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Abstract

The Vlasov—Poisson—Boltzmann equation is a classical equation governing the dynamics of
charged particles with the electric force being self-imposed. We consider the system in a
convex domain with the Cercignani—Lampis boundary condition. We construct a uniqueness
local-in-time solution based on an L>°-estimate and W !+?-estimate. In particular, we develop
a new iteration scheme along the characteristic with the Cercignani—Lampis boundary for
the L>-estimate, and an intrinsic decomposition of boundary integral for W7 -estimate.

Keywords Cercignani-Lampis boundary - Vlasov—Poisson—-Boltzmann system - Boundary
value problem - Local well-posedness

1 Introduction

In this paper we study the existence and uniqueness of Vlasov—Poisson—-Boltzmann (VPB)
system with generalized diffuse boundary condition. VPB is a classical model that describes
the dynamics of dilute charged particles (such as plasma) with a self-imposed electric field
(see [2,13] and reference therein). We denote F (¢, x, v) the phase-space-distribution function
of charged particles at time 7, location x € €2, a bounded domain in R?, moving with velocity
v € R3. The equation writes:

F+v-ViF—E-Vy,F=Q(F,F), Fli= = Fo(x,v). (1.1)
The characteristics solves the following Hamilton ODEs
xX=v, v=—-E. (1.2)

The collision operator Q on the right, as a functional of F, describes the binary collisions
between particles and takes the form of
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O(F1, F2)(v) = Qgin(F1, F2)(v) — Qloss(F1, F2)(v) = Qgain(F1, F2) — v(F1) F2

= // B —u, w)F1(u)F>,(v)dwdu
R3xS?

(1.3)
— (// B —u, a))Fl(u)da)du) F(v).
R3xS?
In the collision process, momentum and energy are conserved, namely,
WAV =utu (WP P = e P
where the post-velocities are denoted as
W =u—[(u—v) oo, V=v+[u-"o-olo. (1.4)

In (1.3), B is called a collision kernel, and we use the hard potential model in this paper:

B(v—u, w) = |v—u|’cqo(|v_u| a)) with 0 <K <1,
vV—Uu

v—u v—u
OSCIO( 'w)SC ~w‘.
v — ul v — ul
In (1.1), E denotes the electrostatic field, and we consider a self-imposed electric field in this
paper: namely, the charged particles themselves form a potential that in turn drives their own

dynamics. This is in particular a relevant model for plasma particles without extra magnetic
field. More specifically,

E(t,x) = =V (1, x), (L.5)

with the electrostatic potential ¢ determined by the Poisson equation
d
—qub(t,x):/ F(t,x,v)dv — pp in €2, —(p:Oon 082, (1.6)
R3 on

where p is a background constant charge density. We set pg as an average of the initial total
mass:

1

= @ - Fo(x, v)dvdx. (1.7)
X

00

The boundary condition of F is determined by the interaction between the charged particles
and the physical boundary. We denote the boundary of the phase space as y := {(x,v) €
9Q x R3}. Let n = n(x) be the outward normal direction at x € 9. We split the phase
boundary into an incoming (y_) and outgoing () set as:

v i={(x,0) €32 xR 1 n(x) - v S0} or yr(x) :={vedQ xR :n(x) v<0).
(1.8)
The boundary condition determines the distribution on y_, and describes how particles, once

hit the boundary, bounce back into the domain. It is characterized through a scattering kernel
R(u — v; x, t) that satisfies a general balance law

F(t,x,v)nkx)- v = f Ru— vix,t)F(t, x,u){n(x) - uldu, ony_. (1.9)
y+(x)

Physically, R(u — v; x, t) represents the probability of a molecule striking in the boundary
at x € 92 with velocity u to be bounced back to the domain with velocity v at the same
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location x and time ¢. In this paper we use a model proposed by Cercignani and Lampis
in [4,5]. With two accommodation coefficients

O<rp <1, O0<r <2, (1.10)
the Cercignani—Lampis boundary condition (C-L boundary condition) can be written as

R(u — v;x,t)
_ 1 [n(x) - v|
o2 = rm/2 2Ty (x))?
( 1 [|m2+ (I —r)url? |y -0 —r|)u”|2D (1.11)
exp +

2T, (x) L 2 —rp
1 2(1—rL)1/2UJ_MJ_
x Iy .
2Ty (x) ry

Here Ty, (x) is a wall temperature on the boundary and

g
Io(y) ::n”/ e’ %dgp.
0

In this formula, v; and v denote the normal and tangential components of the velocity
respectively:

vy =v-n), v =v-—uvinx). (1.12)

Similarly u| =u -n(x) and u) = u — uyn(x).
This model can be considered as a generalization of fundamental boundary conditions.
For instance if we set | = 1 and r| = 1, the scattering kernel equals

P
Tw® |n(x) - v|.

Ru— v;x,t) = me
This corresponds the so-called diffuse boundary condition:
F(t,x,v) = #e_% / F(t, x,u){n(x) - u}du on (x,v) € y_.
(2T (x))? n(x)-u>0

(1.13)
Withr; =0, r) = 0, the scattering kernel is given by
R(u — v;x,t) =6(u —Ryv),
with Ry v = v—2n(x)(n(x)-v). This corresponds the specular reflection boundary condition
F(t,x,v) = F(t, x, Ryv).
Finally with r; = 0, r| = 2, the scattering kernel is given by
R(u—v;x,t) =6(u+v),
which corresponds the bounce-back reflection reflection boundary condition F (¢, x,v) =
F(t, x, —v). The C-L model is related to the Maxwell boundary condition since both models
can describe the intermediate reflection law between diffuse and specular reflection boundary

conditions. The comparison of the two is found in [6].
It is important to note that the C—L boundary condition satisfies the reciprocity property

e~ WP/@TLD) 1y (x) - )

e—u2/QTw () |n(x) - ul’

R(u— v;x,t) = R(—v —> —u; x,t) (1.14)
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and the normalization property (see the proof in appendix)
/ R(u — vy x,t)dv = 1. (1.15)
y-(x)

We note that the normalization (1.15) property immediately leads to the null flux condition
for F:

/ F(t,x,v){n(x)-vldv=0, forx € dQ. (1.16)
R3
This guarantees the conservation of total mass:
f F(t,x,v)dvdx :/ F(0, x, v)dvdx forall t > 0. (1.17)
QxR3 QxR3

We note that from the conservation of mass (1.17) and our choice (1.7), the Neumann bound-
ary condition of (1.6) is automatically compatible.

The generality of the C-L model allows it to be applicable to many problems, including the
rarefied gas flow studied in [18,21,22]; gas surface interaction model presented in [19,23];
and rigid-sphere interaction model investigated in [10,11], to name a few. There also emerged
many other derivations of C-L model besides the original one, and we refer interested readers
to [3,4,7].

1.1 Main Result

We now discuss the main result of this paper. Throughout this paper we assume the domain
is C3, which means for any p € 012, there exists sufficiently small §; > 0, § > 0, and an
one-to-one and onto C3-map 7, so that

np i € R : x| < 81) — 92N B(p, &), (.18)
X = (X1, Xp,2) = 1p (X1 x),2)-

We further assume the domain is convex: there exists C;, > 0 and Cq > 0 such that at all
p € 0%2, the Hessian of the corresponding 7,,, defined in (1.18) are upper and lower bounded
for all x| in (1.18) as

2
—CyleP < ) Ggdidinp(xp) - n(x)) < —Cal¢?, V¢ € R (1.19)
i,j=1

We define the global Maxwellian using the maximum wall temperature as

_ b2
u:=-e 2™, with Ty := max{T,(x)}. (1.20)
xedQ
By setting
F = Jif, (1.21)
we have:
hf+v-Vof =Vid - Vof + 33— fv Vi =T(f, f)
ft=0,x,v) = folx,v) :=pu"Y2F, (1.22)

5,00 vl = T [ g R = 06,0 £, x, )5/ () - uldu
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where the collision operator becomes

C(f1, f2) = Taain(f1, f2) —v(F)F2 /1 = Qoain(VILf1, V1L f2) — v(F1) fa,

(1.23)

1
Vi
and ¢ solves

— Acp(t,x) = /% ft, x,v)/u()dv — pp in 2, % =0ondQ. (1.24)
R‘

The reciprocity property (1.14) is also translated to: for (x, v) € y_,
eI/ 2Ty ()

f, x,v)nkx)- vl = f - R(—v — —u; x, t)m
Pt sy 0 i { (x) - u}du.
Denote
do(u,v) := R(—v — —u; x, t)du, (1.25)

then according to the normalization property (1.15), do is a probability measure in space
y+(x), reducing the boundary condition for f to:

f, x, v, = e[ﬁ_m]lv‘z f f(, x, u)e_[ﬁ_%”ulzda(u, v).
n(x)-u>0

(1.26)
For easier notation, we furthermore denote, for all 6:
we = e () = V2 + L. (1.27)
Now we state our main theorem of the paper:

Theorem 1 Assume Q C R3 is an open bounded, and convex C 3 domain, the wall tempera-
ture Ty (x) > 0 is smooth, and that the two accommodation coefficients of (1.10) satisfy

minyeyo{Tw(x)} L—rp J/1T—ri—(0—ry)
— max( : ) (1.28)
maxyeye{Tw(x)} 2—r rL
Assume further that
lwe folleo < 00, (1.29)
lwgVu follzs, < oo, (1.30)
2
lwgat Ve foll Logaxrsy < 00 for 3<p <6, 1— S<B<3 (1.31)
with
~ 1
0<f<bl< —m———, (1.32)
4maxyeg{Tw )}

and a weight function oy ¢, to be defined in (1.41), then there is a unique solution f(t, x, v)
to (1.22) in a time interval of t € [0, f] with

P = i(lwo folloo. lwgeh, Vi foll Loaxroy 1w Vofolls .7y 7L, Q. Tar, min(T,, (x))).
(1.33)
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Moreover; there are € > 0 and ) > 0, so that f satisfies

_ 2
sup [lwge™ " F(D)lloo S llwe folloo- (1.34)
0<r<t
sup Vo f(O)ll 3,148 < 00, (1.35)
0<t<f e

t
sup {||wge*“<”>a’?,evxﬁvf<t>||§+ / |wge“<“>a‘,f,6vx,v.f<r)|§,+} < 0.
A A .

0<t<t

(1.36)

Remark 1 We do not assume the smallness of our initial data, but we need the small scale
of the time 7. Setting r; = 1 and rj = I, this theorem also provides the first large date
well-posedness of VPB system with the standard diffuse boundary condition (1.13). A small
data result had been established in [2]. We use the condition (1.28) in the proof of the L
bound, which itself serves as an important a-priori estimate for the existence and the W7
estimate (1.35) and (1.36).

Remark 2 To the best of our knowledge, Theorem 1 provides the first local in time solution
to the Vlasov—Poisson—-Boltzmann system in bounded domains with the Cercignani—Lampis
boundary condition. The local in time result for the Boltzmann equation without field can be
found in [6].

1.2 Strategy of the Proof

In this section we discuss the major difficulties and describe the main strategy utilized in the
proof.

The main difficulty comes from the singularity at the boundary. Consider the simple
Vlasov—Poisson (VP) equation without the collision:

O f+v-Vif—=Vigr -V, f =0. (1.37)
Suppose one has two solutions f and g, then taking the difference we have:
h(f—g+v-Vi(f—g — Vidy - Vo(f —8) = (Vx¢f - Vx¢g) - Vyg.

To show the uniqueness using the stability argument essentially comes down to controling
V8. This is hard to achieve in general: it is a rather well-known result that transport equation
in a bounded domain could potentially form singularities [1,16].

This could be better understood by following the trajectory of the Hamiltonian
system (1.2). Denote (X(s;t,x,v), V(s;t,x,v)) the solution to it that starts with
(X(t;t,x,v), V(t;t,x,v)) = (x, v), then follow the ODE, we have

d [X(s;t,x,v)| _ Vis;t, x,v)
ds | V(sit,x,v) |~ [—Vigs(s, X(s:1,x,v))

} for —oco < 5,1 < 0. (1.38)
For (t,x,v) e R x Q x R3, we define the backward exit time ty(t, x, v):
tp(t,x,v) :=sup{s >0: X(r;¢t,x,v) € Q forallt € (t —s,1)}, (1.39)

and the corresponding existing location and velocity:

xp(t, x,v) = X(t —tp(t,x,v);t,x,v) and wvp(t,x,v) = V(I —tp(t, x,v); 1, x, V).

@ Springer



Local Well-Posedness of Vlasov—-Poisson-Boltzmann Equation... 541

Call the boundary condition f|,_ = h, then (1.37) has an explicit solution
ft,x,v) = h(t — (1, x,v), xp (¢, x, v), vp(£, x, V).

This leads to a fact that the derivatives of f may contain singularities from a direct compu-
tation of Vxp (2, x, v) as

1
n(xp (1, x,0)) - vp(t, x, V)

Vi f(t, x,v) ~ Vyxp(t, x, v) ~ (1.40)
The term blows up as vp becomes tangential to the surface at the backward exit time. This
difficulty sits at the core of many boundary problems of Boltzmann-type equations.

To account for this difficulty, we follow the strategy of incorporating a kinetic weight [2,
15]:

Definition 1 (Kinetic Weight) For € > 0, let f solve (1.37), define

|n(-xb([a X, U)) . Ub(t,x, U)l

t—tp(t,x,v)+¢€
ety s (LD FE)

(1.41)
t—tp(t,x,v) +¢€
+ [1 B X( € )]
Here we use a smooth function x : R — [0, 1] satisfying
x(@) =0, =<0, and x(r) =1, =1,
(1.42)

d
—x(7) €10,4] forall t € R.
dt
Note that oy (0, x, v) = af (0, x, v) is determined by the initial data fy. There are two
important features of this weight. First it is invariant under the transport operator, namely:

[6+ v Vo — Vids - Vylay.c(t,x,v) = 0. (1.43)

Second, it takes the value of |n(xl‘)f (t,x,v))- vi)f (t, x,v)| fort > tl')f (t, x, v), which is exactly
the singularity in (1.40). With the weight term applied, the singularity term can be canceled.

The proof of the main theorem consists two parts: an L>-estimate and a weighted W!-?
estimate. These estimates are based on the uniform estimates of the following iterative
sequence:

1

atan»l +u- foerl _ vx¢m . vam+l + 2TM fm+lv
Vig™ = Cgain(f", f™) — v(F™) f"*, (1.44)
with boundary condition:
x| = e[ﬁ—mfm”"'z [ M, x, u)e—[ﬁ—ﬁu{@)”“'2610(,4, V),
V- n(x)u>0

(1.45)
and initial condition
N0, x,v) = f(0,x,v).

Here we denote

¢m = ¢fm .
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Now we discuss the roadmap for getting these estimates respectively.

L estimate: For obtaining the L°° estimate, we derive the trajectory formula and trace
each (x, v, t) back along the characteristic till it either hits the boundary or the initial datum
for f™.

It may so happen that some particles bounce back and forth in the domain multiple times
before tracing back to ¢+ = 0 (say k times), and then a k-layered integral will appear. This
multiple integral includes v;, the parameter we use to represent the integral variable at the
i-th iteration with the boundary (see more precise definition in Definition 2), and the integral
formula will be derived in Lemma 2. There are two main problems one need to handle here:
1. how to integrate the k-fold integral, and 2. what is the chance for a particle to interact with
the wall finite times?

To deal with the first difficulty amounts to carefully trace and compute the integration. In

. . . i
case of the diffuse boundary condition with constant temperature where R = %e g [n(x)-

o
v| = cﬂe% |n(x) - v|, the computation can be simplified. According to (1.45), the boundary
condition here is:

f=cuy M(Ui—l)/ . S/ u()ln - vildv;.
n-v;>

Trace back further for the next interaction of i + 1, one arrives at the final integral with respect

to v; to be simply

/ cuit(vi)|n - vildv;.
n-v; >0

Since the form of this v;-integral is uniform for all 1 < i < k, the multiple integral can
be treated by Fubini’s theorem. Such lucky coincidence no longer holds true for the C-L
boundary condition. From (1.25) the integrand is a function of both v and u. As a result the
v;-integral is not uniform over i, making the Fubini’s theorem not applicable. The multiple
integral thus needs to be computed with the fixed order vk, vg—1, - - - , vy, bringing extra
computational difficulty. We now perform this integral order by order. To do so we start with
vk, the most outer layer. The integral contains

—la7 _zrl(x)“”k‘2
e “Hu 2w do (v, vg—1), (1.46)
n-ug>0

with appropriate do (v, vr—1) definition. This integral then becomes a function of vi_1,
which is then computed in the second most outer layer. Using Lemma 16 one can show
that (1.46) can be approximately explicitly computed — e¢/%-! *. We perform this iteratively
over i by counting back from £ to 1, and inductively compute this k-fold integral. This result
is presented in Lemma 3.

To deal with the second difficulty, one needs to quantize the probability of a particle that
interacts with the wall more than k times, or equivalently, we need to give an estimate of the
measure 1(, ~0y. In [2,14] the authors studied the diffuse boundary condition in which they
decompose the boundary as

y_?_ ={ueyy |n-ul>38 |ul <5}, and y+\y_?_,

and show that there can be only finite number of v; that belongs to yﬁ. Meanwhile, the
integration over y+\y£ can be controlled by the small §. As k increases, one obtains a larger
power of 8, leading to a decay factor for the measure of 1y, ~.o;. When C-L condition is given,
the strategy needs to be revised. In particular, the integrand in equation (1.11) and (1.25)
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contains e"””’“””””'z, and even if |u)| > 1, |u) — (1 — r)v)| can still be small, meaning
the integration over the y+\y_f_ does not provide the smallness. One key observation here
is separate the discussion based on the distance between u and (1 — r|)v). Let |u| large
enough, with 1 —r < 1. The bad case is when |u — (1 —ry)vy| < §~!, then |vy| > |uy|+57L.
For example let 1 — r = 1/2, then if |u) — %Unl <871, we take |uj| > 367! to have:

1 1 1 1 _ 1
§|v|||>lu||l—5 >§|u|||+§5 s ol > luyl+677,

which brings up the value of vj. Consequently, if these ‘bad’ cases |uj—(1—r)vy| < 8! take
place many times in the k-fold integral, a very big v; will be generated. Then the application
of the boundary condition that provides a fast decay for big |v;| can be used to balance out
all the growing factors, leading to a small measure of 1, > 0 in the end.

Consider this, we further decompose y. into

yil={ueys:ln-ul>ns |ul <ns~'}, and y \y},
where 7 is selected to be a small number (depending on r|) so that
luy — (L=rpyyl <871 = oyl = Juy| +87"

We comment here that such property only works when the coefficient 1 — | < 1. In the
real computation the wall temperature is involved in the boundary condition, thus the actual
coefficient contains T, (x) and is more complicated than 1 — rj. In order to ensure such
constant to be less than 1, we impose the condition (1.28). See Lemma 4 for detail.

WP estimate: For getting the W -7 estimate (1.36), we rely on the energy-type estimate
for V., f with weight o} . for which [§ [y, [0 |0} Ve f171n - v]dvd Seds needs to
be controlled. Using the fact that o s ¢ (¢, x, v) = |n(x) - v| on y_, the singularity of (1.40)
can be controlled by first setting:

—2
p= pp .o PPTP e LI (RY).

Then with some further calculation, shown in (3.23) (3.24), we roughly need to estimate:

B T 2 O B 2 P
/ o f1P < / S (/ 10 f ()l 2w P da(u,u>> '
y— Y- n-u>0
(1.47)

To handle the integration of u, in [2,15], the authors studied the diffusion boundary condition
and proposed to split the term into the integration over the grazing set

vi={(x,u) e yy tu-n(x) <eorlul >1/e} and y \y.

However, this is not enough since we do not have direct smallness even for big u (in the grazing
set), and thus are not able to bound f (raeyf) by ¢. To handle C-L boundary condition, we

propose in this paper to add another layer of splitting. Besides the standard grazing/non-
grazing sets, we also split the y integral into the grazing sets defined by v, approximately:

Y ={(x,u) €yyru-nx) <eorlu—v|>1/e} and py\y;"°
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With this decomposition we have

p
(147) _/ [ﬁ_zﬂf,u)]p‘vﬂ / |af(u)|€_[ﬁ_ZTUI'Y(xj]lulde.(u7 v)
{ur e,y eyy™ )

14
+ / o~ IoivP / 19 £ )le” T~ 1 g 4, )
{w:(x )€y \yy ™)

2
/ [4TM 2Tw(x) Iplv]

1

Y-
Y-
. R rlq
x [ / ¢ 1 @ MU a1 terms in do (1.26))7du
u:Ceuyey )

) a9 f1P (1.48)

vU,X,
Y+

~lary — e Jalul? ~ e
+ e T 2w (all terms in do (1.26))?du
{u:(x,u)ey \yvy

/ Iaﬁafl”]. (1.49)
AN

Now with the application of C-L boundary condition, one has the smallness in terms of
e for the integral over y;"“. And after direct computation one has the L! for dv and thus
bounds

(148) < O(e) / lfaflr <o | 1afarl.
vt v+

On the set of y+\yi’x’€ , one still has Li integrand for dv but the smallness is lost. We now
recycle the standard grazing/non-grazing set definition, by further splitting the v-integration
into 1 <1 and 1;,>..-1. While the integration is naturally bounded by O (¢) when integrated
on [v] > €', the |[v| < e~! case leads to |u| < 2¢~!, making u falling in the non-grazing
set y+\yi/ 2. We now stand on the same footing as the situation discussed in [2,15]. Apply
Lemma 10 we obtain an upper bound for the integration in the bulk (the terms not involving
boundaries) and initial data, meaning:

(1.49) < O(e) |aﬂ8f|p + initial condition + bulk .
Y+
The bulk part is treated similarly as in the proof of [2]. The entire proof for the weighted
WP estimate is presented in Sect. 3.

The non-weighted L)3CL]‘HS bound for the velocity derivative V, f is discussed in Sect. 4.
Characteristics and the energy-type estimate are the main tools used. The boundary terms
are treated similarly as is done for the WP estimate, and the bulk terms are similar to
those estimated in [2]. This estimate in the end leads to the L™ stability || f — gl s S

Il fo — goll1+s.

1.3 Outline

In Sect. 2 we prove the L> bound for the sequence solution f”.In Sect. 3, we prove the weight
WP estimate for the sequence solution f”. Then we derive the Li L ]1)"'5 estimate and the
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L3 stability for ™ in Sect. 4. The L'™? stability is the key to the well-poseness. In Sect. 5
we combine all the estimates for the sequence solution f”* and conclude the existence and
uniqueness. More specifically, in Theorem 1, the existence is given by Proposition 9 and the
uniqueness is given by Proposition 10. In the appendix we prove some necessary estimates.

2 L°° Estimate

For any given constants €, 0 € R, define a Gaussian-weighted solution:
W x, ) = P e ) ety 2.1)
then according to (1.44), we have:

R Y e U AR L R L

2 2 hm h™ (2.2)
=V, Ct(v) Fgain( >’

ef€(v>2t60|v|2 ’ ef¢(u)2t66|v\2
equipped with boundary condition

2 e (g — a2
B o1 =€t ()2 lary; — a1Vl

y-(x) =€

/ B (e, x, wye T T I 0 0 g ) (2.3)
Y+ (x)
where y. is defined in (1.8) and
1
V(1) = €()? + Vg™ - Vi (= Ct{v)? +0Jv)*) + TV V™ +v(F™).  (2.4)
M

This equation is linear for #”*! with A serving as a source term, 1™ serving as a damping
coefficient and ¢™ serving as the electric field. The main purpose of this section is to show
that 2, and thus f™ form a bounded sequence in L. More precisely:

Proposition 2 Ler h"+! satisfy (2.3) with the Cercignani—Lampis boundary condition (2.3).
Assume the constraints for 0 and Ty, hold true ((1.32) and (1.28)) and ||ho(x, v)|| o < 00.
Then if

sup [|A° (¢, x, V)| e < Coollo(x, V) lloos 1 < foo, 2.5)
i<m
we have
sup [|A" (1 2 vl < Coollho(r, 0)l20e. (2.6)
0<t<teo

Here Coo = Coo(Ty, min{T,, (x)}, 0,71, 1), ) is a constant and
t < too = too([lho(x, V) || oo, Ty, min{Ty (x)}, 0,71, 1y, ) K 1. (2.7)
Remark 3 Two remarks are in line:

e The smallness only depends on the initial data, wall temperature, domain, the accommo-
dation coefficients 7 | .

e We will also trace the dependence of the constants C, and #, in the proof. Co, will be
explicitly defined in (2.139).
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This proposition implies the uniform-in-m L estimate for A" (¢, x, v), and this allows
us to further bound

sup [lwer [ [loo < 00, (2.8)
m

which lays the foundation for later sections.

To show the proposition, we start with Lemma 1 in which we control the acceleration term
V. ¢. We then explicitly derive the formula using the information of the trajectory for 2™, as
will be presented in Lemma 2. This will bring a k-fold integration for particles that collide
with the boundary k-times before the final time. We will further show that all the terms in
this integration (more precisely, all terms in (2.11) (2.12)), can be bounded in Lemmas 3 and
4. We then summarize the estimates and give the proof of the proposition.

We now present Lemmas 1 and 2. Then we split this section into three subsections, the
first subsection concludes the proof for Lemma 2. We present both Lemmas 3 and 4 in the
second subsection. In last subsection we combine the estimates in Lemmas 3 and 4 with the
formula in Lemma 2 to conclude Proposition 2.

