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Abstract
The Vlasov–Poisson–Boltzmann equation is a classical equation governing the dynamics of
charged particles with the electric force being self-imposed. We consider the system in a
convex domain with the Cercignani–Lampis boundary condition. We construct a uniqueness
local-in-time solution based on an L∞-estimate andW 1,p-estimate. In particular, we develop
a new iteration scheme along the characteristic with the Cercignani–Lampis boundary for
the L∞-estimate, and an intrinsic decomposition of boundary integral for W 1,p-estimate.

Keywords Cercignani-Lampis boundary · Vlasov–Poisson–Boltzmann system · Boundary
value problem · Local well-posedness

1 Introduction

In this paper we study the existence and uniqueness of Vlasov–Poisson–Boltzmann (VPB)
system with generalized diffuse boundary condition. VPB is a classical model that describes
the dynamics of dilute charged particles (such as plasma) with a self-imposed electric field
(see [2,13] and reference therein).We denote F(t, x, v) the phase-space-distribution function
of charged particles at time t , location x ∈ �, a bounded domain inR3, moving with velocity
v ∈ R

3. The equation writes:

∂t F + v · ∇x F − E · ∇vF = Q(F, F), F |t=0 = F0(x, v). (1.1)

The characteristics solves the following Hamilton ODEs

ẋ = v, v̇ = −E . (1.2)

The collision operator Q on the right, as a functional of F , describes the binary collisions
between particles and takes the form of
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Q(F1, F2)(v) = Qgain(F1, F2)(v)− Qloss(F1, F2)(v) = Qgain(F1, F2)− ν(F1)F2

:=
∫∫

R3×S2
B(v − u, ω)F1(u

′)F2(v′)dωdu

−
(∫∫

R3×S2
B(v − u, ω)F1(u)dωdu

)
F2(v).

(1.3)

In the collision process, momentum and energy are conserved, namely,

u′ + v′ = u + v, |u′|2 + |v′|2 = |u|2 + |v|2,
where the post-velocities are denoted as

u′ = u − [(u − v) · ω]ω, v′ = v + [(u − v) · ω]ω. (1.4)

In (1.3), B is called a collision kernel, and we use the hard potential model in this paper:

B(v − u, ω) = |v − u|Kq0
( v − u

|v − u| · ω
)
, with 0 < K ≤ 1,

0 ≤ q0
( v − u

|v − u| · ω
)

≤ C
∣∣∣ v − u

|v − u| · ω
∣∣∣.

In (1.1), E denotes the electrostatic field, and we consider a self-imposed electric field in this
paper: namely, the charged particles themselves form a potential that in turn drives their own
dynamics. This is in particular a relevant model for plasma particles without extra magnetic
field. More specifically,

E(t, x) = −∇xφ(t, x), (1.5)

with the electrostatic potential φ determined by the Poisson equation

−�xφ(t, x) =
∫
R3

F(t, x, v)dv − ρ0 in �,
∂φ

∂n
= 0 on ∂�, (1.6)

where ρ0 is a background constant charge density. We set ρ0 as an average of the initial total
mass:

ρ0 = 1

|�|
∫
�×R3

F0(x, v)dvdx . (1.7)

Theboundary condition of F is determinedby the interaction between the chargedparticles
and the physical boundary. We denote the boundary of the phase space as γ := {(x, v) ∈
∂� × R

3}. Let n = n(x) be the outward normal direction at x ∈ ∂�. We split the phase
boundary into an incoming (γ−) and outgoing (γ+) set as:

γ∓ := {(x, v) ∈ ∂�× R
3 : n(x) · v ≶ 0} or γ∓(x) := {v ∈ ∂�× R

3 : n(x) · v ≶ 0}.
(1.8)

The boundary condition determines the distribution on γ−, and describes how particles, once
hit the boundary, bounce back into the domain. It is characterized through a scattering kernel
R(u → v; x, t) that satisfies a general balance law

F(t, x, v)|n(x) · v| =
∫
γ+(x)

R(u → v; x, t)F(t, x, u){n(x) · u}du, on γ−. (1.9)

Physically, R(u → v; x, t) represents the probability of a molecule striking in the boundary
at x ∈ ∂� with velocity u to be bounced back to the domain with velocity v at the same
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location x and time t . In this paper we use a model proposed by Cercignani and Lampis
in [4,5]. With two accommodation coefficients

0 < r⊥ ≤ 1, 0 < r‖ < 2, (1.10)

the Cercignani–Lampis boundary condition (C-L boundary condition) can be written as

R(u → v; x, t)
:= 1

r⊥r‖(2 − r‖)π/2
|n(x) · v|
(2Tw(x))2

exp

(
− 1

2Tw(x)

[ |v⊥|2 + (1 − r⊥)|u⊥|2
r⊥

+ |v‖ − (1 − r‖)u‖|2
r‖(2 − r‖)

])

× I0

(
1

2Tw(x)

2(1 − r⊥)1/2v⊥u⊥
r⊥

)
.

(1.11)

Here Tw(x) is a wall temperature on the boundary and

I0(y) := π−1
∫ π

0
ey cosφdφ.

In this formula, v⊥ and v‖ denote the normal and tangential components of the velocity
respectively:

v⊥ = v · n(x), v‖ = v − v⊥n(x). (1.12)

Similarly u⊥ = u · n(x) and u‖ = u − u⊥n(x).
This model can be considered as a generalization of fundamental boundary conditions.

For instance if we set r⊥ = 1 and r‖ = 1, the scattering kernel equals

R(u → v; x, t) = 2

π(2Tw(x))2
e− |v|2

2Tw(x) |n(x) · v|.
This corresponds the so-called diffuse boundary condition:

F(t, x, v) = 2

π(2Tw(x))2
e− |v|2

2Tw(x)

∫
n(x)·u>0

F(t, x, u){n(x) · u}du on (x, v) ∈ γ−.

(1.13)

With r⊥ = 0, r‖ = 0, the scattering kernel is given by

R(u → v; x, t) = δ(u − Rxv),

withRxv = v−2n(x)(n(x)·v). This corresponds the specular reflection boundary condition
F(t, x, v) = F(t, x,Rxv).

Finally with r⊥ = 0, r‖ = 2, the scattering kernel is given by

R(u → v; x, t) = δ(u + v),

which corresponds the bounce-back reflection reflection boundary condition F(t, x, v) =
F(t, x,−v). The C–Lmodel is related to theMaxwell boundary condition since both models
can describe the intermediate reflection law between diffuse and specular reflection boundary
conditions. The comparison of the two is found in [6].

It is important to note that the C–L boundary condition satisfies the reciprocity property

R(u → v; x, t) = R(−v → −u; x, t) e
−|v|2/(2Tw(x))

e−|u|2/(2Tw(x))
|n(x) · v|
|n(x) · u| , (1.14)
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and the normalization property (see the proof in appendix)∫
γ−(x)

R(u → v; x, t)dv = 1. (1.15)

We note that the normalization (1.15) property immediately leads to the null flux condition
for F : ∫

R3
F(t, x, v){n(x) · v}dv = 0, for x ∈ ∂�. (1.16)

This guarantees the conservation of total mass:∫
�×R3

F(t, x, v)dvdx =
∫
�×R3

F(0, x, v)dvdx for all t ≥ 0. (1.17)

We note that from the conservation of mass (1.17) and our choice (1.7), the Neumann bound-
ary condition of (1.6) is automatically compatible.

The generality of the C-Lmodel allows it to be applicable tomany problems, including the
rarefied gas flow studied in [18,21,22]; gas surface interaction model presented in [19,23];
and rigid-sphere interactionmodel investigated in [10,11], to name a few. There also emerged
many other derivations of C-Lmodel besides the original one, and we refer interested readers
to [3,4,7].

1.1 Main Result

We now discuss the main result of this paper. Throughout this paper we assume the domain
is C3, which means for any p ∈ ∂�, there exists sufficiently small δ1 > 0, δ2 > 0, and an
one-to-one and onto C3-map ηp so that

ηp : {x‖ ∈ R
2 : |x‖| < δ1} → ∂� ∩ B(p, δ2),

x‖ = (x‖,1, x‖,2) 
→ ηp(x‖,1, x‖,2).
(1.18)

We further assume the domain is convex: there exists Cη > 0 and C� > 0 such that at all
p ∈ ∂�, the Hessian of the corresponding ηp , defined in (1.18) are upper and lower bounded
for all x‖ in (1.18) as

− Cη|ζ |2 ≤
2∑

i, j=1

ζiζ j∂i∂ jηp(x‖) · n(x‖) ≤ −C�|ζ |2, ∀ζ ∈ R
2. (1.19)

We define the global Maxwellian using the maximum wall temperature as

μ := e
− |v|2

2TM , with TM := max
x∈∂�{Tw(x)}. (1.20)

By setting

F = √
μ f , (1.21)

we have:⎧⎪⎨
⎪⎩
∂t f + v · ∇x f − ∇xφ · ∇v f + 1

2TM
f v · ∇xφ = �( f , f )

f (t = 0, x, v) = f0(x, v) := μ−1/2F0
f (t, x, v)|n(x) · v||γ− = 1√

μ

∫
n(x)·u>0 R(u → v; x, t) f (t, x, u)√μ(u){n(x) · u}du

(1.22)
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where the collision operator becomes

�( f1, f2) = �gain( f1, f2)− ν(F1)F2/μ = 1√
μ
Qgain(

√
μ f1,

√
μ f2)− ν(F1) f2,

(1.23)

and φ solves

−�xφ(t, x) =
∫
R3

f (t, x, v)
√
μ(v)dv − ρ0 in �,

∂φ

∂n
= 0 on ∂�. (1.24)

The reciprocity property (1.14) is also translated to: for (x, v) ∈ γ−,

f (t, x, v)|n(x) · v| = 1√
μ

∫
n(x)·u>0

R(−v → −u; x, t) e
−|v|2/(2Tw(x))

e−|u|2/(2Tw(x))

f (t, x, u)
√
μ(u)

|n(x) · v|
|n(x) · u| {n(x) · u}du.

Denote

dσ(u, v) := R(−v → −u; x, t)du, (1.25)

then according to the normalization property (1.15), dσ is a probability measure in space
γ+(x), reducing the boundary condition for f to:

f (t, x, v)|γ− = e
[ 1
4TM

− 1
2Tw(x) ]|v|2

∫
n(x)·u>0

f (t, x, u)e
−[ 1

4TM
− 1

2Tw(x) ]|u|2
dσ(u, v).

