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CrossMark
Abstract
We show that the inverse problems for a class of kinetic equations can be
solved by classical tools in PDE analysis including energy estimates and the
celebrated averaging lemma. Using these tools, we give a unified framework
for the reconstruction of the absorption coefficient for transport equations in
the subcritical and critical regimes. Moreover, we apply this framework to
obtain, to the best of our knowledge, the first result in a nonlinear setting. We
also extend the result of recovering the scattering coefficient in Choulli and
Stefanov (1998 Osaka J. Math. 36 87-104) from 3D to 2D strictly convex
domains.

Keywords: kinetic theory, optical tomography, inverse transport problems,
averaging lemma

(Some figures may appear in colour only in the online journal)

1. Introduction

Kinetic theory describes the behaviour of a large number of particles that follow the same
physical laws in a statistical manner. Depending on the particular type of particles, various
equations are derived. These include, among many others, the Boltzmann equation for the
rarified gas, Vlasov—Poisson equation for charged plasma particles, the radiative transfer
equation for photons, and the neutron transport equation for neutrons. In the kinetic theory,
one uses f(t,x,v) to denote the density distribution function of the particles in the phase space

(x,v) at time 7.

The kinetic equation that f satisfies is of the form

Of +v-Vof +E-V.f = 0[f],
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where the terms on the left characterizes the trajectory of particles moving with velocity v and
accelerated/decelerated by the external field E, namely,

x=v, v=E.
In practice, for example for the plasma system, E is the electric field generated by the electric
potential. The term on the right collects information about particles colliding with each other
and/or with the media. The specific form of Q depends on the particular type of particles
studied.

During the past three decades, analysis of kinetic equations has seen drastic progresses. In
particular, with the introduction of averaging lemma and application of the concept of entropy
combined with traditional energy estimates, the well-posedness and the convergence to equi-
libria can now be shown for many kinetic equations.

Despite their wide applications for forward problems, such techniques are barely used in
the inverse setting, where the goal is to recover certain unknown parameters (in £ or Q for
example). These parameters are usually set constitutively or ‘extracted’ from lab experiments.
Mathematically, such ‘extraction’ is a process termed inverse problem, which is generally hard
to solve rigorously. Aside from very limited examples [8, 9, 7, 14-16, 28, 30, 37-40] along
with some analysis on stability [5, 6, 12, 22, 25, 27, 28, 32, 41, 42], it is unknown in general,
what kind of data would be enough to guarantee a unique reconstruction or when the recon-
struction is stable. Moreover, in the few solved examples, the techniques used rely on careful
and rather explicit calculation of the solutions to the PDEs, or on the experimental advances
that involve hybrid imaging to reveal internal data [10, 17]. As a consequence, it is challeng-
ing to extend these results to general models (see reviews in [4, 36]). There are, however, a
large amount of studies addressing the related computational issues [1, 13, 29, 31, 34, 35]
(also see reviews in [2, 3, 33]).

In this paper we propose to use energy methods and the averaging lemma to investigate the
unique reconstruction of parameters in transport equations in a rather general setup. Since our
methods do not rely on fine details of the equation as much as in the previous works, we can
apply our results to a class of models including a nonlinear transport equation. We are also
able to extend the study of the radiative transport equation in the subcritical case in [16, 39]
to a unified analysis in both subcritical and critical regimes. Further comments regarding the
dimensionality can be found in section 1.2 where precise statements of the main results are
shown.

1.1. Singular decomposition
Throughout the paper we study the time-independent problem
v Vif(x,v) = —o.f(x,v) + Fr(x), x€QCRLveS!, (1.1)

where ) is a bounded convex domain, S' is the unit circle with a normalized measure, and
Fy(x) maps f into a function that only depends on x. For example, in the first case solved in
theorem 1.1, we consider

F:LP(QxS")—LP(Q), p=>1.

The function space for f may vary in different problems.
We assume that o, is isotropic in the sense that o, = 0,(x). One example is the radiative
transfer equation (RTE) where Fis simply defined by taking the zeroth moment of f:
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Fr(x) = o,(x) S]f(x, v)dv.

The data we will be using is of the Albedo type, namely, we can impose an incoming boundary
condition and measure the associated outgoing boundary data and define the Albedo operator
as

A: f|ll _>f|1"+'

Here I's are the collections of all coordinates on the physical boundary with the velocity
pointing either in or out of the domain defined by

Iy ={(xv): x€09, £n(x)-v <0},

where n(x) is the outward normal at x € 9. The goal is to reconstruct parameters in (1.1)
such as o, or unknown parameters in F; by taking multiple sets of incoming-to-outgoing data.

The basic approach we adopt here is the method of singular decomposition. It is introduced
in [16] to recover the absorption and scattering kernel in the radiative transfer equation. The
main idea of this method is built upon the observation that the solution f(x,v) to (1.1) can be
decomposed into parts with different regularity. Each part contains information of different
terms in equation (1.1). Hence if one is able to separate these parts with different regular-
ity by imposing proper test functions on I'_, then there is hope to recover various terms in
equation (1.1).

As an illustration, we explain the basic procedures to reconstruct o, in (1.1). We start with
splitting the solution as f = fi 4+ f> where fi, f> satisfy

{V -Vifi = —o4f, and {V Vi = —o4f2 + Fy,
filr_ =flr_ flr_ =0.

With a relatively singular and concentrated input, e.g. f|r_ = (=)@ (), fi will be more
singular compared with f;: the information of f] propagates only in a narrow neighborhood
of a ray while f, is more spread out. Hence one is able to isolate f] from f> by measuring the
outgoing data only in a small neighborhood of the exit point for f. It is then clear from the
equation for f| that the absorption coefficient o, can be fully recovered once f| known. The
details of such analysis is shown in section 2.

The method of singular decomposition has been extensively used in many variations of
RTE, including the time-dependent model, when data is angular-averaging type, models with
internal source, and models with adjustable frequencies, among some others [8, 9, 7, 28, 30,
38-40]. See also reviews [2, 4, 33]. Stability was discussed in [5, 6, 12, 25, 27, 41, 42]. To our
knowledge, all these discussions are centered around linear RTEs. Since linearity plays the
central role, so far there has been no result in a nonlinear setup. One of our goals in this paper
is to extend singular decomposition to a nonlinear system.

1.2. Main results

We show two main results in this paper. The first result gives a general framework for recover-
ing the absorption coefficient. To present our idea in the simplest form, we set our proof in two
dimension. General dimensions can be treated similarly.