We first give an estimate of the bound of ||V, ¢" || co-

Lemmal Forany0 <8 < 1,0 < 70—, 0 <t < L if (f, ¢y) satisfy the condition (1.24)
then

lorOllcri-s@ < Cllh®)llLe + Cpo. 2.9)

Proof Forany p > 1,

H A@ [, x, U)mdv—p()’

< H /R3 f(t,x,v)mdUH + loollr @

LP(Q) — LP(S)
a2 2
<1t ([ e ) 1ol
+ 00-

By the elliptic estimate with condition (1.17)
lor@Ollw2r@) = ClAOIIL= + po,

which further leads to, according to the Morrey inequality for p > 3, 2 C R3, and 92 being
cl:

16Dl cr1-3m) < Clidr @D llwpgy < CIAD L + Cpo.

We represent 2! with the stochastic cycles defined as follows.

Definition 2 Define an Holder continuous characteristics which solves (since V@™ is quasi-
Lipschitz continuous from Lemma 1, this is possible, see also chapter 8 of [20] for example)

d (X™(s;t,x,v) _ V™(s;t,x,v)
ds (Vm(s; t,x, v)) - (—Vx(t)m(s, X" (s;t,x, U))) ’ (2.10)

and we trace back in time and determine the boundary-colliding time and location, namely:

f(t, x,v) =sup{s <t:X"(s;t,x,v) €0}, x1(t,x,v) =X"(t1(t,x,v);1t,x,v).
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We then build the probability measure at x = x| as do (vy, V" (#1; t, x, v)), supported on
Vi =y (xn):

/ do(vy, V" (t1;t,x,0)) = 1.
Vi

Inductively, define # and x; the time and position of a particle striking the boundary for
the k-th time:

t(t, x, 0,01, -+, Vk—1) = sup{s < fx—1: Xm7k+l(s; tk—1, Xk—1, Vk—1) € 092},
—k+1 .
xe(t, x,v,00, 0 vemn) = X @, x, vy vemn)s ke (2, X, 0), X1 (7, X, 0), vk 1)

and correspondingly build probability measure do (v, ym—k+l (te; th—1, Xk—1, Vk—1)) at xg
over Vi = y4 (x¢) for:

/ do (e, V" (s i1, xk—1, ve-1) = 1.
Vi
For simplicity, we denote for all / < m:
vrlsy = v, o), XM TNs) = X st x ).

Lemma2 Let h™t! satisfies (2.2) with the Cercignani—Lampis boundary condition (2.3),
and assume (2.5) holds true, then with properly chosen € and 0, point-wise in (t, x, v), one
has: if t; <0:

1", x, )| <lho (X™(0), V™(0)) |

e ym - - (2.11)
+/0 o= [ TV T PV )P = Cs (V7 (s))? I (s)ds.
Ift1 > O, for arbitrary k > 2, one has:
1 ! " v (o))dr BIV(s)? — (VT
|hm+ (, x,v)| f/ eifs T VIOMT VIO o= e (V)8 gatn(s)ds
i 1 ] , (2.12)
4 PV DR =€ (v )2 Lty — a1V )] / H.
vy
with H given by
k-1
> Li=0.0<0) ko (X" (), V') a=f,,,0)
=1
= 2 . (2.13)
4 / VORI O el () a5 (5)ds '
=1 max {0,741}

+ 1m0y |h"HF2 (tk, Xk, Vm_k+l([k)) |d2/]f_1,m(lk),
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where
dEl/fm(s):{ ﬁ do (vj,V’”‘f“(tj))]
j=1+1

< ym- U BT
{e_f;[ T @y =l peuto)? o ~lary — e 1 g (g, Vm_l+1(tz))}

C(tj—1;4) ()2 [2T,,<x ~ e il m—j+1
[Hze i) Iom da(vj,V (tj))}.

(2.14)

Here we use a notation

™ (s, X™(s), V(s)) R (s, X" (s), Vm(s”) 2.15)

rr = Toui ,
gam( 5) := Lgain (69\V’”(x)lzefﬁs(V’”(s))z OV ()] p—Cs (V™ (s))?

2.1 Proof of Lemma 2

We present the proof of Lemma 2. Most of the proof is tedious but straightforward derivation.

Proof of Lemma 2 For given ¢, we choose small enough ¢ and big enough €:

1 ¢
Vg™ - Vo = €1(v)? +0[u]*) + ——v - Vid" < = (v)?, (2.16)
2Ty 2
and thus, noting v(F™) > 0, from (2.4), we have:
¢
V(1) > E<v>2. (2.17)
From (1) we first denote
Con = sup [|Vi@'lloo S sup [Ih'|lre < oo, (2.18)
0<i<m 0<i<m
and
it x, v) = e NP €0 lary o P (2.19)

If 11(z, x, v) < 0, the particle has been following a fixed trajectory without scattering,
then according to (2.2), for0 < s <,

d

ds

gain

[ /! u”’(r)drhm+l(s X" (s), Vm(s))] —e — [Ty (v)de AV P ,=Cs (VM ()2 pm (s),
(2.20)

then (2.11) follows by applying (2.17).
If t1(t, x,v) > 0, the trajectory of the particle can be split into a few discontinuous
sections. In particular:

2
IR (2 x, )L =0yl IR (01, 31, V(1)) e Jy @

' = [ FVm@T IV )P = sV (5))?
+ | e )3 s SV (9)|ds.
1

gain

2.21)
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Note the first term of the RHS of (2.21) can be expressed by the boundary condition. In
particular, for 1 < k < m, the boundary condition (2.3) can be written as, using (2.19):

1
f(te, xie, V=51 (1))

/ hm_k+1(tk, Xie, Vi) i (tee, X, vi)do (v, Vm—k+1(tk)).
Vi

(2.22)

B2 (g, VR () =

We now use induction on k to show (2.12). Directly applying (2.22) with k = 1, the first
term of the RHS of (2.21) is bounded by

1
i, x1, V() My,
Noting (2.11) and (2.21), this term is to be controlled by:
1 ¢ ym—1 2
2.23) < —[ 1 i S @R ym o, xm-1(0),
( ) < Q(ty, x1, V(1)) /V] {tr<0<t}€ ( 0)
VL), x1, vodo (vi, V™ (1)

h g pym—1g2 m—1(oy 2 m—1(4))2
+/ / Lyeoerye B SV @ oIV 0P s (v )
0 Vi

I )|, x1, vi)do (vi, V™(11)) ds

gain

W™ (ty, x1, v) Aty x1, v))do (v1, V™ (11)). (2.23)

M e Vm_l 2d - )
+/ 1,01 In 3t (7)) "R (12, x2, V" l(tz)),u(tl,xl, v)do (Ul, Vm(tl))
Vi
t
+/ 1/' 1{t2>0}e_f;] %(VWI*I(T))ZdTeQ‘Vm—](S)‘Ze_e:s<vm—l(s)>2
19} Vi

P )G, 21, vndo (v, V(1) ds .

showing the validity of (2.12) k = 2. For higher k, we use induction. Assume (2.12) is
valid for k¥ > 2(induction hypothesis) we prove so for k + 1. We express the last term
in (2.13) using the boundary condition. In (2.22), since m depends on vy_1,
we move this term to the integration over Vx_; in (2.12). Using the second line of (2.14)

withl =k — 1, s = t;, the integration over Vj_1 is

e_ fttkfl %‘<Vm—k+l (T))sz

'k
. flti—t, Xk—1, vk—)do (v—1, V" (1)), (2.24)
/vk_l f (e, x, VR (1)

By Definition 2 we have |V %1 (5, _1)| = |vg_1]. By (2.10) for fy < v < 1,_; we have
(V1) = Con(t—1 — 1) < V" (@) < (1) + Comtr1 — 1), (2.25)
with Cym is defined in (2.18). This leads to
VR )2 < o1 P+ 2Cgm (ti—1 — i) o] + (Cpm) (i1 — )%, (2.26)
and

(VMR 1)) > (vg1)? — 2Cm (tr—1 — 1) (V1) (2.27)
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which further suggests:

= x;k_l %(V’"_k"'l(r))zdr - e(tk,l—tk)(vkq)(—%‘(vk,l)-i—CC@n (tk,l—tk)> ' (228)

Considering the definition of i in (2.19), and utilizing the inequalities above, we finally

. . ] T
arrive at, taking Cr := RG] —

_ k=1 € pym—k+1 2 ~ _
e~ dw TV R, (tk,xk,Vm k+1(tk)>

2 [ I i S SR [P )
< o~ Sl ut8lu1 | lary Tty 1vk-1l

¢
X exp <[ — §<Uk_l> + €C¢m (tg—1 — tx) + 2€C¢mtk (229)
+20Cym + 2CTC¢'”:|([I<71 - tk)(kal>)

X exp ([ecgm +CrC (e — tk)z)'

Sett = 1(T, 0, ¢") small enough such that

1
exp m + T m | (Tk—1 — Ik =< exp m + T m|t) <2, an mf < —.
0C5n + CrCan( )2 0C5n + CrC; 2, and Cont <o
Furthermore, we take € to be big enough so that
¢
— §<vk_]) + €C¢”’ (tk—1 — tx) + 2€C¢mtk + 29C¢m + ZCTC¢m
¢ ¢ (2.30)
< —E + Q:/S + @/4 + 29C¢m + 2CTC¢m < —g + 29C¢m —+ 2CTC¢m <0.
We simplify (2.29):
(229) < 267Q:<Uk—1>21k+0|1)k—1 ‘ze[ﬁ_2Twl(Xk)”vk7| ‘2' (23])

This leads to the boundedness of the integrand in (2.24) by:

1 1 2
2.31) X ity Xkt V4—1) = 2¢' Tuten Tt 1P - (2 3)

and in turn gives the estimate shown in (2.14) with =k — 1.
For the remaining term in (2.22), we split the integration over V) into two terms as

/ hm7k+1(tk’ Xk Uk)l:(/(tky Xks V"‘L*k+1 (tk))da(vk, Uk—])
Ve

:/ l{tk+1§0<tk}+/ L >0 - (2.33)
Vi Vi

(2.33), 2.33),
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We use the similar bound of (2.11) and derive that
(2.33) = /v o 0 el ~ SR ot ek ) Y @),
it X, deo(vk, vt 1))
+/0tk /vk Ly <0agyelst V@) V)2 o1V k(‘”zrg;m"(s)

filte, xi, vi)do (v, V"5 (1) ds.

(2.34)

In the first line of (2.34), is consistent with the second bracket of the first line of (2.14) with
| = k, s = t.. In the second line of (2.34),

1) [ m— ~ —
JF =T VIO f g v v do (v, VPR (1)

is consistent with the second line of (2.14) with [ = k.
From the induction hypothesis( (2.12) is valid for k), we derive the integration over V;
for j < k — 11is consistent with the third line of (2.14). After taking integration fl—[k Ly, we

change dEk Lm in (2.14) to dEkH Thus (2.34) becomes

/k l{tk+1<0<zk |ho <Xk+1(()) Uk) |d):lk€,—;1] ()

(2.35)
m—k m—k 2
f / (Vv (s) s Q\V ()] rm k(s)dE,]:j;ll(s)ds.
l_[j lv
Then we use the same estimate as (2.21) and derive
T _ & ym—k )24 B
(2.33), E/ l{zk+1>0}€f”‘+‘ 7V ORdT pmed (lk+1,Xk+1, 148 k(tk+1))
Vi
Aty xi, vi)do (vk 4 k+1(tk))
(2.36)
_ <€ ym—k 2 m—k m—k 2
/ f {ts1>0)€ f F (V@) dT = VTR ()5 01V ()] F;;lmk(s)
tr+1 Y Vi
(i, xi, vi)do (v, V' (1) ds.
Similarly as (2.35), after taking integration over fl—[kz—ll v, (2.36) is
j= J
/ﬂ Tl (e, v a0 W )
2.37)

/ / (VK (5))2s AV k(s)|2lek( )d2k+1(s)ds.
l_[/ 1 Vi e

From (2.37) (2.35), the summation in the first and second lines of (2.13) extends to k.
And the index of the third line of (2.13) changes from k to k + 1. For the rest terms with
index [ < k — 1, we haven not done any change to them in the previous step. Thus their
integration are over ]_[;‘_]1 V;j. We add fv do (v, VM—k+] (zk)) = 1 to all of them, so that

all the integrations are over ]_[l 1 V; and we change d k= Im Ytod E;f m DY

dsf, =do (e, V" @) ) az )
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Therefore, the formula (2.13) is valid for k + 1 and we derive the lemma. O

As the lemma implies, to have L, bound of h™+1 it is crucial to obtain an estimate of H
that is controlled in (2.13). It is rather clear that the first two terms in (2.13) include all finite
collisions < k in finite time, while the last term collects all trajectories whose corresponding
particles collide with boundaries more than k times within #. These two types of estimates
will be obtained in Lemmas 3 and 4 respectively in the next subsection. Namely we need
only boundedness for the first two terms, but need decaying in & for the third, in which we
essentially need to show the chance for a particle to collide with boundaries more than k
times within a small time window ¢ is very small.

2.2 k-Fold Integral

As a preparation, we first define:
Fmax = maX(rH(Z — r||), rl), Fmin ‘= min(r” (2 — r||), rL). (2.38)

Then immediately, one has 1 > 4 > rpin > 0. We then define

1
=——>1 23
§ a0 " (2.39)

from (2.1) considering 6 < ﬁ. In the calculation of the k-fold integration over | |k-:1 Vi,
M J
we inductively use the following notations:

2§
T, = ﬁTM’ Ti-1 =rminTm + A = rmin)T1 g, - -+,

Ti1 = rminTm + 1- rmin)Tl,2, (2.40)
and thus naturally for 1 <i <[, we have

%% _ % L=y i
Tl,l = £t ITM + Ty £+ ITM)[I (I = rmin) "1 (241

Moreover, we will use

k—1

Aokl (s) —{ [T dow;.v;- 1)}

Jj=I+1

< jym— Y 0 R B [P
x {e_fstl Fr@ytdr =0l gCntw)? o ~lamy ~ e 1 g V'"_H'l(tz))}

1 12 .
[l|2e€(’1 ety g (o v ) ),
(2.42)

and

/ r S T T
de\g :{l_[ Zec(ljffjﬁ—l)(U]‘>2€[2Tu'(xj) 2Tw(Xj+])”UJ| dU(Uj,vj_])}, (243)
j=pr
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to simplify the notation. Note that if p = 1, d<bk ! w8 =dX (s), defined in (2.14), and
according to the definition in (2.42) and (2.14), we have

Ak, (s) = do! L©dY) T and dsf, ) =dokl dx!. (2.44)

Now we state the lemma.

Lemma 3 There exists

F=1"(Ty,£.C, ¢ k), (2.45)
such that for t < t*, and 0 < s < t;, we have
/r["“ Ly=0d 5! (5) < 2Cr,, 2P0 A, (2.46)
j=p ¥

with Ct,, ¢ and C being constants defined in (2.56) and (2.59) respectively, and

_ [Tl,p - Tw(xp)][l — Tmin]
Al,[, = exp <[2Tw(xp)[T/,p(1 = Fmin) + rminTw(xp)]

+@o)-rtiEn]vmort! (z,,)|2) .

(2.47)
Moreover, for any p < p' <1, we have
/ o1 L0 d @0, (9) < 207, 27D ALy
j=p Vi
/ o lged ) T < @0, XA, (2.48)
-, v

Remark4 We comment here that this lemma indeed include the information for the k-fold
integral in Lemma 2 by setting p = 1. To derive the decaying factor in Lemma 4, we need
to extract smallness from the integral over v, for p < k, for example, in Lemmas 5 and 7.
This is the reason that we introduce the notation (2.42), (2.44) and incorporate them in this
lemma.

Proof From (1.15) and (1.25), consider the first bracket of the first line in (2.14), for [ +1 <
j <k —1we have

k—1

/ ]_[ do(uj, V"It 1)) = 1.
Iz

i1 Vi =1+l

Without loss of generality we can assume k = [ + 1. Thus d <I>I;,lm =d 113[;,;}{1. We use an
induction of p with 1 < p <[ to prove (2.46).
When p = [, by the second line of (2.42), the integration over V; is written as

/ 0P g€ o [ =S (v @dr it~ P g ) v (). (2.49)
Vi

In order to compute (2.49), we bound

o0l g€ < o (—0+Cn) (2.50)

2
where we take < 1* = r*(¢) small enough such that ¢¥ < 2 and thus ¢ <
eClul*n ,€n < 20Cl*n
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By (2.50) with 6 = 77— in (2.39) we have
—[TY—W—QU]\W\Z m—I+1
(2.49) <2 M WG do (v, V 1)). @2.51)
Vi

Expanding the do (v;, V" ~'*1(1;)) using (1.11) and (1.25), we rewrite (2.51) as

—I41

/ B Tie T R T B r) 2o Vi @)

Ll ) o
Vi TeTw () Ty (x)ro

ly Pra=rppr

e 2Tw (xp)r | dUl,J_ (252)

=412
LA 7(14")VH”’ (@]

1 §+1 2 _
o / 1 ef[myfmfcn]\vmﬂ e Tt e vy,
V; I JTV||(2 - rH)(sz(XI))

where vy, v;,1, Vi, 1 and V| are defined as

v =v-nx), vy =v—v1n@x), ViLo={v1:vueV} Vi={v,:vueV}
(2.53)

VI (@) and V" (1) are defined similarly.
First we compute the integration over V|, the second line of (2.52). To apply (6.6) in
Lemma 16, we set

e=¢CH, w=_>1- r||)V”m_l+l(t1) LU=,

1 1 1
—[ ,b=—F—7— ——. (2.54)
2Ty = $+1 2T, () 2Ty (xp)r (2 —r))
By & > 11in (2.39), we take t* = r*(C, &, Tyy) < 1 such that when t; < t < t*, we have
b ! ! ! ¢t > ! ¢t > !
—a—¢e= — - > —— =t > —.
2Ty (xpr 2 =1y 2Ty (Xl) 2Ty é-fl 2TM§2% 4Ty
(2.55)

Also we take r* = t*(€, &, T)y) small enough to obtain 1 +4Ty €t < 1 4+4Ty €t < 2 when
t < r*. Hence

AR R VR
b—a—¢ b-—a b—a—c¢
2% r
1iM
< £+ [L+4Tuen] g0
é+1 Ty + [Tw(x) — $+1 Tylry2 —r)) :
4&
1M
< =Cry .k,
?;'+1 Ty + [min{T, (x)} — §'+1 Ty 1rmax
where we have used (2.38).
In regard to (6.6), we have
(a+¢e)b ab & b
= 1 . 2.57
b—a—ce¢ b—a[+b—a—s] b—a—ss 257)
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By (2.56) and ; < t, we obtain

b ) . o1
b—a-—ce¢ nglTM~l-[m1n{Tw(x)} £+1 M 1rmax

By (2.54), we have

ab §+1TM Ty (XI)
b—a 2T )iy T + [T () — 27 Tulry 2 — )l

Therefore, by (2.55) and (2.57) we obtain

(a—i—s)b - 5+1 Ty — Tw(X[)

< + C(C1), (2.58)
b—a—e 2Tw(xz)[é+1 Ty + [Tw(x) — §+1 Tylry2 —rp]

where we define

B ATy (£ Tv — min{T,, (x)})
2min{Ty, (O E T + [min{Ty ()} — 25 Tt rimas
2T,
G . 2.59)

2o T+ [min{ T, ()} — 251 Tu max

By (2.56), (2.58) and Lemma 16, using w = (1 — r|)V;"~"*' () we bound the second
line of (2.52) by

— Ty

CTM!S exp ([ . [S (x1)] n C(Q:t)]|(1 . r||)‘/H’1171+1(l‘1)|2)
2Tw(xl)[gﬁTM(1 - V\|)2 + 2 = 1Ty (x1)]

(2.60)

ET - T 1- min
< Cry e exp <[ 57 Tm (eI = rmin] +C(€t)]|V”m_l+](tl)|2>,

2Tw(xl)[§+1TM(1 Tmin) +rminTw(xl)]

2.61)

where we have used (2.38).
Next we compute the first line of (2.52). To apply (6.9) in Lemma 17, we set

e=¢Cy, w= l—erf_l+l(t1),v=U1,l,
1 1 1
a= , b= ——-—.
2TM €+1 2Tw (x1) 2Ty (xp)r 1
Thus we can compute 7— h and (“H)b = using (2.56) and (2.58). Hence replacing rj (2 —ry)

by r, and replacing Vm IH () by Vj_” IH (f7) in (2.60), we bound the first line of (2.52) by
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[ Tr — T ()]
2T, () Er T (1 = 71) + 71 T ()]
[ Tr — Tw DI = Foin]
2T, ) [ e Tv (1 = Fanin) + Fonin T (1)

2C7,,.5 €Xp ([ + C(et)]| 1 —r vl (zl)|2)

< 2Cr, .6 eXp ([ + C(Gt)]lVf_l+l(t[)|2>.
(2.62)

where we use (2.38).
Collecting (2.61) (2.62), we derive

(257 T — TG = rnin]
2Tw(xl)[%TM(1 = Imin) + rminTw(xl)]

(2.52) < 2(Cry.6)* exp ([ + C(@)} |V'”"+1(tz>l2>

< Q2Cry )° A,
where A;; is defined in (2.47) and T} ; = %TM.

Therefore, (2.46) is valid for p = [.
Suppose (2.46) is valid for the p = ¢ + 1(induction hypothesis) with g + 1 <[, then

/ D Lmad@ () = 207,02 TP A
[Tj=g+1 Vi

We want to show (2.46) holds for p = g. By the hypothesis and the third line of (2.42),

/n . Ly d @ (s) < (2C7,.)* P A g1
j=q ¥

. . 2 (2.63)
x/ 236("’”q“)(”‘ﬁze["’”(m7”“'(*“1“)”%‘ do(vg, V" 1 (tg41)).
v‘/
Using the definition of A; 411 in (2.47), we obtain
_ (T1g+1 — Tw(xg+1)) (1 = Fmin) _ 2
(2.63) < (2Cr, £)*0~D / 2ex ( 4 V7 (1,4 1)
furs v 2P\ 2T G DT 1 (1= 1) + Pmin T Cig D1 o+

2 [l =y, 12
+ (2c)"‘f(cmvm—‘f(tq+1)l2)e¢<’q—’q+l)<vq> Tt Mt b g ymal g ).

(2.64)
Let € in (2.17) satisty
2 (T1,g+1 — T (xg+1)) (L = Fipin)
2Ty (g4 DIT1,g+1(1 = Fin) + Fimin T (xg41)]
Con <¢ (Cpm)?=e. (2.65)

<
~ min(Ty (X))(1 = rmin) —

Similarly to (2.25) and (2.26),

V™4 (1tg10| = vgl + Coym(tq — tg41),

V"4 (tg 1 D)1? < Conlty — tg41)> + 2Cn (tg — tg1)|vg] + [vg .
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Then we apply (2.65) to get
exp |:< (Tl,q+1 - Tw(qurl))(l —r)
2T (xq+D[T1,g41(1 = 1) 4+ rTy (xg41)]
« e€lg—1g+1)(vg)
< exp [( (Th,g4+1 — Tw(xg+1)d — 1)
2T (xq+D[T1g+1(1 = 1) + 1Ty (xg41)]

Cltg—1g+1)g] €ty ~141)* pCtg—tg4D)lvg* L€ty ~1g+1)

+ (2C>’*‘1(¢t)) |V’“*‘f“<tq+1>|2]

+ <2C)1—‘1<¢r>) |vq|2]

X e

(T.g+1 — Tw(xgeD)(1 — 1) - ) 2:|
2 +220)79 (€ ;
= e"p[<2n,)<xq+1)[n,q+1(1—r)+rTw<xq+1>] (GOTTED ) Il

where we haved use e€(a—fa+DIvg| < ¢€lg=1411) o €ltg—1g1DI% > and thus

e Cltg—1g+)1vg| yCUg—1g11)> 5 L Cltg~1g+1)Ivg | yCUg—1g11)  ,2€1IvgI L3 (tg—1g11)

< 220N TIE€Ng >

Here we take t* = *(€) small enough such that when ¢ < r*,

L A R L

Thus we obtain

(Tl,q+1 - Tw(xq+l))(1 — T'min)
2Ty (xq+])[Tl,q+l (I = rmin) + rminTw (xq+1)]

2
|Uq|

(2.64) < 4Q2Cr,, £)20 / exp [(
V’]
L 1 2
+ 2(ZC)l_q(€t)|vq|2)]€[2T"’(X‘I> Ttz M G (g, VI 1)),

We focus on the coefficient of |v, |2 in (2.64), we derive

(T1.g+1 — Tw(xg+1)) (1 = rimin)

2T, (gt DI T1g 1 (1= Tomin) + Tonin T (X 11)] 2Ty(xg) 2Ty (xg41)

_ (Tig+1 = Tw(xg+1))A = rmin) = [T1,g4+1(1 = Tmin) + TminTw (Xg41)]

B 2T (g + DI Thg+1 (1 = Fnin) + Fmin T (g1

=T = rmin) = Fmin T (Xg+1) |vg|?

2T O DU Thg 41 (1 = Fnin) + Fmin T (g1 2Ty (xg)

_ —|v,|* vy |2

2[T1 g+1(1 = rimin) + rminTw (xXg+1)] 2Ty (xg)
By the Definition 2, x441 = x441(t, x, v, vy, - -+ , Vg), thus Ty, (x441) depends on v,. In

order to explicitly compute the integration over V,;, we need to get rid of the dependence of
the Ty, (x441) on vy, thus we bound

g1 + [ Tlvg I?

2
|Uq|

lvgl? + ——
a 2Ty (xg)

lvg|* +

eXp( 1o ) <eXP< ~lvg )
2[Tl,q+l (I = rmin) + rminTw (-xl]+1)] - Z[TZ,q-H (I = rmin) + rminTy]

(2.66)
=eX —Ivg |2
f— p 2]_‘]’q y

where we use (2.40).
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Expanding do (vg, ym—q+l (7)) by (1.25) and using (2.66), we derive
(2.64) < 4(2Cr,, )20

) —g+1
f 2 Vgl o~y 200 @0l (=)o LV (tg)
= : )
VgL ri 2Tw(xq) Tw(xq)rj_

- 1
g Pra—rpvi T a2

e 2Tw (g L qu,L

1
§ ‘/“}q‘H 7r (2 = rpP(2Tw(xg))

(1)
dvg,.