(1.26)

For easier notation, we furthermore denote, for all θ :

wθ := eθ |v|2 , 〈v〉 :=
√

|v|2 + 1. (1.27)

Now we state our main theorem of the paper:

Theorem 1 Assume � ⊂ R
3 is an open bounded, and convex C3 domain, the wall tempera-

ture Tw(x) > 0 is smooth, and that the two accommodation coefficients of (1.10) satisfy

minx∈∂�{Tw(x)}
maxx∈∂�{Tw(x)} > max

(1 − r‖
2 − r‖

,

√
1 − r⊥ − (1 − r⊥)

r⊥

)
. (1.28)

Assume further that

‖wθ f0‖∞ < ∞, (1.29)

‖wθ̃∇v f0‖L3
x,v

< ∞, (1.30)

‖wθ̃α
β
f0,ε

∇x,v f0‖L p(�×R3) < ∞ for 3 < p < 6, 1 − 2

p
< β <

2

3
, (1.31)

with

0 < θ̃ < θ <
1

4maxx∈∂�{Tw(x)} , (1.32)

and a weight function α f ,ε , to be defined in (1.41), then there is a unique solution f (t, x, v)
to (1.22) in a time interval of t ∈ [0, t̄] with
t̄ = t̄(‖wθ f0‖∞, ‖wθ̃α

β
f0,ε

∇x,v f0‖L p(�×R3), ‖wθ̃∇v f0‖L3
x,v
, r‖, r⊥,�, TM ,min(Tw(x))).

(1.33)
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Moreover, there are C > 0 and λ > 0, so that f satisfies

sup
0≤t≤t̄

‖wθe
−C〈v〉2t f (t)‖∞ � ‖wθ f0‖∞, (1.34)

sup
0≤t≤t̄

‖∇v f (t)‖L3
x L

1+δ
v

< ∞, (1.35)

sup
0≤t≤t̄

{
‖wθ̃e

−λt〈v〉αβf ,ε∇x,v f (t)‖p
p +

∫ t

0
|wθ̃e

−λs〈v〉αβf ,ε∇x,v f (t)|pp,+
}
< ∞.

(1.36)

Remark 1 We do not assume the smallness of our initial data, but we need the small scale
of the time t̄ . Setting r⊥ = 1 and r‖ = 1, this theorem also provides the first large date
well-posedness of VPB system with the standard diffuse boundary condition (1.13). A small
data result had been established in [2]. We use the condition (1.28) in the proof of the L∞
bound, which itself serves as an important a-priori estimate for the existence and the W 1,p

estimate (1.35) and (1.36).

Remark 2 To the best of our knowledge, Theorem 1 provides the first local in time solution
to the Vlasov–Poisson–Boltzmann system in bounded domains with the Cercignani–Lampis
boundary condition. The local in time result for the Boltzmann equation without field can be
found in [6].

1.2 Strategy of the Proof

In this section we discuss the major difficulties and describe the main strategy utilized in the
proof.

The main difficulty comes from the singularity at the boundary. Consider the simple
Vlasov–Poisson (VP) equation without the collision:

∂t f + v · ∇x f − ∇xφ f · ∇v f = 0. (1.37)

Suppose one has two solutions f and g, then taking the difference we have:

∂t ( f − g)+ v · ∇x ( f − g)− ∇xφ f · ∇v( f − g) = (∇xφ f − ∇xφg) · ∇vg.

To show the uniqueness using the stability argument essentially comes down to controling
∇vg. This is hard to achieve in general: it is a rather well-known result that transport equation
in a bounded domain could potentially form singularities [1,16].

This could be better understood by following the trajectory of the Hamiltonian
system (1.2). Denote (X(s; t, x, v), V (s; t, x, v)) the solution to it that starts with
(X(t; t, x, v), V (t; t, x, v)) = (x, v), then follow the ODE, we have

d

ds

[
X(s; t, x, v)
V (s; t, x, v)

]
=

[
V (s; t, x, v)

−∇xφ f (s, X(s; t, x, v))
]

for − ∞ < s, t < ∞. (1.38)

For (t, x, v) ∈ R ×�× R
3, we define the backward exit time tb(t, x, v):

tb(t, x, v) := sup{s ≥ 0 : X(τ ; t, x, v) ∈ � for all τ ∈ (t − s, t)}, (1.39)

and the corresponding existing location and velocity:

xb(t, x, v) := X(t − tb(t, x, v); t, x, v) and vb(t, x, v) := V (t − tb(t, x, v); t, x, v).
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Call the boundary condition f |γ− = h, then (1.37) has an explicit solution

f (t, x, v) = h(t − tb(t, x, v), xb(t, x, v), vb(t, x, v)).

This leads to a fact that the derivatives of f may contain singularities from a direct compu-
tation of ∇x xb(t, x, v) as

∇x f (t, x, v) ∼ ∇x xb(t, x, v) ∼ 1

n(xb(t, x, v)) · vb(t, x, v) . (1.40)

The term blows up as vb becomes tangential to the surface at the backward exit time. This
difficulty sits at the core of many boundary problems of Boltzmann-type equations.

To account for this difficulty, we follow the strategy of incorporating a kinetic weight [2,
15]:

Definition 1 (Kinetic Weight) For ε > 0, let f solve (1.37), define

α f ,ε(t, x, v) := χ
( t − tb(t, x, v)+ ε

ε

)
|n(xb(t, x, v)) · vb(t, x, v)|

+
[
1 − χ

( t − tb(t, x, v)+ ε

ε

)]
.

(1.41)

Here we use a smooth function χ : R → [0, 1] satisfying
χ(τ) = 0, τ ≤ 0, and χ(τ) = 1, τ ≥ 1,

d

dτ
χ(τ) ∈ [0, 4] for all τ ∈ R.

(1.42)

Note that α f ,ε(0, x, v) ≡ α f0,ε(0, x, v) is determined by the initial data f0. There are two
important features of this weight. First it is invariant under the transport operator, namely:

[∂t + v · ∇x − ∇xφ f · ∇v]α f ,ε(t, x, v) = 0. (1.43)

Second, it takes the value of |n(x f
b (t, x, v)) ·v f

b (t, x, v)| for t > t fb (t, x, v), which is exactly
the singularity in (1.40). With the weight term applied, the singularity term can be canceled.

The proof of the main theorem consists two parts: an L∞-estimate and a weighted W 1,p

estimate. These estimates are based on the uniform estimates of the following iterative
sequence:

∂t f
m+1 + v · ∇x f

m+1 − ∇xφ
m · ∇v f

m+1 + 1

2TM
f m+1v

·∇xφ
m = �gain( f

m, f m)− ν(Fm) f m+1, (1.44)

with boundary condition:

f m+1(t, x, v)
∣∣∣
γ−

= e
[ 1
4TM

− 1
2Tw(x) ]|v|2

∫
n(x)·u>0

f m(t, x, u)e
−[ 1

4TM
− 1

2Tw(x) ]|u|2
dσ(u, v),

(1.45)

and initial condition

f m+1(0, x, v) = f (0, x, v).

Here we denote

φm := φ f m .
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Now we discuss the roadmap for getting these estimates respectively.
L∞ estimate: For obtaining the L∞ estimate, we derive the trajectory formula and trace

each (x, v, t) back along the characteristic till it either hits the boundary or the initial datum
for f m .

It may so happen that some particles bounce back and forth in the domain multiple times
before tracing back to t = 0 (say k times), and then a k-layered integral will appear. This
multiple integral includes vi , the parameter we use to represent the integral variable at the
i-th iteration with the boundary (see more precise definition in Definition 2), and the integral
formula will be derived in Lemma 2. There are two main problems one need to handle here:
1. how to integrate the k-fold integral, and 2. what is the chance for a particle to interact with
the wall finite times?

To deal with the first difficulty amounts to carefully trace and compute the integration. In

case of the diffuse boundary condition with constant temperature where R = 1
2π e

− |v|2
2 |n(x) ·

v| = cμe
−|v|2
2 |n(x) ·v|, the computation can be simplified. According to (1.45), the boundary

condition here is:

f = cμ
√
μ(vi−1)

∫
n·vi>0

f (vi )
√
μ(vi )|n · vi |dvi .

Trace back further for the next interaction of i+1, one arrives at the final integral with respect
to vi to be simply ∫

n·vi>0
cμμ(vi )|n · vi |dvi .

Since the form of this vi -integral is uniform for all 1 ≤ i ≤ k, the multiple integral can
be treated by Fubini’s theorem. Such lucky coincidence no longer holds true for the C-L
boundary condition. From (1.25) the integrand is a function of both v and u. As a result the
vi -integral is not uniform over i , making the Fubini’s theorem not applicable. The multiple
integral thus needs to be computed with the fixed order vk, vk−1, · · · , v1, bringing extra
computational difficulty. We now perform this integral order by order. To do so we start with
vk , the most outer layer. The integral contains∫

n·uk>0
e
−[ 1

4TM
− 1

2Tw(x) ]|uk |2dσ(vk, vk−1), (1.46)

with appropriate dσ(vk, vk−1) definition. This integral then becomes a function of vk−1,
which is then computed in the second most outer layer. Using Lemma 16 one can show
that (1.46) can be approximately explicitly computed – ec|vk−1|2 . We perform this iteratively
over i by counting back from k to 1, and inductively compute this k-fold integral. This result
is presented in Lemma 3.

To deal with the second difficulty, one needs to quantize the probability of a particle that
interacts with the wall more than k times, or equivalently, we need to give an estimate of the
measure 1{tk>0}. In [2,14] the authors studied the diffuse boundary condition in which they
decompose the boundary as

γ δ+ = {u ∈ γ+ : |n · u| > δ, |u| ≤ δ−1}, and γ+\γ δ+,
and show that there can be only finite number of v j that belongs to γ δ+. Meanwhile, the
integration over γ+\γ δ+ can be controlled by the small δ. As k increases, one obtains a larger
power of δ, leading to a decay factor for the measure of 1{tk>0}. When C-L condition is given,
the strategy needs to be revised. In particular, the integrand in equation (1.11) and (1.25)
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contains e−|u‖−(1−r‖)v‖|2 , and even if |u‖| � 1, |u‖ − (1− r‖)v‖| can still be small, meaning
the integration over the γ+\γ δ+ does not provide the smallness. One key observation here
is separate the discussion based on the distance between u‖ and (1 − r‖)v‖. Let |u‖| large
enough, with 1−r‖ < 1. The bad case is when |u‖−(1−r‖)v‖| < δ−1, then |v‖| ≥ |u‖|+δ−1.
For example let 1 − r‖ = 1/2, then if |u‖ − 1

2v‖| < δ−1, we take |u‖| ≥ 3δ−1 to have:

1

2
|v‖| > |u‖| − δ−1 >

1

2
|u‖| + 1

2
δ−1, |v‖| > |u‖| + δ−1,

which brings up the value of v‖. Consequently, if these ‘bad’ cases |u‖−(1−r‖)v‖| < δ−1 take
place many times in the k-fold integral, a very big vi will be generated. Then the application
of the boundary condition that provides a fast decay for big |vi | can be used to balance out
all the growing factors, leading to a small measure of 1tk > 0 in the end.

Consider this, we further decompose γ+ into

γ
η
+ = {u ∈ γ+ : |n · u| > ηδ, |u| ≤ ηδ−1}, and γ+\γ η+,

where η is selected to be a small number (depending on r‖) so that

|u‖ − (1 − r‖)v‖| < δ−1 ⇒ |v‖| ≥ |u‖| + δ−1.