The domain € considered in this paper is strictly convex with a C?> boundary. For such a
domain, there exists a C>-function & : R? — R (which is called the defining function of £2)
such that  and its boundary are described by
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Q= {x|]¢(x) <0} and 90 = {x| £(x) = 0}. (1.2)
Moreover, V,£(x) # 0 for any x € 02 and there exists a constant Dy > 0 such that
2
Z 0y (x)aja; > Dolal?, Vxe Q. (1.3)
ij=1

The construction of £ uses the distance function dist(x, J€) whose regularity is the same as
the regularity of 9€2. We refer the reader to section 14.6 in [21] for more details. The outward
normal n(x) at x € €2 is then given by

n(x) = M Vx e 09.

Vi€ (x)

Theorem 1.1. Let Q C R? be a strictly ‘convex and bounded domain with a C? boundary.

Suppose o, > 0 is isotropic and o, € C()). Suppose there exists p > 1 such that for any
given incoming data ¢ satisfying

pelr(), ¢=0,

equation (1.1) with a given mapping Fy has a unique solution with the bound

1Fr [ ey < Corll@] e )y, (1.4)

where Cyr is independent of ¢. Then with proper choices of the incoming data and outgoing
measurements, the absorption coefficient o, can be uniquely reconstructed. Moreover, such o,
is independent of the particular form of Fyas long as Fy satisfies (1.4) with Cy r independent
of the incoming data ¢.

We remark that although the specific form of Fyis not needed in the proof of theorem 1.1,
when applying theorem 1.1 to particular examples, one needs to make use of the specific defi-
nition of Fyto verify (1.4) and the well-posedness of (1.1) with such Fy. We also comment that
this assumptions on Fyis not as restrictive as they may appear. In fact it is common for a vast
class of kinetic equations that Fronly depends on the moments of f and satisfies the bound in
(1.4). Upon proving theorem 1.1 in section 2, we will give two examples to demonstrate its
effectiveness.

In the second result, we show the unique recovery of the scattering coefficient oy in the
classical RTE (radiative transfer equation):

VeV = —of + 05 (f), xeQCR:LveS!, (1.5)

where (f) = [, fdv with dv normalized in the way that [ 1dv = 1. This equation describes the
dynamics of photon particles in a bounded domain 2. The media is characterized by the total
cross section o, and the scattering cross section oy, which are both functions of x. These cross
sections are determined by the optical properties of the media.

Theorem 1.2. Let Q C R? be a strictly convex and bounded domain with a C? bound-
ary (see the precise definition in section 2). Suppose o,,05 € C(Q) with o, given and
0 < 09 < 05 < 0, Then with proper choices of the incoming data and outgoing measure-
ments, the scattering coefficient o in (1.5) can be uniquely reconstructed from the measure-

ment of the outgoing data.
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Two comments are in place for theorem 1.2: first, we only show the result in R? since this
is the case not covered in [16]. Similar strategy used to prove theorem 1.2 can also be applied
to any higher dimension by using the same incoming data and measurement as in [16]. In this
sense, our result would be an extension of [16]. Second, in R? so far we can only treat the case
where oy is isotropic, that is, oy = o(x). Similar as in [16], such constraint is not needed for
higher dimensions. We also note that 2D case was studied in [39]. However, there smallness
of the scattering kernel is assumed while we can deal with the critical and general subcritical
cases.

This paper is laid out as follows. In section 2, we show the proof of theorem 1.1 together
with its applications to the classical linear RTE and a nonlinear RTE coupled with a temper-
ature equation. In section 3, we show the proof of theorem 1.2. Some technical parts in the
proofs of these two theorems are left in the appendices.

2. Absorption coefficient for radiative transfer equations

For each (x,v) € Q x S, we use 7_ (x,v) and 74 (x, v) to denote the nonnegative backward and
forward exit times, which are the instances where

x—71_(x,v)v € 09, x+ 7 (x,v)v € 9Q, forany (x,v) € Q x st.
2.1)
Recall the basic properties of the backward exit time from lemma 2 in [24]:
Lemma 2.1 ([24]). Suppose Q C R? is strictly convex and has a C? boundary. Sup-
pose & is the characterizing function of Q2 and 02 which satisfies (1.2) and (1.3). For any

(x,v) € Q x S\, let T_ be the backward exit time defined in (2.1) and x— € 9K be the exit point
given by x_ = x — 7_(x,v)v. Then

(a) (T—,x_) are uniquely determined for each (x,v) € Q x S';
(b) Suppose &€ € C'(R3) and v - n(x_) # 0. Then T—,x_ are differentiable at (x,v) with

n(x_)
ven(x_) ven(x_)’
Vax_(x,v) =T —V,7_ @, Vx_(x,v)=—717_TI—-V,7_ Q.

T_n(x_)

V- (x,v) = , V- (x,v) =

The rest of this section is devoted to the proof of theorem 1.1. As introduced in the previous
section, the idea of the proof is to separate the terms in the equations and compare the induced
singularities. In particular, let f the solution to the equation (1.1) with boundary condition
flr_ = é(x,v). We separate it as f = fi + f> so that f; satisfies

v-Vifi = —odft,  filp = o), (2.2)
and f, satisfies
v-Vih = —odfs + Fr(x),  fl. =0. (2.3)

If we choose ¢(x, v) to be a delta-like function concentrating at a point (x™", vi") € T'_, then it
is clear through equation (2.2) that the leading singularity of f will be propagating along the
ray

x=x"4+ 7 70,7,
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Defining
vout _ vm, xout — xm + Ty (‘xm’ vm)vm, (24)

and letting the test function ¢ concentrate on (x°", v°"), we will split the measurement of the
outgoing data into two components (with dI'; = n(x) - vdS,dv):

Mw(f):/ g (e, v) f(x,v)dly

=/’ w@Wﬁmwa4+/ P pxvdr, @)
I, r,

=My (fi) + My (f2).
The estimates in the proof are designated to show that
M.y (fi) is determined by the X-ray transform of o, (2.6)
and for concentrated incoming data ¢ and concentrated test function 1),
My(f2) < My(fi). (2.7)

The concentration of ¢ and ) will be described by € and ¢ in the proof.

From this separation one can reconstruct ¢, via the unique recovery of o, in the x-ray
transform. Details of the proof are shown below. One convention that we follow in the rest of
this paper is that we repeatedly use ¢y and Cj to denote constants that may change from line
to line.

Proof of theorem 1.1. Let ¢, § > 0 be arbitrary constants to be chosen later and let ¢¢ be
a smooth function on R such that

0<d() <l doeC®(0.00).  o(0) =1, A bo(r)dr = 1.