) m—gq-+1
N B lvg | —(=rPV)

ol I—q (o 2 1
Lam, ~ 2w gy — 2RO 1 (€D1lvg | o Tt FIe=m

e

(2.67)
In the third line of (2.67), to apply (6.6) in Lemma 16, we set

1 I 1
S S P —
. [27‘,,q 2Tw(xq)] 2T, (xg)r 2 — rp)
e =220, w=(1—r)vg_1.

Comparing with (2.54), we can replace % Ty by T; 4 and replace €t by 2(2C)!~4(¢1). Then
we apply the replacement to (2.55) and obtain

1 1 1
b—a—g>— —2020) 79 > —— 202005 @r) = —,

where we take t* = t*(Ty, &, C, €, k) small enough and r < ¢*. Also we require the ¢ satisfy
< 4Ty x 20k @En < 2.

b—a-—c¢
We conclude the t* here only depends on the parameters Ty, &, C, €, k. Thus by the same
computation as (2.56) we obtain

b - 2T 4 _
b—a—¢ ™~ Tiq + [min{T,,(x)} — Tl,q]l‘u(z —r) -

CTM,E*

where we use 7}, < E%TM from (2.40) and (2.38). Cr,, ¢ is defined in (2.56)
By the same computation as (2.58), we obtain

(a+e)b _ ab + ab £ b
b—a—-¢ b—a b—-ab—a—¢ b—a—c¢

- Tiq — Tw(xq)
- ZTw(xq)[Tl,q + [Tw(xq) - Tl,q]rll (2- rH)]

+ o)1t er).

Here we have used 7j 4 < ;%TM and (2.38) to obtain

ab g n be
b—ab—a—¢ b—a—c¢
- 4TM(Tl.q - min{Tw(x)})
~ 2min{T, (0)}T},4 + [min{Ty, (x)} — 17 4]r (2 — r))]
2T1,q
Ty in{T, — T4l 2 —
g1 Im £ [min{Ty ()} = Tig1ry (2 = ry)

2(20) 79 (¢1)

2020)7(er) < o)1t e,
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with C defined in (2.59).
Thus by Lemma 16 with w = (1 — r||)VHm_q'H (t4), the third line of (2.67) is bounded by

[Tl,q - Tw(xq)]
C
Ty €XP ([2Tw(xq)[T1,q(1 —r?+rQ2 —rPTy(xg]
+@ey @]l =V )

[Tl,q - Tw(xq)][l — T'min]
= CTM'& P <[2Tw(xq)[Tl,q(1 = Fmin) + rminTw(xq)]

+O = En]Ivy e R)

(2.68)

By the same computation the second line of (2.67) is bounded by

[T[,q - Tw(xq)][l — Tmin]
2Tw(xq)[Tl,q(1 — Tmin) + Fmin Tw(xq)]

Cry 6 €xp ([ + o)t @n) vyt (tq>|2) :
(2.69)
By (2.68) and (2.69), we derive that

[Tl,q - Tw(xq)][l — I'min]
2Ty (-xq)[Tl,q(l = Tmin) + TminTw (-xq)]

+(zc)l—q+l (Q:t)] | Vm—q+l (tq)|2)

(2.67) < (2Cr,, £)* 71D exp <[

= (2Cr,.£)* 1tV 4,

which is consistent with (2.46) with p = ¢g. The induction is valid we derive (2.46).
Now we focus on (2.48). The first inequality in (2.48) follows directly from (2.46)
and (2.44). For the second inequality, by (2.43) we have

/
-1

(ZCTM,E)Z(I_I7/+])AI,1;’ f 1-0dYh

/
P=1y,
j=p Vi

_ 2(—p'+1 p'=2
=QCr, )" P, /ﬂ"”zv-dTp (2.70)
Jj=p 7J
&ty —t,)v )2 [, o~ a1 a2
1502 p/ -1 70 N0 1 g T v da(v,,/_l,Vm P (tp—1))-
-1

In the proof for (2.46) we have
(2.63) < (2.64) < (2.67) < (Cyy.6)* 71TV A, .
Then by replacing g by p’ — 1 in the estimate (2.63)< (2CTM,5)2(1_‘1+1)A1,,1 we have

L 1
(2Cry )™ p“)AZ’P’/pr,l Lyy=0)d )
j=p Vi

2(1-p'+2 =2
= (2.70) < 2C1,, £)* 7P DAy oy / o Loy
j=pr 7J
Keep doing this computation until integrating over V,, we obtain the second inequality
in (2.48). O

In the following lemma, we prepare for showing the smallness of the last term in (2.13).
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Lemma 4 Assume the constraint for Ty, holds true ((1.28)). There exists

ko = ko(2, Cry .6, C, Ty, v, v, min{ Ty (%)}, &, €) > 1, (2.71)
t' = t'(ko, &, Ty, min{T, (x)}, C. 71, . €, Cgm) < 1* < 1 (2.72)

such that for all t € [0, t'], we have

1
k
/n o, V=0 ) = (5 A, 273)

j=1 i

where Ay,—1,1 is defined in (2.47) and t* is defined in (2.45).

Remark5 We comment that the main difference between this lemma and Lemma 3 is that
here a decaying factor (%)"0 is needed. This lemma implies for k& = k¢ large enough, the last
term of (2.13) is negligible.

The main idea to prove Lemma 4 is to use the decomposition (2.97) for the integral
domain. In Lemmas 5-8 we use Lemma 3 to show that such decomposition indeed make
contribution in obtaining the smallness. Among them Lemma 8 is the most important one as
it summarizes all estimates in Lemmas 5-7 and directly provides the decaying factor for the
k-fold integral. Echoing the difficulties for obtaining L, bound as discussed in Sect. 1.2,
where we proposed splitting y4 into )/_‘f_ and the remainders, in Lemma 8, we detail such
splitting and the trajectories’ behavior in these sets.

After proving Lemmas 5-8 as preparation, we will conclude the proof for Lemma 4.

Lemma5 Recall (2.46) in Lemma 3.
Forl<i<k-—1,if

[vi -n(x;)| <8, (2.74)
then
/Hk 1 L= 01 Ly vy e <8y d @ (0) < 8Q2C7, > D Ap_ri. (275)
=i Vi
If
v —nig Vi el > 871 (2.76)
then

. k=1 2(k—i) :
/1'15—3 o L0 i 1y P (B = 8Q2C )T Ak

J

(2.77)
Here n; | is a constant defined in (2.85).
If
i1 = mi VI @) > 87 2.78)
then
/1—11;:’1 j l{tk>0}1{|”i¢*m,iVf_i+l(ti)\>5*‘}qu?:r];il(Zk) = 8(2CTM75)2(k_i)‘Ak_lv"'
(2.79)

Here n; | is a constant defined in (2.88).
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Proof First we focus on (2.75). By (2.67) in Lemma 3, we can replace [ by k — 1 and replace
g by i to obtain

f l{tk>()}dq>:.c’ll;_l(tk) 54(2CTM,E)2(k_1_i)
2 v ’

/ 2 _idl oy -y 200 @l P (= r)u VI @)
Vo 'L 2Tw(xi) Tw(xi)rl

Ioj 1 P+—r IV g2 (2.80)
e 2Tw (x)r | dvi,L

1
: /Vf.u (2 =) 2Ty (x;))

i oj —(1=rpV =i+ g2
— o1 k—1—i (g 2 1 il (R i
e o 2 20T @)l | o TG FIe=m; dvi.

Under the condition (2.74), we consider the second line of (2.80) with integrating over

{viL €Vil|vi-nx)| < 2(1+r1)8} To apply (6.10) in Lemma 17, we set
1 1 1 :
a=— — b= ——— =01 (),
|:2ka1,1' 2Tw(xi)} 2Ty (xi)rL

w=yT—r V).

Under the condition |v; - n(x;)| < I e} 1 + 8, applying (6.10) in Lemma 17 and using (2.69)
withg =i,/ = k — 1, we bound the second line of (2.80) by

[Ti—1,i — Tw X)L — rimin]
2T xi)[Tr—1,i (1 = Finin) + Fmin Tw (xi)]

8Cry.6 €XPp ([ +of i En] vyt (t,-)|2) .

(2.81)

Comparing with (2.69), we conclude the second line of (2.80) provides one more constant
term 4. The third line of (2.80) is bounded by (2.68) with ¢ = i,] = k — 1. Therefore, we
derive (2.75).

Then we focus on (2.77). We consider the third line of (2.80). To apply (6.8) in Lemma 16,
we set

1 1 1
a=-— + N
2Te—1,i 2Ty (x;) 2Ty (xi)r (2 — 1)
e =200 @), w=(1—-rpvV" @) (2.82)
We define
Biy:=b—a-—c¢. (2.83)
In regard to (6.8),
b LA PR
w =
b—a—c¢ b—a b—a-—z¢
By (2.82),
b Ti 1 e 2020
b—a kal,i(l—I"H)z-i-Tw()ci))”H(Z—l‘”)7 b—a—¢ Bi,” )
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Thus we obtain
b .
=V, (2.84)
—a—¢&

where we define
Ti—1,i[1 +2Q0) 1= (@1)/B; ]
Ti1,i(1 = r)? + Ty (x)r 2 — 1)

ni,| = a1 —=rp. (2.85)

Thus under the condition (2.76), applying (6.8) in Lemma 6.6 with % w =7 VH’" —itl (%)

—a—e&

and using (2.68) with g =i,] = k — 1, we bound the third line of (2.80) by
[Tk—1,i — Tw &) = rminl k—1—i ] —itl 2
3Cr,, £ X : +2(2C) e v 1) .
T & EXP <|:2Tw(xi)[Tk—l,i(] = Tmin) + FminTw (X;)] I '

By the same computation in Lemma 5, we derive (2.77) because of the extra constant &.
Last we focus on (2.79). We consider the second line of (2.80). To apply (6.10) in
Lemma 18, we set

1 1 1

a=— + , b= )
2T—1i  2Tw(x;) 2Ty (xi)ro
e =220 7@, w=T—r v ). (2.86)
Define
Bii:=b—a—e. (2.87)

By the same computation as (2.84),

b —i+1
b a0,
where we define

k—1—i
Ty il1 + 220 —0]

C Tio1i(L—r1) + Ty (xi)ry

v1i—=ry. (2.88)

Thus under the condition (2.78), applying (6.13) in Lemma 18 with #w =

£
Nl Vf_’+l (;) and using (2.69) with ¢ = i,/ = k — 1, we bound the second line of (2.80)
by

ni,L:

[Ti—1,i — Tw X)L — riinl k—i —itl 2
5Cr, ¢ oxp ([ ~ +200% @) | vt )P )
s 27 )Tk 1. (1 = Fonin) + Tomin T (1) ‘
Then we derive (2.77) because of the extra constant §. ]

Lemma 6 Forn; | and n; | defined in Lemma 5, suppose there exists n < 1 such that

max{n;, i, 1} <n <1 (2.89)
If
I+n i _
lvi | > ma Yand Jvi = ni g VT @l < 871 (2.90)
then we have
VI @) > Jvigl + 687" 2.91)
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Also if
lvi 1| > 11_738_1 and |v; | — n,',J_Vf_iH(fiN <87 (2.92)
then we have
VTl > ol +57" (2.93)

Remark 6 Lemma 5 includes all the cases that are controllable since they provides the small
number §, which direct contributes in obtaining the exponential decay in (2.73). This lemma
discuss the rest cases that does not directly provide the smallness, which are the main diffi-
culty.

Proof Under the condition (2.90) we have
V" ] > vyl =87

Thus we derive
1 =i

VI @) > g | + Jvi | — —37"
i, il
1 l+n _, 1 _
> |v,-,\||+7m I 7778 [E—
ni 1—mn ni|
1=y 14 1
- |v1’H| + 771,H nla”a—l _ 78_1
ni L= i, |
L+ I _ _
>|vi7‘||+ﬂ5 I_ 5 1>|Ui,H|+5 1,
i, i, ||

where we use |v; | > E—Z(S’l in the second line and 1 > 1 > »; ) in the third line. Then we
obtain (2.91).
Under the condition (2.92), we apply the same computation above to obtain (2.93). O

Lemma?7 Suppose there are n number of v such that
i+ _
=gV apl =87 (2.94)
and also suppose the index j in these vj are iy < iz < --- < iy, then
k,k—1 2(k—i
/l_[k‘l _ Lo >0y 1((2.94) hotds for j=ir,in, 14 Pi;m (1) = (8)"(2C7y,6) L

j=iy Vi

(2.95)

Proof By (2.48) in Lemma 2 with = k — 1, p = iy, p’ = i, and using (2.77) with i = iy,
we have

kok—1
/,H Li>011((2.94) holds for j=i1, i} Pijm (1)
Hj:il Vi
k=i in—1
< 8(2Cr,.0)* I)Ak—l,in/,.r, =01 1{ 2.94) holds for j=ir iy 14 1!
M= s (2.96)
= 5(2CTM,$)2(k_l")Ak—l,i,,/

o111,
sy,

J

(in)*l i,,, -1
/(,.n)f, Lioe>011(2.94) notds for j=iy,-.in114 Y3, 4T, s
I—[j:[nflv.
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Again by (2.48) and (2.77) with i = i,_; we have
(2.962.96) < §*(Cryy.6)* %D A1 4,

in_1—1
fl_[,-”_l_l l{tk>0}1{ (2.94)holdsforj:il,m,in_z}dTil] :
J=i

J
Keep doing this computation until integrating over V;, we derive (2.95). O

Lemma 8 Assume t < t.( so that we can apply Lemma 3) satisfies (2.108) and (2.110). For
0 < § < 1, we define

={v; € V;:|v;-n(x;)] >8,|vj|§8_1}. (2.97)

For the sequence {vy, va, - -+ , vgk—1}, consider a subsequence {vi4+1, Vi42, - , Vi4L} with
[+1 <[+ L <k—1asfollowing:

vy y Ul41, V42 - - " VI+L, VI+L+1 -
—v—’ ——
1-n _1-n 1—n
eV I ey, ,\v,z“* n’ v,i‘m’
(2.98)
In (2.98), if L > 100122, then we have
/ o gsol ey A (1) < 382 (2C7, ) D A1y,
5= v {vH,evH,\V,z“*”) for1<j<L})
(2.99)

Here the n satisfies the condition (2.89).

Remark 7 In order to apply Lemma 6 we need to create the condition (2.90) and (2.92). This

8
is the main reason that we consider the space Vz(m’)

This lemma asserts that implies that when L is large enough, such subsequence (2.98),
without further considering the constraint for |v; || — n; | V“’”_i+1(ti)| forl+1<i<I+L
as (2.90),(2.76), provides a decay factor (38)L/2. Such decay factor is the key the obtain the
decay factor (%)k‘) in Lemma 4. In fact in the proof we consider all possible cases for each
v;,| in the subsequence (2.98) and apply the estimates in Lemmas 5-7 to obtain the decay
factor (38)%/2 for all cases. We will heavily rely on this lemma to prove Lemma 4.

Proof By the definition (2.97) we have

0 1- 2(1+m)
VAV = (o e vk ool < 5 )80 il 2 == =87")

)
Here we summarize the result of Lemmas 5 and 6. Wlth 5 < §,whenv; € V; \VQ(H”)

(1) When [v; - n(xi)| < 5756, we have (2.75).
(2) When |v;| > 2<‘j”>5— ,

(a) when |v; | > 1+"5 LAt g — mag V" @l < 871 then [V @) >
[vi | + 6~ 1

(b) when |v; | > ‘+’75 Af g — i V' @) = 871, then we have (2.77).
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1 -1 - —i+1 — —i+1
() when [v; 1| > 5287 if Jui = mi VI @) < 871 then [V @) >
lvi 1] +871.

(d) when |v; || > }%Za—l, if Jui, 1 — i, L V"N (#)] = 87, then we have (2.79).

We define W, s as the space that provides the smallness:

1- IL+n
Wis:={vi eV :|v —4 I l Vi 75
i,8 {vi eV lvi 1| < 21 + m } {vi eV lvi, 1| > 0

and [v;, | —n; L V" @) > 671

14+n _ i _
Jwi e vi s vyl > ma Land v —ni V" @) > 571
Then we have

+
v,\vz“*” Wis| v eVis:viil> —a Yand o 1 — i V] @) < 571
(2.100)
U{U,‘,” (S] Vi,” : |U,',||| > m871 and |v,~,” — Ni,| Vlm l+l([,)| <& }

By (2.75), (2.77) and (2.79) with }I—ZS < 8, we obtain
/n o Twewi L0/ d @ (1) < 38Q2C7, " D A 10D
_ly;

For the subsequence {v; 11, - -, vj4+1} in (2.98), when the number of v; € W; s is larger
than L/2, by (2.95) in Lemma 7 with n = L/2 and replacing the condition (2.94) by
v; € W;j 5, we obtain

1
/ ] LiNumber of v; €W); 5 is large than L/2}1{5,>0yd P} k ()
=t v, (2.102)

< 38)E2QCr, ) D A1y

This finish the discussion with the cases (1),(2b),(2d). Then we focus on the cases (2a),(2c).
When the number of v; ¢ W, s is larger than L/2, by (2.100) we further consider
14+n 871

two cases. The first case is that the number of v; € {v; @ [vj )l > 5,67 and |v; ) —

njl V”m_j+](tj)| < 671} is larger than L/4. According to the relation of v; and
VHm_j +l (t;), we categorize them into
_ —j+1 _
Setl: {v; ¢ W s : vyl > 126~ and v —ny V" el < 871,
Denote M = |Setl| and the corresponding index in Setl as j = py, p2,---, pm. Then
we have
L/4<M<L. (2.103)
By (2.91) in Lemma 6, for those v, we have

m—p;+1
|Upj,H| |V‘

(tp)| < =571 (2.104)
Set2: {v; € V; \VZ(H”)B vl = IVm J+](fj)|}-
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Denote M = |Set2| and the corresponding index in Set2 as j = q1,92, "+ ,qM-
By (2.103) we have
3
1§M§L—M§ZL. (2.105)
Then for those vg; we define
+1
aj =gl = 1V, ") > 0. (2.106)

Set3: {v; € V; \vz“““‘S vl < Iv)"" g+l Al <lvjyl+87 1)

Denote N = |Set3| and the corresponding index in Set3 as j = o1, 02, - - -

those 0, we have

m—oj+l

o, 1l = 1V (to ) < |vo, 1 + 87"

1—n s
From (2.98), we have v; € V""" thus we obtain

~

24w

1
- < |vr gl = vyl = Z (lors .l = lvij—1.1)

I+j)+1
(il = V)"~ )

L
=1

~

L
—(+)+1
+Z (v @+ ()] = v j—1,1)
1

/ =
L L
|

, on. Then for

(2.107)

I+j)+1
Z Vit j, |||—|V|m D (t+j)l)+ZC¢m(tz+j—1 = I14j),

=1 j=I

where Cyn is defined in (2.18). Take ¢ = ¢(¢™) small enough such that

L+1
D Comltirjo1 —ti4)) < Cont < 1. (2.108)
j=1
By (2.104), (2.106) and (2.107), we derive that
M M
=2(1+mn) +1 +1
Y 5~ 1<Z [vp;. 1l — v, (tpj)| +Z lvg; il — vl (tq,)|)
n j=1 j=1
Y +1
m 0j
+ 3 (ol = V)" to))l) = —M8™ ‘+Za;-
Jj=1 j=1

Therefore, by L > 100=; 1+'7 and (2.103), we obtain

Ay Ly My
-7 =100 T2
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and thus

M -1
21 Ms
Y aj = Ms! - Ay . (2.109)
o 1—n 2

We focus on integrating over V,;; with 1 <i < M, those index satisfy (2.106). We consider

the third line of (2.80) with i = g; and with integrating over {vy, | € Vg : |vg. il —
m—q;j+1

|V|| (t4;)] = a;}. To apply (6.7) in Lemma 16, we set
1 1 1
- + , b= )
2Ti—1,q; 2Ty (xg;) 2Ty (xg )r (2 — 1))
We take t = t(£, k, Ty, C, €) small enough such that
1 1 1

a= e =200 1= (@y).

at+e—b=

1
+2020) @) < ———

— + — .
2Tk,1,q[ 2Tw(qu.) 2Tw(xq[)r” Q2—-rp 4Ty
(2.110)
Then we use 1,4, | < 1 to obtain
m—g; <1 m—g; <1 m—g; .
(gt =1V~ g1=ary = Hvgpl=ngn1V) 0 agl>ai) = g a—ng vy 1> an)
(2.111)

By (6.7) in Lemma 16 and (2.111), we apply (2.68) with ¢ = ¢; to bound the third line
of (2.80)( the integration over V,, | ) by

2

ei%CTM,g exp <[ [Tk—l,qi - Tw(xq,-)][l — Tmin]
2T (xXg ) [Tk—1,4; (1 = Pmin) + Finin T (xg,)]
—a: —qi+1
+220)k 4 @n v (tql.)|2). 2.112)

Hence by the constant in (2.112) we draw a similar conclusion as (2.101):

a?
kk—1 v 2(k—q;
/lilk_l v 1{Zk>0}1{|vq- H\—\Vﬁn_qu(tq.)I:a,-}quQi,m (1) < € 7t (2C7,,)> )Ak—l,qr

Jj=q; *J
(2.113)
Therefore, by Lemma 7, after integrating over Vg, ||, Vg,.|» -+ » Vg4l WE ODtain an extra
constant
el Gt ai /AT < plaitart e tapmP/GTuM) < =M~ /21 /4Ty M)

— 1 —1,2 —
< o [§TIPIATuIL) o maem LT L

3

where we have used (2.109) in the last step of first line, (2.103), (2.105) in the first step

—L5!

of second line and take § < 1 in the last step of second line. Then e is smaller than

(38)%/% in (2.102) and we conclude

/H“ 1{M=|Set1|zL/4}l{zk>0}d¢f’,ﬁ_1(tk) < 38)L2QCr, )™ D A1y
i Vi
(2.114)

The second case is that the number of v; € {v; € Wj s : |vj 1| > %Z(S_l} is larger than

L /4. We categorize v; | into
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_ —j+1 _
Setd: {v; ¢ W s : vy 1| > 1228~ and Jvj 1 —n; V] )] < 571
1—n .
Sets: {v; € VAV sy | > (VI apy.

_l=n )
Set6: {v; € vj\v]?‘””” vyl < |Vi"_’+1(tj)| <lvj |+

Denote |Set4| = My with L/4 < M < L and the corresponding index as p{, p5,-- -, p;‘,ll,
|Set5| = M and the corresponding index as g}, g5, - - - ,q;\,ll, |Set6| = N; and the corre-
m—q;

L +1
sponding index as 0/, 05, - - - , o}\,l .Alsodefine b; := |vq./,_’1_| -V, (tq‘;_)l. By the same

computation as (2.109), we have

My —1
2(1 M8

ij > M5! — Mg—l S 210

= 1—n 2

We focus on the integration over vy Let1 <i < My, we consider the second line of (2.80)
J

with i = qi’ and with integrating over {vqg’l EVy 1 gl — |Vf7q"+l(tq_/)| = b;}. To
apply (6.12) in Lemma 16, we set
1 1 1

“=- + S
2M—1,q  2Tw(xg) 2Ty (xg)ryL

. e =200 % @),

By the same computation as (2.110), we havea + ¢ — b < —ﬁ. Similarly to (2.111), we
have

1

- <1
o (1=1V,
1

qj = q;

+1 m—q/+1 .
(tql{)|=bt} Hv‘li/-i_nflfivi (tql_/)\>bi}

Hence by (6.12) in Lemma 18 and applying (2.69), we bound the integration over Vs | by

v?
e T Cr,, ¢
[Tk—l,ql.’ - Tw(qu.’)][] — Fimin]
exp
2Ty (xq,.’)[Tk—l,qi’(l — Fmin) + Tmin Tw (xq”)]

+ <2C)”5(¢t>} vy (tq;>|2> :

Therefore,
b2
- — i —q
/ 1 - Lm0l m—g[+1 dq)l;?km Nt < e T (Cry ) q[)-AkflJIi/'
l_[j:q,-’ Vi {‘qu’.Ll_lvj_ (tql{)|:bi} !
The integration over Vi 1o Vb1 s V‘I}w 1 provides an extra constant
1

2 2 2 1 —142 —
e—[b1+b2+--~+le]/16TM - e—mua b < oL 1

’

where we set § < 1 in the last step. Then ¢~L57" is smaller than (38)L/% in (2.102) and we
conclude

AT" 1 1{M1=\Sel4\zL/4}l{zk>0}d¢£’£71(tk) < 38)E22Cr, )% D Ap_1 .
—1y,.
j=l Y

(2.115)
Finally collecting (2.102), (2.114) and (2.115) we derive the lemma. ]
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Now we prove the Lemma 4.

Proof of Lemma 4 We mainly apply Lemma 8 during the proof. In order to apply Lemma 8,
1—n
here we consider the space Vf“*") and ensure 7 satisfy the condition (2.89). Also we let

t' =1, k, Ty, C, €, Cyn) (consistent with (2.72) ) satisfy condition (2.108) and (2.110).
In the proof we first construct the 7 that satisfies the condition (2.89) in Step 1. Then we

1—n

s
prove there can be at most finite number of v; € V\V " in Step 2. With such conclusion

in Step 2, we apply Lemma 8 and consider the contribution of all possible subsequence (2.98)
in Step 3. In Step 4 we conclude the lemma.

Step 1

In this step we mainly focus on constructing the 7, which is defined in (2.126).