We comment here that such property only works when the coefficient 1 − r‖ < 1. In the
real computation the wall temperature is involved in the boundary condition, thus the actual
coefficient contains Tw(x) and is more complicated than 1 − r‖. In order to ensure such
constant to be less than 1, we impose the condition (1.28). See Lemma 4 for detail.

W 1,p estimate: For getting the W 1,p estimate (1.36), we rely on the energy-type estimate
for ∇x,v f with weight αβf ,ε , for which

∫ t
0

∫
∂�

∫
n·v<0 |αβf ,ε∇x,v f |p|n · v|dvdSxds needs to

be controlled. Using the fact that α f ,ε(t, x, v) = |n(x) · v| on γ−, the singularity of (1.40)
can be controlled by first setting:

β >
p − 2

p
, |n · v|pβ−p+1 ∈ L1

loc(R
3).

Then with some further calculation, shown in (3.23) (3.24), we roughly need to estimate:

∫
γ−

|αβ∂ f |p �
∫
γ−

e
[ 1
4TM

− 1
2Tw(x) ]p|v|2

(∫
n·u>0

|∂ f (u)|e−[ 1
4TM

− 1
2Tw(x) ]p|u|2

dσ(u, v)

)p

.

(1.47)

To handle the integration of u, in [2,15], the authors studied the diffusion boundary condition
and proposed to split the term into the integration over the grazing set

γ ε+ = {(x, u) ∈ γ+ : u · n(x) < ε or |u| > 1/ε} and γ+\γ ε+.
However, this is not enough sincewedonot have direct smallness even for bigu (in the grazing
set), and thus are not able to bound

∫
{(x,u)∈γ ε+} by ε. To handle C-L boundary condition, we

propose in this paper to add another layer of splitting. Besides the standard grazing/non-
grazing sets, we also split the γ+ integral into the grazing sets defined by v, approximately:

γ
v,x,ε
+ = {(x, u) ∈ γ+ : u · n(x) < ε or |u − v| > 1/ε} and γ+\γ v,x,ε+ .
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With this decomposition we have

(1.47) =
∫
γ−

e
[ 1
4TM

− 1
2Tw(x) ]p|v|2

(∫
{u:(x,u)∈γ v,x,ε+ }

|∂ f (u)|e−[ 1
4TM

− 1
2Tw(x) ]|u|2

dσ(u, v)

)p

+
∫
γ−

e
[ 1
4TM

− 1
2Tw(x) ]p|v|2

(∫
{u:(x,u)∈γ+\γ v,x,ε+ }

|∂ f (u)|e−[ 1
4TM

− 1
2Tw(x) ]|u|2

dσ(u, v)

)p

�
∫
γ−

e
[ 1
4TM

− 1
2Tw(x) ]p|v|2

×
[(∫

{u:(x,u)∈γ v,x,ε+ }
e
−[ 1

4TM
− 1

2Tw(x) ]q|u|2
(all terms in dσ (1.26))qdu

)p/q

∫
γ
v,x,ε
+

|αβ∂ f |p (1.48)

+
(∫

{u:(x,u)∈γ+\γ v,x,ε+ }
e
−[ 1

4TM
− 1

2Tw(x) ]q|u|2
(all terms in dσ (1.26))qdu

)p/q

∫
γ+\γ v,x,ε+

|αβ∂ f |p
]
. (1.49)

Now with the application of C-L boundary condition, one has the smallness in terms of
ε for the integral over γ v,x,ε+ . And after direct computation one has the L1

v for dv and thus
bounds

(1.48) � O(ε)
∫
γ
v,x,ε
+

|αβ∂ f |p ≤ O(ε)
∫
γ+

|αβ∂ f |p.

On the set of γ+\γ v,x,ε+ , one still has L1
v integrand for dv but the smallness is lost. We now

recycle the standard grazing/non-grazing set definition, by further splitting the v-integration
into 1|v|≤ε−1 and 1|v|≥ε−1 .While the integration is naturally bounded by O(ε)when integrated
on |v| ≥ ε−1, the |v| ≤ ε−1 case leads to |u| ≤ 2ε−1, making u falling in the non-grazing
set γ+\γ ε/2+ . We now stand on the same footing as the situation discussed in [2,15]. Apply
Lemma 10 we obtain an upper bound for the integration in the bulk (the terms not involving
boundaries) and initial data, meaning:

(1.49) � O(ε)
∫
γ+

|αβ∂ f |p + initial condition + bulk .

The bulk part is treated similarly as in the proof of [2]. The entire proof for the weighted
W 1,p estimate is presented in Sect. 3.

The non-weighted L3
x L

1+δ bound for the velocity derivative ∇v f is discussed in Sect. 4.
Characteristics and the energy-type estimate are the main tools used. The boundary terms
are treated similarly as is done for the W 1,p estimate, and the bulk terms are similar to
those estimated in [2]. This estimate in the end leads to the L1+δ stability ‖ f − g‖L1+δ �
‖ f0 − g0‖L1+δ .

1.3 Outline

In Sect. 2weprove the L∞ bound for the sequence solution f m . In Sect. 3,weprove theweight
W 1,p estimate for the sequence solution f m . Then we derive the L3

x L
1+δ
v estimate and the
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L1+δ stability for f m in Sect. 4. The L1+δ stability is the key to the well-poseness. In Sect. 5
we combine all the estimates for the sequence solution f m and conclude the existence and
uniqueness. More specifically, in Theorem 1, the existence is given by Proposition 9 and the
uniqueness is given by Proposition 10. In the appendix we prove some necessary estimates.

2 L∞ Estimate

For any given constants C, θ ∈ R, define a Gaussian-weighted solution:

hm+1(t, x, v) = eθ |v|2e−Ct〈v〉2 f m+1(t, x, v), (2.1)

then according to (1.44), we have:

∂t h
m+1 + v · ∇xh

m+1 − ∇xφ
m · ∇vh

m+1 + νmhm+1

= eθ |v|2e−Ct〈v〉2�gain

(
hm

e−C〈v〉2t eθ |v|2
,

hm

e−C〈v〉2t eθ |v|2
)
,

(2.2)

equipped with boundary condition

hm+1|γ−(x) = eθ |v|2e−Ct〈v〉2e[ 1
4TM

− 1
2Tw(x) ]|v|2∫

γ+(x)
hm(t, x, u)e

−[ 1
4TM

− 1
2Tw(x) ]|u|2

e−θ |u|2eCt〈u〉2dσ(u, v), (2.3)

where γ± is defined in (1.8) and

νm(t) = C〈v〉2 + ∇xφ
m · ∇v

( − Ct〈v〉2 + θ |v|2) + 1

2TM
v · ∇xφ

m + ν(Fm). (2.4)

This equation is linear for hm+1 with hm serving as a source term, νm serving as a damping
coefficient and φm serving as the electric field. The main purpose of this section is to show
that hm , and thus f m form a bounded sequence in L∞. More precisely:

Proposition 2 Let hm+1 satisfy (2.3) with the Cercignani–Lampis boundary condition (2.3).
Assume the constraints for θ and Tw hold true ((1.32) and (1.28)) and ‖h0(x, v)‖L∞ < ∞.
Then if

sup
i≤m

‖hi (t, x, v)‖L∞ ≤ C∞‖h0(x, v)‖∞, t ≤ t∞, (2.5)

we have

sup
0≤t≤t∞

‖hm+1(t, x, v)‖L∞ ≤ C∞‖h0(x, v)‖L∞ . (2.6)

Here C∞ = C∞(TM ,min{Tw(x)}, θ, r⊥, r‖,�) is a constant and

t ≤ t∞ = t∞(‖h0(x, v)‖L∞ , TM ,min{Tw(x)}, θ, r⊥, r‖,�) � 1. (2.7)

Remark 3 Two remarks are in line:

• The smallness only depends on the initial data, wall temperature, domain, the accommo-
dation coefficients r‖,⊥.

• We will also trace the dependence of the constants C∞ and t∞ in the proof. C∞ will be
explicitly defined in (2.139).
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This proposition implies the uniform-in-m L∞ estimate for hm(t, x, v), and this allows
us to further bound

sup
m

‖wθ ′ f m‖∞ < ∞, (2.8)

which lays the foundation for later sections.
To show the proposition, we start with Lemma 1 in which we control the acceleration term

∇xφ. We then explicitly derive the formula using the information of the trajectory for hm , as
will be presented in Lemma 2. This will bring a k-fold integration for particles that collide
with the boundary k-times before the final time. We will further show that all the terms in
this integration (more precisely, all terms in (2.11) (2.12)), can be bounded in Lemmas 3 and
4. We then summarize the estimates and give the proof of the proposition.

We now present Lemmas 1 and 2. Then we split this section into three subsections, the
first subsection concludes the proof for Lemma 2. We present both Lemmas 3 and 4 in the
second subsection. In last subsection we combine the estimates in Lemmas 3 and 4 with the
formula in Lemma 2 to conclude Proposition 2.

We first give an estimate of the bound of ‖∇xφ
m‖∞.

Lemma 1 For any 0 < δ < 1, θ < 1
4TM

, 0 ≤ t ≤ 1, if ( f , φ f ) satisfy the condition (1.24)
then

‖φ f (t)‖C1,1−δ(�̄) ≤ C‖h(t)‖L∞ + Cρ0. (2.9)

Proof For any p > 1,
∥∥∥
∫
R3

f (t, x, v)
√
μ(v)dv − ρ0

∥∥∥
L p(�)

≤
∥∥∥
∫
R3

f (t, x, v)
√
μ(v)dv

∥∥∥
L p(�)

+ ‖ρ0‖L p(�)

≤ |�|1/p
(∫

R3
e−θ |v|2eC〈v〉2t√μ(v)dv

)
‖h(t)‖L∞

+ ρ0.

By the elliptic estimate with condition (1.17)

‖φ f (t)‖W 2,p(�) ≤ C‖h(t)‖L∞ + ρ0,

which further leads to, according to the Morrey inequality for p > 3,� ⊂ R
3, and ∂� being

C1:

‖φ f (t)‖C1,1−3/p(�) ≤ C‖φ f (t)‖W 2,p(�) ≤ C‖h(t)‖L∞ + Cρ0.

��
We represent hm+1 with the stochastic cycles defined as follows.

Definition 2 Define an Hölder continuous characteristics which solves (since ∇φm is quasi-
Lipschitz continuous from Lemma 1, this is possible, see also chapter 8 of [20] for example)

d

ds

(
Xm(s; t, x, v)
Vm(s; t, x, v)

)
=

(
Vm(s; t, x, v)

−∇xφ
m(s, Xm(s; t, x, v))

)
, (2.10)

and we trace back in time and determine the boundary-colliding time and location, namely:

t1(t, x, v) = sup{s < t : Xm(s; t, x, v) ∈ ∂�}, x1(t, x, v) = Xm (t1(t, x, v); t, x, v) .
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We then build the probability measure at x = x1 as dσ(v1, Vm(t1; t, x, v)), supported on
V1 = γ+(x1):

∫
V1

dσ(v1, V
m(t1; t, x, v)) = 1.

