |L∞
∫

S1

∫

Ω

ψ(y+ τ+(y, v)v, v) |〈f2〉 (y) + 〈f3〉 (y)| dydv

� c0

∫

S1

∫

Ω

1
θβ

ψ0

(
|y+ τ+(y, v)v− xout|

θ

)
ψ0

(
|v− vout|

β

)
|〈f2〉 (y) + 〈f3〉 (y)| dydv

= c0

∫

Ω

(∫

S1

1
θβ

ψ0

(
|y+ τ+(y, v)v− xout|

θ

)
ψ0

(
|v− vout|

β

)
dv
)
|〈f2〉 (y) + 〈f3〉 (y)| dy

� c0

(∫

Ω

(∫

S1

1
θβ

ψ0

(
|y+ τ+(y, v)v− xout|

θ

)
ψ0

(
|v− vout|

β

)
dv
) p′2

dy

) 1
p′2

︸ ︷︷ ︸
T

|| 〈f2〉 | |L p2 (Ω).

where 1
p′2
+ 1

p2
= 1 and the last step follows from Hölder inequality and (3.10). The factor T is 

estimated as follows.

T p′2 =

∫

Ω

(∫

S1

1
θβ

ψ0

(
|y+ τ+(y, v)v− xout|

θ

)
ψ0

(
|v− vout|

β

)
dv
) p′2

dy

�

(∫

S1

(∫

Ω

1
θ p′2

ψ
p′2
0

(
|y+ τ+(y, v)v− xout|

θ

)
dy
)

1
β
ψ0

(
|v− vout|

β

)
dv
)(∫

S1

1
β
ψ0

(
|v− vout|

β

)
dv
) p′2

p2

� c0

∫

S1

(∫

Ω

1
θ p′2

ψ
p′2
0

(
|y+ τ+(y, v)v− xout|

θ

)
dy
)

︸ ︷︷ ︸
T1

1
β
ψ0

(
|v− vout|

β

)
dv.

For each v ∈ S1, if we apply the change of variables

x = y+ τ+(y, v)v ∈ ∂Ω+
v ,

with ∂Ω+
v  defined in (2.12), then T1 satisfies

T1 =
∫

∂Ω+
v

∫ τ−(x,v)

0

1
θ p′2

ψ
p′2
0

(
|x− xout|

θ

)
dsdx � (diam(Ω))

∫

∂Ω+
v

1
θ p′2

ψ
p′2
0

(
|x− xout|

θ

)
dx � c0θ−(p

′
2−1).

Therefore, T is uniformly bounded in v with the bound

T p′2 � c0θ−( p′2−1)
∫

S1

1
β
ψ0

(
|v− vout|

β

)
dv � c0θ−( p′2−1).

Inserting the estimate for T back into Mψ( f3) and using (3.9) and (3.10), we have

|Mψ( f3)| =

∣∣∣∣∣
∫ ∫

Γ+

ψ(x, v) f3(x, v) dΓ+

∣∣∣∣∣ � c0θ
− p′2−1

p′2 ε−
r−1
r δ−

r−1
r η

1
r = c0θ

− 1
p2 ε−

r−1
r δ−

r−1
r η

1
r .

We will choose the parameter properly later to make Mψ( f3) a negligible term, namely, we 
will choose parameters so that

θ
− 1

p2 ε−
r−1
r δ−

r−1
r η

1
r � 1� (3.11)

Contribution from f 1 We show in this part that by properly choosing the parameters, the 
contribution from f 1 is zero. The formula under consideration is
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Mψ( f1) =
∫∫

Γ+

ψ(x, v) f1(x, v) dΓ+,

where we solve equation (3.3) to obtain

f1(x, v) = e−
∫ τ−(x,v)
0 σa(x−sv)dsφ(x− τ−(x, v)v, v), (x, v) ∈ Ω× S1.

Definitions of ψ and φ give

Mψ( f1) =
1
εδ

1
θβ

∫ ∫

Γ+

e−
∫ τ−(x,v)
0 σa(x−sv)dsψ0

(
|x− xout|

θ

)
ψ0

(
|v− vout|

β

)

× φ0

(
(x− τ−(x, v)v− xin) · vin⊥

εη

)
φ0

(
|v− vin|

δ

)
dΓ+.