For any (x™",v") € I'_ such that

Vi n(x) = —" < 0, (2.8)

choose the incoming data for equation (1.1) as

o(x,v) = %% <x—x"‘> b0 <|v;v‘“|> , (x,v) eT_.

€

Let (x°",v*") be defined in (2.4), and we take the test function for measurement to be:

v_vll'l

P(x,v) = o(x —x™ )t (V _6\;0“ ) = tho(x — x*")ty ( 5 ) > (x,v) ey,

where 1y (r) is a smooth function that satisfies
0t <l voeCE(Doo) =1 [ wlnar=1.
0
2.9

We can solve along characteristics in (2.2) and (2.3) to obtain explicit and semi-explicit form-
ulas for f} and f; as
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T () _
fitey)=e b a7 (x, ), 1), Y (x,v) € Q x S (2.10)
and

—(xv) : .
Hlxv) = /0 e~ Jo =TT E (6 _sv)ds, VY (xv) € QxS (2.11)

For future use, define the sets S}(’ 4 and 89;“ by

o = {x € 6Q|n(x) Y > 0} , forallv € S!, (2.12)
SL, = {vesl‘v-n(x) >0}, for all x € ON). (2.13)

We show (2.6) in two steps.
Step 1: limit of M, (f1) Using (2.10), we have

T_ (xv)

ﬂ%&ﬁ)=:/ [ vt

1  (xw) __4,in
- / / e™ Jo aa(x—xv)dswo(x _ xout)¢0 ’V %
€ a0 S«{‘Hr 1)

X o <|x — (X;V)V = ) o <|V _(;Vln ) n(x) - vdvdS,

- o (x — x™) G 5(x)dS,, (2.15)

€ Joa

ga(xfsv)dsqs(x _— (x, v)v, v) dry (2.14)

where G s(x) denotes the inner integral and it can be further simplified in notation as

Geyg(x) = %/ o [ () g,,(xfsv)dsdjo (‘v —Csvln|>
Sty
e =7 (x vy — v — vin|
X ¢o p oo T n(x) cvdy

=;élmmww<“}“>%(“;”)m

X+

with

|x = 7—(x,v)y — A

€

H. (x’ v) e fo‘L (xv) ga(x—.sv)ds¢0 ( ) n(x) <. (2.16)

We will first pass 6 — 0 and then ¢ — 0 in (2.15). Note that for each fixed € and x € 012, the
inner integral G s satisfies
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am sin6/2
)dv\a/ (%)
1 [ood sin6/2 1 sinf/2
< = <
\5/0 %( 52 >d vts 277-&05%( 52 )d < 2ay,

where oy only depends on the size of the support of 1. Such uniform bound ensures that the
Lebesgue Dominated Convergence theorem can be applied when taking the d-limit in (2.15).
To compute the pointwise d-limit of G. 5, we denote Dy, as the set where

’ |v —yin |x_ — xn|

D¢0 = {(x’ V) € F+ ’ € € Supp¢0} 5 X=X —T- (X, V)V.

Then the measurement My, (fi) becomes

()
My(fi) = /D b(x,v)e”h Tab=ds gy (x — 7 (x,v)v, v) dD.
%0

By the non-degeneracy condition of (x", vi") in (2.8) and the support of ¢, the normal direc-
tion n(-) is continuous in a small nelghbourhood of x'. Hence, if we choose 4, € to be small
enough, then for any (x,v) € Dg,, we have

1.
von(x_) < —Ecm <0, x_ =x—71_(x,v)v. (2.17)

Application of lemma 2.1 gives that

7_(x,v) € C! (Dyg,),

which implies that 7_(x, v) is uniformly continuous on Dy,. Together with the continuity of
04, and ¢g, we deduce that for each ¢, the function H.(-,-) : Dy, — R is continuous. Hence
H, is uniformly continuous on D, and thus

1

!V—Vin| ‘v_vin’ ) )
- !He (x,v) — He(x, yin ‘ Yo b dv—0 as 6 — 0 uniformly in x.
0 Jg 0 1)

X,

Therefore, for each x € Q,

lim G.5(x) = He(x,v") | £ 1 vt =) ) S
55% es(x) = He(x,v'") s IL%/SIerO 5 ®o S V| = Cypgotle( X,V )s

where the constant Cy, 4, is given by

1. |v—vi“ ’v—vin
Cyopo = 5%1_% - ¢o< 5 )%( 5 >dV—/R¢o(V)1/)o(V)dr
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Applying the Lebesgue Dominated Convergence theorem we obtain
lim M, (1)

C .
_ S0 Po(x — xout) H.(x,v")dS,
€ oQ

T_ (xain i — T in\,in __ ,in _
— S / Yo(x — x*) e~ o " ot %, (’x T (e VIV~ x ) n(x) - v™"dS,.
o9

€ €

Furthermore if we make the change of variables using

y=x_(x,v") = x — 7_(x, "),
then by the non-degeneracy in (2.17), the mapping is invertible and we claim that

n(y) - vi"’ ds, = —n(y) - v"dSs, = |n(x) ~vi"‘ ds, = n(x) - v"dS,. (2.18)
This relation can be justified through the physical meanings of |n(x) - vI"| dS, and|n(y) - vI"| dS,

as the effective fluxes into and out of the boundary. The mathematical proof for (2.18) is given
in appendix B. Making such change of variables, we obtain that

lim lim My (f1) (2.19)

e—05—0

C ()i NI — X0 .
= lim o,P0 w()(x(y) _ xoul) e~ N ! oa(x(y)—sv )d;¢0 <|y ) !n(y) . vm| dSy

(2.20)

€
0 (X —sv™)ds

7 (x0Ut youty

= Cypan [n(@") v e o

0o (X — 5y )ds
>

where we have applied the differential relation dS, = d|y — xI"| and 1(0) = 1. Note that the
last term involves the x-ray transformation of o,,.

Step 2: limit of M, (f>) By (2.11), the contribution of f, toward the measurement is

7— (x,v) .
My(f2) = // / Y(x,v)e™ Jo 7alr=m) ITF(x — sv)n(x) - vdsdS,dv.
s aatJo
2.21)

Make a change of variables in the above integral with

y=x—sv, for x€0Q and se€ (0,7 (x,v)). (2.22)
Note that y — (x, s) is a one-to-one mapping with the relation (verified in appendix B)

dy = n(x) - vdsdS, (2.23)

and the inverse map is

s=1i(nv),  x=y+Te(nvv.
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Hence one can rewrite the integral in (2.21) as

Mo = [ [ vl
With the definition of 9 and the bound for Fyin (1.4), we obtain that
p—
My (f2)] < Yo | —5— ) IFr)ldydv
st Ja

([ (557)9) ([ o)

< Cad [|Ff | vy < Card||o]

T4 ()
Jo T g )= 47 Fy(y)dyd.