Inductively, define tk and xk the time and position of a particle striking the boundary for
the k-th time:

tk(t, x, v, v1, · · · , vk−1) = sup{s < tk−1 : Xm−k+1(s; tk−1, xk−1, vk−1) ∈ ∂�},
xk(t, x, v, v1, · · · , vk−1) = Xm−k+1 (tk(t, x, v, vk−1); tk−1(t, x, v), xk−1(t, x, v), vk−1) ,

and correspondingly build probability measure dσ(vk, Vm−k+1(tk; tk−1, xk−1, vk−1)) at xk
over Vk = γ+(xk) for:

∫
Vk

dσ(vk, V
m−k+1(tk; tk−1, xk−1, vk−1)) = 1.

For simplicity, we denote for all l ≤ m:

Vm−l(s) := Vm−l(s; tl , xl , vl), Xm−l(s) := Xl(s; tl , xl , vl).

Lemma 2 Let hm+1 satisfies (2.2) with the Cercignani–Lampis boundary condition (2.3),
and assume (2.5) holds true, then with properly chosen C and θ , point-wise in (t, x, v), one
has: if t1 ≤ 0:

|hm+1(t, x, v)| ≤|h0
(
Xm(0), Vm(0)

) |
+

∫ t

0
e− ∫ t

s
C
2 〈Vm (τ )〉2dτ eθ |Vm (s)|2e−Cs〈Vm (s)〉2�m

gain(s)ds.
(2.11)

If t1 > 0, for arbitrary k ≥ 2, one has:

|hm+1(t, x, v)| ≤
∫ t

t1
e− ∫ t

s
C
2 〈Vm (τ )〉dτ eθ |Vm (s)|2e−C〈Vm (s)〉s�m

gain(s)ds

+ eθ |Vm (t1)|2e−Ct1〈Vm (t1)〉2e[ 1
4TM

− 1
2Tw(x1)

]|Vm (t1)|2
∫
∏k−1

j=1 V j

H ,

(2.12)

with H given by

k−1∑
l=1

1{tl>0,tl+1≤0}|h0
(
Xm−l(0), Vm−l(0)

)
|d�k

l,m(0)

+
k−1∑
l=1

∫ tl

max{0,tl+1}
eθ |Vm−l (s)|2e−Cs〈Vm−l (s)〉2 |�m−l

gain (s)|d�k
l,m(s)ds

+ 1{tk>0}|hm−k+2
(
tk, xk, V

m−k+1(tk)
)

|d�k
k−1,m(tk),

(2.13)
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where

d�k
l,m(s) =

{ k−1∏
j=l+1

dσ
(
v j , V

m− j+1(t j )
) }

{
e− ∫ tl

s
C
2 〈Vm−l (τ )〉2dτ e−θ |vl |2eCtl 〈vl 〉2e−[ 1

4TM
− 1

2Tw(xl )
]|vl |2dσ(vl , Vm−l+1(tl))

}

{ l−1∏
j=1

2eC(t j−t j+1)〈v j 〉2e[ 1
2Tw(x j )

− 1
2Tw(x j+1)

]|v j |2
dσ

(
v j , V

m− j+1(t j )
) }

.

(2.14)

Here we use a notation

�m
gain(s) := �gain

(
hm(s, Xm(s), Vm(s))

eθ |Vm (s)|2e−Cs〈Vm (s)〉2 ,
hm(s, Xm(s), Vm(s))

eθ |Vm (s)|2e−Cs〈Vm (s)〉2
)
. (2.15)

2.1 Proof of Lemma 2

We present the proof of Lemma 2.Most of the proof is tedious but straightforward derivation.

Proof of Lemma 2 For given φm , we choose small enough t and big enough C:

∇xφ
m · ∇v

( − Ct〈v〉2 + θ |v|2) + 1

2TM
v · ∇xφ

m ≤ C

2
〈v〉2, (2.16)

and thus, noting ν(Fm) ≥ 0, from (2.4), we have:

νm(t) ≥ C

2
〈v〉2. (2.17)

From (1) we first denote

Cφm := sup
0≤i≤m

‖∇xφ
i‖∞ � sup

0≤i≤m
‖hi‖L∞ < ∞, (2.18)

and

μ̃(t, x, v) := e−θ |v|2eCt〈v〉2e−[ 1
4TM

− 1
2Tw(x) ]|v|2 . (2.19)

If t1(t, x, v) ≤ 0, the particle has been following a fixed trajectory without scattering,
then according to (2.2), for 0 ≤ s ≤ t ,

d

ds

[
e− ∫ t

s ν
m (τ )dτhm+1(s, Xm(s), Vm(s))

]
= e− ∫ t

s ν
m (τ )dτ eθ |Vm (s)|2e−Cs〈Vm (s)〉2�m

gain(s),

(2.20)

then (2.11) follows by applying (2.17).
If t1(t, x, v) > 0, the trajectory of the particle can be split into a few discontinuous

sections. In particular:

|hm+1(t, x, v)1{t1>0}| ≤|hm+1 (t1, x1, Vm(t1)
) |e− ∫ t

t1
C
2 〈Vm (τ )〉2dτ

+
∫ t

t1
e− ∫ t

s
C
2 〈Vm (τ )〉2dτ eθ |Vm (s)|2e−Cs〈Vm (s)〉2 |�m

gain(s)|ds.
(2.21)
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Note the first term of the RHS of (2.21) can be expressed by the boundary condition. In
particular, for 1 ≤ k ≤ m, the boundary condition (2.3) can be written as, using (2.19):

hm−k+2(tk, xk, V
m−k+1(tk)) = 1

μ̃(tk, xk, Vm−k+1(tk))∫
Vk

hm−k+1(tk, xk, vk)μ̃(tk, xk, vk)dσ(vk, V
m−k+1(tk)).

(2.22)

We now use induction on k to show (2.12). Directly applying (2.22) with k = 1, the first
term of the RHS of (2.21) is bounded by

1

μ̃ (t1, x1, Vm(t1))

∫
V1

hm(t1, x1, v1)μ̃(t1, x1, v1)dσ(v1, V
m(t1)). (2.23)

Noting (2.11) and (2.21), this term is to be controlled by:

(2.23) ≤ 1

μ̃(t1, x1, Vm(t1))

[ ∫
V1

1{t2≤0<t1}e− ∫ t1
0

C
2 〈Vm−1(τ )〉2dτhm(0, Xm−1(0),

Vm−1(0))μ̃(t1, x1, v1)dσ
(
v1, V

m(t1)
)

+
∫ t1

0

∫
V1

1{t2≤0<t1}e− ∫ t1
s

C
2 〈Vm−1(τ )〉2dτ eθ |Vm−1(s)|2e−Cs〈Vm−1(s)〉2

|�m−1
gain (s)|μ̃(t1, x1, v1)dσ

(
v1, V

m(t1)
)
ds

+
∫

V1

1{t2>0}e− ∫ t1
t2

C
2 〈Vm−1(τ )〉2dτ |hm(t2, x2, Vm−1(t2))μ̃(t1, x1, v1)dσ

(
v1, V

m(t1)
)

+
∫ t1

t2

∫
V1

1{t2>0}e− ∫ t1
s

C
2 〈Vm−1(τ )〉2dτ eθ |Vm−1(s)|2e−Cs〈Vm−1(s)〉2

|�m−1
gain (s)|μ̃(t1, x1, v1)dσ

(
v1, V

m(t1)
)
ds

]
,

showing the validity of (2.12) k = 2. For higher k, we use induction. Assume (2.12) is
valid for k ≥ 2(induction hypothesis) we prove so for k + 1. We express the last term
in (2.13) using the boundary condition. In (2.22), since 1

μ̃(tk ,xk ,Vm−k+1(tk ))
depends on vk−1,

we move this term to the integration over Vk−1 in (2.12). Using the second line of (2.14)
with l = k − 1, s = tk , the integration over Vk−1 is

∫
Vk−1

e− ∫ tk−1
tk

C
2 〈Vm−k+1(τ )〉2dτ

μ̃
(
tk, xk, Vm−k+1(tk)

) μ̃(tk−1, xk−1, vk−1)dσ(vk−1, V
m−k(tk−1)). (2.24)

By Definition 2 we have |Vm−k+1(tk−1)| = |vk−1|. By (2.10) for tk ≤ τ ≤ tk−1 we have

〈vk−1〉 − Cφm (tk−1 − τ) ≤ Vm−k+1(τ )〉 ≤ 〈vk−1〉 + Cφm (tk−1 − τ), (2.25)

with Cφm is defined in (2.18). This leads to

|Vm−k+1(tk)|2 ≤ |vk−1|2 + 2Cφm (tk−1 − tk)|vk−1| + (Cφm )
2(tk−1 − tk)

2, (2.26)

and

〈Vm−k+1(tk)〉2 ≥ 〈vk−1〉2 − 2Cφm (tk−1 − tk)〈vk−1〉, (2.27)
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which further suggests:

e− ∫ tk−1
tk

C
2 〈Vm−k+1(τ )〉2dτ ≤ e

(tk−1−tk )〈vk−1〉
(

−C
2 〈vk−1〉+CCφm (tk−1−tk )

)
. (2.28)

Considering the definition of μ̃ in (2.19), and utilizing the inequalities above, we finally
arrive at, taking CT := 1

2min{Tw(x)} − 1
4TM

:

e− ∫ tk−1
tk

C
2 〈Vm−k+1(τ )〉2dτ

/μ̃
(
tk, xk, V

m−k+1(tk)
)

≤ e−C〈vk−1〉2tk+θ |vk−1|2e[ 1
4TM

− 1
2Tw(xk )

]|vk−1|2

× exp

([
− C

2
〈vk−1〉 + CCφm (tk−1 − tk)+ 2CCφm tk

+2θCφm + 2CTCφm

]
(tk−1 − tk)〈vk−1〉

)

× exp
([
θC2

φm + CTC
2
φm

]
(tk−1 − tk)

2
)
.

(2.29)

Set t = t(T , θ, φm) small enough such that

exp
([
θC2

φm + CTC
2
φm

]
(tk−1 − tk)

2
)

≤ exp
([
θC2

φm + CTC
2
φm

]
t
)

≤ 2, and Cφm t ≤ 1

8
.

Furthermore, we take C to be big enough so that

− C

2
〈vk−1〉 + CCφm (tk−1 − tk)+ 2CCφm tk + 2θCφm + 2CTCφm

≤ −C

2
+ C/8 + C/4 + 2θCφm + 2CTCφm ≤ −C

8
+ 2θCφm + 2CTCφm ≤ 0.