The sufficient condition for Mψ( f1) to vanish is

Supp
(
ψ0

(
|v− vout|

β

))
∩ Supp

(
φ0

(
|v− vin|

δ

))
= ∅.� (3.12)

One sufficient condition for (3.12) to hold is
∣∣vout − vin

∣∣ > β + δ,� (3.13)

since then there does not exist any v satisfying that
∣∣v− vout

∣∣ � β and
∣∣v− vin

∣∣ � δ.

Recall that η is defined in (3.8) as

η = vout · vin⊥ > 0.

Therefore, by (3.6), we have

vout · vin =
√
1− η2.

This gives
∣∣vout − vin

∣∣2 = 2− 2vout · vin = 2− 2
√

1− η2.

Hence we have the estimate

η �
∣∣vout − vin

∣∣ � 2η.� (3.14)

It is then clear that a sufficient condition for (3.13) (and thus (3.12)) to hold is

η > β + δ.� (3.15)

Such condition gives that Mψ( f1) = 0.

Contribution from f 2 The main contribution to the measurement comes from f 2, which we 
compute below. Denote such contribution as Mψ( f2). Then for any (x, v) ∈ Ω× S1, we have
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Mψ( f2) =
∫∫

Γ+

∫ τ−(x,v)

0
ψ(x, v)e−

∫ s
0 σa(x−τv) dτσs(x− sv) 〈f1〉 (x− sv)ds dΓ+

=

∫∫

Γ+

∫ τ−(x,v)

0

∫

S1
ψ(x, v)e−

∫ s
0 σa(x−τv) dτσs(x− sv) f1(x− sv,w)dwds dΓ+

=

∫∫

Γ+

∫ τ−(x,v)

0

∫

S1
ψ(x, v)e−

∫ s
0 σa(x−τv) dτe−

∫ τ−(x−sv,w)
0 σa(x−sv−τw) dτ

× σs(x− sv)φ((x− sv)′w,w)dwds dΓ+,

where (x− sv)′w is the entry point of x− sv along the direction w. To simplify the notation, 
we denote

H(s, x, v,w) = e−
∫ s
0 σa(x−τv) dτe−

∫ τ−(x−sv,w)
0 σa(x−sv−τw) dτσs(x− sv).

Separate Mψ( f2) into two parts as

Mψ( f2) =
∫∫

Γ+

∫ τ−(x,v)

0

∫

S1
ψ(x, v)H(s0, xout, vout, vin)φ((x− sv)′w,w)dwds dΓ+

+

∫∫

Γ+

∫ τ−(x,v)

0

∫

S1
ψ(x, v)

(
H(s, x, v,w)− H(s0, xout, vout, vin)

)
φ((x− sv)′w,w)dwds dΓ+

∆
= M2,1 +M2,2.

To treat the first term M2,1 we insert the definitions of φ,ψ into M2,1 and obtain

M2,1 =
H(s0, xout, vout, vin)

εδ

1
θβ

∫∫

Γ+

∫ τ−(x,v)

0

∫

S1
ψ0

(
|x− xout|

θ

)
ψ0

(
|v− vout|

β

)
φ0

(
|w− vin|

δ

)

× φ0

(
((x− sv)′w − xin) · vin⊥

εη

)
dwds dΓ+.

Now we reformulate the second φ0-term, whose argument satisfies

(x− sv)′w = (x− sv)− τ−(x− sv,w)w

= (xout − svout)− τ−(x− sv,w)vin + R(x, v, s,w),
�

(3.16)

where the remainder term R is

R(x, v, s,w) = (x− xout)− s(v− vout)− τ−(x− sv,w)
(
w− vin

)
.

By corollary C.1, we have that ∇xτ−(·,w) is uniformly bounded in w if we choose

θ + δ + β < γ∗.

Then by using (3.7) again, we have

((x− sv)′w − xin) · vin⊥
εη

=

(
xout − svout − xin + R

)
· vin⊥

εη
=

s0 − s+ 1
ηR · vin⊥

ε
.
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Let z be the new variable given by

z = s− 1
η
R · vin⊥.

Then

∂z
∂s

= 1− 1
η

∂R
∂s

· vin⊥ = 1+
1
η
(v− vout) · vin⊥ − 1

η

(
v · ∇xτ−(x− sv,w)

)
(w− vin) · vin⊥.

Due to the compact supports of φ0 and ψ0, the variables (x, v,w) in R satisfy that
∣∣x− xout

∣∣ � θ,
∣∣v− vout

∣∣ � β,
∣∣w− vin

∣∣ � δ.