First we consider »; |, which is defined in (2.85). In regard to (2.82) and (2.83), by (2.110)
withr <7/,

B> DY o = PG SN’ 1
> QoK1 > QOKEn > —.  (2.116)
ATy

2The—1,i B 2;%]"1\4

By (2.41), Tx—1,; — Ty as k — i — oo. For any 1 > 0, there exists k1 s.t when
k>ky, i<k/2, wehave Tp_1; < (1 +¢&1)Ty. 2.117)
Moreover, by (1.28), there exists &7 s.t

min{Tw(x)} - 1— ry
TM 2 — |

(1+e2). (2.118)

Then we have
&y = ex(min{Ty, (x)}, Tpr, 1y, r1). (2.119)

We use (2.117) and (2.118) to bound T, (x;) in the n; | ( defined in (2.85)) below as

Ty(xi) = T TTZ’ET) > Ty T"’Tij") 1 +181 > ;::H Ti1, i IZ (2.120)
Thus we obtain
142290 14 QGpen
N, < 1= rH)z N ;:;H %ii? e A—=rp= W (2.121)
By (2.117), we take
k =k = ki(e2, Ty, rmin) (2.122)

large enough such that ] < &2/4. By (2.116) and (2.121), we derive that when k = ki,

1 4 4Ty (20)k(¢r)
SUp Mi| = 13, <M < 1. (2.123)
i<k/2 IL—r+r Tre,/a
Here we define
1

B (2.124)
T+e
L—rp+r 1+Jg§§2

n =
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where wetaket’ = t'(k, Ty, €2, C, €, rj) smallenoughand ¢ < ¢’ suchthat4 Ty ok (e «
1 to ensure the second inequality in (2.123). Combining (2.119) and (2.122), we conclude
the ¢’ we choose here only depends on the parameter in (2.72).

Then we consider n; | which is defined in (2.88). In regard to (2.86) and (2.87), by (2.116)

in{T, JT=ri—(1—
we have B; | > ﬁ. By mm{TM(x)} > ”u( ry)

tation as (2.120) to obtain

in (1.28) we can use the same compu-

JI—=ri— (0 —=rp) 1+e&
Ty (x;i) > Tic—1.i ;
ry 14 ¢

with €1 < €;/4. Thus we obtain

ni,L <nyL <l

where we define

1
Ny = <1, (2.125)
m+ (1 - m) 1&3?2
with t' = /(k, Ty, €2, C, €, r))( consistent with (2.72)) small enough and ¢ < ¢'.
Finally we define
n:=max{n.,n} < 1. (2.126)
Step 2
We claim that for r < 1,
N 3 iy
ti—tirl] 2 (——8)7, forv;, e V;""" . 2.127
|7 J+1|N(2(1+n) )7, forv; e V; ( )

Fort; <1,

j+1 . )
m— .
|/ VT (sy 1y, xj, v))ds|
g
2
=[xj11 —x;1° 2 [(xjp1 —x)) - n(x))|

Tj+1 .
_ |/ Vi (s 5, %, v;) - n(x;)ds]
]
72 § .
- |/ (v, —/ V" (z, X(t5 1), xj,v;))dT) - n(x;)ds|
tj tj

Li+1 S .
= oyl =t =1 [ [ 90" @ X 00 sl
J J
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Here we have used the fact that if x, y € 9Q and 92 is C? and  is bounded then |x — y|? >q
[(x —y) - n(x)|(see the proof in [8] and [9]). Thus

1 Lj+1 )
|Uj'n(xj)|§m|/t. V(s;tj,xj,v;)ds|
J
1 tiv1 s .
+7|/ f V"I (x, X (t; 1, X}, vj))dT) - n(x;)ds]|
ltj —tjv1l Jy; s
Sty — tie v 2 + 1t — i1 PIVe™ 1%
1 »
a0 Vo™ (. X(t: 1, xj,v)) - n(xj)l}.
jHISTSE
1-n_g
Since v; € VZ(H’” ,
i - ne)| St — 182+ IV 12 + 11V [loo)- (2.128)

Byt « 1and V@ |0 is bounded due to Lemma 1, we can prove (2.127).
In consequence, when#;y > 0,by (2.127) and # < 1, there can be at most {[Cgq( 2(1-+n) 1+

(I=m3s

2(l+n) 2(1+n)

. Equivalently there are at least k — [CQ((I_ 6 )3] numbers of

1} numbers of vj € V

8
DFIS V./'\Vl’»z(Hn) .
Step 3
In this step we combine Step 1 and Step 2 and focus on the integration over ]_[];;i V.
By (2.127) in Step 2, we define

21+ )3
N = [Cg(m) ]+ 1. (2.129)
1—n s
For the sequence {vy, v2, -, vg—1}, suppose there are p number of v; € VZ(H”) with

k—1
p < N, we conclude there are at < » ) number of these sequences. Below we only

consider a single sequence of them.
In order to get (2.124),(2.125)< 1, we need to ensure the condition (2.117). Thus we take

1—n s 1—n P
k = ki(Ty, &, r1, ry) and only use the decomposition V; = (VJ\V;(H”) ) U ij“*”) for

1 < j < k/2. Thus we only consider the half sequence {vi,v2, -+, vgy2}. We derive that

_A=n
et

when 7, > 0 there are at most N number of v; € V and at least k/2 — N number of

8
vj € v,»\v/?“”) in T2 V).
In this single half sequence {vy, - - - , vg/2}, in order to apply Lemma 8, we only want to
consider the subsequence (2.98) with/ +1 <[+ L < k/2 and L > 100]1%2. Thus we

need to ignore those subsequence with L < IOOE—Z. By (2.98) one can see at the end of this
_1=n_
subsequence, it is adjacent to a v; € VIZ(H") By (2.129), we conclude

There are at most N number of subsequences (2.98) withL < IOOﬁ. (2.130)
-1
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We ignore these subsequences. Then we define the parameters for the remaining subsequence(
with L > 100122 ) as:

1—n S
M, := the number of v; € V.,'\V,,z“*”) in the first subsequence starting from v;.

n := the number of these subsequences.

Similarly we can define My, M3, ---, M,, as the number in the second, third, ---, n-th
subsequence. Recall that we only consider ]_[l;/z2 1 Vj, thus we have

L+n .
10017 <M; <k/2, forl <i <n. (2.131)
-n
By (2.130), we obtain
1+
k/2> M +---M, zk/Z—IOOI—N. (2.132)
-1

Take M; with 1 <i < n as an example. Suppose this subsequence starts from v;, 11 to v, 4 u;
by (2.99) in Lemma 8 with replacing [ by /; and L by M;, we obtain

k,k—1
/ H 101 s Ao, (1)
i=l; V; {v1i+j€V1i+j\Vl[+j P for 1<j<M;}

< BOMi22Cr,, ) D A1y, (2.133)

Since (2.133) holds for all 1 < i < n, by Lemma 7 we can draw the conclusion for the

Step 3 as following. For a single sequence {vi, v2, - - - , vx—1}, when there are p number
1—
Necol

; , we have

vj €

| L >0} d Ty (1)

1 _
/k—l . e ;
j=1Yi {p numberv;eV); for a single sequence} (2.134)

< 38)MiFMI20Cr A ).

Step 4
Now we are ready to prove the lemma. By (2.129), we have
N
f o a0 dE g, ) < ) / oy L0 d B, (4.
l_[j;l Vj p=1 {Exactly p number of v,-evjz(”") }
(2.135)
Since (2.134) holds for a single sequence, we derive
Y (k-1
(2.135) < 2C1, )% > ( ) By MFMA M2 Ay
p=l P
141,
< 2C1, * Nt — DY GO TN A (2.136)

where we use (2.132) in the second line.
Take k = N3, the coefficient in (2.136) is bounded by

3 Lty 3
(ZCTM’S)2N3N3N+1(38)]\/1/471011777,]\/ < (ZCTM’E)2N3N4N(38)N2/5’ (2137)
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where we choose N = N () large such that N3/4 — 101 {_LZN > N3/5.
Using (2.129), we derive

38 =C(Q, N3,
Finally we bound (2.137) by

3 3
Q2Cr.e)*V NN (C(@, NN
< eZN3 1og(chM,5)e4N1og1ve(1v3/5) log(C(2,nN~1/3)
— (AN log Ne(N3/5)(log(C(Q,n))—% log N)62N3 log(2Cry, &)

3
— pANlogN— 5 (log N—31log Cq.;,—3010g(2Cry,.£))

< e4NlogN7— log N <e 50 logN —e 150 logk < ( )
where we choose § small enough in the second line such that N = N (2, n, C7y, ¢) is large
enough to satisfy

log N
log N = 3log C(R2, 1) = 3010g(2Cry.¢) = ——,

N3 N3
ANTogN — ~ log N < —~ log N.
O8N T3 08N =75 08

And thus we choose k = N3 = ky = ko (%2, n, Cry,.¢) and we also require logk > 150 in
the last step. Then we get (2.73).

Therefore, by the condition (2.117), eventually we choose k = kp = max{ki, k»}. By the
definition of n (2.126) with (2.124) and (2.125), we obtain n = n(Ty,C, 7L, 7|, £2). Thus
by (2.119) and (2.122), we conclude the ky we choose here does not depend on ¢ and only
depends on the parameter in (2.71). We derive the lemma. O

Now we are ready to prove the Proposition 2, we will combine Lemmas 2— 4 to close the
estimate.

2.3 Proof of Proposition 2

Proof of Proposition 2 First we take
foo <. (2.138)

with ¢’ defined in (2.72). Then we let k = ko with ko defined in (2.71) so that we can apply
Lemmas 4 and 3. Define the constant in (2.5) as

Coo = 3Q2CT, )", (2.139)

where Cr,, ¢ is defined in (2.56), k¢ in defined in (2.71).

We mainly use the formula given in Lemma 2 and we use Lemmas 3, 4 to control every
term in (2.13). We consider two cases.

Casel: 1} <0,

‘We consider (2.11) in Lemma 2. Since

—f (V™ (r))2dt <e;(s 1)(v)? ¢C¢m(t—s)2(v)
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by (2.11) and using the definition of I'7?. (s) in (2.15) we have

gain
|W" T, x, v)] < [ho(X™(0; £, x, v), V™ (0; £, x, V)| (2.140)

t
+/ o F6=0(2=2Cm (=) (v)) ,~ €V (55 IV (5)]2
0

/ B(V™(s) —u, w)y/ pu(u) (2.141)
R3xS2
R (t, x, V) ” , m h"(t, x,v)
+| e (0 X0 v o) || S
(s, X" (s), v’ (u, Vm(s))) ‘da)duds, (2.142)

where u/(u, V™ (s)) and v’ (u, V™ (s)) are defined by (1.4). Then we have

(2.142) = (sup 1" ()]1)* x / [, o2t gy )

0<s<t

x /j(uye¢ (VT (5025 01V S =0 (ul+H V™ ()1 € G+ VDS g o duds

5 ( Sup ”hm(s)”Loo)zf /ze%(s—f)((v)z—ch;m (Z—S)<U>)|Vm(s)
0 JR

O<s<t

2 2
— ulKﬁe_e‘"‘ e quds

t >
SCOO ”h()”%w/ e%(s—t)(<v)2_2c¢m(t—s)(v))(Vm(s»lCds
0
e 2

S ||h0||%oo/ ei(s—t)((v) —2C¢m(t—s)(v))(<v>lc e —S)K)ds

0

2 1 S0 (P20 —9)) (0 K

< ”hO”LOOf et o) + )M + Lpin s

0

t
Sl [ F000 @ s + [ 0 1]

1
Sliholoo (Nz + Ni),
where 0 < K < 1. Therefore, we obtain
1 1
(2.142) < C(Cwo, ”hO”oo)(m + Nt) < %Hholloo, (2.143)
where we choose

N = N(Coo, llhollocs ko) > 1, too = teo(N, Coo, lhollec, ko) < 1, (2.144)

with # < t, to obtain the last inequality in (2.143).
Finally collecting (2.140) and (2.142) we obtain

IR, x, )14 <0y loo < 2llR0lle < Coollhollcos (2.145)

where C is defined in (2.139).
Case2: t; > 0,
We consider (2.12) in Lemma 2. First we focus on the first line. By (2.143) we obtain

! t m m m 1
/ e [ SV m €V VIO T (5)ds < o Mholles: 2:146)
n
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Then we focus on the second line of (2.12). Using 6 = ﬁ we bound the second line
of (2.12) by

exp ([ S ]|v"’(r1>|2>/ H. (2.147)
2TM§2% 2Ty (x1) ]_[I;O:_]1 1%
Now we focus on fl_[ko—l v H.We compute H term by term with the formula given in (2.13).
j=1 Vi

First we compute the first line of (2.13). By Lemma 3 with p = 1, forevery 1 <[ < ko — 1,
we have

/ o Lzoe o (X" 710), V™)) A 2[5, 0)
l_[j=1 Vj
< ||ho||oo/k(r1 1,1 <01 d %), (0)
Hj:l Vj (2.148)

! (T1,1 — Tw(x1) (A — rmin) w2
= (C7.6) Moo exp <2Tw(x1)[Tl,1(1 i) + T Gn] D!

+ (2C)I(¢z>|vm<n)|2).

In regard to (2.147) we have

ex <[ CHN ]|V"’(t)|2>x(2148)
"\ e |

-1 1 m 2
5 IV

= (2C1,.6) lholloo exp ([ +
s R TN L (T e i+ Tia (U= i) 2700 25

+ o) En|vm (n)|2>.

Using the definition (2.40) we have Ty, (x1) < ;%TM and 771 < %TM, then we take
too = too(Ty, ko, §,C, ©) (2.149)

small enough and < f, so that the coefficient for |V (r1)|? is

-1
+ + o) (€r)
Z(Tw(xl)rmin + 111 — rm,-,,)) ZTM%
—1 (2.150)
< + + o) (er) <o.
2(Turmin + Tia (1= rmin)) — 2Tw gy

Since (2.148) holds for all 1 < I < ko — 1, by (2.150) the contribution of the first line
of (2.13) in (2.147) is bounded by

2C7,,.)* ol oo (2.151)

Then we compute the second line of (2.13). For each 1 < [ < ko9 — 1 such that
max{0, f;4+1} < s <1, by (2.14), we have

k _ (€ ym—l1 2 k
Az (s) = e K TV O s ),
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Therefore, we derive

V) s BV )1 ! k
/ /ko . s § |Fg’aln (S)IdElfi”(s)ds
max{0,7} _1 V]

_ € ym—I 2 m—I1 m—I1 2 k
< / o / f (V"=(1)) dT evm=l(s)?s LAV |Fn;ml(?)|dsd21(;n(l‘l)
1‘[/01 V; max{Ot[} '

1
< o Mol /H o T (2.152)

Jj=1 J

! (T11 — Tw(x1)( — rmin)
=< %”holloo(ZCTM,é)l exp( , w min

2T xD[T11 (1 = Fimin) + Timin T (X1)]

V™ ()|

+ 0 €n|vm <r1)|2),

where we apply (2.143) in the third line and apply Lemma 3 in the last line.
In regard to (2.147), by (2.150) we obtain

1 1 1
ex IV’“(n)|2> x (2.152) < —Q2Cry.6) 1hollso-
p<[2TM ST ko s 0T

Since (2.152) holds for all 1 <[ < kg — 1, the contribution of the second line of (2.13)
in (2.147) is bounded by

ko —1
o 2Cnn ) lholle. (2.153)

Last we compute the third term of (2.13). By Lemma 4 and the Assumption (2.5) we
obtain

_ _ k
/]‘Tk“‘v Lio<g 1™ 02 (10, g, V™ k0+1(1k0))|d2k8_17m(1k0)
j=1 Vi
_ k
< ||n" k0+2||oo/ fo-1,, Lio<s)d 201 (k)
=i (2.154)

1 (Tl 1— Tw(xl))(l - rmin)
ko ¢~ \ko ] m 2
= 302Cny 7 ()  holloo exp <2Tw(x1>m,1(1 — rim) + rmn w1 D!

+ o) @Envn (r1)|2>.

In regard to (2.147), by (2.150) we have

1 ) )
' 2.154) < (2 9 1ho e
exp([zmgfl S VMO0 ) X Q54 < QCr ol

Thus the contribution of the third line of (2.13) in (2.147) is bounded by
Q2Cry,) 0 lho(x, V)l so- (2.155)
Collecting (2.151) (2.153) (2.155) we conclude that the second line of (2.12) is bounded
by

ko —1
QCr,. " x 2+ o Molee: (2.156)
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Adding (2.156) to (2.146) we use (2.12) to derive

IR, x, V)1 >0 llo0 < 32CTy.6) IR0 oo (2.157)

Combining (2.145) and (2.157) we derive (2.6).
Last we focus the parameters for f», in (2.7). In the proof the constraints for 74,
are (2.138), (2.144) and (2.149). We obtain

foo = [oo(tlv N, Cso, ”hO”ocn Twm, ko, E, C, 9
= too(ko, &, Ty, min{Ty, (x)},C, 11, 1), €, C1yyp 6, A0 ll0os Cpm).

By the definition of kg in (2.71), definition of C7,, ¢ in (2.56), definition of C in (2.59),
definition of Cgn in (2.18) and the condition for € in (2.30), (2.16), (2.65), we derive (2.7).
[m}

3 Weighted WP Estimate for f™+1

For proving the uniqueness of the solution as mentioned in the introduction, we rely on
the estimate for V, f. In this section we prove the weighted W!-? estimates for f"+! =
F ’”H/ﬁ that satisfies (1.44) with boundary condition (1.45). We will be proving the
following proposition.

Proposition 3 Assume all the assumption in Proposition 2 holds true ( so that we have (2.8)
). Let f’"+1 solving (1.44) with boundary condition (1.45). Define

t
E"(1) := sup [Hlwge ™ f@y)h + /0 lwge ™ F1 s}
L e—htw)
+ = ”e Wwsx fl le xvf (t)”p
(3.1)
/|e B Owgal | euf O

22 ||e—“<”><v>w;af.,,],evx,vf%s)nﬁ].

Then for small enough Gsothat) <6 <0 < 1and A > 1, there exists tw < 1 (tw < fs0)
and Cw > 1 such that for

p—2 2
—— <B<< for 3<p<6, (3.2)
)4 3
if
sup £M(t) < 2CW{”wgf()”p + ”wgafo e Vx, va” } < oo, (3.3)
0<t<tw
then
sup Serl(t) = 2CW{||w9f0”p + ”wgafo e Vx, vf()”p} 34
0<t<ty

Here Cy is a constant defined in (3.65), and ty satisfies the condition (3.66).
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This proposition implies the uniform in 7 bound of the weighted W!-” norm of f™. This
gives us an a-priori estimate for the later proof for the uniqueness. The “energy” term defined
in (3.1) has two components that depend on p-norm of f, and three components on p-norm
of d f. Therefore in the proof for the proposition, we need to provide the estimates for these
components. Some lemmas from [2,15] will be repeatedly used and we cite them here first.

We note that in bulk this part of proof is rather similar to that in [2]. The main diffi-
culty comes in through the boundary treatment as mentioned in the introduction, and this
complexity is reflected Step 1 for f and Step 5 for d f in the proof.

For the initial problems of the transport equation with time-independent field E (¢, x),
source H (t, x, v), and damping term v (¢, x, v) > 0, let & solves:

oh+v-Vih+E-Vyh+yh=H, (3.5)
then we have the following estimates for /:

Lemma9 (Lemma 5 in [2]) For p € [1, 00) assume that h, 9;h + v - Vih — V¢ - V,h €
LP([0,TT; LP(2 x R*) and h,, € LP([0, T1; LP(y)). Then h € C°([0, T]; LP(Q x R?))
and h,, € LP([0, T]; L?(y)) and for almost every t € [0, T] :

13 13
IIh(t)II§+/O hly,.p = Ilh(O)II§+/O hly_p

' 3.6)
+/ f/ (0ih +v-Vih+ E - Vyh + Yh}h|P.
0 QxR3
Lemma 10 (Lemma 6 in [2]) Assume E € L, then fort < 1, ¢ > 0,
t
/ / |h|dyds
0 Jys\yi
t
< C(e) = 1011 +/ 1)1+ 1[0 +v - Ve + E - Vy + ¥]h(s)[l1ds } ,
0
3.7
where
)/_f_ ={(x,v) € ys :n(x) v <e€or|v >e_1}. (3.8)

The next result is about the integrability of «,

Proposition 4 (Proposition 3 in [_2])Assume E(t,x) € C}C is given. Thenfor) <s <t < 1,
O<o<land N > 1andx € ,

du

—— Sean 1, (3.9)
<N 0fe(s, x,u)® ~

and, forany 0 < k <2,

e—C\v—u\z 1
du S L. 3.10
/IulzN v —ul> = afe(s,x,u) ~0,Q2,N « (3.10)

We will also need the C2 estimate for ¢:

Lemma 11 Assume (3.2). If ¢ solves (1.24) then

161213 < COVPHFOIp+ eV} TefDllp) for p>3. GAD)
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Proof Applying the Schauder estimate to (1.24) we deduce
1611y S| [ o] g o tor o2 (3.12)
3
By the Morrey inequality, W'? c C %175 for p > 3, we derive
OV oy g, 5| [ 10|
| [ rovia] oy, <] [ rovaa],,,
< a2\
S (L, eeRdr) T Ol
Vofoado|
+ /R IOV BN
By the Holder inequality,we have
[ Ve s outian)
R
e
0] —At(-
< t, V, ft,
||af i o e aretx PV f )
P\
:(/ 7ﬁpdv) T e M afGV @ x ) Lo @s)-
3
R a(t, x, v) 7T
From the assumption ﬁ—j < e~ %Ll < 1. We draw the conclusion. O

We need some estimates about the collision operator I' for Proposition 3. Define a notation

1 5l = ul?
k(v u) = |U_M|GXP{—va—uI —pﬁ}

The velocity derivative for the nonlinear Boltzmann operator reads

Vy (Fgain(fma fm) - FlOSS(fmv fm+1))

= Toain(Vo £™, ™) + Caain(f™, Vo f™) = Tioss (Vo £, f™1)

- rloss(fm7 vaerl)
+ Ty gain(f™, ™) = Tutoss (f™, f7 1.
Here we have defined

1—‘v,gain(fm, fm) - Fv,loss(fms fm+l)
N ./R? ./gz - ol 7 +un) [ + ”II)VU\/mdwdu

- ./z /2 - ol f" @ ) S @) Vo (v + u)daodu.
R’ JS

Lemma12ForO<7<p,lfO<p<p ,O§s§t<</5,then

2 o
AP pAstu)

ko (v, u) ks (v, u).

T <
eClu? ghstv) ~

(3.13)

(3.14)

(3.15)

(3.16)

@ Springer



580 Chenetal.

Moreover,
/R3 K;(v, wdu < (v)~ (3.17)
For the nonlinear Boltzmann operator we have
Cgain(f™, f™) = Tioss (f", f" I
(3.18)
< (o e £791) [ Koo, il ol
For (3.14) we have
[ w5 Tgain(Vo f™ 5 f") 4+ 1wgTgain(f™ s Vo [™)]
Sl "1 [ Koo, w0l Vo " @l (3.19)
| Tloss (Vo £, f )]
S oo e [ (w0l ¥, 70l

[ Tloss (F™, Vo £

< ) lwer f™ lloolwg Vo " )] (3.20)
|wiTutoss (™, £ D]
< <v>w‘7—(”)||weffm“||oo||e**<">‘vw§<u>f"1||p. (3.21)

= we(v)
|w§Fv,gain(fms fm)l

S Ilwe/f’"lloo/3k@(v,u)lwe/f”’(undu. (3.22)
R
For (x,v) € y_, we have the following bound for Vx,vf"”rl on the boundary:

11 2 1
Ve "1, x, 0)] S ()2l ¥~ 2t 1Y) (1+7> x (324)  (3.23)
[n(x) - vl

with

[ Jwermax
n(x)-u>0
+ ()L we £ oo /R Ky e, )| ")l + () £V o

*[L*+]|u|2
e v v do(u, v).

(3.24)
Proof The proof of (3.16) is given in appendix.
The nonlinear Boltzmann operator (1.23) equals
/ / u - w|g1 (v +u)g2(v + u2)y/ (v + u)dodu
e Js2 (3.25)

_ /R3 /Sz lu - wlg1 (v + u) g2 () (v + u)dewdu,
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Local Well-Posedness of Vlasov—-Poisson-Boltzmann Equation... 581

where u; = (4 - w)o and up = u — u;. By exchanging the role of ./ and w™!, we
conclude (3.18).

The estimates (3.19)— (3.22) follows from the standard way using (3.25). The readers can
also find them in chapter 4 of [2].