(2.30)

We simplify (2.29):

(2.29) ≤ 2e−C〈vk−1〉2tk+θ |vk−1|2e[ 1
4TM

− 1
2Tw(xk )

]|vk−1|2
. (2.31)

This leads to the boundedness of the integrand in (2.24) by:

(2.31)× μ̃(tk−1, xk−1, vk−1) = 2e
[ 1
2Tw(xk−1)

− 1
2Tw(xk )

]|vk−1|2eC(tk−1−tk )〈vk−1〉2 , (2.32)

and in turn gives the estimate shown in (2.14) with l = k − 1.
For the remaining term in (2.22), we split the integration over Vk into two terms as

∫
Vk

hm−k+1(tk, xk, vk)μ̃(tk, xk, V
m−k+1(tk))dσ(vk, vk−1)

=
∫

Vk

1{tk+1≤0<tk }
︸ ︷︷ ︸

(2.33)1

+
∫

Vk

1{tk+1>0}
︸ ︷︷ ︸

(2.33)2

. (2.33)
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We use the similar bound of (2.11) and derive that

(2.33)1 ≤
∫

Vk

1{tk+1≤0<tk }e
∫ tk
0 −C

2 〈Vm−k (τ )〉2dτhm−k+1(0, Xm−k(0), Vm−k(0))

μ̃(tk, xk, vk)dσ(vk, V
m−k+1(tk))

+
∫ tk

0

∫
Vk

1{tk+1≤0<tk }e
∫ tk
s −C

2 〈Vm−k (τ )〉2dτ e−C〈Vm−k (s)〉2seθ |Vm−k (s)|2�m−k
gain (s)

μ̃(tk, xk, vk)dσ(vk, V
m−k+1(tk))ds.

(2.34)

In the first line of (2.34), is consistent with the second bracket of the first line of (2.14) with
l = k, s = tk . In the second line of (2.34),

e
∫ tk
s −C

2 〈Vm−k (τ )〉2dτ μ̃(tk, xk, vk)dσ(vk, Vm−k+1(tk))

is consistent with the second line of (2.14) with l = k.
From the induction hypothesis( (2.12) is valid for k), we derive the integration over V j

for j ≤ k − 1 is consistent with the third line of (2.14). After taking integration
∫∏k−1

j=1 V j
we

change d�k
k−1,m in (2.14) to d�k+1

k,m . Thus (2.34) becomes
∫
∏k

j=1 V j

1{tk+1≤0<tk }|h0
(
Xk+1(0), vk

)
|d�k+1

k,m (0)

+
∫
∏k

j=1 V j

∫ tk

0
e−C〈Vm−k (s)〉2seθ |Vm−k (s)|2�m−k

gain (s)d�
k+1
k,m (s)ds.

(2.35)

Then we use the same estimate as (2.21) and derive

(2.33)2 ≤
∫

Vk

1{tk+1>0}e
∫ tk
tk+1

−C
2 〈Vm−k (τ )〉2dτhm+1

(
tk+1, xk+1, V

m−k(tk+1)
)

μ̃(tk, xk, vk)dσ
(
vk, V

m−k+1(tk)
)

+
∫ tk

tk+1

∫
Vk

1{tk+1>0}e
∫ tk
s −C

2 〈Vm−k (τ )〉2dτ e−C〈Vm−k (s)〉seθ |Vm−k (s)|2�m−k
gain (s)

μ̃(tk, xk, vk)dσ(vk, V
m−k+1(tk))ds.

(2.36)

Similarly as (2.35), after taking integration over
∫∏k−1

j=1 V j
(2.36) is

∫
∏k

j=1 V j

1{tk+1>0}|hm−k+1
(
tk+1, xk+1, V

m−k(tk)
)

|d�k+1
k,m (tk+1)

+
∫
∏k

j=1 V j

∫ tk

tk+1

e−C〈Vm−k (s)〉2seθ |Vm−k (s)|2�m−k
gain (s)d�

k+1
k,m (s)ds.

(2.37)

From (2.37) (2.35), the summation in the first and second lines of (2.13) extends to k.
And the index of the third line of (2.13) changes from k to k + 1. For the rest terms with
index l ≤ k − 1, we haven not done any change to them in the previous step. Thus their
integration are over

∏k−1
l=1 V j . We add

∫
Vk

dσ(vk, Vm−k+1(tk)) = 1 to all of them, so that

all the integrations are over
∏k

l=1 V j and we change d�k−1
l,m to d�k

l,m by

d�k
l,m = dσ

(
vk, V

m−k+1(tk)
)
d�k−1

l,m .
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Therefore, the formula (2.13) is valid for k + 1 and we derive the lemma. ��

As the lemma implies, to have L∞ bound of hm+1, it is crucial to obtain an estimate of H
that is controlled in (2.13). It is rather clear that the first two terms in (2.13) include all finite
collisions< k in finite time, while the last term collects all trajectories whose corresponding
particles collide with boundaries more than k times within t . These two types of estimates
will be obtained in Lemmas 3 and 4 respectively in the next subsection. Namely we need
only boundedness for the first two terms, but need decaying in k for the third, in which we
essentially need to show the chance for a particle to collide with boundaries more than k
times within a small time window t is very small.

2.2 k-Fold Integral

As a preparation, we first define:

rmax := max(r‖(2 − r‖), r⊥), rmin := min(r‖(2 − r‖), r⊥). (2.38)

Then immediately, one has 1 ≥ rmax ≥ rmin > 0. We then define

ξ := 1

4TMθ
> 1, (2.39)

from (2.1) considering θ < 1
4TM

. In the calculation of the k-fold integration over
∏k

j=1 V j ,
we inductively use the following notations:

Tl,l = 2ξ

ξ + 1
TM , Tl,l−1 = rminTM + (1 − rmin)Tl,l , · · · ,

Tl,1 = rminTM + (1 − rmin)Tl,2, (2.40)

and thus naturally for 1 ≤ i ≤ l, we have

Tl,i = 2ξ

ξ + 1
TM + (TM − 2ξ

ξ + 1
TM )[1 − (1 − rmin)

l−i ]. (2.41)

Moreover, we will use

d�k,l
p,m(s) :=

{ k−1∏
j=l+1

dσ(v j , v j−1)
}

×
{
e− ∫ tl

s
C
2 〈Vm−l (τ )〉2dτ e−θ |vl |2eCtl 〈vl 〉2e−[ 1

4TM
− 1

2Tw(xl )
]|vl |2dσ(vl , Vm−l+1(tl))

}

×
{ l−1∏

j=p

2eC(t j−t j+1)〈v j 〉2e[ 1
2Tw(x j )

− 1
2Tw(x j+1)

]|v j |2
dσ

(
v j , V

m− j+1(t j )
) }

,

(2.42)

and

dϒ p′
p := {

p′∏
j=p

2eC(t j−t j+1)〈v j 〉2e[ 1
2Tw(x j )

− 1
2Tw(x j+1)

]|v j |2
dσ(v j , v j−1)}, (2.43)
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to simplify the notation. Note that if p = 1, d�k,l
1,m(s) = d�k

l,m(s), defined in (2.14), and
according to the definition in (2.42) and (2.14), we have

d�k,l
p,m(s) = d�k,l

p′,m(s)dϒ
p′−1
p , and d�k

l,m(s) = d�k,l
p,m(s)dϒ

p−1
1 . (2.44)

Now we state the lemma.

Lemma 3 There exists

t∗ = t∗(TM , ξ, C,C, k), (2.45)

such that for t ≤ t∗, and 0 ≤ s ≤ tl , we have∫
∏k−1

j=p V j

1{tl>0}d�k,l
p,m(s) ≤ (2CTM ,ξ )

2(l−p+1)Al,p, (2.46)

with CTM ,ξ and C being constants defined in (2.56) and (2.59) respectively, and

Al,p = exp

([ [Tl,p − Tw(xp)][1 − rmin]
2Tw(xp)[Tl,p(1 − rmin)+ rminTw(xp)] + (2C)l−p+1(Ct)

]|Vm−p+1(tp)|2
)
.

(2.47)

Moreover, for any p < p′ ≤ l, we have∫
∏k−1

j=p V j

1{tl>0}d�k,l
p,m(s) ≤ (2CTM ,ξ )

2(l−p′+1)Al,p′

∫
∏p′−1

j=p V j

1{tl>0}dϒ p′−1
p ≤ (2CTM ,ξ )

2(l−p+1)Al,p. (2.48)

Remark 4 We comment here that this lemma indeed include the information for the k-fold
integral in Lemma 2 by setting p = 1. To derive the decaying factor in Lemma 4, we need
to extract smallness from the integral over vp for p ≤ k, for example, in Lemmas 5 and 7.
This is the reason that we introduce the notation (2.42), (2.44) and incorporate them in this
lemma.

Proof From (1.15) and (1.25), consider the first bracket of the first line in (2.14), for l + 1 ≤
j ≤ k − 1 we have

∫
∏k−1

j=l+1 V j

k−1∏
j=l+1

dσ(v j , V
m− j+1(t j )) = 1.

Without loss of generality we can assume k = l + 1. Thus d�k,l
p,m = d�l+1,l

p,m . We use an
induction of p with 1 ≤ p ≤ l to prove (2.46).

When p = l, by the second line of (2.42), the integration over Vl is written as∫
Vl

e−θ |vl |2eC〈vl 〉2tl e
∫ tl
s −C

2 〈Vm−l (τ )〉2dτ e−[ 1
4TM

− 1
2Tw(xl )

]|vl |2dσ(vl , Vm−l+1(tl)). (2.49)

In order to compute (2.49), we bound

e−θ |vl |2eC〈vl 〉2tl ≤ 2e(−θ+Ctl )|vl |2 , (2.50)

where we take t ≤ t∗ = t∗(C) small enough such that eCt ≤ 2 and thus eC〈vl 〉2tl ≤
eC|vl |2tl eCtl ≤ 2eC|vl |2tl .
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By (2.50) with θ = 1
4TM ξ

in (2.39) we have

(2.49) ≤ 2
∫

Vl

e
−[ 1

2TM
ξ+1
2ξ − 1

2Tw(xl )
−Ctl ]|vl |2dσ(vl , Vm−l+1(tl)). (2.51)

Expanding the dσ(vl , Vm−l+1(tl)) using (1.11) and (1.25), we rewrite (2.51) as

2
∫

Vl,⊥

|vl,⊥|
r⊥Tw(xl)

e
−[ 1

2TM
ξ+1
2ξ − 1

2Tw(xl )
−Ctl ]|vl,⊥|2

I0

(
(1 − r⊥)1/2vl,⊥Vm−l+1

⊥ (tl)

Tw(xl)r⊥

)

e
− |vl,⊥|2+(1−r⊥)|Vm−l+1

⊥ (tl )|2
2Tw(xl )r⊥ dvl,⊥

×
∫

Vl,‖

1

πr‖(2 − r‖)(2Tw(xl))
e
−[ 1

2TM
ξ+1
2ξ − 1

2Tw(xl )
−Ctl ]|vl,‖|2e− 1

2Tw(xl )

|vl,‖−(1−r‖)Vm−l+1
‖ (tl )|2

r‖(2−r‖) dvl,‖,

(2.52)

where vl,‖, vl,⊥, Vl,⊥ and Vl,‖ are defined as

vl,⊥ = vl · n(xl), vl,‖ = vl − vl,⊥n(xl), Vl,⊥ = {vl,⊥ : vl ∈ Vl}, Vl,‖ = {vl,‖ : vl ∈ Vl}.
(2.53)

Vm−l+1
⊥ (tl) and Vm−l+1

‖ (tl) are defined similarly.
First we compute the integration over Vl,‖, the second line of (2.52). To apply (6.6) in

Lemma 16, we set

ε = Ctl , w = (1 − r‖)Vm−l+1
‖ (tl) , v = vl,‖,

a = −[ 1

2TM
2ξ
ξ+1

− 1

2Tw(xl)
], b = 1

2Tw(xl)r‖(2 − r‖)
. (2.54)

By ξ > 1 in (2.39), we take t∗ = t∗(C, ξ, TM ) � 1 such that when tl < t ≤ t∗, we have

b − a − ε = 1

2Tw(xl)r‖(2 − r‖)
− 1

2Tw(xl)
+ 1

2TM
2ξ
ξ+1

− Ctl ≥ 1

2TM
2ξ
ξ+1

− Ct ≥ 1

4TM
.