If we impose that

η � β + δ,� (3.17)

then ∂z/∂s > 1/2 and we can make the change of variable from s to z. Denote 
I = z−1(0, τ−(x, v)). Then

lim
ε,θ→0

lim
η→0

η�β+δ

M2,1 = lim
ε,θ→0

lim
η→0

η�β+δ

H(s0, xout, vout, vin)
εδ

1
θβ

∫∫

Γ+

∫

I

∫

S1
ψ0

(
|x− xout|

θ

)
ψ0

(
|v− vout|

β

)

× φ0

(
s0 − z
ε

)
φ0

(
|w− vin|

δ

)
∂z
∂s

dwds dΓ+.

Since s0 is an interior point by corollary C.2, we have

lim
ε,θ→0

lim
η→0

η�β+δ

M2,1 = H(s0, xout0 , vin, vin).

where xout, vout are replaced by xout0 , vin in the limit η → 0. Meanwhile, by the continuity of τ− 
and σa , the second term M2,2 will vanish in the limit.

Consider that under conditions (3.11) and (3.15), assuming δ−
r−1
r η

1
r → 0, then Mψ( f1) = 0 

and Mψ( f3) → 0, overall we have

σs(x0) = e
∫ s0
0 σa(xout−τvout) dτe

∫ τ−(x0,v
in)

0 σa(x0−τvin) dτ lim
ε,θ→0

lim
η→0

η�β+δ

Mψ( f )

= e
∫ s0
0 σa(xout0 −τvin) dτe

∫ τ−(x0,v
in)

0 σa(x0−τvin) dτ lim
ε,θ→0

lim
η→0

η�β+δ

Mψ( f ).

Choice of the parameters We now collect all requirements on the parameters, namely equa-
tion (3.11), (3.15) and (3.17). Choose θ → 0 and ε → 0 independent of η, these requirements 
reduce to:

δ−
r−1
r η

1
r � 1, β + δ � η.� (3.18)

In the borderline case where δ = η , the sufficient condition for the first inequality in (3.18) 
to hold is
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r − 1
r

<
1
r
⇒ r < 2.

This suggests that we can find proper parameters by letting θ → 0 and ε → 0 independent of 
η and setting

β = δ = η1+β0 .

with β0 small enough, then (3.18) holds for r ∈ (1, 2).� □ 
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Appendix A.  Well-posedness of the nonlinear RTE

In this appendix we use the classical monotonicity method combined with the Schauder fixed-
point argument to show that the nonlinear RTE given in (2.32) and (2.33) is well-posed. Recall 
that the equations are given by

v · ∇xI = −σaI + σaT4, I
∣∣
Γ−

= φ(x, v),� (A.1)

∆xT = σaT4 − σa 〈I〉 , T
∣∣
∂Ω

= 0� (A.2)

where φ � 0 and φ ∈ L∞(Γ−). The statement of the well-posedness result is

Theorem A.1.  Suppose φ ∈ L∞(Γ−) and φ � 0. Then (A.1) and (A.2) has a unique solu-
tion.

Proof.  Let D be the solution set given by

D = {T
∣∣ 0 � T � ||φ | |L∞ }.

Take H ∈ D. We want to construct a map F  and show that F(H) ∈ D. Let IH be the solution 
such that

v · ∇xIH = −σaIH + σaH4, IH
∣∣
Γ−

= φ(x, v).

Such IH exists by a direct integration along the characteristics. Since H4 � 0 and φ � 0, we 
have IH � 0. Moreover, if we consider IH − ||φ | |L∞, then it satisfies

v · ∇x (IH − ||φ | |L∞) = −σa (IH − ||φ | |L∞) + σa
(
H4 − ||φ | |L∞

)
, (IH − ||φ | |L∞)

∣∣
Γ−

� 0.

Since H4 − ||φ | |L∞ � 0, we have IH � ||φ | |L∞. Define F(H) = T  where T is the solution 
to the equation

∆xT = σaT4 − σa 〈IH〉 , T
∣∣
∂Ω

= 0.
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or equivalently,

−∆xT = −σaT4 + σa 〈IH〉 , T
∣∣
∂Ω

= 0.� (A.3)

We use the classical monotonicity method for semilinear elliptic equations to show that such 
T exists and is unique. First, let T = 0 and T  be the unique solution to the equation

−∆xT = σa 〈IH〉 , T|∂Ω = 0.