(2.24)

Lr(T_)

where the constant Cq ¢ is independent of ¢. The L”-norm of ¢ can be estimated using its
definition:

ol Lnr ) =/ A ¢ (x,v) |n(x) - v| dScdv
1 _ 4in _.jn
= a7 //1“_ (bg <|x Ex ) ¢67 (|V 5V |) In(x) - v| dS,dv
! e — ) .
<.gp(Sp (/{m(ﬁo( p )de> (/Sl%( 5 )dv)

Cyoe (P~ D= (=D,

N

Plugging such bound back in (2.24) we obtain

lim lim [My(f2)] < Ca,g, lim lim € —5 6 = 0. (2.25)

e—05—0 e—05—0

Finally, by combining (2.20) and (2.25) we have

7 (xout youty

lim lim My, (f) = // (X, v) fx,v) dT . = Cop e ‘n(x“‘) vm‘ e Jo

e—056—0

O (Xnu( _svoul)ds

Therefore, the x-ray transformation of o, is uniquely determined by the measurement, which
in turn implies that o, is uniquely recoverable by the measurement. Moreover, since Cg, 4,
is independent of the particular form of Fyand the step in showing My (f>) only relies on the
bound (1.4), we conclude that o, is also independent of Fas long as (1.4) holds. O

2.1. Examples

Theorem 1.1 is rather general and one only needs to verify two conditions in order to apply
it: the well-posedness of the forward problem and the bound (1.4). For many kinetic equa-
tions these conditions follow from energy methods. Below we give two examples.

The first example is the classical linear RTE with Fy = o (f) and the equation reads

v-Vf = —o +0,(f). (2.26)

The statement of the unique solvability of o, is

10
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Theorem 2.1.  Suppose ) is a strictly convex and bounded domain with a C?> boundary.
Suppose there exists a constant oy > 0 such that

o, € C(Q), o4 =05 = 09 > 0.

Then with proper choices of the incoming data, the absorption coefficient o, can be uniquely
recovered from the measurement of the outgoing data.

This is the example studied in the original singular decomposition work [16] where the
subcritical case with o, — o, > 0 is considered. We are now able to treat the critical and sub-
critical cases with ¢, > o, in a unified way.

Proof. Let ¢ be a nonnegative incoming data such that ¢ € L?(I'_). Then the positivity of f
follows from the maximum principle of the linear RTE and the unique solvability is classical
[18]. In equation (2.26) we have Fy(x) = o, (f). To obtain an L?-bound of Fy, multiply (2.26)
by 2f and integrate in (x, v). This gives

/Q/Si]v-foz:fZ/Q Slas(ff(f>)2*2/Q/S](Ua*Us)fz<*200|lf*<f>\|22(9xsl)~

By integration by parts, the left-hand satisfies

L Lrve= [ [awars [[ ownr =ik,

Combining the above two inequalities we have
2 1 2
If = ) HEzgaxsty < 200 6|2y (2.27)

Denote g = f — (f). Since f > 0, we have
v-Vf < —o,g. (2.28)

Solving along charateristics, we have

t
flx+tw,v) < ox,v) — / os(x + v)g(x + Tv,v) dT, (x,v) eT'_, t € [0,74(x,v)].
0
Hence, for any (x,v) € I'_and ¢ € [0, 74+ (x, v)], it holds that
2

T4+ (xv)
fz(x+ tv,v) < 2¢2(x, v)+2 (/ os(x +7v) |g(x + Tv, V)] dT)
0

74 (o)
< 2¢%(x,v) + 2 (diam(Q)) || | |2w(m / & (x4 v, v)dr.
0

1
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Integrating in (x,v) € I'_and # € [0, 74+ (x, v)], we obtain that
T (%)
// / £+ v, v)dedD_ < 2 (diam(Q)) || | \izaﬂi)
r—Jo

74 ()
+2(diam(Q))2Hos|\iw(m// / (x4 7v,v)drdl_.
r_Jo

Using a similar changing of variables as in (2.22) by letting z = x + 7v, we then derive that

I 172axsy < Callélwy + Callgl [Baxsy < Calldl fr )

where the last inequality follows from (2.27). Hence, we derive that

1Fr [ zeaxsty = llos () [zaxsty < llos | @) [If [ l2@xsy < Calld | |z@_),

which combined with theorem 1.1 gives the desired unique solvability of o,. O

In the second example we consider a nonlinear RTE, which couples the temperature and
the intensity of the rays. The equation has the form [26]:

vV = —o,d + o,
AT =0, T* — o, (I).
In our proof of reconstruction, we will use an incoming condition for / and a zero-boundary

condition for 7. The final system reads

vV = —oJd + o T I =o(xv), (2.29)

AT =0, — o, (I). T|, o = 0. (2.30)

For a given /, the temperature 7 is uniquely determined in terms of (I) by solving (2.30). This
defines a valid functional 7 on (/).
The statement of the unique solvability of ¢, in (2.29) and (2.30) is

Theorem 2.2. Suppose §) is a strictly convex and bounded domain with a C? boundary.
Suppose there exists a constant oy > 0 such that

o4 = 09 > 0, o, € C(Q),

Then with proper choices of the incoming data, the absorption coefficient o, can be uniquely
recovered from the measurement of the outgoing data.