(2.55)

Also we take t∗ = t∗(C, ξ, TM ) small enough to obtain 1+ 4TMCtl ≤ 1+ 4TMCt ≤ 2 when
t ≤ t∗. Hence

b

b − a − ε
= b

b − a
[1 + ε

b − a − ε
]

≤
2ξ
ξ+1TM

2ξ
ξ+1TM + [Tw(xl)− 2ξ

ξ+1TM ]r‖(2 − r‖)
[1 + 4TMCtl ]

≤
4ξ
ξ+1TM

2ξ
ξ+1TM + [min{Tw(x)} − 2ξ

ξ+1TM ]rmax
:= CTM ,ξ ,

(2.56)

where we have used (2.38).
In regard to (6.6), we have

(a + ε)b

b − a − ε
= ab

b − a

[
1 + ε

b − a − ε

]
+ b

b − a − ε
ε. (2.57)
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By (2.56) and tl < t , we obtain

b

b − a − ε
ε ≤

4ξ
ξ+1TM

2ξ
ξ+1TM + [min{Tw(x)} − 2ξ

ξ+1TM ]rmax
Ct .

By (2.54), we have

ab

b − a
=

2ξ
ξ+1TM − Tw(xl)

2Tw(xl)[ 2ξ
ξ+1TM + [Tw(xl)− 2ξ

ξ+1TM ]r‖(2 − r‖)]
.

Therefore, by (2.55) and (2.57) we obtain

(a + ε)b

b − a − ε
≤

2ξ
ξ+1TM − Tw(xl)

2Tw(xl)[ 2ξ
ξ+1TM + [Tw(xl)− 2ξ

ξ+1TM ]r‖(2 − r‖)]
+ C(Ct), (2.58)

where we define

C := 4TM
( 2ξ
ξ+1TM − min{Tw(x)}

)
2min{Tw(x)}[ 2ξ

ξ+1TM + [min{Tw(x)} − 2ξ
ξ+1TM ]rmax ]

+
4ξ
ξ+1TM

2ξ
ξ+1TM + [min{Tw(x)} − 2ξ

ξ+1TM ]rmax
. (2.59)

By (2.56), (2.58) and Lemma 16, using w = (1 − r‖)Vm−l+1
‖ (tl) we bound the second

line of (2.52) by

CTM ,ξ exp

([ [ 2ξ
ξ+1TM − Tw(xl)]

2Tw(xl)[ 2ξ
ξ+1TM (1 − r‖)2 + r‖(2 − r‖)Tw(xl)]

+ C(Ct)
]
|(1 − r‖)Vm−l+1

‖ (tl)|2
)

(2.60)

≤ CTM ,ξ exp

([ [ 2ξ
ξ+1TM − Tw(xl)][1 − rmin]

2Tw(xl)
[ 2ξ
ξ+1TM (1 − rmin)+ rminTw(xl)

] + C(Ct)
]
|Vm−l+1

‖ (tl)|2
)
,

(2.61)

where we have used (2.38).
Next we compute the first line of (2.52). To apply (6.9) in Lemma 17, we set

ε = Ctl , w = √
1 − r⊥Vm−l+1

⊥ (tl) , v = vl,⊥,

a = −[ 1

2TM
2ξ
ξ+1

− 1

2Tw(xl)
], b = 1

2Tw(xl)r⊥
.

Thus we can compute b
b−a−ε and

(a+ε)b
b−a−ε using (2.56) and (2.58). Hence replacing r‖(2− r‖)

by r⊥ and replacing Vm−l+1
‖ (tl) by V

m−l+1
⊥ (tl) in (2.60), we bound the first line of (2.52) by
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2CTM ,ξ exp

([ [ 2ξ
ξ+1TM − Tw(xl)]

2Tw(xl)[ 2ξ
ξ+1TM (1 − r⊥)+ r⊥Tw(xl)]

+ C(Ct)
]
|√1 − r⊥Vm−l+1

⊥ (tl)|2
)

≤ 2CTM ,ξ exp

([ [ 2ξ
ξ+1TM − Tw(xl)][1 − rmin]

2Tw(xl)
[ 2ξ
ξ+1TM (1 − rmin)+ rminTw(xl)

] + C(Ct)
]
|Vm−l+1

⊥ (tl)|2
)
.

(2.62)

where we use (2.38).
Collecting (2.61) (2.62), we derive

(2.52) ≤ 2(CTM ,ξ )
2 exp

([ [ 2ξ
ξ+1TM − Tw(xl )][1 − rmin]

2Tw(xl )
[ 2ξ
ξ+1TM (1 − rmin)+ rminTw(xl )

] + C(Ct)
]

|Vm−l+1(tl)|2
)

≤ (2CTM ,ξ )
2Al,l ,

where Al,l is defined in (2.47) and Tl,l = 2ξ
ξ+1TM .

Therefore, (2.46) is valid for p = l.
Suppose (2.46) is valid for the p = q + 1(induction hypothesis) with q + 1 ≤ l, then

∫
∏l

j=q+1 V j

1{tl>0}d�l+1,l
q+1,m(s) ≤ (2CTM ,ξ )

2(l−q)Al,q+1.

We want to show (2.46) holds for p = q . By the hypothesis and the third line of (2.42),

∫
∏l

j=q V j

1{tl>0}d�l+1,l
q,m (s) ≤ (2CTM ,ξ )

2(l−q)Al,q+1

×
∫

Vq

2eC(tq−tq+1)〈vq 〉2e[ 1
2Tw(xq )

− 1
2Tw(xq+1)

]|vq |2
dσ(vq , V

m−q(tq+1)).

(2.63)

Using the definition of Al,q+1 in (2.47), we obtain

(2.63) ≤ (2CTM ,ξ )
2(l−q)

∫
Vq

2 exp

(
(Tl,q+1 − Tw(xq+1))(1 − rmin)

2Tw(xq+1)[Tl,q+1(1 − rmin)+ rminTw(xq+1)] |V
m−q (tq+1)|2

+ (2C)l−q (Ct)|Vm−q (tq+1)|2
)
eC(tq−tq+1)〈vq 〉2e[ 1

2Tw(xq )
− 1

2Tw(xq+1)
]|vq |2

dσ(vq , V
m−q+1(tq )).

(2.64)

Let C in (2.17) satisfy

2Cφm
(Tl,q+1 − Tw(xq+1))(1 − rmin)

2Tw(xq+1)[Tl,q+1(1 − rmin)+ rminTw(xq+1)]
≤ Cφm

min(Tw(x))(1 − rmin)
≤ C, (Cφm )

2 ≤ C. (2.65)

Similarly to (2.25) and (2.26),

|Vm−q(tq+1)| ≤ |vq | + Cφm (tq − tq+1),

|Vm−q(tq+1)|2 ≤ C2
φm (tq − tq+1)

2 + 2Cφm (tq − tq+1)|vq | + |vq |2.
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Then we apply (2.65) to get

exp

[(
(Tl,q+1 − Tw(xq+1))(1 − r)

2Tw(xq+1)[Tl,q+1(1 − r)+ rTw(xq+1)] + (2C)l−q(Ct)

)
|Vm−q+1(tq+1)|2

]

× eC(tq−tq+1)〈vq 〉2

≤ exp

[(
(Tl,q+1 − Tw(xq+1))(1 − r)

2Tw(xq+1)[Tl,q+1(1 − r)+ rTw(xq+1)] + (2C)l−q(Ct)

)
|vq |2

]

× eC(tq−tq+1)|vq |eC(tq−tq+1)
2
eC(tq−tq+1)|vq |2eC(tq−tq+1)

≤ 2 exp

[(
(Tl,q+1 − Tw(xq+1))(1 − r)

2Tw(xq+1)[Tl,q+1(1 − r)+ rTw(xq+1)] + 2(2C)l−q(Ct)

)
|vq |2

]
,

where we haved use eC(tq−tq+1)|vq | ≤ eC(tq−tq+1)eC(tq−tq+1)|vq |2 and thus

eC(tq−tq+1)|vq |eC(tq−tq+1)
2 × eC(tq−tq+1)|vq |2eC(tq−tq+1) ≤ e2Ct |vq |2e3C(tq−tq+1)

≤ 2e(2C)
l−q (Ct)|vq |2 .

Here we take t∗ = t∗(C) small enough such that when t ≤ t∗,

e3C(tq−tq+1) ≤ e3Ct ≤ 2.

Thus we obtain

(2.64) ≤ 4(2CTM ,ξ )
2(l−q)

∫
Vq

exp

[( (Tl,q+1 − Tw(xq+1))(1 − rmin)

2Tw(xq+1)[Tl,q+1(1 − rmin)+ rminTw(xq+1)] |vq |
2

+ 2(2C)l−q(Ct)|vq |2
)]

e
[ 1
2Tw(xq )

− 1
2Tw(xq+1)

]|vq |2
dσ(vq , V

m−q+1(tq)).

We focus on the coefficient of |vq |2 in (2.64), we derive

(Tl,q+1 − Tw(xq+1))(1 − rmin)

2Tw(xq+1)[Tl,q+1(1 − rmin)+ rminTw(xq+1)] |vq |
2 + [ 1

2Tw(xq)
− 1

2Tw(xq+1)
]|vq |2

= (Tl,q+1 − Tw(xq+1))(1 − rmin)− [Tl,q+1(1 − rmin)+ rminTw(xq+1)]
2Tw(xq+1)[Tl,q+1(1 − rmin)+ rminTw(xq+1)] |vq |2 + |vq |2

2Tw(xq)

= −Tw(xq+1)(1 − rmin)− rminTw(xq+1)

2Tw(xq+1)[Tl,q+1(1 − rmin)+ rminTw(xq+1)] |vq |
2 + |vq |2

2Tw(xq)

= −|vq |2
2[Tl,q+1(1 − rmin)+ rminTw(xq+1)] + |vq |2

2Tw(xq)
.