Since it holds that

−∆xT − σa 〈IH〉 � 0 = −σaT4, T
∣∣
∂Ω

= 0,

and

−∆xT − σa 〈IH〉 = 0 � −σaT
4
, T

∣∣
∂Ω

= 0,

the functions T  and T  serve as the sub- and super-solutions of (A.3). Moreover, we have

0 � T � T .

We use an inductive argument to build an increasing sequence as follows. Fix a constant λ 
which satisfies

λ > 4 ||σa | |L∞ ||φ | |3/4L∞ .

This guarantees that the function f (x) = λx− σax4 is increasing for any x ∈ (0, ||φ | |L∞). 
Initialize the sequence at T0 = T  and suppose at the inductive step that

0 � Tk � ||φ | |1/4L∞ .

Define Tk+1 as the unique solution to the equation

−∆xTk+1 + λTk+1 = λTk − σaT4
k + σa 〈IH〉 , Tk+1

∣∣
∂Ω

= 0.� (A.4)

Note that Tk+1 � 0 since by the choice of λ and the assumption of Tk the right-hand side 
satisfies

λTk − σaT4
k + σa 〈IH〉 � σa 〈IH〉 � 0.

Moreover, Tk+1 � ||φ | |1/4L∞  since we have

−∆xTk+1 + λTk+1 � λTk,

which implies that

max Tk+1 � max Tk � ||φ | |1/4L∞ .

Now we show that Tk+1 � Tk for all k � 0. First, T1 � T0 = 0 since we have shown that 
Tk � 0 for all k. Next, the difference Tk+1 − Tk satisfies the equation

−∆x (Tk+1 − Tk) + λ (Tk+1 − Tk) = f (Tk)− f (Tk−1) � 0, (Tk+1 − Tk)
∣∣
∂Ω

= 0.
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where recall that f (x) = λx− x4. Hence

min
Ω

(Tk+1 − Tk) = min
∂Ω

(Tk+1 − Tk) = 0,

which implies that Tk+1 � Tk. We thereby have constructed an increasing sequence. Lastly we 
want to show that Tk � T  for all k � 0. This is done by considering the equation for Tk − T  
which reads

−∆x
(
Tk − T

)
+ λ

(
Tk − T

)
= f (Tk−1)− λT , (Tk − T)

∣∣
∂Ω

= 0.

By the induction assumption at k such that Tk−1 � T , the right-hand side of the equation satis-
fies

f (Tk−1)− λT � f (Tk−1)−
(
λT − σaT

4
)
� 0.

Hence by the maximum principle, we have

max
Ω

(Tk+1 − T) = max
∂Ω

(Tk+1 − T) = 0,

which gives that Tk+1 � T . Overall, we have

0 = T = T0 � T1 � · · · � Tk � · · · � T .

Together with the L∞ bound of Tk, we have that there exists T ∈ L∞(Ω) such that

Tk → T pointwise and in L4.

Passing k → ∞ in (A.4) shows T is a weak solution of (A.3) and ||T | |L∞ � ||φ | |1/4L∞. The 

L∞-bounds of T and IH shows that T ∈ W2,∞(Ω). Hence the mapping F  is compact and we 
can then apply the Schauder fixed-point theorem to obtain a strong solution to (A.1) and (A.2). 
The uniqueness can be shown by directly taking the difference of two potential solutions and 
using the energy estimate.� □ 

Appendix B.  Geometry

In this appendix, we show the proofs for two geometric relations (2.18) and (2.23). First we 
prove (2.18).

Proof of (2.18).  Suppose that in a small neighborhood of x ∈ ∂Ω, the boundary ∂Ω is 
parametrized as

x = x(u), u ∈ (u0, u1).

Then the corresponding small neighborhood of y , given that y  is the exit point of x, is also 
parametrized by u through the relation

y = y(u) = x(u)− τ−(x(u), vin)vin, u ∈ (u0, u1).
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Therefore, dxdu  and dydu  are both along the tangential direction. Moreover,

dSx =
∣∣∣∣
dx
du

∣∣∣∣ du, dSy =
∣∣∣∣
dy
du

∣∣∣∣ du.

which gives

dSx
dSy

=
|dx/du|
|dy/du|

.