Proof. Given an incoming data ¢ for I and a zero boundary condition T for 7, we show the
well-posedness of (2.29) and (2.30) in appendix A. The non-negativity of I follows directly
from the observation that ¢, 7* > 0. Now we have F t =0y T* and we want to show that there
exists a constant Cy such that

oaT* | 1200) < Coll | |2 ) (2.31)

Such L2-bound can be obtained by the energy method along a similar line as in [26]. For the
convenience of the reader we include the details here. The full equation with the boundary
conditions reads

12
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V-V = =0l + o T I = ¢(xv), (2.32)
AT = o,T* — 0, {I), T|,, =0. (2.33)

Multiply (2.32) by 7 and (2.33) by T*. Then integrate both equations in (x,v) and take their
difference. By rearranging terms we get

i [ [ewrea [ rwap-— [ [orva] [amr- //SIUC,TS
_/Q/Sl"a (-1 —/Q/Slaa 12—

where it has been shown in theorem A.1 that 7 > 0 given ¢ non-negative. Dropping the term
involving 7%, we have

w0l =1 ey < | [ 2t =14" < 31101 @.34)

wollt =y < [ [ att=wr= [ [ a(r=ur) <301k

(2.35)

and

Combining (2.34) with (2.35), we obtain that

I\Ua | ILoo

||Ua(1* T4) | \LZ(QxSI) < loa | |z (HI -« \LZ(stl) + H (I — T | |L2(szxsl)) < ll¢] ‘2

Since o, (T* —I) is simply the forcing term in (2.32), we can apply the bound for (2.28) to
derive that

1] li2oxsty < Callo|[B_.
This implies that

loaT* | |20y < lloal | (1] l2@xsy + [ = T* |izxs) < Callloa |z, 00) llo][f_

which is the desired bound in (2.31). The unique solvability of ¢, then follows from theorem

1.1. O
3. Recovery of the scattering coefficient: averaging lemma
In this section, we show how to use the celebrated averaging lemma for kinetic equations to

recover the scattering coefficient. We will work out a specific example as an illustration. The
equation under consideration is (2.26), which we recall as

v-Vf = —o +0,(f). (3.1)

13
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Since o, has been found by theorem 2.1, in what follows we assume that o, is given and focus
on finding o;.

First we recall the statement of the averaging lemma. For the purpose of the current work,
we only need the most basic version which is stated as

Theorem 3.1 ([11, 19, 23]). Suppose 0 < oo < 05 < 0, with o, € C(Q) where Q) is open
and bounded. Suppose ¢ € LP(T'_) and g € LP(Q x S!) for some p > 1 and f satisfies the
equation

veoVif = —of +o(f)+e  flp = o). (3.2)

Then for any v < inf{{l},l — Il)} the velocity average of f satisfies (f) € WYP(Q) with the
bound

1) Hwvocey < Co (10 Loy + llg Herxsn) -

We also recall the basic L” energy estimate [20] for equation (3.2):

Theorem 3.2 ([20]). Suppose ¢ € LP(T'_)and g € L?(Q2 x S') for some p € [1,00]. Then
f € LP(Q x SY) with the bound

IIf [ 1r(axsty < Co (H¢>| Loy + 1lg | |Lp(stl)) .

Our main result in this part is

Theorem 3.3. Let Q C R? be a strictly convex and bounded domain with a C? boundary.
Suppose 0 < oy < 05 < 0, with o, € C(Q) given. Then with proper choices of the incoming
data, the scattering coefficient oy in (3.1) can be uniquely recovered from the measurement of

the outgoing data.

Proof. For any given ¢, let f be the solution to (3.2). Decompose it into three parts:
f=h+/fr+f; where

v-Vifi = —adis  filp = o), (3.3)
v-Vih = —ah o (i), flp =0, (3.4)
v-Vifs = —odfs o, () + o, (), Bl =0 3.5)

Note that given o, oy, the first two functions fj,f> are explicitly solvable. The idea of the
proof is to show f3 is more regular than f>, which in turn more regular than f}, using the aver-
aging lemma. By posing the correct geometry for the incoming and measuring functions, one
can show f, dominates the data, and is used to reconstruct oy.

Incoming and Measurement First we need to specify the incoming data ¢ and the measure-
ment function 4. Fix (x™",v™) € I'_ and (x°",v*") € T'; such that

Vin H vout, Vin . Vout > 0. (36)

Let ¢, be the ray initiated at x™ along the direction v and ¢, the ray initiated at x°** along the
direction —v™. Since v Jf v*™, the two rays £; and ¢, have a unique intersection inside {2,

which we denote as x(. For later use, let sy > 0 be the exit time associated with xy in the direc-

14
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Figure 1. Geometry and some physical quantities.

out

tion of v°, or more explicitly,

xp = X — sov°Ut = x4 5oV, (3.7)

The main goal is to find o(xo). Define viI' as the unit vector such that

Vil ym =0, and 7:=v" 1" >0, (3.8)

For the illustration of the geometry, see figure 1.
Let ¢ be a smooth even function on R such that

0< go(r) <1, Suppgy = [—1,1], #0(0) =1, /R%(r)dr: L.

Let vy be the same smooth function defined in (2.9) with Suppiyy = [—1, 1]. We choose the
incoming data ¢ and the measurement function 1 as

P(x,v) = i¢50 <W> Po (hjjsvm|> , (x,v)eTl_,

en
Ylxy) = ﬁw (W) Yo (W) (r,v) €T
Quickly, we have

My (f) = / / BFAT_ = My(fi) + My(fs) + My(fs).

The essence of the proof is to show that My (fi) and My (f3) are negligible while M., (f>)
is used to reconstruct o,(xo). The estimate for M, ( f3) relies on the averaging lemma, and the
estimate for M, (fi) follows from a basic geometric argument.

As a preparation, we first give an estimate of L"-bound of ¢ (with r to be determined later):

// @ (x,v)|v - n|dS,dv = ’5’/39/§1 (x—x) VL)¢70(|V_(SV1n|>|v.n|dedv
v —v"| 1 p (=2 v
(3 ()0 (s () ).

15
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where the v-integral is bounded as

[v —vin| 1 |sinw/2| 1 | sinw/2| ——1)
g (5o [T (M) s [T (M) o s

In order to estimate the boundary integral, we take v" as the horizontal axis and take en small
enough such that OS2 is a graph parametrized by

x=f(x), xmeE —en N+en), x=(x5,x),

where f € C'[x" — hy, xM + ho] for some fixed /. Then the boundary integral satisfies

5/@9‘%(( iy L yin )dS 77/x1+6"7 ,(xl xl>mdxl

X +en
Co ! X1 fxl —(r—1
< - Po < dx; < coe” "V,
€ xil"—en €1

where c( depends on the C'-norm of f, which is assumed to be bounded since 0f2 is C!. Note
that such bound is independent of x™ since 952 is compact. Combining the two integrals, we

have
1/r
m)g( / / ¢>’<x,v>|v-n|dsxdv> < e
I_

Averaging lemma Now we apply the L"™-energy bound and the averaging lemma to obtain a
bound for (f;), (f2), and f. First, a direct application of theorem 3.1 gives

1) |

\\»—-

llé] r>1.

—1 =1 1
;

rro)y Sce o T,

wor < o ||@]
where 5o = inf {%, 1— %} By the Sobolev embedding, we have

1) |

r—1 r—1

L) < coll (i) | lwor < coe ST, Vp1 <

S0 .