By the Definition 2, xq+1 = xq+1(t, x, v, v1, · · · , vq), thus Tw(xq+1) depends on vq . In
order to explicitly compute the integration over Vq , we need to get rid of the dependence of
the Tw(xq+1) on vq , thus we bound

exp

( −|vq |2
2[Tl,q+1(1 − rmin)+ rminTw(xq+1)]

)
≤ exp

( −|vq |2
2[Tl,q+1(1 − rmin)+ rminTM ]

)

= exp

(−|vq |2
2Tl,q

)
,

(2.66)

where we use (2.40).
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Expanding dσ(vq , Vm−q+1(tq)) by (1.25) and using (2.66), we derive

(2.64) ≤ 4(2CTM ,ξ )
2(l−q)

∫
Vq,⊥

2

r⊥
|vq,⊥|

2Tw(xq )
e
−[ 1

2Tl,q
− 1

2Tw(xq )
−2(2C)l−q (Ct)]|vq,⊥|2

I0

(
(1 − r⊥)1/2vq,⊥Vm−q+1

⊥ (tq )

Tw(xq )r⊥

)

e
− |vq,⊥|2+(1−r⊥)|Vm−q+1

⊥ (tq )|2
2Tw(xq )r⊥ dvq,⊥

×
∫
Vq,‖

1

πr‖(2 − r‖)(2Tw(xq ))

e
−[ 1

2Tl,q
− 1

2Tw(xq )
−2(2C)l−q (Ct)]|vq,‖|2

e
− 1

2Tw(xq )

|vq,‖−(1−r‖)Vm−q+1
‖ (tq )|2

r‖(2−r‖) dvq,‖.
(2.67)

In the third line of (2.67), to apply (6.6) in Lemma 16, we set

a = −
[

1

2Tl,q
− 1

2Tw(xq)

]
, b = 1

2Tw(xq)r‖(2 − r‖)
,

ε = 2(2C)l−q(Ct), w = (1 − r‖)vq−1,‖.

Comparing with (2.54), we can replace 2ξ
ξ+1TM by Tl,q and replace Ct by 2(2C)l−q(Ct). Then

we apply the replacement to (2.55) and obtain

b − a − ε ≥ 1

2Tl,q
− 2(2C)l−q(Ct) ≥ 1

2TM
2ξ
ξ+1

− 2(2C)k(Ct) ≥ 1

4TM
,

where we take t∗ = t∗(TM , ξ, C,C, k) small enough and t ≤ t∗. Also we require the t satisfy
ε

b − a − ε
≤ 4TM × 2(2C)k(Ct) ≤ 2.

We conclude the t∗ here only depends on the parameters TM , ξ, C,C, k. Thus by the same
computation as (2.56) we obtain

b

b − a − ε
≤ 2Tl,q

Tl,q + [min{Tw(x)} − Tl,q ]r‖(2 − r‖)
≤ CTM ,ξ ,

where we use Tl,q ≤ 2ξ
ξ+1TM from (2.40) and (2.38). CTM ,ξ is defined in (2.56)

By the same computation as (2.58), we obtain

(a + ε)b

b − a − ε
= ab

b − a
+ ab

b − a

ε

b − a − ε
+ b

b − a − ε
ε

≤ Tl,q − Tw(xq)

2Tw(xq)[Tl,q + [Tw(xq)− Tl,q ]r‖(2 − r‖)] + (2C)l−q+1(Ct).

Here we have used Tl,q ≤ 2ξ
ξ+1TM and (2.38) to obtain

ab

b − a

ε

b − a − ε
+ bε

b − a − ε

≤ 4TM
(
Tl,q − min{Tw(x)}

)
2min{Tw(x)}[Tl,q + [min{Tw(x)} − Tl,q ]r‖(2 − r‖)]2(2C)

l−q(Ct)

+ 2Tl,q
2ξ
ξ+1TM + [min{Tw(x)} − Tl,q ]r‖(2 − r‖)

2(2C)l−q(Ct) ≤ (2C)l−q+1(Ct),
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with C defined in (2.59).
Thus by Lemma 16 withw = (1− r‖)Vm−q+1

‖ (tq), the third line of (2.67) is bounded by

CTM ,ξ exp

([ [Tl,q − Tw(xq)]
2Tw(xq)[Tl,q(1 − r‖)2 + r(2 − r‖)Tw(xq)]

+(2C)l−q+1(Ct)
]|(1 − r‖)Vm−q+1

‖ (tq)|2
)

≤ CTM ,ξ exp

([ [Tl,q − Tw(xq)][1 − rmin]
2Tw(xq)[Tl,q(1 − rmin)+ rminTw(xq)]

+(2C)l−q+1(Ct)
]|Vm−q+1

‖ (tq)|2
)
.

(2.68)

By the same computation the second line of (2.67) is bounded by

CTM ,ξ exp

([ [Tl,q − Tw(xq)][1 − rmin]
2Tw(xq)[Tl,q(1 − rmin)+ rminTw(xq)] + (2C)l−q+1(Ct)

]|Vm−q+1
⊥ (tq)|2

)
.

(2.69)

By (2.68) and (2.69), we derive that

(2.67) ≤ (2CTM ,ξ )
2(l−q+1) exp

([ [Tl,q − Tw(xq)][1 − rmin]
2Tw(xq)[Tl,q(1 − rmin)+ rminTw(xq)]

+(2C)l−q+1(Ct)
]|Vm−q+1(tq)|2

)

= (2CTM ,ξ )
2(l−q+1)Al,q ,

which is consistent with (2.46) with p = q . The induction is valid we derive (2.46).
Now we focus on (2.48). The first inequality in (2.48) follows directly from (2.46)

and (2.44). For the second inequality, by (2.43) we have

(2CTM ,ξ )
2(l−p′+1)Al,p′

∫
∏p′−1

j=p V j

1{tl>0}dϒ p′−1
p

= (2CTM ,ξ )
2(l−p′+1)Al,p′

∫
∏p′−2

j=p V j

dϒ p′−2
p

∫
Vp′−1

1{tl>0}2eC(tp′−1−tp′ )〈vp′−1〉2e
[ 1
2Tw(x p′−1)

− 1
2Tw(x p′ ) ]|vp′−1|2

dσ(vp′−1, V
m−p′+2(tp′−1)).

(2.70)

In the proof for (2.46) we have

(2.63) ≤ (2.64) ≤ (2.67) ≤ (CTM ,ξ )
2(l−q+1)Al,q .

Then by replacing q by p′ − 1 in the estimate (2.63)≤ (2CTM ,ξ )
2(l−q+1)Al,q we have

(2CTM ,ξ )
2(l−p′+1)Al,p′

∫
∏p′−1

j=p V j

1{tl>0}dϒ p′−1
p

= (2.70) ≤ (2CTM ,ξ )
2(l−p′+2)Al,p′−1

∫
∏p′−2

j=p V j

1{tl>0}dϒ p′−2
p .

Keep doing this computation until integrating over Vp we obtain the second inequality
in (2.48). ��

In the following lemma, we prepare for showing the smallness of the last term in (2.13).
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Lemma 4 Assume the constraint for Tw holds true ((1.28)). There exists

k0 = k0(�,CTM ,ξ , C, TM , r⊥, r‖,min{Tw(x)}, ξ,C) � 1, (2.71)

t ′ = t ′(k0, ξ, TM ,min{Tw(x)}, C, r⊥, r‖,C,Cφm ) ≤ t∗ � 1 (2.72)

such that for all t ∈ [0, t ′], we have∫
∏k0−1

j=1 V j

1{tk0>0}d�k0
k0−1,m(tk0) ≤ (

1

2
)k0Ak0−1,1, (2.73)

where Ak0−1,1 is defined in (2.47) and t∗ is defined in (2.45).

Remark 5 We comment that the main difference between this lemma and Lemma 3 is that
here a decaying factor ( 12 )

k0 is needed. This lemma implies for k = k0 large enough, the last
term of (2.13) is negligible.

The main idea to prove Lemma 4 is to use the decomposition (2.97) for the integral
domain. In Lemmas 5–8 we use Lemma 3 to show that such decomposition indeed make
contribution in obtaining the smallness. Among them Lemma 8 is the most important one as
it summarizes all estimates in Lemmas 5–7 and directly provides the decaying factor for the
k-fold integral. Echoing the difficulties for obtaining L∞ bound as discussed in Sect. 1.2,
where we proposed splitting γ+ into γ δ+ and the remainders, in Lemma 8, we detail such
splitting and the trajectories’ behavior in these sets.

After proving Lemmas 5–8 as preparation, we will conclude the proof for Lemma 4.

Lemma 5 Recall (2.46) in Lemma 3.
For 1 ≤ i ≤ k − 1, if

|vi · n(xi )| < δ, (2.74)

then ∫
∏k−1

j=i V j

1{tk>0}1{vi∈Vi :|vi ·n(xi )|<δ}d�
k,k−1
i,m (tk) ≤ δ(2CTM ,ξ )

2(k−i)Ak−1,i . (2.75)

If

|vi,‖ − ηi,‖Vm−i+1
‖ (ti )| > δ−1, (2.76)

then ∫
∏k−1

j=i sV j

1{tk>0}1{|vi,‖−ηi,‖Vm−i+1
‖ (ti )|>δ−1}d�

k,k−1
i,m (tk) ≤ δ(2CTM ,ξ )

2(k−i)Ak−1,i .

(2.77)

Here ηi,‖ is a constant defined in (2.85).
If

|vi,⊥ − ηi,⊥Vm−i+1
⊥ (ti )| > δ−1, (2.78)

then ∫
∏k−1

j=i V j

1{tk>0}1{|vi,⊥−ηi,⊥Vm−i+1
⊥ (ti )|>δ−1}d�

k,k−1
i,m (tk) ≤ δ(2CTM ,ξ )

2(k−i)Ak−1,i .

(2.79)

Here ηi,⊥ is a constant defined in (2.88).
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Proof First we focus on (2.75). By (2.67) in Lemma 3, we can replace l by k − 1 and replace
q by i to obtain
∫
∏k−1

j=i V j

1{tk>0}d�k,k−1
i,m (tk) ≤ 4(2CTM ,ξ )

2(k−1−i)

∫
Vi,⊥

2

r⊥
|vi,⊥|

2Tw(xi )
e
−[ 1

2Tk−1,i
− 1

2Tw(xi )
−2(2C)k−1−i (Ct)]|vi,⊥|2

I0

(
(1 − r⊥)1/2vi,⊥Vm−i+1

⊥ (ti )

Tw(xi )r⊥

)

e
|vi,⊥|2+(1−r⊥)|Vm−i+1

⊥ (ti )|2
2Tw(x)r⊥ dvi,⊥

×
∫

Vi,‖

1

πr‖(2 − r‖)(2Tw(xi ))

e
−[ 1

2Tk−1,i
− 1

2Tw(xi )
−2(2C)k−1−i (Ct)]|vi,‖|2e− 1

2Tw(xi )

|vi,‖−(1−r‖)Vm−i+1
‖ (ti )|2

r‖(2−r‖) dvi,‖.