Note that for any unit vectors α,β , we have
∣∣α · β⊥∣∣ = ∣∣α⊥ · β

∣∣ .� (B.1)

Therefore, if we denote Tx and Ty  as the unit tangential directions at x and y  respectively, then

∣∣n(x) · vin∣∣ = ∣∣T⊥
x · vin

∣∣ =
∣∣∣Tx ·

(
vin

)⊥∣∣∣ =
∣∣∣∣
dx
du

·
(
vin

)⊥∣∣∣∣
1∣∣ dx
du

∣∣

Similarly,

∣∣n(y) · vin∣∣ =
∣∣∣∣
dy
du

·
(
vin

)⊥∣∣∣∣
1∣∣∣ dydu
∣∣∣
.

Therefore,

∣∣n(y) · vin∣∣
|n(x) · vin|

=
|dx/du|
|dy/du|

∣∣∣ dydu ·
(
vin

)⊥∣∣∣∣∣∣ dxdu · (vin)⊥
∣∣∣
.

Observe that by the definition of y , we have

dy
du

=
dx
du

− dτ−(x(u), vin)
du

vin.

Hence,

dy
du

·
(
vin

)⊥
=

(
dx
du

− dτ−(x(u), vin)
du

vin
)
·
(
vin

)⊥
=

dx
du

·
(
vin

)⊥
.

Therefore,
∣∣n(y) · vin∣∣
|n(x) · vin|

=
|dx/du|
|dy/du|

=
dSx
dSy

,

which is equivalent to (2.18).� □ 

Next we verify (2.23).

Proof of (2.23).  Fix x ∈ ∂Ω+
v . Suppose the neighborhood of x (in ∂Ω) is a curve para-

metrized as
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x = x(u), u ∈ (u0, u1).

Then

y(u, s) = x(u)− sv.

The Jacobian of the mapping y → (u, s) is
∣∣∣∣∣det

(
dy1
du

dy2
du

dy1
ds

dy2
ds

)∣∣∣∣∣ =
∣∣∣∣det

( dx1
du

dx2
du

−v1 −v2

)∣∣∣∣ =
∣∣∣∣−v2

dx1
du

+ v1
dx2
du

∣∣∣∣ =
∣∣v⊥ · ∇ux

∣∣ = ∣∣v⊥ · Tx
∣∣ |∇ux| .

where Tx is the tangent direction at x. By (B.1), we have
∣∣∣∣∣det

(
dy1
du

dy2
du

dy1
ds

dy2
ds

)∣∣∣∣∣ = |v · n(x)| |∇ux| .

Therefore (2.23) holds since

dy =
∣∣∣∣
∂(y1, y2)
∂(u, s)

∣∣∣∣ duds = |v · n(x)| |∇ux| duds = n(x) · vdSxds,

where we can remove the absolute value sign since n(x) · v > 0.� □ 

Appendix C.  Some technical lemmas

This appendix is devoted to showing several technical results used in the proof of theorem 3.3. 
The notations xin, xout0 , vin, s0, x0, vout represent the same quantities as in the theorem.

Lemma C.1.  There exists γ0 small enough such that τ−(x− sv,w) is C1 in (x, v, s,w) over 
the domain

∣∣x− xout0

∣∣+ ∣∣w− vin
∣∣+ ∣∣v− vin

∣∣ < γ0, s ∈ (0, τ−(x, v)), (x, v) ∈ Γ+.
� (C.1)

Moreover, the bound ||∇xτ−(·,w) | |L∞ is independent of w over the region (C.1).

Proof.  By lemma 2.1, we only need to show that there exists a constant c0,1  >  0 such that

w · n((x− sv)−) < −c0,1 < 0� (C.2)

for any (x, v, s,w) satisying (C.1), recalling that (x− sv)− is the backward exit point of x− sv. 
The idea is to show that (x− sv)− is close to xin when γ0 is small. Then by the continuity of 
the outward normal n, we obtain (C.2) from the non-degeneracy condition at (xin, vin). The 
closeness of (x− sv)− to xin is fairly evident from the geometry shown in figure C1.

For a rigorous proof, we first assume, via a proper rotation and translation, that vin is along 
the positive y -axis and xin and xout0  are both on the y -axis. Since Ω is convex and vin · n(xin) �= 0, 
we have
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vin · n(xout0 ) > 0.