1_
r 2

Since (f;) is the source term in the equation for f>, we apply the averaging lemma again and get

r—1 r—1 1

[ (2) L) < coll () | lwao @) < coll (i) [ Lmaxsy < coe™ 767 7 n7,
(3.9)
where the exponents satisfy that
1 1 1
slzinf{ 1—} 12 o
pl P1 2
By theorem 3.2, we also have
115 e @) < B THim@xsy < coll (R) @) (3.10)

16
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Contribution from f3 Using the change of variables in (2.23), we obtain the contribution of
/3 to the measurement of the outgoing data as

‘ / B v) fo(v) Ty
J Jry

Slloellie [ [ 00+ 7o) [ 0) + ) 0)] dy

<a [ [ oo (PR g (M) 1) 00+ ) ) v

o [ ([ g (B0 (M2 0 ) 16 00+ ) 001y
__yout __out P£ i
< <-/Q (/S] %w()(‘Y‘FTJr(y,@V)V X ‘)w()(“’ ,BV |)dv> dy) H(fz>HLl‘2(Q).

Where —|— — = 1 and the last step follows from Holder inequality and (3.10). The factor 7'is
estlmated as follows

" o (\y+r+<y,v>v—x°"‘|) <|v—v°m|> )
T /Q(/S.eﬁw‘) . w(P5)w) @

(Dl Y o) Ly (MY ) (f L (220) )*
<( Ut (205" ) (57 ) ([ o (57
ey =) N L=
<o [ ([ et ( . Ja) g (B

For each v € S, if we apply the change of variables

x=y+7y(y,v)v € 00},

with OQ;F defined in (2.12), then T} satisfies
7 (xv) 1 |x—xOUl‘ . 1 o ‘x—x0”1| (o1
"= /aa+ / Tl ( 0 ) dsdx < (diam(€2)) /am % (T) dr < o~ ().

Therefore, T is uniformly bounded in v with the bound

t
TP < Cog—(pé—l)/ l% ('v_vou|> dv < Cog—(pé—l).
s B B

Inserting the estimate for 7' back into M (f3) and using (3.9) and (3.10), we have

/
Phy—1
2 r—1 r—1

- _ 1 -
<co) 7 e T8 T =cof e

r—1 =1 1
i

My (f5)] = ./ g Y(xv) fa(x,v)dly T .

We will choose the parameter properly later to make M, (f3) a negligible term, namely, we
will choose parameters so that

I

O e T Ty < 1 (3.11)

Contribution from f; We show in this part that by properly choosing the parameters, the
contribution from f; is zero. The formula under consideration is

17
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Mo(5) = | [ s At

where we solve equation (3.3) to obtain
T_ (xv) p—
filtcv)y=e Ta=S g (x — 7 (x, V)V, V), (x,v) € A x S

Definitions of ¢ and ¢ give

11 S O N |x — xo] [v —veu
_ Jo o4 (x—sv)ds
Mo = g | e o (B (M)
X 6o ((x—ux,v)v—x'") L) 4o (""”‘"') ar,.

€n

The sufficient condition for M. (fi) to vanish is

Supp (wo <|V_6V|>> N Supp (¢o ('V ;vm|)> — 0. (3.12)

One sufficient condition for (3.12) to hold is

[y — | > B 44, (3.13)
since then there does not exist any v satisfying that

]v—v"““ <B and ‘v—vi“‘ < 6.
Recall that 7 is defined in (3.8) as

n=v" 1 > 0.

Therefore, by (3.6), we have

This gives

|v°“‘ - vi“’2 =220 N =2 —2y/1 — 2.
Hence we have the estimate

n < =y < 2. (3.14)
It is then clear that a sufficient condition for (3.13) (and thus (3.12)) to hold is

n>B+4. (3.15)

Such condition gives that M, (f1) = 0.

Contribution from f, The main contribution to the measurement comes from f>, which we
compute below. Denote such contribution as M, (f2). Then for any (x,v) € Q x S!, we have

18
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T (x,v) .
My(f2) = //F /0 Y(x,v)e” Jo oale=v) 9oy (x — sv) (fi) (x — sv)dsdl'y

T—(xv) :
// / P(x,v)e” Jo o= a7 5 — sv) fi (x — sv, w)dwds dT

i (x V) T (x—svw
// / / ¢ X, V — Jo oalx—Tv)drT —fo ( ) oalx—sv—7w) dr
Ly

x os(x — sv)o((x — sv)l,, w)dwds dl'y,

where (x — sv)/, is the entry point of x — sv along the direction w. To simplify the notation,
we denote

T (x—svw)

H(S, XV, W) — e~ Jo oalx—7v) d'ref Jo ou(x—sv—Tw) dT

os(x — sv).
Separate M. (f2) into two parts as
wwmpiﬁi/qmsyumefﬂwwwmuf)W)mma+
+
‘M:/M”wav(@xvm H(s0, X", v*" V™)) ¢((x — sv),,, w)dwds dT' .
. .

= Mo+ Moo,

To treat the first term M, ; we insert the definitions of ¢, ¢ into M ; and obtain

H (50, x™, v, ') - |x — x| \V*V"‘“l w— v
My = > 95 /F+/ /S1 ( %o 5

x%(«_ k;wyﬁ)mmw+

Now we reformulate the second ¢p-term, whose argument satisfies
(x—sv)l, = (x —sv) — 7_(x — sv,w)w

= (X — v — 7 (x — sv, W™ + R(x, v, 5, W), (3.16)

where the remainder term R is

Ol]t) Ol]t)

R(x,v,5,w) = (x — x*) —s(v — V™) — 7_(x — sV, W) (w—vin).

By corollary C.1, we have that V,7_ (-, w) is uniformly bounded in w if we choose
0406+ 6 <Y
Then by using (3.7) again, we have

((x —sv)l —x) - wit (X0 — sy — " L R) -y s — s+ %R -yl

€n €n €
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Let z be the new variable given by

1 .
z=s5——R-V].
gL
Then
0 10R . 1 . 1 . .
8—? =1- a5 =1 +;(v—v°m) V= 5(V'VXT_(X—SV,W))(W—VIH) -y

Due to the compact supports of ¢ and 1)y, the variables (x, v, w) in R satisfy that

|x—x°“‘| <6, |v— v"“t’ < B, |w— V4.