Then we focus on the derivative on the boundary. By (1.22) we have

—1
I f" (e, x,0) =
)

2
o { WY W) [ = Vg™ vy

- (3.26)
" <% ' V”bm) P = Tin(£" ™)+ Tioss (" f’"“>} ,
M

Let 71 (x) and 12 (x) be unit tangential vectors to d€2 satisfying 71 (x) -n(x) = 0 = 12(x) -n(x)
and 71(x) x 172(x) = n(x). Define the orthonormal transformation from {n, 71, 12} to the
standard bases {eq, e7, €3},

TOnx) =e;, T@Tx) =€, TW2(x)=¢3, T ' =77,

By a change of variable v’ = 7 (x)u, v’ = 7 (x)v we have

nx)-u=nx)-TT ' =n@) T = [T0)n) u' =e -u' =uf,

[11(x) - ulTi (x) + [22(x) - ulta(x) = [11(x) - TT ) Tr1 () + [12(x) - T7 (0)u'Tra(x)
= ([Tt )] u'}11(x) + {[T2)) W'} (x) = uht (x) + uhra(x)

= u/Z’TT (xX)ey + ugTT (x)es,

v =), v =TT (x)ex + V5T T (x)es.

uy

uj

Then the boundary condition becomes
m+1 (a7 — mra 11V m PN B by e [
St x,v) = e T 2wl S, x, T (x)u)e v 2Tw® do'(u,v),
uy >0

where we define

do’(u, v) = ! w120 =) e
T @ = /2 T () \ 2T () rL

( 1 [Iu’1|2+(l—u)|vi|2
exp

2T, (x) rL

N [hTT (x)er + uyTT (x)es — (1 — rPAT T (x)er + 477 (x)e3]|2]> '
2 =rp) '
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We can further take the tangential derivatives o, , for (x, v) € y_,

|9z, £ (2, x, v)
|v|281,- Ty (x)
Z[Tw(x)]z n(x)-u>0

~laty ~ 2 el
+| 0o £ (1, %, we T T o, v)|
n(x)-u>0

[ — L 2 m 7 — gt
< 7y T Mt x,u)e HTm 2w dU(”,U)‘

1 2
+‘/ Vo £ (8, x, )0, TT ()T (x)ue” 7o~ Tt 14 da(u,v)‘
n(x)-u>0

g e —|ul?0,. T
+ ‘/ Mt x, u)e lary; — 2 14! Mu’a(u, v)‘
n(x)-u>0 2[Ty(x)] (3.27)
I B 2 =20, T,
+‘/ MGt x, wye Ty TR U T2 Tw i) w(x)da(u,v)‘
n(x)-u>0 Ty (x)
e, O Tw(x) (1= r) 20
+] / £ (e, x, wye” W~ I S 1do (e, v)
n(x)-u>0 Tw(x) ryp
ar,-Tw(x)

+‘/ £t x, wye VT~ 1 (v + uPdo @, v)|
n(x)-u>0 Z(Tw(x))z

I 2 1 29, TT
n(x)-u>0 2Tw(-x) A (2 - rH)

Then we take velocity derivatives and obtain for (x, v) € y_,

Vo "Nt x, v)

- v[il _ ]e[ﬁ‘m”ﬁ/ f’"(t,x,u)e_[ﬁ_ﬁ””lzda(u, v)
2Tm Tw(x) n(x)-u>0
_ 12
+e[ﬁ_ﬁ]|“l2/ fm(t,x,u)e_[ﬁ_m“”‘zi(l ri) uLn(x)da(u, v)
n(x)-u>0 Ty (x)rL
+e[ﬁ_m“v|2/ fm(t,x,u)e_[ﬁ_m““‘2
n(x)-u>0
11 =rpv up— (1 —rpv
- [P - G s = ) @ 0 | )do e, v),
Ty ri @2 —ry
(3.28)
where we use
Vyvy = n(x), Vyuy = Vy(v — vy - n(x)) = Izxz — n(x) @ n(x).
From (1.22), the temporal derivative is
L1 2 NS N NI
0" (1, x,v) = 3T 1 / 0" 16, we” o~ 1 o, v)
n(x)-u>0

1

laty; — 2 110 " - .
=e M wx I:—uvxf +VX¢ va
n(x)-u>0
u - - - p—
~ G Ve O Ty ) = T (77 )]

i — s
e M 2Tw() do(u,v).

(3.29)
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Combine (3.26)-(3.29) we conclude (3.23), where we use T, € C;‘ O
We are now ready to show Proposition 3.

Proof of Proposition 3 Settingt < fy < f S0 that Proposition 2 holds valid. In the following,
we first examine the terms related to p-norm of f in Step 1, and it will be followed by Step
2, in which we examine the boundedness of d f terms. In Step 3 we collect these estimates
to form the conclusion. The Green’s identity used in Step 2 leads to two terms (bulk and
boundary), to bound which, heavy computation is involved and we present the details in Step
4 and 5 respectively.
Step 1: estimate of p-norm of f:
Since f™*! solves (1.44), its weighted version then satisfies:

at [67}\[<U>w€'fm+l] +v- Vx [67A1<U>U)é'fm+l] _ Vx¢m . V [€7M<U>U)'fm+l] + [U(Fm)

+ ) + % V@™ = My (v) + 200 - Vg™ [ M W wy 1] (3.30)
= e_)ht(v)wérgain(fmv M.

For tw = tw(A) < 1, one can take A = A(7, Cym) large enough so that

V(F™) + A{v) + % V™ — Ardy (V) + 200 - Vg™ > v(F™) + %<v> > %<v>,
(3.31)

and thus we apply Lemma 9, and combine with (3.18) to have:
- o ! N
”e )\f(v)wéfm+l(t)||5 + /0 |e )\S(U}we_fm+l |§’+ + E /(; ||(U>1/p€ A,S(v)wé’f'n+l ”5
t
Sp lwz FO) + /0 e Whyg i h (3.32)

t
 lwer f™ e f / ey L ()Pl RS Wy / ko (v, 1)) ™ () du.
0 QxR3 R3

To deal with the last term in (3.32), we note that by using Holder inequality and Young’s
inequality, with (3.16), we have:

—As(v),, _ pm+1 —1 w@(v)e
L e [ kw2t TR

. K (v, ) /kg (v, )P e s £ ()| du

As(u)

e g ) £ ()| dudv

—A 1
Sp lle g 0!

Ly

1/q 1/p
S ||€7M<v>w9”fm+1 ||€;1 (/ k@(v, u)du) (/ k@(v, u)lef)»s(wwéfm(u)'pdu)
bR R LY
. As 1/q I/p
< Jle” f”’Jr |L,, fle™s¢ wéfm||L5 (/ ks (v, u)du) (/ k@(v,u)dv)
R3 R3
S e g T e g g Splle T Mg I e g 17
(3.33)

which gives a bound for the last term in (3.32) as:

t t
Cp) sup g /" oo /0 e W 1 + /0 le™ Wy 1, ). (334)
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One can further absorb the first term above to the left hand side of (3.32) by choosing large
enough A:

A
712¢0 sup llwer f™ [loo (3.35)

To deal with [ |e ™ w; f™+1|P _ in (3.32), we first decompose
Ve =vin© (V+(X)\y” i e),

where

2Ty (1 —r))
2Ty + (Ty (x) — ZTM)}’H 2 - r||)

v S ={,u) € vyt n(x) - u| < €or fuy —

2Ty~/1 —ry
2Ty + (Tw(x) = 2Tu)r

vl =€
(3.36)

or lu; — vL|Ze_l}.

This leads to

t t
/ |e—ls(v)wéfm+l|l7y_ — / / / |I’Z(X) . U|e—pks(v>wg|fm+l|p
0 0 JoQ Jn(x)v<0

! 1 2
55/ [n(x) - v|/ / e_PM<U>wg(v)ep[4TM 7, Y
0 Q2 Jn(x)v<0

—As(u) m *[L*+]|M|2 '
X [ + ) ]Ie Pws(u) fMe MmO do(u, v) ),
v

where we used

L™ = le ™ f 1wt ] Sg le Wwg 1.

(3.37)

We further expand do (v, u) by (1.25) and apply Holder inequality using 1 = — + 5 for:

(3.37) <,,f/ (f ™ Wz @) f"1P{n(x) - u}d )
a2 \Jy) 1w

/ [n(x) - U|€_p)‘s<v>w?(v)ep[ﬁ_mllvlz
n(x)-v<0 [

Ll g2 1—r)Y%vu
</ |n(x)u|e P [4TM ZTw(x)]‘u‘ I()(p*—( J_) = J_)
yle(x)

o Ty (x)ry

e_ 2Tw (x) 2=

f/ (/V+W e g ) £ () u})

/ In(x) - U|€_p)‘s<v>w?(v)ep[ﬁ_mllvlz
n(x)-v<0 [

(/ |n(x) - u|e_p*[ﬁ_m”“‘zlo(p*—(l — rl)l/zvﬂu‘)
VLT @) Ty(x)ry

R N T e T RN
L du (3.38)
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T 2Ty (x) 7| (2—r“)

(3.39)

T N TN Tl U T T SN
e "L du ,

where we apply Holder inequality for Iy to have
* 1 [T N 1 T, X
Iy (y)z(;/ R ) Ve nT/ el Yeosl g l/p = g 1/P=1/P" Iy (p*y).
0 0

We now separate the discussion of (3.38) and (3.39).

— Estimate of (3.38): to control this term, we will first control the integrand, which itself
is an integration in u, shown on the second line, and with this term bounded, we move
forward to control the next layer integration in v.

— Based on the decomposition (3.36), the u-integration in the second line of (3.38) is
further split into

+/ B +/ (3.40)
/ln(x)'ldSS luy— 2Ty (A—rp) |>e—1 | 2yl |>e—!
———

Ty T —2Tyr = Yl UL~ T F T 2T VL

term I term II term 11

To control term I, we draw the similarity to (2.75) in Lemma 5. To be more specific,
we apply (6.10) with

* * *
a:—|:p P i|,b piszo,w:\/l—uvl.

4Ty 2T, ] 2Tu(ors
Thus by (2.81) with T;_ ; replaced by 27y, term I is bounded by

( P[2Tp — Ty (I — Fmin] 2)
£ exp [v]* ).
2T () [2Tp (1 — rmin) + Fimin Tw (X)]

Similar techniques can be applied to analyze term II and term III. With

p* p* p*
== - b= e=0,w=(l—
‘ |:4TM 2Tw(x):| o —rmt Y (I =rpyj

(3.41)

and

* * *
a:—|:p P i|,b piezo,w:\/l—m_vj_

4Ty 2T, ] 2T,(0r.
respectively, we have either

b 2Ty (1 —r||)
w= B
b—a—c¢ 2Tm + (T (x) = 2Tap)r (2 — ryp) :

or
b 2Tu /1 =1y
w= vy,
b—a—¢ 2Ty + (Ty(x) —2Tyry
which further bound the two terms by (3.41). Putting them back into (3.40) we have:

P2Ty — Ty (][ — ripin] | |2>
2T () 2Ty (1 — rimin) + rminTw(x)]

(3.40) < £ exp ( (3.42)
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— With the integrand controlled, we move to the v-integration in (3.38). Plugging (3.42)
into (3.38), we have the boundedness of the integrand:

1 1
Sp eln(x) - vle Pl (v) ex ( [*‘ ]'”'2)’
P 0 VPP 4Ty T 22700 (1 = rmin) + FminTw ()]

(3.43)
Taking 6 = é(TM, rmin) < 1 such that
0+ p[ : : ]
p Pl —
4Ty 2[2Ty (1 — rmin) +rminTw(x)]
< P+ [ 1 1<0 (3.44)
=p D - <0, .
4Ty 2[2Tm (1 _rmin)+rminTM]
one has (3.43)e L,E(R3).
Pull out the constant we finally conclude with
t
(3.38) <p Tyrrmin e/ e s ) 71D (3.45)
0

— Estimate of (3.39): note that comparing with the integrand in (3.38), here the integration
inu is taken on y4.\ v}, which does not provide a small €. With brute-force calculation
we only get:

Sp In@) - vle P wl ()
1 1
4Ty 2[2Ty (1 — rmin) + riminTw (x)]

exp (p[ ]|v|2> GL,IJ(R3).

Now we decompose the v-integration into

/ Zf Lypsemt + 1y <t
n(x)-v<0 n(x)-v<0

!, using the exponential decaying function (3.44) we obtain,

— When |v| > &~

t
B3Ny m et Sp.Torrmin e/ e s ) 1D (3.46)
0

— When |v| < ¢!, since u € y+\y_ﬁ’)f’€,f0r any x € Q,

2Tyu~/1 —r|
lu] < lupl+luyl < lup — vy |
2Ty + (Tw(x) — 2Ta)rL
2Ty~/1 —r1
o + (w210
M+(u)x —aim)ry (3.47)
2Ty (1 —r))
+ luy — vy |
2Ty + (T (x) — 2TM)I”” 2 - rH)
2Ty (1 —
+ | m( ul | 566_1.

2Ty + (T (x) — ZTM)I’” 2 - )
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In the derivation we used (1.28), r| < 1 in the assumption (1.10) for

273 (1 = ry) 1 1
! < < <2,
2Ty + (Tw() =2Ta)ry 2 = 1)) (1 — py) 4 D00C) = — I

2Ty (I=rp)
(3.48)

and similarly to have

2Tyu~/1 —ry

2Ty + [T (x) = 2Ty re —

Thenu € y4 (x)\yi/ 6(x), where y_i/ % is defined in (3.8). By Lemma 10 we obtain

t
(3.39)1‘v|5571 §5/ / / s |e_)‘5(“>w§(u)f’”|p{n(x)~u}dudeds
0 JaQ Sy, /vi" &)
t
A OVOIE / le™ W ) 15 + (3.50) | (3.49)
0

with

t
/ // [0 +v - Ve — V™ -V + LHS of 3.3D)]1le ™ “wy(u) £
0 QxR3

t t
S sup 1w ™ oo fo ™ wg ) £ I + /0 e wg() £ 15).
m

(3.50)
where we apply (3.34) and replace m + 1, m by m, m — 1 respectively.
Adding (3.45), (3.46) and (3.49) back into (3.37), one has:
t
/ |67}LS(U)wé(v)fm+l|p _
0 ,
t
< C(p. Tut, Tmin) X € / le™ 5 Whws (v) f17
0 (3.51)

+ C(p, Tp, 1min)C(€) sup ||w6’fm||oo
m

t t
< (g F OIS + [ 1€ D 715+ [ 1 g 711),

where C (¢) comes from (3.49), C(p, Tum, Fmin) comes from <, 1y, 5. and C(p) comes
in (3.34).
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We finally plug (3.34) and (3.51) back in (3.32), with condition for X in (3.35) satisfied,
we conclude with

t
”e—)nl(U)wé(v)fm‘f—l([)”ﬁ + /0\ |e—)LS(U) wé(v)ferl |£’+
)\' t
Ve / 1) P @ w0 1 ()1
0
t
< COp T tin) x € [ 17 Py 1 (3.52)
0
+COp. Tot, rain) Y sup ™ o (10050 £ O

1 sup [l P15+ sup e g )15,

0<s<t 0<s<t

Step 2: estimate of p-norm of 9 f:
We first write down the equation for e’““”w(;af’”+1 with 9 € {V,,, Vy,}. According
to (1.44) one has

[(0: +v- Vi = V9" -V, + V)L,q}’”,w](e_ Ywg afm+1) = MW wggm (3.53)
with

G" = —dv -V " 48V Yy T 4 9 gain (™ f™) — OT10ss (f™, ™)

_ V m+l . 4
3(2T " (1, X)>f (3.54)
Considering (3.15) we have:

1G™] S AV ™" + V2™ IV £ + [Tgain ™, f™)]
+ |Fgain(fm7 8fm)| + |Fv,gain(fm’ fm)|

(3.55)
+ Tloss @ F™, F™ D] + [Tioss (F™, 8 F™ )] 4 1Ty 1oss (F™, £
—1/2
+w, AV + V24" Dllwe £ oo
By (3.31), we have
v Vg™ - Vyle MWzl )
Vigmw = Av) + T Ve (t, x) + oMby > §<v>' (3.56)

Since « is invariant to the transport equation, according to (1.43), we have

p|e }‘<>w9 f”léafm+l|p l[a +v- V —V¢ VU+U)L¢W! w]|e At{v w@ fnzéafm+l
Apt(v), P BP m+1,p—1m (3.57)
= pe~ w o ,,,€|8f | gm.
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These allow us to apply Lemma 9 to (3.57) for

e ek, 3oL + f e~ 0 )P wgah, oL

—As(v) m+1
+/0 |€ fm Eaf

< ||w9~oz?€8f(0)||§ +/0 |e*)»s(v)w§aj€m,€8fm+l|P’_ (358)
3.58)y_
t
_,’_/ // pe—kps(v f’”e P|8fm+1|p 1|gm|
0 QxR3
3.58)gm

The two terms will be separately considered in the later steps (Step 4 and 5 respectively).
In the end we will obtain:

(3.58)y- < C(p, TM,rmm>xe/ e Chwgall, 9 f"1)
+C(p. Tu, rmm)ae)||w9-afm71,€vx,vf(0)||£+
t
+ Cp. Tt rnin)C(e) sup g /™ oo /0 e ) Pz, Ve S

t
+ /0 e W 7 L) (3.59)

+ C(p, Tat, rmin)C () X (sup [lwgr f™ lloo + sup | V79 [1s0)
m I<m
! s 1 ! S B 1
x /0 le™ g 15 + /0 le™ W wzals, o Ve "5

t
+ [ e Ol 71,

and that

t
(3.58)5" §C(p)[(1 +sup [y /"l ) /0 e ) Pwgarfn A"
m
+ (1 -+ sup llwg ™ oo + V20" 1o )
" (3.60)
/0 <||€7)\9 v>w9~a?m—lqeafm ”5 + ||eikx<v>wéa¢m’€8fm+l ”5>

t
n (1 +sup ||w9/f’“||oo) /0 ||e*“<”>w9~f’”||§]~
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Inserting these back in (3.58) and using sup;.,, Supg<;<, V29! (5)loo < E™ < o0 and
sup,, llwg' f™|leo < 00 according to Proposition 2, we have:

e~ Wk, 3oL + fne—““ W Pwzal, 8

/'e S wgalty A"
< C(p, TMvrmzn)Xe/ le” As( w(-) /;m leaf |
+ C(p, T, rmin) C @) we, D F O}
t
+ C(p. Tuts rmin) C (&) sUp g f ™ oo /O e hwg 17 (3.61)
s [ O el 1)
+tC(p, Tv, Tmin, &) X (sup |wg: f™ oo + E™)
m
< sup (lle™@wg fm 15+ e Mg 15
0<s<t
+ e uwga fm D" + e hwgal, L o FmI

+lle ™ Pwgal, L, 9 ).

Step 3: summarize (collecting (3.52) and (3.61) for the conclusion):
Multiplying A > 1 to (3.52) and adding to (3.61) we derive that

e g @15 4 fle M Pwga,, o @I
/ e (o) VP, o ()1
/|e B0waall, 8 (s ++)\/Ot|e‘ wg "G4
< C(p. Tt rmin) C (Il f O} + llwger? 3 FOB) + C(p. Tog. rin)

1

> 8/0 |€7M(v>wéa?m71’eafm|§,+
c e z 3.62
( (¢) sup,, ||w9f lloo 8)}\/(; ey P (3.62)

+ C(p, Tm, rmin)
4C(e)k _
- C(p. Tige i) 2 /n B ) gl | 0 f" D)

+1C(p, Tu, rmm)C(E) x (sup [lwy' ™ oo + E™)A
m

><|: sup  sup (Ile_“mwéflllﬁ

I=m,m—10<s<t

+ e wgal,, afI5) + e wgaf, o ||£].
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Recall the definition of £™ in (3.4), we have
(3.62) < C(p. Tot. rmin) C@A (1w £ O) I + llwgelk .8 fOVF) +E™ x C(p. Tua. rmin)

[o o+ (SR el )+ 2EE o e oup g ™o + €72

+ C(p. Tot rnin) 1 C () (5p [[wgr " lloo + E™Alle ™ Pz, o f 15,
m

(3.63)

First we take ¢ = e(p, Ty, rmin) < 1 such that 2eC(p, Ty, rmin) < %. Then with &
fixed we let A = A(p, Ty, Fmin, €) > 1 satisfy

C(e)su wy fM 4C (e 1
C(p. Toa Fanin) % ( (&) supy, llwe' ™ lloo N ( )) - (3.64)
A A 10
Then with ¢, A fixed we can define the constant Cy in (3.4) as
Cw :=C(p, Tw, rmin) C (€)% > 1, (3.65)

where C(p, Tuy, rmin)C(€)A is the coefficient for the first term in the RHS of (3.63).
Last we take tw = tw(p, Ty, "min, €, A, Cw, fo) small with ¢t < ty and apply the
assumption in (3.4) such that

1
tw X C(p, Tm, rmin)C (&) % (sup [we f™ oo + E™IA < 10 (3.66)
m

Finally collecting (3.62), (3.64), (3.65) and (3.66), since (3.62) holds for all 0 < ¢ < ty, we
obtain

_ 9. -
sup ()\.”6 M<U>w0”fm+l(l)”g + E”e At{v )wG f’" fm+1(t)||p

t<tw

/ne—*” W) Pwza, 3 SIE

/ |e s wg fm afm+1(s)| ++)\\/(; |e—)LSU fm+1 p+>

3
< C(p, Tws rmin) C(&)A(Ilwg f O) 1 + IIw(;a?,eaf(O)ll )+ 10 SUP )

3
=0 (Ilwg FO + lwgelf £ O)115)

< 2Cw (llwg fF O + IIwgaf;,Eaf(O)llﬁ)-

Thus we prove (3.4) and conclude Proposition 3.

Step 4: estimate of (3.58)G™:

First we consider (3.58)G™. Directly the first two terms |V, f™T1| + |[V2¢™ ||V, f™ T
of (3.54) in (3.58) is bounded by

t
(1 +11V2¢"ll0) fo le™Pwzalh, 8" @)1}, (3.67)
From (3.19) (3.20), the contribution of

ITeain(@ ™, £™| + Tioss(@ f™, ™) + [Tain (f™, 3 f™)
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of (3.54) in (3.58)G™ is bounded by

(14 g ™o + g £+ 1)

t
<[] e, gt (3.68)
0 QxR3 ’

/R3 a?mye(v)kp(v, u)wé(v)|8fm(u)|dudvdxds.

The estimate of (3.68) will be carried out in Step3.
From (3.20), the contribution of | Tiess (™, 3 f”11)| of (3.54) in (3.58)G™ is bounded by

t
g £ oo /0 e~ )P ugak, 5L, (3.69)

From (3.21), the contribution of |I"y joss (", f””rl )| of (3.54) in (3.58)G™ is bounded by

t
o £ e [ [ pe D la, wga gt
=

_ wg o _
WG 0y =L e W w) £ (s, 0, W)l o e
e e

t
< g 7 o /O / /Q e, g
-

1
+ / // e W ) £ )17 ),
0 QxR3

(3.70)

where we use

From (3.22), the contribution of |T'y gain (f™, f™)] in (3.58)G is bounded by

t
”wﬁ’fm ”OO/ // e—)»(P—l)S(v)aJﬁ;rPn.E|w§8fm+l(v)|p—1
0 QxR3 '
/ eks(u>w§(v) oy

k,(v,u e
R ﬂ( )e}d(v)wé (u)

g )] £ )|
, (3.71)
S fo J)/Pe Wb, wa et p
t
+ /0 e g £717).
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where we have used, for 1/p + 1/p* =1and 0 < p < p, from (3.16) and (3.17)

t
/ // e*)»(pfl)s(‘U)a?"PI’e|wéafm+l(v)|pfl
0 QxR3

s (u
/ K, (v, u )we*mwé(unf”’(u»

As v)w (u)

f’" @) p —rs(v) B o emt1 p—1
/ /,/QX]R3 Py )P e cwgd
1/p* ) 1/p
x (/ kﬁ(v,u)du> (k,;(v,u)le_)”(”)wgfm(uﬂpdu) dv
R3
t
; _ /p
5/ /( |(v)l/pe—ks v)aﬂm W afm+l|p I / / ks (v, u)le s (u) wefm(u)|p>
0 Jo “JR3

t
Sp f // le 0 )Pl wsd P 4 e R g P,
0 JJoxR3 '

In the last step we have applied the Young’s inequality.

We focus on (3.68). We split the u-integration of (3.68) into the integration over {|u| < N}
and {|u| > N}.

The contribution of {|u| > N} in (3.68) is bounded by

B
7)@ (v) )1/])w (X afm+1( )lp 1 afmqe
Qsz o7 e (v)P/(p=1)

v As(v)
x f ky (v, u)w‘)E ;e_M wrle ™ Wwgd £ (w)|dudvdxds
|lu|=N 0 u)e

' 1/p*
5/0 \/;(»/;Rz |e_)‘s v) < )]/pwe fm+1(v)|P> (372)
1/p
</ N|e*ks(u>w };m 1 Eafm(u)|p/k/3(v,u)>

/ ||e—ks v) 1/pw9 fm+1(S)”pdS +/ ”e—)\s‘ v) w9 ]'ﬁim 1 éafm(s)”pds
where we use Holder inequality, Proposition 4 with ,3% <1, % < 1. And we
apply (3.16) to get

w;(v) e MW
/|u\>/v Kot 10 wZ(u) e wgd £ w)ldu
1
S/ k; (U 14) ,3 | 7)Ls<u)a§m—l,Gwé(u)afm(uﬂdu
|II|ZN fm 16
" 1/p
1
: /n N (fu Nkﬁ(”’”)'e_m”aﬁ’»m_l,Ewé(maf'”(u)l”)
= u ul>
- fm e >

1/p
< —As(u) ﬁ ~ m »
- </|14IZN ko v, u)le f'"*l,ewe(”)af ()] ) .
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The contribution of {|u| < N} in (3.68) is bounded by, from Holder inequality,

/ ~/:/le R3 e )Upweafm 6(v)lsaferl(UNP 1

. s) apm (V)P le ™ Wwsal’ 9™ (u)l
x/ k,(v M)we(v) e,,\ ! 6% f €
lul<N wg () e+t (v)(p— l)/pa L)

dudvdxds

— 1
/ ||€ )\SU I/Pwe f’”eafm—H( )“17

|67A‘Y<Lt>w0‘0(¢m ' afm ) p 1/p
X [f/ / k;(v, u) du dvdx] ds.
QxR3 lu|<N (u)

fm I
(3.73)
By the Holder inequality, the u-integration part of (3.73) as
~p*plo—ul’ 1 "
le ™ Wugal, . 8" OllLos) / : — (3.74)
. o=l o )
Note that
* = 2 l/p*
/ e~ P plv—ul 1‘u|<1\/ <‘ 1 1<y |1/P°
* = * .
&S v —ulP f’"le(u) |- [P ?515
By the Hardy-Littlewood-Sobolev inequality with
1+ L] + :
= T
p/p* 3/pt S
we have
| 1 . 1H<N | _ 1 . 1<~
|- |P* ( y e @3 - |- |P" 7 PPt (u) LP/P* (R3)
fm l fm
2p  p—1
(-1 »p
1. <N 1<~
S ||/3;L|| £l S / -+ =D dv (3.75)
fml () L2 (R?) R3 Olfml (U)p lﬁ
2/3
1
/ 3ﬂ|;2\7<1v St
f’” le(v)
where we use 38/2 < 1 and Proposition 4. Using (3.75) (3.74) (3.72) we have
(3.68) 5 (14 sup [lwy f’"noo) [ e )V Pwal, B D
+/O le™ W wgal, | o f" ||§]. (3.76)
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Finally from (3.67) (3.69) (3.72) (3.71) (3.70) (3.76), (3.58)G™ has a bound as

1
C(p>[(1+sup||we/f’"||oo)/ e ) Pwgarf, A"
m 0

t
(1 sup ™ oo + 176" ) /0 (e g, ™1

(3.77)
+ ”e s wgafm afm+l ”p)
+ (14 sup lwg ™ o) / e g £ ||§]~
m 0
In order to control the first line in (3.77) by % [ lle™**) (v )1/1’w9 O™ in (3.58),
we require the A satisfy
)\' m
1> C(p)(1 + sup [[wg [ [lo0)- (3.78)
m

Step 5: estimate of (3.58)y_:
We focus on (3.58)y_. The overall strategy is similar to (3.51). From (3.23) (3.24)

t
/(; |ef)xs<l}>wéa§im’eafm+l|P’_

t
=/// In(x) - v|PPle ™ ws vy o F (e, x, v) [P |n(x) - vldv
Q2 Jn(x)-v<0 (3.79)

S

e P50} o Platy ~ g I (|n(x) VP L n(x) - v] B 1>p+1> % [(3.24)|Pdv.