Take small neighborhoods N (xin),N (xout0 ) around xin and xout0  on ∂Ω such that

vin · n(x) < 1
2
vin · n(xin) < 0, ∀ x ∈ N (xin),

vin · n(x) > 1
2
vin · n(xout0 ) > 0, ∀ x ∈ N (xout0 ),

Denote the boundary vertices of N (xin),N (xout0 ) as A1,A2,A3,A4. By adjusting the sizes of 
N (xin),N (xout0 ) we can choose these vertices in the way such that

A1A3//A2A4//y− axis.

Choose A1 and A2 as two points on arc(A1xout0 ) and arc(A2xout0 ) respectively such that

∠A1A3A1 = ∠A2A4A2 =: η0.

Denote the region bounded by the line segments A1A3, A2A4 and the two arcs arc(A1A2), 
arc(A3A4) as D0. Then for any (x, v) ∈ Γ+ with cos−1(v · vin) < η0 and any s ∈ (0, τ−(x, v)), 
we have

(x− sv)− ∈ N (xin).

Hence, for such (x, v, s) we have

vin · n((x− sv)−) <
1
2
vin · n(xin) < 0.

xin

xout

A2

Ā2

Ā1A1

A3
A4

x0

η0 η0
xx

η1

Figure C1.  Geometry for non-degeneracy.
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Take γ0 small enough such that

γ0 < min

{
1
2
η0,

1
4
vin · n(xin),

∣∣A1xout0

∣∣ , ∣∣A2xout0

∣∣
}
.

Then

w · n((x− sv)−) <
1
4
vin · n(xin) < 0

for any (x, v, s,w) satisfying (C.1). Hence τ− is C1 over the region (C.1). The explicit formula 
for ∇xτ− in lemma 2.1 shows that ||∇xτ−(·,w) | |L∞ is uniformly bounded in w.� □ 

Two immediate consequences follow.

Corollary C.1.  There exist η∗, γ∗ such that if η in theorem 3.3 satisfies η < η∗, then 
τ−(x− sv,w) is C1 in (x, v, s,w) over the domain

∣∣x− xout
∣∣+ ∣∣w− vin

∣∣+ ∣∣v− vout
∣∣ < γ∗, s ∈ (0, τ−(x, v)), (x, v) ∈ Γ+.

� (C.3)

Moreover, the bound ||∇xτ−(·,w) | |L∞ is independent of w over the region (C.1).

Proof.  By lemma C.1, we only need to show that xout is close to xout0  and vout is close to vin 
by taking η∗ small. By (3.14), if we taking η∗ < 1

8γ0, then

∣∣vout − vin
∣∣ � 2η <

1
4
γ0.

Denote the angle ∠A1x0xout0  as η . Then for η∗ < η , the point xout is on arc(A1xout0 ). Since

lim
η→0

∣∣A1 − xout0

∣∣ = 0,

by choosing η∗ small enough, we have

∣∣xout − xout0

∣∣ < 1
4
γ0.

Hence if we let γ∗ = 1
2γ0, then for any (x, v, s,w) in the region (C.3), they also satisfy that

∣∣x− xout0

∣∣+ ∣∣w− vin
∣∣+ ∣∣v− vin

∣∣
�

∣∣x− xout
∣∣+ ∣∣w− vin

∣∣+ ∣∣v− vout
∣∣+ ∣∣xout − xout0

∣∣+ ∣∣vout − vin
∣∣

<
1
2
γ0 +

1
4
γ0 +

1
4
γ0 = γ0,

whereby lemma C.1 applies.� □ 

Corollary C.2.  Let γ∗ be the upper bound such that τ− is C1 in the domain (C.3). Then for 
γ∗ small enough, s0 is always an interior point in (0, τ−(x, v)) whenever (x, v) satisfies (C.3).

Proof.  First recall that s0 ∈ (0, τ−(xout, vout)). Then

σ0 := τ−(xout, vout)− s0 > 0.
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By corollary C.1, the backward exist time τ−(x, v) is continuous for (x, v) in the closure of the 
domain dictated by (C.3). Hence if γ∗ is small enough, then

∣∣τ−(x, v)− τ−(xout, vout)
∣∣ < 1

2
σ0.

Therefore,

τ−(x, v)− s0 > τ−(xout, vout)−
1
2
σ0 − s0 = σ0 > 0,

which shows s ∈ (0, τ−(x, v)).� □ 
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