If we impose that

n>pB+4, (3.17)

then 0z/0s > 1/2 and we can make the change of variable from s to z. Denote
I=27"0,7_(x,v)). Then

. . ) ) H(so,x"“‘, voul’ vin) 1 |x _ xout| |V _ Voull
1 1 =1 1 _—
Jmy lim Mo, = T - lim @ Gﬁﬂ;AL% i )\ s

B+ >p+5
s0—2 |w— v\ 0z
—dwdsdl';.
X¢0< c >¢0< 5 )Bsws +

Since sy is an interior point by corollary C.2, we have

lim  lim My = H(sp,xJ", v, v'").
E,9—>0 n—0 ’
n>B+6

where x°Ut, 1°U* are replaced by x3", V'™ in the limit 7 — 0. Meanwhile, by the continuity of 7_
and o, the second term M5, will vanish in the limit.

Consider that under conditions (3.11) and (3.15), assuming 5~ ?7% — 0, then My, (fi)y=0
and My (f3) — 0, overall we have

S out out T (") in
(TS()C()) _ efoo ou (X =1V )d‘ref0 ou(xo—7V") dr lim lim Md)(f)
6,9*}0 n—0
n>p+6
5 u i T_ (xp'™) i
_ efoo a“(xgl—rv") drefo 0 oa(xo—7v") dT lim lim Mw(f)
6,0*}0 n—0
>+

Choice of the parameters We now collect all requirements on the parameters, namely equa-
tion (3.11), (3.15) and (3.17). Choose § — 0 and € — 0 independent of ), these requirements
reduce to:

ST <, BHi<. (3.18)

In the borderline case where § = 7, the sufficient condition for the first inequality in (3.18)
to hold is
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r—1 1
<—-=r<2.
r r

This suggests that we can find proper parameters by letting # — 0 and € — 0 independent of
7 and setting

B=45= nl-i-ﬁo'

with 3y small enough, then (3.18) holds for r € (1, 2). O
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Appendix A. Well-posedness of the nonlinear RTE

In this appendix we use the classical monotonicity method combined with the Schauder fixed-
point argument to show that the nonlinear RTE given in (2.32) and (2.33) is well-posed. Recall
that the equations are given by

V-V = —0,l + o,T", I, =o(xv), (A.1)
AxT = UaT4 — 04 <I> > T|aQ =0 (A.2)
where ¢ > 0and ¢ € L°°(T'_). The statement of the well-posedness result is

Theorem A.1.  Suppose ¢ € L>°(T'_) and ¢ > 0. Then (A.1) and (A.2) has a unique solu-
tion.

Proof. Let D be the solution set given by
D=A{T|0<T<||¢]|e=}-

Take H € D. We want to construct a map F and show that F(H) € D. Let I be the solution
such that

Ve Viy = =04y +0,HY, Iyl = (x.v).

Such I exists by a direct integration along the characteristics. Since H* > 0 and ¢ > 0, we
have Iy > 0. Moreover, if we consider Iy — ||¢ | |1, then it satisfies

v Vel =6 ]1) = —0a (In = |6 | =) + 00 (H* = |6 ||e=) . (I = |lo]]e) [, <O.

Since H* — ||¢ | |1~ < 0, we have Iy < ||¢ | |1~ Define F(H) = T where T is the solution
to the equation

AT =0, — 0, (Iy), T|,o =0
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or equivalently,

AT = —0,T* +0,(Iy), T|BQ =0. (A.3)

We use the classical monotonicity method for semilinear elliptic equations to show that such
T exists and is unique. First, let T = 0 and T be the unique solution to the equation

—AXT = Ogq <IH> . T|3Q = O
Since it holds that
—AT —o0,(Iy) <0=—0,T",  T|,,=0,

and

AT — o, (Iy) =0> —O‘aT4, T|BQ =0,

the functions 7 and T serve as the sub- and super-solutions of (A.3). Moreover, we have
0<T<T.

We use an inductive argument to build an increasing sequence as follows. Fix a constant A
which satisfies

3/4
A > 4log | |16 ] ;2.

This guarantees that the function f(x) = Ax — a,x* is increasing for any x € (0, ||¢ | |L).
Initialize the sequence at Ty = T and suppose at the inductive step that

1/4
0< T < ]| ‘L{’O
Define T} as the unique solution to the equation

~ATig1 + ATt = AT — 0T + 0 (In) . Tigt] g = O (A4)

Note that Tik+1 = 0 since by the choice of A and the assumption of T} the right-hand side
satisfies

AT — 0, T} + 04 (Iy) = 0, (Iy) > 0.

Moreover, Ty < ||¢] |zéj since we have
—AyTir1 + ATy < ATy,
which implies that

max Ty < max Ty < || 12

Now we show that Txy1 = T} for all k > 0. First, T} > Ty = 0 since we have shown that
Ty > 0 for all k. Next, the difference Tx4+1 — Tk satisfies the equation

Ay (Tert = Ti) + ATt = Ti) = f(Ti) = f(Tie1) 20, (Tir — Ti) |y = 0.

22



Inverse Problems 36 (2020) 035011 QLiand W Sun

where recall that f(x) = Ax — x* Hence

mjn(Tk+] — Tk) = min(Tk_H - Tk) = 0,
Q o0

which implies that Tx1+1 = T. We thereby have constructed an increasing sequence. Lastly we
want to show that Ty < T for all k > 0. This is done by considering the equation for Ty — T
which reads

DN (Te =T) + XN (Tu = T) = f(Trmr) — AT, (Tk*T)LaQ:O'

By the induction assumption at k such that Tx—; < T, the right-hand side of the equation satis-
fies

F(Teey) = AT < f(Tyey) — ()\T - aaT“) <0.

Hence by the maximum principle, we have

max (i1 — T) = max(Tyr — T) =0,
o EI)

which gives that Tx+1 < T. Overall, we have

0=T=To<T1 <---<Th <---<T.

Together with the L bound of T}, we have that there exists T € L (€2) such that

Ty — T pointwise and in L*,

Passing k — oo in (A.4) shows T is a weak solution of (A.3) and ||T'| |r= < [|¢| |1Q The
L*-bounds of T and Iy shows that T € W>°°(Q). Hence the mapping F is compact and we
can then apply the Schauder fixed-point theorem to obtain a strong solution to (A.1) and (A.2).
The uniqueness can be shown by directly taking the difference of two potential solutions and
using the energy estimate. O

Appendix B. Geometry
In this appendix, we show the proofs for two geometric relations (2.18) and (2.23). First we
prove (2.18).

Proof of (2.18). Suppose that in a small neighborhood of x € 02, the boundary 0f2 is
parametrized as

x = x(u), u € (ug,uy).