Now we bound |(3.24)|?.

— First line of (3.24), we split the u-integration into "5 U (y+ (x)\yi‘,“;‘), where

2T (1 —rp) _1

2T, + (Ty (x) — 2T0)r (2 — 1) Uil =
(3.80)

yUEE = ((xu) € ya : n(x) - ul < € or fuy —

2T§»\/1 —r]
2T, + (Tw(x) — 2T )r.

orluy — v > ey,

and T, will be defined later in (3.88).
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By the Holder inequality
( / o€ T80 T 7 x M @h
P
¢ = o u, v))

< / e Mwgal, | Ve s 2 ) Pn() - u)du
Yy ) ’

* « _pkr_L 1 2
X(/ (e Wugaf @) [n() - ul () e T~
RO

fm l,e
(1)
I V) Pt [l Pt plog 2 ey =(-rpuy] p/p
<(1 7I:J_())MJ_UJ_) ¢ 2Tw(x)[ L e ]du> (3.81)
wX)rL

(/ O\ ()| —)»S(H>w9a§m 16Vx oM (s, x, w)|P{n(x) - u}du>
Y+ ]/Jrz X

*  —pFfo 1 2
( e Wugal, (s.x.0) 7 |n(e) -ulfu)?" e~ mw
O\ () ’

12 * gt [lugP=rplvy 2, ==y p/p
< ((ITH()—)”M)” e mm[ L e ]du> . (3.82)
wX)r |

Similar to Step 1, we separate the discussion of (3.81) and (3.82).

— estimate of (3.81).

— To compute the u-integration, for any ¢ > 0 we bound

P ) | ()P S P (3.83)

where ¢ will be defined later in (3.89). Then we introduce ¢y > 1 with 1 = Fll + ?1*
1
to deal with the o =1 g in (I). Then the u-integration is

S P S | 2
S f (e uwgal 0} In) - ul VO n o) - ul e e
VIXE()L)

[\uﬂzﬂl—rl)\vﬂz Juy —=(1= 'H)"Hl
L

— 1/2 * p*
< <(1 r1) "U_UJ_>‘U e T 2= ]du

Tyw(x)ry

. ] (3.84)
5/ - [wé“fml e(u)] n(x) - ul'/Tel" ¢l ™ P Lath ~ 2
U/\E() ]

Jul?

2
_ 1/2 O p* Tl Pra—rplvg 2 =yl
><I< »(=r) Puivy MLUL)e ZTW)[ L e ]du
Tw(x)ry
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where we have applied (3.83). Applying the Holder inequality once more with 1 =

1 1 .
o + @ we obtain

1
384 5 ( / o Twgeh @] A (3.85)
Vi (x)
1/2
y </ |n(x)-u|eicTP*[ﬁim7;”ulzIo(CTp*(1 -V uuu)
yl,’)z(.é(x) Tu) (x)rl
(3.86)
_ P [l P iy 2 by ==y P -
R ]d“>] (3.87)

We choose ¢ to be close to 1T to guarantee Sp*c; < 1. Using Proposition 4 with
v =0 and wé_p U g=0p*ailul’ e have (3.85)5, 1.

For (3.87) we let ¢ < ﬁ and denote

1 1

e T =Ty 3.88
a1, Aty o ez m (3.88)

By 0 < rpin < 1, we choose ¢ = ¢(Twm, rmin) to be small such that
Ty
2T§(1 — Fmin) + Trtmin < 2Ty, T > 1/2. (3.89)

¢

— To control (3.87), recall the definition of (3.80). Here we simply replace the Ty,
in (3.36) by T;. Thus we can apply the same decomposition as in (3.40) and obtain
the result as (3.42) in Step 1 with replacing Tys by T,. We get

2T{—Tw(x) 2
(3.87) < eex ( (1 = rmin) p*I0I?).
P, ORT (= i) + rminTwe] P )
(3.90)
Thus we obtain
2T — Tp(x)
3.81) < £ W 1 — i 2
B30 %0 % (o7, GOt 1~y 77701 PT)
xe/ |e—“<“>wéaf;m_, NVewf" (s x, 0[P {n(x) - uldu.  (3.91)
e ’

— With the integrand controlled, we move to the v-integration (3.79). Plugging (3.91)
into (3.79) we have the boundedness of the integrand:

W20 (jn () - o7 4 o) -0l B0 ) w?

! 1 ) (3.92)
X exp <P[m 22T (1 = rmin) + ”minTw(x)]]|v| )

where we apply the same computation as (3.43).
By(3.2), (B—1Dp—+1> —1,thus [n(x)-v|B-Dr+l ¢ L]IOC. Using (3.89) we derive

2[2T§(1 - rmin) + Tw(x)rmin] < 4TM:
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We take 6 = é(;, T'min, Tny) < 1 to obtain
1 1

po+p <0. (3.93)
[4T 2[2T{(1 _rmin)+rminTw(x)]]
Thus we derive (3.92)e L!.
Therefore, the contribution of (3.81) in (3.58)y_ is
t
o © [ 1 gl Vo (3.94)

— estimate of (3.82). Similar to the Step 1, the integration in u does not provide a small €.
Thus we have

(3.82) < exp( 2Ty ~ Tw®)

2Ty (X)[ZTg(l = Tmin) + Tmin Tw (x)]
<[ e W wgal, | Ve f" (s x 0] (n0x) - uldu).

Y+ O\ () ’
(3.95)

Plugging (3.95) into (3.79) we conclude the integrand is given by (3.92)e L!. Again we
decompose v into 1, <.-1 and 1. -1

(= rmin)plol?)

— When |v] > &~!, by the exponential decaying function in (3.92) the contribution
of (3.82)1},2¢-1 in (3.58)y—

t t
Sp T € / / (3.95) < ¢ / e Wwgab, G, L (3.96)
0 JoQ 0

— When |v]| < e !, sinceu € v+\ryy®, forany x € 9Q we have
2T§ A/ 1— rl |
v
2T, + (Tyy (x) — 2Tg)ry
2T-(1 —
c(d—rp oyl < 106!
2T + (Ty(x) = 2T)r (2 —ry)
In the derivation we used (3.88) and (3.48) to conclude

u| < 267+

+|

VT 1 »
ZT; + (Tw(x) — ZT{)VJ_ - (1 - r”) + EZ(T)'(A/);(HI(E:”';H) -

and similarly to have
2T§- A/ 1-— rl
2Ty + [Ty(x) = 2T Jry —

Thus u € y4(x)/ yfr/ 10, where )/i/ ® is defined in (3.8). From Lemma 10 the contri-
bution of (3.82)1},<-1 in (3.58)y— is

/// o e Wuwsal | Ve s x )l (n(x) - uldudS,ds
32 Jyr /v ’

t
S gy Tea O+ [ e wgal | Vg™ +G98)
, i ,
(3.97)
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with
t B
/0 /A R3[3; +v-V, — debmfl .V, + vd)’”*],A,wé“eih(v)wéafm—l,eVx,vfm|p
X y
(3.98)
t
5/0 //Q . pe*)»ps@) Py ?ﬁ 1€|Vx oM l|gm 1| (3.99)
« R

Clearly (3.99)< (3.77) with replacing all m + 1 by m and m by m — 1.
Collecting (3.94) (3.96) (3.97) (3.98), the contribution of the first line (3.24) in (3.58)y—

is

o Tvrmin / e Wugal 1D L+ C@) | lwgen T FOI
(3.100)

/ ||67A€ v) fm 1 € X,Ufm ”5 + (3'58)gm71:|3

where C(¢) comes from (3.97).

— Second line of (3.24). By the Holder inequality, we have

( [ (vt
n(x)-u>0
m Ny gpm—1 g7 /—[ﬁ—21+]|MI2 r
g "N [ e a1 e TN o, v)
s ( / (021920 e le ™ @) ] ) ! wdor u, v)
n(x)-u>0 o
m Iy —hs () N opm—1 g g~ — e lul?
g £l | gl g ) £ Wy du e e T
R3

p
e}”‘(”)wgl(u)da(u, v)> .
(3.101)
Similarly to (3.83), we bound (u)? as (u)? < 514 with the same ¢ satisfying (3.89). Using

e)»s(u)wefl(u) < 1 we obtain

* _p¥r L1 2
(3.101) 5/ e W) 7P {n - uddu x (/ P ¢l =P ey ~ o Il
n(x)-u>0 n(x)-u>0

%01 _ 1/2 gt [l Pea=r vy 2 ly=(=rpyy? p/p*
I (17 (1 V(J_)) uivg )6 2Tw (x) [ Ty + | (27rH) ]dl/t
Ty(x)r|

+ ||we/fanoo( [ ([ Rotuarauy
n(x)u>0 JR3
(/ kp(u, u/)Ie_M(u/>w§(u/)fm_1(u/)|pdu/)l/p
R3

| L 1 [MZHI roly 2l =O-rpy? ] p
x e i = )y rge I a0 du) .
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Then we can apply the same computation as in (3.81), (3.82) for the u-integration. Thus
by (3.91) we derive

(3.101) g/ le™ g (w) f™ 1P {n - u}du x (3.91)
n(x)-u>0
+ Ilwe/f’”llmo(/z /zkp(lft,M/)|€_)”S<“/>w§(u’)fm_](u’)l”du’du) x (3.91)
R? JRR’

S e g0+ e g0 ) X G,
n(x)-u>0

By exactly the same computation as (3.92), the integrand for the v-integration in (3.79) is
€ Ll. Thus the contribution of the second line of (3.24) in (3.58)y_ is

ST 1 " oo ( / e wg(u) 71} 4+ / e ™ @ g 715 ).
(3.102)
Collecting (3.100) (3.102) we conclude that

/le As( we(xfmeaferl'P
< O Tusrmin) x e [ 167 gl "1
+ C(pa TMv ”min)c(g)||w9'afm—1yévx,vf(0)”£+
t
+ C(p, Tt rmin)C () sup l1wgr ™ oo /0 e ) Pwga, s Vi I
u ,

. (3.103)
+[) |ef)hs(v)wéfm|£’+)

+ C(p, T, rmin)C(8) X (sup lwg: f™ lloo + sup V¢! [loc)
m [<m
! S 1 ! S B 1
< ( fo e ®hwg £ + /0 le™ P wal, o Vew "}

t
+ [ e Ol 0 p71E),

where C(p, Ty, Tmin) comes from S, 7y, and C(p) in (3.77). Similar to Step 1, here it’s
important to note that in the second line, the first term has ¢ < 1, while the second term has
C(¢g), which can be large number depends on ¢.

Remark 8 We comment the largeness of A comes from (3.31), the boundedness of f (3.35), the
boundedness of 9 f (3.78) and in (3.64). The smallness of 6 comes from (3.44) and (3.93).
The largeness of the constant Cy in (3.4) comes from (3.65). The smallness the time fy
in (3.4) comes from (3.66).

4 L3L,*-Estimate of V, f and L'*-Stability

As we mention in the introduction, to conclude the uniqueness we need to control V,, f with
certain norm. With W!-? estimate for V, f in Sect. 3, we will establish the LiL,l)"'—estimate
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for the sequence solution V, f™*! in Proposition 5 in the section. With such estimate for
V, f, we then show the sequence f”*!is L'+ Cauchy in Proposition 6. The L'+ Cauchy
is crucial to show the existence of the VPB equation. These two propositions lead to the
LiL}ﬁ-estimate for V, f and the L'*-stability for f that satisfies (1.1) under good initial
condition. These two propositions are given in Proposition 7, 8 respectively. The L% stability
directly leads to the uniqueness of VPB system.

Proposition 5 Assume f™t! solves (2.2) and satisfy all assumptions in Proposition 3. We
also assume extra initial condition

lwg Vo foll 2, < oo. @.1)
There exists ty < 1 (ts < tw) and Cg such that when 0 <t < ts, if

—Ais{v
sup [le WV, £ ()] 3 140
O<s<t o

= 2G5 1wV f )3, +5up sup lwgr ()l +sup sup e ™ W wgalh, Vo 1), ]
v n 0<s<t n 0

cn—1
<s<t f €

“4.2).
4.2)

then we have
eV, O 3 e < (2)s 4.3)
Here Cs is defined in (4.31) and t5 satisfies (4.32).

Proof of Proposition 5 First we take 75 < ry with ty defined in Proposition 3 so that we can
apply Proposition 3 and Proposition 2. We have

[0 + v - Vi — Vo™ - V(e Wy, fmtly

_ L m m —At{v) m+1
D) = A+ S Vag™ v (PN 0, “4)

1

= MO s [V Vg 0, (T (17 1) ]
2Ty

By (3.28), we have boundary bound for (x, v) € y_

1 1 2
|00 7 (1, x, )] S Jof2e T T

I 2
/ e x, wlule” T 4o 4, v) on yo. 4.5)
n-u>0
By (3.31) we have
MV) — By (0) 4+ — V™ v (™) > )
v 2Ty 2"
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1

Then we bound |e )V, f+1| along the characteristics

le™ W, fmH (@, x, )|

< yr)=1 100 f(0, X (0; 1, x, v), V(0; £, x, v))| (4.6)
2 [ — s llup 2
+ Ly eox,vy<lvp] e #Tu - 21w 4.7)
O S W 2
/ Lt = t, xp, )| Jule” T~ T 1 dg (1, vy (4.8)
n(xp)-u>0
t
+f [Ved™ lloo |0 [wr (V (55 £, x, )|~ lwer ™ [l oods 4.9)
max{r—m,,0}
I3
+f IV f™" (s, X (531, x,0), V(s 1, x, v))|ds (4.10)
max{t—ty,0}

t
+/ 0](1 + llwy ™ loo) /]1&3 Ko(V(s; 1, x,0), u)|y f™ (s, X(s), u)|duds.

max{r—r,

4.11)

We will discuss every term in (4.6)-(4.11) separately. In Step 1 we analyze (4.6)-(4.9).
In Step 2,3 we analyze (4.10),(4.11) respectively. In Step 4 we conclude this lemma by
summarizing all the estimates in previous steps.

Step 1.

Note that if [v| > 2Cymt, for 0 < s <1,

t
\V(sit,x,v)] > |v] —/ V@™ (x: 1, x, )|dT > |v] — Cpnt > % (4.12)
0
Therefore
! <t l<r< 4.13)
su —_——— 5 or an r Q. .
oo [ wp (Vs 6w, o) |, ™0 yETE

— Estimate of (4.6). We derive

146051
2-5\ 1/3

1 T+
S /(f |w9~avf(o,X(0>,V<0)>|3) (/ (M)sdv)
o \Jr3 R Jwz(V(0))] 23 (4.14)

0 ~ ‘/ ot v a 0 )r 0 1/‘5
,S </fsz 3 |w ( (O X, )) Uf( ’ ( 7l7x7v)9 { (Oalaxs v))' x)
xR dvd

= lwgdo fO)lls .

where we have used a change of variables (x, v) — (X(0; ¢, x,v), V(0; ¢, x,v)) and
(4.13).
— Estimate of (4.9). Clearly with 8’ > 0,

193000 Sor sup wer £ )lloo: (4.15)

0<s<t
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— Estimate of (4.7),(4.8). We bound (4.7) (4.8) by
R . T N BTINT
||w9’fm||oolvb|2€[”’” Py mesRi] / e 6“2|u|e Lary; — 2y U] do (u, vp)
n(xp)-u>0

JD S B JE S SR S TP
S N £l g P! i ~ T 1 f e = do (u, vp)
n(xp)-u>0

8 N 2 2Ty — T, 1 —rpi
5 ”w()’fmuoolvblze[“M ZTM-(xb)]‘U”‘ exp <|: 2Ty wxp)1l Tmin] :Ilvb‘z)

2Tw(xb)[2TM(1 — T'min) + rminTw(Xb)]
1

1 ).

4Ty 22Ty (1 = rmin) + Fmin Tw (xp)]

= g 1™ oo p > exp ([

where we use (2.52) and directly apply (2.60) with replacing %TM by 2Ty, t by 0 in
the third line for the u-integration. Using

1 1
_ <0,
4Ty 2[2Tm (1 — 1min) + Tmin Tw (xp)]
we obtain
1(4.7) A8l 3,145 STy SUP Nwer f™(5) |l oo- (4.16)
ey 0<s<t
Step 2.

— Estimate of (4.10). We claim
' p
1@ 10) 3,10 Sgp., fo le P wzah, Vol @)

For 3 < p < 6, by the Holder inequality 15 = —755 + %
—1-3

t
f B [T (s, X (531, %, 0), V(si 1, x, v))ds
max{t—1,,0}

LP @) |13

<

/f e‘“”“"”'””wgaf;mfﬁxf'"“ (s, X(s52,x,0), V(s; 1, x,0))
S

max{t—tp,0} e‘kf(V(S?"xv”))wga?m (s, X(s51,x,0), V(ss 1, x,0)) Lo | s

< sup | S 4.18)

5,X

ptpd
—1-5
Ly (R3)

opm (s, x,v)P

X

t
/ ef)\x(V(s;r,x.v»wéaj/?_m,gaxferl(s’ X(si 1, x,v), V(s 1, x, v))ds
0

LR || 3

e)L.Y(U) w (U)_ 1

< up | P8
P opm (s, x,v)P

t
—hs B 1
- x/ le ‘<U)w§afm,sdxfm+ e ds.
L”pflf& (R3) 0

where we have used afm ((t,x,v) = apm (s, X(s;t,x,v), V(s;t,x,v)) for r —
tp(t, x,v) < s <t and the change of variables (x, v) — (X(s; ¢, x,v), V(s;t,x,v))
and the Minkowski inequality.
For g in (3.2), we have f}%l < 1 since % < ”771 for 3 < p. Therefore, we can choose
0 <8 =48(B, p) < 1 so that B satisfies

p+pé

— < 1. 4.19
px g < (4.19)
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We apply Proposition 4 to conclude that

eks(v>w~(v)—l p—1-3 1
sup 79/3 o8 <4 sup o dv Sg,p 1.
s.x | afme(s, x, v) L7173 (3 s,x JR3 apm (s, x, v)’3 p—1-8

(4.20)
Finally, from (4.18), (4.20), we conclude the claim (4.17).
Step 3.

— Estimate of (4.11). We consider (4.11). We split the u-integration of (4.11) into two parts
with N > 1 as

/ ko (V(s;x,1,0), u)|Vy f™ (s, X(5), u)|du 4.21)
lul=N
+/ ko(V(s;t, x,v), u)|Vy f" (s, X(s5), u)|du. (4.22)
[u|=N

First we bound (4.21). From the change of variables (x, v) — (X(s; ¢, x, v), V(s; ¢, x, v))
fort —tpy(t,x,v) <s <t

/ ko (V(s5t,x,0), w)|Vy f™ (s, X (53¢, x,v), u)|du
lul<N

1468
L3L)

(4.23)
<

~

/ Ko (v, u)|e v, f™ (s, x, u)|du
lu|<N

’

1+68
L3L)

where we use ¢** < 1 when |u| < N.If |[v| > 2N then |[v—u|*> > |v|>and |v—u| > N,
thus for |[v| > 2N and |u| < N,

e—Cllv\2
v —ul

If [v] < 2N, for 0 < 8 <« 1 with 350 > 3,

ko(v,u) S

= O(1/N).

4.23) < H[ Ko (v, u)|e MV, £ (s, x, u)|du
lul<N =2 I3
—Clul? 1 _
+ He Clol 32 H/ le M(mvvfm(sax’uﬂd“ 3(1+8)
L jui=n v —ul L (vi<2np || 3
_ 1<2 st
S Ne™ O, F$) ) 3100 + ‘Mw OV, 7 (s, x| s
xtv |U — | LU17 5 L3
(4.24)

Then by the Hardy-Littlewood-Sobolev inequality with 1 + ﬁ = % + ﬁ, we derive
T2
that

424) S5 |19, 7G5, x, )]s

_ —As(v) m
n= lle Vo fR )3 i
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Combining the last estimate with (4.23), (4.24), we prove that
14203 100 S5 e 0y () 3 100 (4.25)

Now we consider (4.22). We have

(4.22) </ 1 wy_, (V(s:1,x,0) ko(V(s;1,x,0), u)e’* ™
PR ) on wp (Vi hx o) wg (u) opmet (s, X(s51, X, 0), u)p
1
X
wy_, (V(s: 1,x,v)1/2
e M Wwsuya pmor (5, X (53 1, x,v), 1)P

Vo f™ (s, X(s5 ¢, x,v), u)|du.

By the Holder inequality with % + # =1with3 < p <6,

4.22) <
@291 5 wi_, (V(s;t,x,0)1/2

wi_, (V(s;t,x,0)) Ko (V(s; 1, x,0), u)erst)
wg(u) opm-t1 (s, X(s31,x,0), u)p

L7 ({uiz=NY)  (4.26)
e_)\‘g(”)wé (u)

w_, (V(s; 1, x, )1/

Vo f™" (s, X (531, x,0), )|

(Xfmfl’e(s, X(S, lv X, U), u)ﬂ

Li(R3)

1 _ 1 1
I+ — p + d+8)p >
p—(1+5)

Then by the Holder inequality with

1
wi_, (V(sit,x,0)1/2

”(4'22)”L£+5 5 (+6)p
L=+

s sup | = VO3 0) (Vs 0, 0), e
~ cm— ; f
v wg () o =t (8, X831, %, V), 17 e o vy
—As{u) o,
e wi\U
x‘ e apmt (s, X(sit,x,0), )P

wi_, (V(s:t,x,v)1/2

IV f™" (s, X (552, x,v), )] .
Lu

Ly
From (3.16), for some 0 < ¢ < o we have
G=0)|v)? jrs(u) G-0)v)* rt{u)
e e e e
< - - <k
ko )5 S ke ) Gmip e < e ).
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Hence using (4.13) we derive,

[1422)1105

L
2 2
e~ tolV-ul 1

IV —ul am (s, X, u)f

Se.p.p SUp
xv LY ({ul=ND)

—As(u Wi (u)

o (VO T.x o2 Le(s, Xs3 1,2, 0), WP |V, f7 (s, X (s34, %, 0), )|
0—t

P
Li,v,x

By (3.10) in Proposition 4 with 2—:? < Bp* < 1 from (3.2) and applying the change of
variables (x, v) — (X(s; ¢, x,v), V(s;t,x,v)), we derive that

e—ls(u}
(4.22) Sapp ||l ———=5ws@a m (s, x, 0)P|Vy (s, x, 1)
H I ”LII;H L3 Q.p.B wéit(v)l/Z (4 Fmet Vo f | 2 "
; e Wy (W met (s, x, u)ﬁ\V,,fm
wé,t(v)]/z L? 0 f “ u,x
S e el 1900l
(4.27)
Combining (4.26) and (4.27) we conclude that
1422113, 108 S p pa e “wgal, o Vo f" )l (4.28)

Finally from (4.25) and (4.28), and using the Minkowski inequality, we conclude that

t
11D 3100 Sq g pa (L Twe f" o) /0 [le™ vy £ ()1l 3 140 ws9)

+ lle™* Wy, b Vo f" ), Jds.

fm l’e

Step 4. Since all assumption in Proposition 2,3 are satisfied, we have the uniform in n
bound

sup [lwy " oo < 00, suplle™Vwgaf, . Ve f"llp < oo
n
Collecting terms from (4.14), (4.15),(4.16), (4.17), and (4.29), we derive
le™ 0y L) 3 e

< C(Q,p,B.0) x (1+||w9’fm||oo)[|w9v1Jf(o)||L3 +sup sup [lwg' f"(5)lloo

n 0<s<t
+sup sup e Wuzal | Vo 1)+ sup e IV £ ]
n 0<s<t ’ 0<s<t A
(4.30)
Now we define the constant in (4.2) as
= C(Q, p, B.O)(1 + sup [|wg " [loo). (4.31)
n
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For the last term in (4.30) by the assumption (4.2), we take t < 5 = t5(Cs) < 1 small
enough such that

C(Q, p, B, 6)(1 +Sup llwg f"lloo)t sup fle™**) Vo f" )l 3140

0<s<t

< 5C3 [ 10 Vo F O3, +sup sup fuwg: £(5) g

0<s<t

+sup sup e Wwgal Voo f" 6l

n 0<s<t
= o[ 103V Ol g, +sup sup flw " (5)llow
n 0<s<t
+sup sup [l Wwga | Voo f @l . (4.32)
n 0<s<t ’

Finally we get
e W)y, f’”Jrl @l L3+

<2Ca[|lw9va(0)||L3 +sup sup [lwy £ (5)lloo

n 0<s<t

+sup sup [l Wwga, | Voo f @l .
n 0<s<t
We prove (4.3) and derive the proposition. O

The next proposition follows from the Proposition 5.