Then the corresponding small neighborhood of y, given that y is the exit point of x, is also
parametrized by u through the relation

in

y = y(u) = x(u) — 7_(x(u), V™)V, u € (up,uy).
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Therefore, gx—u and % are both along the tangential direction. Moreover,
dx dy
ds, = |—|du, ds, = |—|du.
du “ Y ’du‘ “
which gives
s, |dx/du|
as, ~ |dy/dul’

Note that for any unit vectors «, 3, we have
o 4] = |at - 4. (B.1)

Therefore, if we denote T, and 7, as the unit tangential directions at x and y respectively, then

oy v = 1= [ (| = [ 0 o
Similarly,
) v = |2 ") o
du
Therefore,
) 0] Jasyaul [ 8- ()]

. pin - o1 °
) ] T e ()]

Observe that by the definition of y, we have
dy  dx  dr—(x(u),v™)

du  du du v
Hence,
% . (vin)J- _ (gj: B dT();(:)’Vi">Vin) _ (Vin>J- _ (% . (vin)J—'
Therefore,
) V| |dx/du] _ ds,
n(x) v = ldy/dul ~ ds,’
which is equivalent to (2.18). O

Next we verify (2.23).

Proof of (2.23). Fix x € Q. Suppose the neighborhood of x (in 9€) is a curve para-
metrized as
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Then
y(u,s) = x(u) — sv.

The Jacobian of the mapping y — (u, s) is
(dw dn dy  do

det [ du du)) — Idet ( dudu )
v o

where T, is the tangent direction at x. By (B.1), we have

ds ds

dyr  dyz
det | go de ) = v n(x)] |Vl

Therefore (2.23) holds since

6 s
dy = ’m duds = |v - n(x)| | Vx| duds = n(x) - vdS,ds,
where we can remove the absolute value sign since n(x) - v > 0. O

Appendix C. Some technical lemmas

This appendix is devoted to showing several technical results used in the proof of theorem 3.3.

The notations x™, x3", v, s¢, X9, v°™ represent the same quantities as in the theorem.

Lemma C.1. There exists ~y small enough such that T_(x — sv,w) is C' in (x,v,s,w) over
the domain

’xfxgm‘ + |w - vi"‘ + |v - vi"’ < 70, s € (0,7—(x,v)), (x,v) e 4.
(C.1)

Moreover, the bound ||V x7_ (-, w) | | is independent of w over the region (C.1).

Proof. By lemma 2.1, we only need to show that there exists a constant ¢ ; > 0 such that

w-n((x—sv)_) < —co1 <0 (C.2)

for any (x, v, s, w) satisying (C.1), recalling that (x — sv)_ is the backward exit point of x — sv.
The idea is to show that (x — sv)_ is close to xI" when ~ is small. Then by the continuity of
the outward normal n, we obtain (C.2) from the non-degeneracy condition at (xi“, vi“). The
closeness of (x — sv)_ to x™" is fairly evident from the geometry shown in figure C1.

For a rigorous proof, we first assume, via a proper rotation and translation, that v\ is along
the positive y-axis and x™ and x3"* are both on the y-axis. Since 2 is convex and vi" - n(x") £ 0,

we have

25



Inverse Problems 36 (2020) 035011 QLiand W Sun

Figure C1. Geometry for non-degeneracy.

Vi n(xg™) > 0.

Take small neighborhoods N (x"), /(x3"t) around x™ and x3* on 02 such that

A 1. A A
v on(x) < v en(x™) <0, Vx e N,

N =N

V() > v a(xg™) > 0, Vx e NxQ™M),

Denote the boundary vertices of N'(x"), N'(x3") as Aj,As,A3,A4. By adjusting the sizes of
N (xM), N'(x3") we can choose these vertices in the way such that

A1A3 //A2A4 //y — axis.

Choose A and A, as two points on arc(A;x™) and arc(A,xJ™) respectively such that
ZA1A3111 = 4A2A4Zz =:MNo-.

Denote the region bounded by the line segments AjA3, A>A4 and the two arcs arc(A;A,),
arc(A3A4) as Dy. Then for any (x,v) € I'y with cos™!(v - v1") < g and any s € (0, 7_(x,v)),
we have

(x —sv)_ € N(x™).
Hence, for such (x, v, s) we have

Vil on((x —sv)_) < %vin -n(x™) < 0.
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Take -y small enough such that
1

v n(x), A", ‘Azxgml} .

2

) 1

Then

w-n((x—sv)_) < %vi“ n(x™) <0

for any (x, v, s, w) satisfying (C.1). Hence 7_ is C' over the region (C.1). The explicit formula
for Vi7_in lemma 2.1 shows that ||V, 7_(-,w) | |p is uniformly bounded in w. O

Two immediate consequences follow.

Corollary C.1. There exist 1., such that if n in theorem 3.3 satisfies 1 < 1, then
7_(x — sv,w) is C' in (x,v,s,w) over the domain

[ = + [w = v+ |y = v < s, s € (0,7—(x,v)), (x,v) €T4.
(C.3)

Moreover, the bound ||V y7— (-, w) | |1 is independent of w over the region (C.1).

out

Proof. By lemma C.1, we only need to show that x'
by taking 7, small. By (3.14), if we taking 1, < %’yo, then

is close to x{"* and v*" is close to V"

out Vin }

1
<2 < =7
|V n 470

Denote the angle ZA;x0x3" as 7]. Then for 7, < 7], the point x**" is on arc(A;x"). Since
lim |Z1 —)C8m| = O,
n—0

by choosing 7, small enough, we have
1
out out
— < =.
|x X0 ‘ 270
Hence if we let v, = %*yo, then for any (x, v, s, w) in the region (C.3), they also satisfy that

=3 o [ o)
< |x7x0ut| + |W* Vin| + |V*V°m| + |xout 7x8ut} + |v0ut o Vin
1 1 1
< 3%+ 170+ 7% =%,
whereby lemma C.1 applies. O

Corollary C.2. Let ~, be the upper bound such that T_ is C' in the domain (C.3). Then for
v« small enough, sg is always an interior point in (0, 7_ (x,v)) whenever (x,v) satisfies (C.3).

Proof. First recall that so € (0, 7— (x°", v°"")). Then

oo = 7 (x*"v*") — 50 > 0.
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By corollary C.1, the backward exist time 7_ (x, v) is continuous for (x, v) in the closure of the
domain dictated by (C.3). Hence if ~, is small enough, then

<1
~09p.
570

}T, (x,v) — 7 (x°*,v°") |

Therefore,

T (%, v) — 59 > 7 (x50 — 500 =80 =00 > 0,
which shows s € (0, 7_ (x, v)). O
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