Proposition 6 Suppose f™ ! and f™ solve (1.44) with boundary condition (1.45), and satisfy
all assumption in Proposition 2 3 5. Then there exists t < 1 (f < t5) witht <t such that

t
sup e O (s) — £ ()] s oxmd) + f le W — @S L
0

0<s<t
= 3 50 170 = 7O ) @3
w5 [ = e
Here t satisfies (4.43).

Remark 9 This proposition is crucial to show the existence of the solution. In Proposition 9
we will use the L' Cauchy with (2.8) to conclude the existence of the solution f.

Proof First we take 7 < t5 with #5 defined in Proposition 5 so that we can apply all the
previous Propositions.
Assume f"! and f™ solve (1.44), then

at[e—kl(v)(fn1+l _ fm)] +v- Vx [e—kt(v)(fm-H _ fm)] _ Vx¢m . Vv [e—kt<v)(fm+l _ fm)]
v m m —Ait(v m m
() 4 5 Vag = i) 4 0[O ]

= (V, ¢ -V ¢m l)V (e_)" fm _ ﬁ . (Vx¢m v ¢m l )(e —At(v fm (434)

+ e M) |:Fgain(fm, fm) _ Fgain(,fm_17 fm—l) + fm (V(Fm_l) _ V(Fm)>i|.
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By (3.31) we have

v

A
{v) + 3Ty

A
V™ — Atdy(v) +v(F™) > E(v)'
Then using Lemma 9 for L'+¥-space with 0 < § < 1, we obtain

t
”ef)ht(v)(fm+l _ fm)(t)”}ig +[) |efls(v)(fm+l _ fnl)(s)'}ig’_F

)L t
+3 f I()e @t — pmy))E
0 (4.35)

t
<= ot [ f[ rusor@apie i - g

t
+j) |ef)hs(v)(fm+l _fm)liig,—'

We now analyze the three terms in RHS of (4.34).

— Estimate of the first term. For 0 < § < 1, by the Holder inequality with 1 = ﬁ +
=

3(146)
2—,

1+ 15 and the Sobolev embedding W!1¥3(Q) ¢ L5 (Q) when Q@ C R3, the
contribaution of the first term of the RHS of (4.34) is bounded by

t
/ / |(Vx¢m _ de)m—l) . Vv (e—ksw)fm)||e—ks<v>(fin+l _ fm)|5
0 JOxR3

t
-1 —As —As 1 )
S / V2™ = Vg™ M| sgan 10y 7] s e = P 1
0 L, v LY

t
5 sup ||€_As(v>vvfm(s)||L§,LL+6 X/O ||e—)»s(v)(fm+1 _ fm)(s)”iigds

0<s<t

(4.36)

— Estimate of the second term. By the Holder inequality with 1 = % + ﬁ the contri-
bution of the second term of the RHS of (4.34) is bounded by

t
/ / L . (vx¢m _ vx(pm—])(e—As(v)fm)|e—As(v) (fm+] _ fm)|8
0 Jaxrs 2Ty

t
< / U [|(v) £l o 1 Vx9™ = Va@™ "l g lle ™ (T = SN v
0 x ’

X0

t
<a [Ilwe ™ loe + llwe £ lso] fo le @ (FmEt — fmy(s) )y 1ods.

(4.37)
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1

— Estimate of the third term. By (3.18), using the Holder inequality with 1 = % + 175

the contribution of the last term of the RHS of (4.34) is bounded by
t
[ e O Muant™ £ = Faan™ 77 D (7L 77
0 JQxR3
— Tioss(f™, f™]le (= P
t
S / f [rgain(fm9fm) - Fgain(fmsfm_l)
0 JQxR3

+ Fgain(.fms fm_l) - I‘gain(.fm_ls fm_l)
+ Tloss (F™ 1, ™) = Tloss (f ™, f™]le™ W (fm+t — pmyp

S[||wg,ﬂ"||oo+||wg,fmfl||m]/0 f//ms<v>kp(v,u)\fnz(u)—fm,l(u)| (4.38)
le™ SOt ) — )]

t
S ‘A.\ [ // [ngrfmlloo + ng,fm—l IIOO]kp(U, u)le—)ns(m[fm-l-l(v) _ fm (U)]IB

t

S_/o f/\e_”(w[fmﬂ(v)—f"’(v)]\H"S/(k,,(v,u))H'é
t

< /0 le @ w) — "]

Since all assumptions in Proposition 2 and Proposition 5 are satisfied, we have

sup sup {[le ) va"(5)||L§L5+5 + lwer f"($)lloo} < 00. (4.39)

O<s<t n

Collecting (4.36) (4.37) and (4.38), in (4.35) we have

t
/ // IRHS of (4.34)||e W) (pmtl _ pmy)8
0 QxR3

t (4.40)
<o (4.39) x / e (et gy
0

Following the proof of the Step 1 in Proposition 3, we apply the same decomposition (3.38)
to Y+ (x). By (4.40), we can obtain

t
/0 |ef)LS<v>[fm+1 _ fm]l%ig_
t
6. T rin 2 € / e MW — R L+ C@I™ — O 441)
0
13
+ C(e)(4.39) x / le™ @ fm — =t
0

By (4.35) (4. 40) and (4.41), using f™(0) = f™+1(0) = foand § f; [(v)e > (fmH! —
ML =

t
7}J (fm+1 fm)(t)Hiig +/ |67}LY<U)(fm+l _ fm)(s)Hig’_‘_

= C. T rmins @39 x (1 sup e+t — fmy))11) 4.42)

0<s<t

t
+C(8)t sup ||e—As(v)(fm _ fm—l)(s)“%ig +8/ |e_)»S<U)[fm _ fm_l]HIg’_Q_)-

0<s<t
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Now we take € and ¢ < (8, Ty, Fin, 2, €) small enough such that

1
C(8, Ty, i, )& x (4.39) < o

0’
- 1

C(, Ty, rmin, Q)C ()1 x (4.39) < T (4.43)

we derive (4.33) and prove the Proposition. O

The Proposition 5 suggests, according to (4.3), that the LiL};’"s estimate of V,, f is obtained
upon a good initial condition, the boundedness in L™ and the weighted W7 estimate. In
particular, we have the following proposition.

Proposition 7 Assume f and ¢ solve (1.22) (1.24) (1.9), and satisfy estimates

lwe' f1I < o0, (4.44)
lwge ™k Ve fll, < oo (4.45)
We also assume extra initial condition
lwgVu foll 3, < oo (4.46)
Then
le ™0V, fll 3 100 < 00. (4.47)
Proof By replacing f m+1 and f™ by f in (4.4), we obtain bound for 9, f using (4.6)-(4.9)

with replacing f™ and f™*! into f. Following exactly the same proof in Proposition 5,
by (4.30), we obtain

||e’}"<”>vvf”L§L{,M
< CQ. p. B.5) x (Lt g flloo) 10590 S Ol 3, + I 1o

_ (4.48)
+le ™ Mwgah Ve fllp

!
+ / e W9, £ (5)l 3 1+adls ]
0 Lo

By assumption (4.44) and (4.45), the first line of the RHS of (4.48) is bounded. We derive
the proposition by the Gronwall’s inequality. O

The Proposition 6 suggests that the L'* stability of f can be also obtained upon a good
initial condition.

Proposition 8 Suppose f and g solve (1.22) (1.24) (1.9), and satisfy all assumption in Propo-
sition 7. Then

le™ O £(1) — gl L1+ axmsy S Ifo — goll 145 urs)- (4.49)

Remark 10 Clearly, this proposition serves as a criteria for showing the uniqueness of the
solution. The main assumption is that the solution needs to satisfy the initial condition (4.46)
and the estimates (4.44) and (4.45). In Sect. 5 where we show the uniqueness in Proposition
10, the effort is devoted to bounding (4.45) for the solution f.
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Proof of Proposition 8 By replacing f™+! = f and f” = g in Proposition 6, using (4.35)
(4.40) and (4.41), we obtain

t
le 0 (f — ) + /0 B0 (f — gy (s) 11,
t
< C@. Tat. Tmin: C @) fo — golli T3 + C6. Tg. Fmin. ) / le ™0 (f — )T
0

t
+CG, ot rmin)e / e (F — g1
0
(4.50)

We pick ¢ « 1 such that C(§, Ty, rmin, Q)€ < % With ¢ fixed we applying the Gronwall
inequality and derive the L' *3-stability (4.49). O

5 Existence and Uniqueness

In this section we finalize the existence and uniqueness of the VPB system. The existence
is stated in Proposition 9 and the uniqueness is given in Proposition 10. The combination of
these two leads to the final Theorem 1.

To show the existence, we first realize that due to the linearity of the boundary condition, the
boundary contribution in the integration of the equation tested with a test function converges
to that of its weak limit. The strategy used in the proof for diffuse boundary condition is
carried over, and we adapt the proof of Theorem 6 in [2] to fit our setting.

For the valid application of the propositions in the previous sections, we let r < ¢ with 7
given in Proposition 6. Then from the assumption in Proposition 2, 3, 5, 6, we have

1 <ts <ty <.

The condition for these four terms are (4.43),(4.32),(3.66) and (2.7) respectively. Thus we
conclude the condition for 7 as stated in (1.33) in Theorem 1.

Proposition 9 Given the assumption in Proposition 2 and Proposition 6, fort < [ there exists
at least one solution f that satisfies

Bzf+v~fo—Vx¢f'va+ﬁ'Vx¢f=F(faf)-
Moreover,

lwe: flloo < 00. (5.1

To prove this proposition we first cite a lemma. This lemma will be used to apply the
average lemma in (5.7).

Lemma 13 (Lemma 14 of [2]) Assume fls,x,v) = e* fo(x,v) for s < 0. Assume Q is
convex and supy<,; <7 || Ell L) < 00. Let E(t,x) = 1o(x)E(t, x) for x € R3. There exists
f(t, x,v) € LZR x R3 x R3), an extension of fs, such that

floxrs = fs and fl, = fsly. and fli=o = fsli=o.
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Proof of Proposition 9 Since assumptions on Proposition 6 are all satisfied, we apply the result
for:

) |
sup le WL — Fmy(s)ll s < (5)“‘"‘””"}. (5.2)

0<s<t
Thus e=*$®) £ is a Cauchy sequence in L'+® and there exists f such that
e MW pm s o=HMW) £ girongly in L' (Q x RY). (5.3)
By (2.6) and (5.3), there is a unique weak-* limit(up to subsequence) (wg: ™, wer f™+1)

—*(wg f, wy f) weakly-* in I:OO(R x 2 x R¥) N L®MR x y) with |wy fllec < 0. This
means, if let ¢ € C°([0, 7] x Q x R?),

v

.V m
3Ty "o}

f
/ / i Fm =8 — v Vilp + f"THV™ - Vg +
0 JOXR?

w[ G et - [ e 0eo.xw
QxR3 QxR3

=/ / Fgain(fm»fm)w_rloss(fm’meW
0 JQxR3

‘ r 1 1 2 1 1 2
+/ .f’"“cv—/ / e[W*m””'/ 1y T T M g (4, ).
0 Jyy 0 Jy_ n-u>0

then all the terms converge to the limit with f replacing f™*! and f™, except
PV Vo + b Vid" 0}, Teain(f™ £, Tioss(F™, £ ). We now discuss
the three terms respectively.

We define, for (x, v) € Q2 x R3andfor0 <8 <« 1,

ks(x,v) = X(W)[l — X(Slvl)]x(%l -1 5.4
with smooth function
0 0;
X(x’:{l’iilf (5.5)

Then ks(¢, x, v) = 0 if either |n(x) - v| <4, |v| > %, or |v| < 4.

e For the term Tioss (f, £ 1), we note:
f
| / / Floss(fm’ fm_H)‘P — Tioss (f» el
0 JOxR3
r
s et = foWkGdus ™ . x, vdvdsr
0 JOxR3 JR3

t
y / / f v — ul £ )/ R@dul " ) — F)(t, x. v)dvdxdi].
0 QxR3 JR3
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The second term vanishes due to (2.6), and to handle the first term, we apply the Holder
inequality:

/0 /Q } /R vl e ks e ) 41— s e )L 0 — F @I a0

x (t, x, v)dvdxdr sup [1€?"7 (1) oo

0<t<t

r
<] f / ole= P ( / () Goks (e, WL ) — f@ldu) dvdxdi]
0 _QXR3 R3 (5.6)
t
x[// goz(t,x,v)dvdxdt]]/z—f—O(S)
0 JQxR3

s[/ |v|e*9"”'2||/ ks e ) [ (1, x,w0)
R3 R3
1,2
— f xR 2 g g pdv] T+ O).

The O(8) comes from the integration with 1 — Kks(x, u), a nonzero term only when
lu| <28 or [u| <}, or [n(x) - u| <8, and thus

r
// /|u|\/ﬁl|u|gzaor|u\za4['"]=0(5).
0 Jaxr: Jr3

We now extend the results in Lemma 13 that treats f "(t,x,v) to deal with
ks(x, u) f™(t, x, v). Apply the average lemma in [12] to f™ (¢, x, v), we have:

sup | /R T i rdull s ) < 00, (5.7)
Since H'/4 cc L?, we conclude that up to subsequence:

/ ks O, u) (2, x, u) (u)y/ w(u)du — /3 ks(x, u) f(t, x, u){u)y/ u(u)du strongly in L,zx,
R3 R '

meaning (5.6) goes to 0 as m — o0.
e For the term [gan (f™, ™)@, we use a test function ¢ (v)@2 (2, x). By the standard
change of variables (v, u) — (v/, u’) and (v, u) — (', u), we get

r
/ / Fgain(fma Mo — Fgain(f» De
0 JOxR3

P 7
Z// Fgain(fm—f,fm)fﬂ-i—/ // Ceain(f5 /™ = g
0 JOxR3 0 QxR3

r
= [ L (L LG = ) Vishio = - olprwdoda)

x f™(t, x, v)pa(t, x)dvdxdt (5.8)
r

+/ / (/ / (£ ) = £ %, 0) VR0 = 1) - ol @) deodu)
0 JOxR3 R3 JS?

X f(t,x,v)pa(t, x)dvdxdt. 5.9)
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Let N > 1 we decompose the integration of (5.9) and (5.8) using

L= {1 = x(ul = N)HL = x(jv] = N)} + x (lu] = N)
+x (vl = N) = x(ju| = N)x(Jv| = N). (5.10)

The x (lu|—N)+x(lv|—N)—x (Ju|—N) x (J]v| — N) component can be easily controlled.
For example, (5.8) becomes:

r
// //["']X{X(|M|—N)+X(|U|—N)—X(|M|—N)X(|v|—N)}
QxR3 JR3

2 2
< sup e 7 g1 f||oo/f f SOl -G,y A1)

QxR3

+ Ly=nldudvdxdr) < O(N).

To consider the component involving {1 — x (lu| — N)}H{1 — x(Jv| — N)}, we note that
this term is nontrivial if [v]| < N + 1 and |u| < N + 1. Consider its effect in (5.8), we

have:
f
/ / (f’”(t,x, v) — f(t, x, v))
0 JaxRr3 JR3
(5.12)

x {1 = x(lul - N)}</S2 Vi) —u)- a)|(p1(u)da))du

x {1 — x(Jv| = N)}f™ (¢, x, v)@a2(t, x)dvdxdt.
Define

o) = {1 — x(lul — N)}/S2 @ = 1) - wlgr (wde for o] < N + 1,
(5.13)

then (5.12) is further written as

r
/ / / ( —ka)(f'"(t,x,v)—f(z,x,v))d>v(u){1 — x(lv] = N)}
0o JoJmrs
S, x, v)ea(t, x)dvdxdt. (5.14)
+ks (fm(t’ x,v) = f(t, x, v))d)v(u){l — x(ul = N} " (t, x, v)@a (2, x)dvdxdr.

The first term in (5.14) is bounded by O (8) sup,, ||eﬁ/|“|2 f™lso, introducing O (§) error,
and to handle the second term in (5.14), we form an open cover of {v € R3 : | <

N+1} C UO(N /8) B(v;, 8). § is small enough so that
1Dy (1) — Dy, ()] < €, if v e B, ). (5.15)

This leads to

/ L PR Lm0 = £, 0) @000 - @, )du

x {1 — x(Jv| = N)}f™ (¢, x, v)@2(t, x)dvdxdt = O(g).
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By rewriting &, () in the second term of (5.14) as &, (u) — &y, (u) + Py, u we finally
obtain

r
i = 0@+ 00+ [ [ Y[ lews [ st exn
0 JQ i R3 R3

(5.16)
- f(tv X, u))d)vi (M)du
x {1 = x(u| = N)}f™ (2, x, v)@a(t, x)dvdxdtr.
By the average lemma we conclude
max , sup 3 ks () f7 (2, %, 1) Dy (”)d”“H,l,//f(RxR»?) < 00. (5.17)

li<ofy) m IR

Fori = 1 we extract a subsequence m| C M such that

/kg(x,u)fm(t,x,u)cbvi(u)du—>/ ks (x, u) f(t, x, u) Py, (u)du stronglyinL?x.
R3 R3 '
(5.18)

Then we follow the Cantor diagonal argument to extract convergent subsequences
M C -+ C My C Mj. Denote f™ the subsequence extracted from m €

M

0(%5)
o3y then we have (5.18) for all i and conclude
53

(5.12) < Cyy .y sup 1”7 £l
m

7
max
i Jo

This, combined with (5.11) provides (5.8) goes to 0. Similar argument is applied to
show the convergence of (5.9) and will not be shown here. These together lead to the
convergence of [gyin (f™, f™).

e For the term f"+1{V,¢™ -V, + 31 - Vx¢" ¢}, we note:

/3k3(x,u)(f’"(t,x,u) — ft, x,u) Py, (u)du — 0. (5.19)
R

2
Lix

—@¢" - 89) = [6" = D+ [a=k0" - Vi
Using the standard elliptic estimate:
IVeg™ = Vel 2 < Iks(f™ = F)v/itll 2+ 0@ sup e 7o — 0,
| ! (5.20)

where we run the same argument by applying the average lemma for the strong conver-
gence in Ltz’ .- Finally

v

5 V¢ roldvdxdt

7
/ / FrT G Vg + 5 V" gk — fVibs - Vag +
0 JOxR3 2
f
5// (me—f){Vx¢m'Vv§0+E-VX¢m<p}dvdxdt
0 JOxR3 2

r
+/ / V(@™ —¢p) - Vop + L e b r)ptdvdxdt.
0 JQxR3 2
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Here the first term goes to 0 by the weaks convergence of Ol f in L, the control of
the second term comes from (5.20).

This proves the existence of a weak solution f € L*°. O

Proposition 10 states the uniqueness of the VPB system.

Proposition 10 Assume ||wg folloo < 00, Ty, satisfies (1.28), ||w9~oe§0 Vv follp < oo for
0 < € < 1, and that (p, B) satisfy (3.2), then if ”wévaOHLi , < oo, there is a unique

solution to (1.22) satisfying (1.35) and (1.36) fort < t.
The proof of the proposition is built upon the following lemma.

Lemma 14 Assume that Q2 is convex (1.19). Suppose that sup, || E(t) ||C} < oo and
n(x) - E(t,x) =0 forx € 0 and for all t. (5.21)

Assume (t,x,v) € Ry x QxRiandr+1> tp(t, x,v). If x € Q2 then we further assume
that n(x) - v > 0. Then we have

n(xp(t, x,v)) - vp(t, x,v) < 0. (5.22)

Proof Step 1. Note that locally we can parameterize the trajectory (see Lemma 15 in [15] for
details). We consider local parametrization (1.18). We drop the subscript p for the sake of
simplicity. If X (s; 7, x, v) is near the boundary then we can define (X, X)) to satisfy

X(s;t,x,0) = (X (s; ¢, x,v)) + X, (55 ¢, x, v)[-n(X (s; ¢, x, v)]. (5.23)
For the normal velocity we define
Va(sst,x,v) :=V(s;t,x,v) - [-n(X)(s; t, x, v)]. (5.24)
We define V| tangential to the level set (n(X|) + X, (—n(X)))) for fixed X,,. Note that

A(n(xp) + xp(—n(x))))
0x),i

Ln(x)) fori=1,2.

We define (V).1, V} 2) as

Vi = (V = Val=n(x1) - (agfj“) + X[ - %TH)]) (5.25)
Therefore we obtain
Visst, x,u) = Vp[=n(X D]+ V) - Ve (X)) — Xu V) - Vyn(X)). (5.26)
Directly we have
X(s;t,x,u) = X Vn(X)) + Xu[-n(X D] = Xa X - Viyn(X)).
Comparing coefficients of normal and tangential components, we obtain that
Xu(s3t,x,0) = Vi(sst,x,0), X (s51,%,0) = Vj(s; 1, x,v). (5.27)
On the other hand, from (5.26),
V(s) = Val=n(X D] = Va Ve n(XD X + Vy - VEnX DX + V) - V(X)) .

— XanHn(X”)VH — X,,Vx"n(X”)V” — XnVH . Vz n(X”)XH.

Xl
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From (5.28)-[—n(X))], (5.27), and V = E, we obtain that

Va(s) = [V (s) - Vzﬂ(Xn () - V()1 -n(X)(s) + E(s, X(5)) - [-n(X|(s))]

5 (5.29)
— Xp(O[V)(s) - V(X () - V()] - n(X)(s)).

Step 2. We prove (5.22) by the contradiction argument. Assume we choose (7, x, v) sat-
isfying the assumptions of Lemma 14. Let us assume

Xt —tpst,x,v) + V,(t —ty; t,x,v) =0. (5.30)
First we choose 0 < € <« 1 such that X,,(s; t, x, v) < 1 and
Valsit,x,v) >0 fort —ny(t,x,v) <5 <t —tp(t,x,v) + €. (5.31)

The sole case that we cannot choose such € > 0 is when there exists 0 < § <« 1 such
that V,,(s;t,x,v) < Oforall s € (t — (2, x,v),t — (¢, x, v) + §). But from (5.27) for
se(t—t(t,x,v),t —tp(t, x,v) +6)

N

0<X,(s;t,x,v) = Xt — tp(t, x,v); 1, x,0) —I—/ Vo.(t;t, x,v)dt <O.

t—ty(,x,v)

Now with € > 0 in (5.31), temporarily we define that ¢, = ¢t — (¢, x,v) + €,
Xy = X — tp(t,x,v) + €;t,x,v), and v, = V(I — tp(t,x,v) + €;1t,x,v). Then
(Xn(sst,x,0), X (551, x,0)) = (Xu(S; Ly, Xi, Vi), X (55 Ly, X, V5)) and
(Va(ss 1, x,0), V(55 1, x,0)) = (Vi (S5 L, Xy V), V) (55 Ly X, Us)).

Now we consider the RHS of (5.29). From (1.19), the first term [V) (s) - Vzn(X” (s)) -
V()] - n(X)(s)) < 0.By an expansion and (5.21) we can bound the second term

E(s, X(s)) - n(X(s))
= E(s, Xn(s), X)(5)) - n(X)(s))

= E(5,0,X)(5) - n(X(5)) + IE) 1 01X (s)]) 632
= [E®)lc1 O(Xn(s)]).
From (1.38) and assumptions of Lemma 14,
[ViGsst,x, 0) < ol + (1, x, V| Elle < v+ (1T +DIE oo
Combining the above results with (5.29), we conclude that
Vi (83t X, 0) S (0] A+ (LA DI E [loo)> X (85 s X V), (5.33)

and hence from (5.27) fort — tp (¢, x,v) < s < t,

d
— [ X, (85 s, Xg, Uy) + V(85 1y, X, U
dS[ n( * * *) n( * * *)] (5.34)

S (Wl + A+ DNE[00) 2 1Xn (S5 far Xar V) + V(83 b X V)]
By the Gronwall inequality and (5.30), for r — #p (¢, x, v) < s < t,
[ X5 (55 b, X, Vi) + Vi (85 T, X, Vi)

S Xt — ty(t, X, 1)) + Vit — ti(t, x, 1)) ]eCEWHAFDIEI))

= 0.

From (5.31) we conclude that X, (s;¢,x,v) = 0 and V,(s;f,x,v) = 0 for all s €
[t —tp(t,x,u),t —tp(t, x,u) + €]. We can continue this argument successively to deduce
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that X,,(s;f,x,v) = 0 and V,(s;t,x,v) = 0 for all s € [t — (¢, x, v), t]. Therefore
xp = 0 = v, which implies x € 92 and n(x) - v = 0. This is a contradiction since we chose
nx)-v>0ifx € 0Q2. O

Now we finish the proof for the uniqueness.

Proof of Proposition 10 Since all the assumption in Proposition 2 3 6 are valid, from Proposi-

tion 9 we have the existence of the solution f to (1.22). To conclude the uniqueness, we need

to apply Proposition 8 and need to verify the condition (4.44) and (4.45). The first condition

is already given in (5.1) in Proposition 9. We here focus on establishing the second condition.
For f satisfying (1.22), we claim

sup [[ws fOII) + sup lle™Pwzall Ve, FO115

0<t<t O<r<t

r
O R SCT (535
0

< Nlwgfollh + llwgel, Vew foll}.
By the weak lower-semicontinuity of L? we know that

wyele Voo fHI=F sup IFOIf < liminf sup Jlwsed, Ve f TN,
o<t<t o<t<t

and

r 1
/(; |.7-'|§’+ < lim inf/O |w5a?e’gvx,vf“1(t)|5,+'
We need to prove that
F = w[?oz?svx,vf almost everywhere except (. (5.36)

We claim that, up to some subsequence, for any given smooth test function ¥ € CZ° (2 x
R*\y0)

! t
i _ISV @Jrldd:/// _,lsv dxdv.
el»nolo/o //Qst W5 e Ve [ pdxdy o was Vi frdxdy
(5.37)

We note that we need to extract a single subsequence, let say {£,} C {¢}, satisfying (5.37)
for all test functions in C2° (2 x R3\ ).
We will exam (5.37) by the identity obtained from the integration by parts

t
/o //Q RS wyalh, VeofHydrdy
.

t
- ‘/0 //Q . aﬁz,gfz“vx,v(ww)dxdv (5.38)
t
+/o /f nelp, S w5 ) (5.39)
Y
t
_/0 //g R? v"'”o‘?e,afm(w@lﬁ)dxdv. (5.40)

@ Springer



Local Well-Posedness of Vlasov—-Poisson-Boltzmann Equation... 619

For each N € N we define a set
Sy = {(x, ) € Q x R3: dist(x, 99Q) < % and |n(x) - v| < %] U{v| > N}.
(5.41)
For a given test function we can always find N > 1 such that
supp(¥) C (Sy)€ := Q x R3\Sy. (5.42)

We focus on proving the convergence of (5.38) and (5.39). From (1.41), Lemma 1 and the
uniform in £ estimate (2.6) , if (x, v) € (Sy)¢ then

sup lof, (1, %, )| S I + (¢t + &) sup Vg 1
=0 ’ =0

<Cy < 400.

< NP y(+ef sup lws £E15
>

Hence we extract a subsequence (let say {¢{x}) out of subsequence in Proposition 9 such
thate?, SAeL>® weakly — * in L®°((0,7) x (Sy)) N L>®((0,7) x (y N (Sy))). Note

SN e
that O‘?KN,E satisfies [0, + v - Vy — VX¢ZN . VU]O{'?,N"E = 0 and ozﬁ@N’Eh,_ =1n- v|ﬂ. By
passing a limit in the weak formulation we conclude that [3; +v -V — V¢ - V,]A = 0 and
Aly. = |n- v|#. By the uniqueness of the Vlasov equation (Vor € WLP for any p < o0)
we derive A = afp’ . almost everywhere and hence conclude that

of —*\a’;’g weakly — % in L((0, 7) x (Sy)*) N L¥((0,7) x (¥ N (Sn)%)).

SN e

(5.43)

Now the convergence of (5.38) and (5.39) is a direct consequence of strong convergence
of (5.3) and the weak— convergence of (5.43):

t t
lim (5.38) + (5.39) = —/ // of fvx,,,(ww)dxdv+/ // ol | fwz).
=00 o JJaxms 1 0o STt

(5.44)
We now show the convergence of (5.40).
Step 1. Let us choose (x, v) € (Sy)¢. From (1.41),
£
If ] >t+e then ap (t,x,0) = 1. (5.45)
From now we only consider that case
ff
iy, (t,x,v) <e+t. (5.46)
If [v| > 2(e + 1) sup, | Vo[ oo then
I e " Vet
v sl = ol = [ 199 @) e
s
> (e +0)sup |V llee forall Lands € [—¢,1).
¢
Then we apply a velocity lemma derived in (3.32) of [2]. We define
a(t,x,v) = \/5()02 +IVE®) - ul? = 2(u - VZE(x) - u)§(x). (5.47)
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For |u| > N andt — ty(t, x,u) > —¢/2,

ape(t,x,u)® Sat, x,u)* Sap et x, u)? (5.48)

4
Ats =1 —1] (¢, x,v), we obtain

___Ce
o gt e s 1V9F oo 1
[n(xy )y | = T X N forall €. (5.49)

Step 2. From now on we assume (5.46) and

lv] < 2(e + 1) sup Vo' [loo,
¢ (5.50)

or, from (1.38), [V/ (si1,x,v)| <3(e + D) sup [V'lla for s e [—e,il.
4

Yoyt oyt oyt : : — _wunt
Let (X; , X|| , Vi, V” ) satisfy (5.27), (5.25), and (5.29) with E = —V¢°.

Let us define
T] 1= sup {r >0: V,ifl(s; t,x,v) >0 forall s €[t — ti)f((t,x, v), r]}. (5.51)

Since (X7 (s;1,x,v), V/ (s:1,x,v)) is C! (note that V¢! € C!) in s we have

t
Vi (i1, x,0) =0.

We claim that, there exists some constant 8, = O, 7 sup, | Vgt et (%) in (5.57) which does
not depend on ¢ such that

4 l
10 < V| (t — 1] (2, x,v); 1, %, v) < 8, and (5.50),
¢ ) 7t ¢ ¢
then Vi (s: 1, x,v) < S50 CxPYI Gk vy ko) (5:52)

%
fors e [t—tl{ , Tl

For the proof we regard the equations (5.27), (5.25), and (5.29) as the forward-in-time problem
with an initial datum ats = t—tbfz (t, x, v).Clearly we have an[ (t—t‘{'lZ (t,x,v);t,x,v) =0
and V,‘Lfl (t— tl{e (t,x,v);t,x,v) > 0 from Lemma 14. Again from Lemma 14, if V,fK (t—
t{é(t,x, v);t,x,v) =0 then X,{Z(s; t,x,v) =0foralls >t — t{é(t,x, v). From now on

¢ ¢ ¢ _
we assume V,‘f (t—tl{ (t,x,v);t,x,v)] > 0.From (5.29), aslongast—tl{ (t,x,v) <s <t
and

1
V,,f[(s; t,x,v) >0 and X,{[(s; t,x,v) < v < 1, (5.53)
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then we have

vl = v - V! ) - v o1 nx] )

<0 from (1.19)

Ve'(s. X! () - [-n(x{ (5))]

—0()sup, V9|1 x X1 (5) from (5.32) (5.54)
4 t 4 £ 4
=X O @) V| @) v @1 x| o)

=0(1){3(e+7) sup, Ve o2 x X1 (5) From (5.50)

_ 14
< C(l+¢+D(sup | Vo [l c1 sup Vo [loo) x Xif (s).
L L

.l 4
Let us consider (5.54) together with X,{ (s;t,x,v) = an (s; ¢, x,v). Then, as long as s
satisfies (5.53),

2 -t v § . gl
Vi@ =vil e -1+ / LV @
l*[h

IA

et * =2 ¢ ¢ 1t
Vi t—1 )+ st C+e+0)"(sup Ve licrsup Ve llo) x Xin (T)dT
t—t 4 l

b

_uft, L ft * -2 ¢ ¢
=V, t—t )+ P C(l+e+1)"(sup Vo llcrsup [V |lo)
—t ¢ ¢

b

T ¢
/ . v, ())dc'dt
—
s

2 ¢ ¢ i SN g
=CU+e+0) (sup|[Veilicrsup[Veilleo) | 15 = =5, )IVii (7 )ydz'.
¢ ¢

-t
From the Gronwall’s inequality, we derive that, as long as (5.53) holds,

- 14
Vi it 2,0 < VI = (1, x, ))eCOTEHD G V9 Lt supe 196 oo) ls—G =1 @)

(5.55)

14 -
Now we verify the conditions of (5.53) for all —e < ¢ — tl{ (t,x,v) <s < t.Note that

4 14
we are only interested in the case of V,',f (r— tl{ (t,x,V);t,X,V) < 84 From the argument
of (5.54), ignoring negative curvature term,

fl
X5 (s;t,x,v)]
_ f[' f{
< (e+D|Ve -1 ;1,x,0)]

_ S T ¢
FCU+ G+ D2 sup IV alsup 197 Ner [, [ ¢l o olaras
4 4 t*[b l*[b

_ rt f s £t £
< (e+DVa (-1 ;t,x,v)|+C/ st [t — @ — i )Xy (i, x,v)[dT.
11—

b
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Then by the Gronwall’s inequality we derive that, in case of (5.46),

It rt It It -
IXp (s, x,0)| S CoqflVi (t—1 s t,x,0)| forall —e<t—1f =<s=<t=t.

If we choose

o 1 (5.57)
t+¢el N

Kok

’4 -
then (5.55) holds for —e < — tl‘)f (t, x,v) <s <t.Hence we complete the proof of (5.52).

14 £
Step 3. Suppose that (5.50) holds and 0 < Vi (t — &/ (1, x,v); 1, x,v) < 8. with
84x Of (5.57). Recall the definition of 77 in (5.51). Inductively we define 7, := sup {r >0:

14
an (s;t,x,v) <0 foralls € [11, ‘L’]} and 13, 74, - - - . Clearly such points can be countably
L
many at most in an interval of [r — tl')f ,t]. Suppose limy_, », Tx = t. Then choose kg > 1
e 14
such that |7, — 1| <€ IV,,f (t— tl{ i t,x,v)|. Then, for s € [ty,, t], from (5.54) and (5.50),
12 14 4
Wi @ xS (t—tl',f i1, x,v)l. (5.58)

Now we assume that 7y, < ¢ < 74,1. From the definition of 7; in (5.51) we split the case
in two. .

Case 1: Suppose V,,f (s;t,x,v) > 0fors € (g, 1).

From (5.54) and (5.56)

14 f ’4 4 4
vil (r;r,x,v)sf X ) Sl =1 irx v, (5.59)

Tko

¢
Case 2: Suppose V,,f (s;t,x,v) <O0fors e (g, 1).
Suppose

¢ ¢ 1 ¢ ¢
Vil @rxowy =V Goxool = - e a2 (5.60)
£
From (5.54), now taking account of the curvature term this time, we derive that

i wrx < f v ) - V2] ) - v o1 nx] (5)ds
Tko

fl f(
+ClVy (=1t (t,x,0);8,x,0)],
where we have used (5.50) and (5.56). From (5.60) the above inequality implies that, for
v -0
Wi =] @ x 050 0) < 1,

1 . ' : . :
SV = s o2 sf v ) - V2] ) - v o1 nx] (5)ds.
Iko

4 £
Note that |%V”f (s)| and |j—sX{ (s)| are all bound from V(j)Z e C!l, (5.50), and (5.56).
By (5.50) and (1.19) we can take ¢ to be sufficiently small such that

t
/ orvf @ - Ve @) v @1 nexd ()ds
t

.
VI =k w12

1 ¢ ¢
< — Vi =1 it x 02

¢ ‘. 1/2
O S T =
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Hence we obtain

1 ¢ ¢
LGS SRR

< v ) - V2nx{ @) - v o1 nx] ()ds.

L L
ft—IVﬁ’ (1 )|V
T

ko

(5.61)

. ft re. 172 1t
On the other hand, if r — |V; (¢ — f ;t,x,v)] < Ty, then [t — 1| < |V, (t —
34
zl{ . ¢, x, v)|'/2, which implies that, from (5.54), (5.50), and (5.56),
14 4 4
Wi @t o S =] s x, 02 (5.62)
34 a4 34
Now we consider X} (t:1,x,v). From (5.54) and X} (s:t,x,v) = VJ (si1,x,v)
together with (5.56) and (5.50)

34
X (1, x, v)
_ ¢ ¢
< G+l -t it xv)

tprT )
+ f / v ) - V2] ) - v 1 x| (5) dsdr
Tko 'L’ko

<0

- ft 7t
< @T+o|Vi t—1t it,x,0)] (5.63)

4 4
+ 1V =1, 0]

t_|Vrif‘£(l‘—tfé;t,x.v)llﬂ . . |
/ b [V|Ifé(s) . VZU(XKZ(S)) . V”fg(s)] ) n(Xﬁce (S))ds

'L’ko
; oyl Lyst I
< @+olVi (= itxvl = I (= sxwl' from (5.61)
&
< 0.

Clearly this cannot happen since x € Q and x,, > 0. Therefore our assumption (5.60) was
wrong and we conclude (5.62).
Step 4 From (5.52), (5.58), (5.59), and (5.62) in Step 1 and Step 2, we conclude that the
4 £
same estimate (5.62) for |an (t — tbf ; 1, x,v)| < 1in the case of (5.46) and (5.50). Finally
from (5.45), (5.49), (5.52), and (5.62) Therefore we conclude that

N2
From (2.36), (2.37), (2.40), and (2.41) in Lemma 2.4 in [17],

1
sup  |Vaal (10 S ——— Sewi 1
CeN, (x,v)e(Sy)", ’ Vi (t—1t 3t,x,0)>F

7s§t7tl{ (t,x,v)<t<t

W = x )it x, )] > (i) (t,x,v) € [0, 7] x (Sy)° (5.64)
f p (G x,0)58,x, P , X, s N) . .

Hence we extract another subsequence out of all previous steps (and redefine this as {¢y})
such that

Vool Sivx,vaf,’g weakly — % in L®((—e, ) x (Sy)°). (5.65)

f
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Note that the limiting function is identified from (5.43). Finally the trong convergence of (5.3)
and the weak—x* convergence of (5.65) justifies the convergence of (5.40):

t
lim (5.40) = —f // Vx,voz’; o f(wsy)dxdo. (5.66)
t—o00 0 JJQxR? ’

Now we extract the final subsequence {..} from the previous subsequence: By the Cantor’s
diagonal argument we define

Ly = Ly. (5.67)

Combining (5.44) and (5.66) we have (5.37) with this subsequence for any test function .
For any ¢ € C°(Q x R3\yp) there exists Ny € N such that supp(¥) C (S, )¢. Hence
(5.36) follows from (5.37).

Finally we obtain (5.35). Assumptions in Proposition 7 thus hold. Applying Proposition
7 8, assuming f] and f, are both solutions, then

—A
le™ O f1@0) = O]ILs@xrs) S 1F10) = LO) 145 @xr).
so the solution is unique. O
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6 Appendix
Lemma 15 For R(u — v; x, t) given by (1.11), given any u such that u - n(x) > 0,
/ R(u — v;x,t)dv =1. 6.1)
n(x)-v<0

Proof We can transform the basis from {n, 7|, 75} to the standard bases {e;, e», e3}. For the
sake of simplicity, we assume T, (x) = 1. The integration over V), after the orthonormal
transformation, becomes integration over R2. We have

1 oy — (1 = rpuy?
dvy,
/RZ r||(2—r||)exp( r2—rp )U”

which is obviously normalized.
Then we consider the integration over V| , which is ez < 0 after the transformation. We
want to show

2 0 Cg P == 2 (] — 1/2
20 o A ) T 62)
rL J—oo ry

The Bessel function reads

o0

L7 2.1 (7 (iycosf)* T (iycos§)k
JO()’) = ;A el}COSBdG = Z ;/O Td@ = Z Wd@
prt ! !

k=079
00 am o 1vkpon2k 2% 00 1.2vk
Z/ (=1 (y)™ (cos 0) d@:Z(—l)k(4y)
k=070 k=0

(2k)! (S
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where we use the Fubini’s theorem and the fact that
T
u, T [2k
/0 cos 9_—221( (k)

Gy
(kH?

Hence

| ad
B =7 [0 = iy = Y ) = o=y, (63)
7 Jo

k=0
By taking the change of variable v, — —wv, , the LHS of (6.2) can be written as

2 00 g P ==l P 2(1 — ”L)I/ZULML
— vie 'L e "L Ip(—————)dvy
rr Jo ry

Using (6.3) we rewrite the above term as

X 5 oo “loi =G P (] — il)kvikuik A
—_— r r = =

Z o vie "L e L (k‘)2r2k dv, (6.4)

k=0 0 DL

where we use the Tonelli theorem. Rescale v; = ./r v we have

2 —a- 2 2k, 2k
2 [ o 2 O iy (l—m"vyu
b vie L e L —Zk
ri Jo (k)2r7
00 Aoy P (1 — rp ey 2k
TR i Gl 1/ LR 1L
=2/ vie e Tl —kJ‘ L
0 (k!)Zrl
o] —(=rlu) 2 (1 —r )kuzk
_ 2 —_ 1
=2/ o2t losP gy ™ i o
0 (kD=ri
k! :“*’rﬂlu\z 1 - rL)kuik *“*r’_ﬂ\“ﬂz (1 - rJ_)kuzf
—ageT R T L (6.5)
(kD=r| Iy
Therefore, the LHS of (6.2) can be written as
—(=r Dl 2 X (1_”_)ku2k —(=r Dy 2 (A=r g 2
e L 7kl —e L e L _
!
P k'r}
[m}
Lemma16 Foranya > 0,b > 0,&e > Owitha+¢ < b,
b 2 2 g0 b (a+e)b | 12
—/ e8IVl galol” g=blv—wl” gy, — R eh—a—s I, (6.6)
T JR? —a—¢
And when § < 1,
b 2 2 2 -2 b @te)b |, 12
v , eEIV1? palvl? j=blv—w|® ;o Se—(b—a—s)& . ehlw\ 6.7)
T Jjy— 52— w|>5~" —a—¢
b (a+e)b
<5 bW, 6.8)
~ b—a-—c¢
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Proof

b 2 2 2 b 2 a2
e eslu\ ealvl e blv—w| dv = = e(a+£ b)|v| eZbu-we blw| dv
R2 R2

v T
2
_b [ arebr el il bl g,
R2
b 2 (@te)b . 12 b (a+f)b 2
_ 2 e(a+€7b)\v| dveb—a—s 2wl — eb 2wl ,
- b—a—¢

where we apply change of variable v + M_%w — v in the first step of the last line, then
we obtain (6.6).
Following the same derivation

ﬁ eslv\zea|v|2€—b|v—w|2dv
|
b / plate=blv— gt ul? g ety
= — b-a=e ! dyeb
T Jp— 5t wl>s!
<obmame b gmbep o b ebyp
b—a—z¢ b—a-—z¢
thus we obtain (6.8). m]
Lemma 17 Foranya > 0,b > 0,e > Owitha +¢ < b,
b (ate)b
2 | vet? et etV o0 [ Oppw)dy = ———ebrae v’ (6.9)
R+ b—a—e¢
And when § < 1,
b (a+e)b
2b etV eV g bV b0 [ O by < §——2—eba . (6.10)
O<v<$ b—a—e¢

Proof

2 / etV e =0V o =bw o) dy
R+

b2 b2
= Zb/ ve(“"'s_b)vzI()(21911u))f,w+847wzeh:affwzdve_bw2
R+

2 (bw)? b (@te)b 2
=2(b—a—¢) pelate=b Io(2bvw)ea+ﬁfh dv——— eba=¥
R+ b—a—c¢
b a+e)b . 2
= 76;—;—5“}
b—a—c¢

where we use (6.2) in Lemma 15 in the last line, then we obtain (6.9).
Following the same derivation we have

LR T S
Zb/ VeV e TPV e [ D byw)du
O<v<d

by (bw)? b (@to)b
=2(b—a—c¢) ve@ eIV [ Opyw)eateb dy ————eba—s V"
O<v<$ b—a-—ce¢

Using the definition of Iy we have

l T
Ih(y) = 7/ e dp < o
T Jo
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Thus whena — b +¢ < 0,

(bw)2
2(b —a — 8) Ue(a+8_b)v2Io(zbvw)ea+e—b dv
O<v<d

_ 2 (bw)?
< 2(b —a—¢) ve(a b+e)v evawea7b+g
O<v<d

bw 2
=2(b—a—¢) e @OV gy
O<v<d

<2(b—a—e) vdv < 6,

O<v<d

where we use § < 1 in the last step, then we obtain (6.10). Then we derive (6.13). ]

Lemma 18 For any m,n > 0, when § < 1, we have

5 i 2.2 22 _m?
2m vie "1 Ih2mnviuy)e " M ldvy Se 42, 6.11)
%ML+871

In consequence, foranya > 0,b > 0,¢ > Owitha + ¢ < b,

o) —(b—a—¢) b (a+e)b
Zb/ pef?’ gav? g=bv? p—bu? IoQRbvw)dv < e 42 LA == L
buﬁw+61 b_a_g
(6.12)
b (ate)b 2
<§——eb-a—e " | (6.13)

b—a-—c¢
Proof We discuss two cases. The first case is v| > Z%MJ_. We bound [ as
1 T
IoCmnviu,;) < — / exp (Zmnvluj_)dé = exp (2mnvlul>.
T Jo
The LHS of (6.11) is bounded by

o0 2
Zmzf ve ML= gy

p n n -1
max{2-u,ou) +6}

Using v > 2.-u, we have

02
N R . NI S
(v1 mbu) ( S 2 lu) =T
Thus we can further bound LHS of (6.11) by
o °] mzvi m2
2m2/ vie~ dvy <e e
max{22&uy Ly +571)

The second case is 0 < v| < Z%ML. Since %ul + 6871 < vy, without loss of gen-

erality, we can assume u| > 51 we compare the Taylor series of v Ip(2mnv u ) and
exp (2mnvluL). We have

20 22yt 2
uy
vilo@Cmnviuy) = E (k‘)2 ,

(6.14)

@ Springer



628 Chenetal.

and

s kaknkv/iu’i

7 (6.15)

exp (ZmnvLul) =
k=0

We choose ki such that when k > k1, we can apply the Sterling formula such that

1 k!
S Sl <2
2 kke=*/ 2k

Then we observe the quotient of the k-th term of (6.14) and the 2k + 1-th term of (6.15),

2% 2k 2k-+1 2k 2k+1,, 2k+1,2k+1, 2k+1 2k+1
i A T m n v

(k)2 2k + 1)!
22k+l

- 4 /( mnu | )
T k2ke=2k2mk " \ 2k + 1)2k+1e=Q@k+D) /27 (2k + 1)
de (k+1/2)2k+1«/271(2k+1)

2mmn

k uj
e <2k+1>2k+1~/2n(2k+1)< 4e* Jk
C 2mmn\ 2k uy ~ Jmmnug’

Thus we can take k,, = ui such that when k < k,,,

k k
v 2k 2 2 4e? L g2kl 2l 2he 2t 2kt 616
<
k)2 - mn 2k + 1)! ' ’
P (k1) NEZ P 2k +1)

Similarly we observe the quotient of the k-th term of (6.14) and the 2k-th term of (6.15),

m2kn2kvik+luik 22km2kn2kvikuik)
(k)2 2k)!
- 4v ( 22k ) _ 4v
T ke~ omk "\ 2k)2%ke=2%/Axk/) ~ Jm/k
When k > k, :ui,byuj_ >8landv, < 2%1“_ we have
4v < 4v < 8n '
Vavk T Jmul T omyn
Thus we have
o 2k 2k . 2k+1. 2k 00 2k .2k .2k, 2k, 2k
Zm nkv'J_2 uy - 8n 2%m Zk,vJ'MJ' 6.17)
g (k) my/m s (2k)!
Collecting (6.17) (6.16), when v; < 2%ub we obtain
201 —rp)t?
v lo@mnviuy) < exp (M) (6.18)
rp
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By (6.18), we have

n
2]"{1- —m2v2 n2v2
viloQRmnviu,))e Le" idv
n —1

Ly +6

m

28y,
< / T et gy < o (6.19)
Ly +8-1

m

Collecting (6.15) and (6.19) we prove (6.11).
Then following the same derivation as (6.9),

o0 2 2 2 2
Zb/ VetV e eV oW I 2byw)d
bfzfs w+871
o0 2
_by? (bw)* b (ate)b, 2
=2(b—a—c¢) f , ve@TeE=DV [ Opyw)eates dvbie b=a—e "
e Wt —a—¢
—(b—a—e) b @+te)b 2 b @te)b 2
<e #? 7617611175 w <§f——¢ ba—a—s w
b—a—c¢ b—a—c¢

where we apply (6.11) in the first step in the third line and take § < 1 in the last step of the
third line. O

Lemma 19 IfO<%<p,if0<,6<p—%,0§M<9,

ee|u|2 M)

kg(l}, M)mm 5 ké(v, M) (620)

Proof When (u) — (v) <1,

Thus by (u)? = |u|® + 1,
ohsu) emu\z
ersiv) ~ I+ erslv)?’

Note
2 2 0212
e [v]” — ul”| 2 2
K,(v, u)— = —olv—ul? —o———— + ) = .
oW ) =0 |v_u|eXp{ elo—ul” = o==— T oMl Ju|
Let v — u = n and u = v — n. Then the exponent equals
|Inl> = 2v - nl?
—Q|n|2—gT—0{|v—n|2—|v|2}—m{|v|—|v—n|}
2 |U'77|2 2
= —2¢Inl" +4ov-n—4e e — {Inl” —2v - n}

{v- n}z_

= (=20 — M)In* + (4o +20)v - n — 4o e
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If 0 < ¥ < 4 then the discriminant of the above quadratic form of || and % is

(4o +29)> — 4(=20 — ©)(—40) = 49> — 1600 < 0.

Hence, the quadratic form is negative definite. We thus have, for 0 < ¢ < o — %, the
following perturbed quadratic form is still negative definite

) . > —2v-pf?
—@—-dm*— (- O~ HInl* = 2v -y} <0.
For
Blo2 At (u)?
e e
ko(v, ) ePlul? pht|vf?
1 v|? — |ul?)?
= exp{—olv —ul® — th(e—xt)wﬁ—(e—mmﬁ .
[v — ul v — ul

We just need to replace & by 6 — At in the previous computation. By At < 6,

i _ > =2v - y?
—(Q—Q)Iiﬂz—(Q—.Q)%—(G—M){IHIZ—ZU-'I}EO-

Therefore, we conclude the lemma. O
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