(2.80)

Under the condition (2.74), we consider the second line of (2.80) with integrating over
{vi,⊥ ∈ Vi,⊥ : |vi · n(xi )| < 1−η

2(1+η) δ}. To apply (6.10) in Lemma 17, we set

a = −
[

1

2Tk−1,i
− 1

2Tw(xi )

]
, b = 1

2Tw(xi )r⊥
, ε = (2C)k−1−i (Ct),

w = √
1 − r⊥Vm−i+1

⊥ (ti ).

Under the condition |vi · n(xi )| < 1−η
2(1+η) δ, applying (6.10) in Lemma 17 and using (2.69)

with q = i, l = k − 1, we bound the second line of (2.80) by

δCTM ,ξ exp

([ [Tk−1,i − Tw(xi )][1 − rmin]
2Tw(xi )[Tk−1,i (1 − rmin)+ rminTw(xi )] + (2C)k−i (Ct)

]|Vm−i+1
⊥ (ti )|2

)
.

(2.81)

Comparing with (2.69), we conclude the second line of (2.80) provides one more constant
term δ. The third line of (2.80) is bounded by (2.68) with q = i, l = k − 1. Therefore, we
derive (2.75).

Then we focus on (2.77).We consider the third line of (2.80). To apply (6.8) in Lemma 16,
we set

a = − 1

2Tk−1,i
+ 1

2Tw(xi )
, b = 1

2Tw(xi )r‖(2 − r‖)
,

ε = 2(2C)k−1−i (Ct), w = (1 − r‖)Vm−i+1
‖ (ti ). (2.82)

We define

Bi,‖ := b − a − ε. (2.83)

In regard to (6.8),

b

b − a − ε
w = b

b − a
[1 + ε

b − a − ε
]w.

By (2.82),

b

b − a
= Tk−1,i

Tk−1,i (1 − r‖)2 + Tw(xi )r‖(2 − r‖)
,

ε

b − a − ε
= 2(2C)k−1−i (Ct)

Bi,‖
.
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Thus we obtain

b

b − a − ε
w = ηi,‖Vm−i+1

‖ (ti ), (2.84)

where we define

ηi,‖ := Tk−1,i [1 + 2(2C)k−1−i (Ct)/Bi,‖]
Tk−1,i (1 − r‖)2 + Tw(xi )r‖(2 − r‖)

(1 − r‖). (2.85)

Thusunder the condition (2.76), applying (6.8) inLemma6.6with b
b−a−εw = ηi,‖Vm−i+1

‖ (ti )
and using (2.68) with q = i, l = k − 1, we bound the third line of (2.80) by

δCTM ,ξ exp

([ [Tk−1,i − Tw(xi )][1 − rmin]
2Tw(xi )[Tk−1,i (1 − rmin)+ rminTw(xi )] + 2(2C)k−1−i (Ct)

]
|Vm−i+1

‖ (ti )|2
)
.

By the same computation in Lemma 5, we derive (2.77) because of the extra constant δ.
Last we focus on (2.79). We consider the second line of (2.80). To apply (6.10) in

Lemma 18, we set

a = − 1

2Tk−1,i
+ 1

2Tw(xi )
, b = 1

2Tw(xi )r⊥
,

ε = 2(2C)k−1−i (Ct), w = √
1 − r⊥Vm−i+1

⊥ (ti ). (2.86)

Define

Bi,⊥ := b − a − ε. (2.87)

By the same computation as (2.84),

b

b − a − ε
w = ηi,⊥Vm−i+1

⊥ (ti ),

where we define

ηi,⊥ :=
Tk−1,i [1 + 2(2C)k−1−i (Ct)

Bi,⊥ ]
Tk−1,i (1 − r⊥)+ Tw(xi )r⊥

√
1 − r⊥. (2.88)

Thus under the condition (2.78), applying (6.13) in Lemma 18 with b
b−a−εw =

ηi,⊥Vm−i+1
⊥ (ti ) and using (2.69) with q = i, l = k − 1, we bound the second line of (2.80)

by

δCTM ,ξ exp

([ [Tk−1,i − Tw(xi )][1 − rmin]
2Tw(xi )[Tk−1,i (1 − rmin)+ rminTw(xi )] + 2(2C)k−i (Ct)

]
|Vm−i+1)⊥(ti )|2

)
.

Then we derive (2.77) because of the extra constant δ. ��
Lemma 6 For ηi,‖ and ηi,⊥ defined in Lemma 5, suppose there exists η < 1 such that

max{ηi,‖, ηi,⊥} < η < 1. (2.89)

If

|vi,‖| > 1 + η

1 − η
δ−1 and |vi,‖ − ηi,‖Vm−i+1

‖ (ti )| < δ−1, (2.90)

then we have

|Vm−i+1
‖ (ti )| > |vi,‖| + δ−1. (2.91)
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Also if

|vi,⊥| > 1 + η

1 − η
δ−1 and |vi,⊥ − ηi,⊥Vm−i+1

⊥ (ti )| < δ−1, (2.92)

then we have

|Vm−i+1
⊥ (ti )| > |vi,⊥| + δ−1. (2.93)

Remark 6 Lemma 5 includes all the cases that are controllable since they provides the small
number δ, which direct contributes in obtaining the exponential decay in (2.73). This lemma
discuss the rest cases that does not directly provide the smallness, which are the main diffi-
culty.

Proof Under the condition (2.90) we have

ηi,‖|Vm−i+1
‖ (ti )| > |vi,‖| − δ−1.

Thus we derive

|Vm−i+1
‖ (ti )| > |vi,‖| + 1 − ηi,‖

ηi,‖
|vi,‖| − 1

ηi,‖
δ−1

> |vi,‖| + 1 − ηi,‖
ηi,‖

1 + η

1 − η
δ−1 − 1

ηi,‖
δ−1

> |vi,‖| + 1 − ηi,‖
ηi,‖

1 + ηi,‖
1 − ηi,‖

δ−1 − 1

ηi,‖
δ−1

> |vi,‖| + 1 + ηi,‖
ηi,‖

δ−1 − 1

ηi,‖
δ−1 > |vi,‖| + δ−1,

where we use |vi,‖| > 1+η
1−η δ

−1 in the second line and 1 > η ≥ ηi,‖ in the third line. Then we
obtain (2.91).

Under the condition (2.92), we apply the same computation above to obtain (2.93). ��
Lemma 7 Suppose there are n number of v j such that

|v j,‖ − η j,‖Vm− j+1
⊥ (t j )| ≥ δ−1, (2.94)

and also suppose the index j in these v j are i1 < i2 < · · · < in , then∫
∏k−1

j=i1
V j

1{tk>0}1{ (2.94) holds for j=i1,i2,··· ,in}d�
k,k−1
i1,m

(tk) ≤ (δ)n(2CTM ,ξ )
2(k−i1)Ak−1,i1 .

(2.95)

Proof By (2.48) in Lemma 2 with l = k − 1, p = i1, p′ = in and using (2.77) with i = in ,
we have∫

∏k−1
j=i1

V j

1{tk>0}1{ (2.94) holds for j=i1,··· ,in}d�
k,k−1
i1,m

(tk)

≤ δ(2CTM ,ξ )
2(k−in)Ak−1,in

∫
∏in−1

j=i1
V j

1{tk>0}1{ (2.94) holds for j=i1,··· ,in−1}dϒ
in−1
i1

= δ(2CTM ,ξ )
2(k−in)Ak−1,in

∫
∏in−1−1

j=i1
V j∫

∏(in )−1
j=in−1

V j

1{tk>0}1{ (2.94) holds for j=i1,··· ,in−1}dϒ
(in)−1
in−1

dϒ in−1−1
i1

.

(2.96)
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Again by (2.48) and (2.77) with i = in−1 we have

(2.962.96) ≤ δ2(CTM ,ξ )
2(k−in−1)Ak−1,in−1∫

∏in−1−1
j=i1

V j

1{tk>0}1{ (2.94) holds for j=i1,··· ,in−2}dϒ
in−1−1
i1

.

Keep doing this computation until integrating over Vi1 we derive (2.95). ��
Lemma 8 Assume t ≤ t∗( so that we can apply Lemma 3) satisfies (2.108) and (2.110). For
0 < δ � 1, we define

Vδ
j := {v j ∈ V j : |v j · n(x j )| > δ, |v j | ≤ δ−1}. (2.97)

For the sequence {v1, v2, · · · , vk−1}, consider a subsequence {vl+1, vl+2, · · · , vl+L } with
l + 1 < l + L ≤ k − 1 as following:

vl︸︷︷︸
∈V

1−η
2(1+η) δ
l

, vl+1, vl+2 · · · vl+L︸ ︷︷ ︸
all∈Vl+ j \V

1−η
2(1+η) δ
l+ j

, vl+L+1︸ ︷︷ ︸
∈V

1−η
2(1+η) δ
l+L+1

.

(2.98)

In (2.98), if L ≥ 100 1+η
1−η , then we have

∫
∏k−1

j=l V j

1{tk>0}1
{vl+ j∈Vl+ j \V

1−η
2(1+η) δ
l+ j for 1≤ j≤L}

d�k,k−1
l,m (tk) ≤ (3δ)L/2(2CTM ,ξ )

2(k−l)Ak−1,l .

(2.99)

Here the η satisfies the condition (2.89).

Remark 7 In order to apply Lemma 6 we need to create the condition (2.90) and (2.92). This

is the main reason that we consider the space V
1−η

2(1+η) δ
j .

This lemma asserts that implies that when L is large enough, such subsequence (2.98),
without further considering the constraint for |vi,‖ − ηi,‖Vm−i+1

‖ (ti )| for l + 1 ≤ i ≤ l + L

as (2.90),(2.76), provides a decay factor (3δ)L/2. Such decay factor is the key the obtain the
decay factor ( 12 )

k0 in Lemma 4. In fact in the proof we consider all possible cases for each
vi,‖ in the subsequence (2.98) and apply the estimates in Lemmas 5–7 to obtain the decay
factor (3δ)L/2 for all cases. We will heavily rely on this lemma to prove Lemma 4.

Proof By the definition (2.97) we have

Vi\V
1−η

2(1+η) δ
i = {vi ∈ Vi : |vi · n(xi )| < 1 − η

2(1 + η)
δ or |vi | ≥ 2(1 + η)

1 − η
δ−1}.

Here we summarize the result of Lemmas 5 and 6. With 1−η
1+η δ < δ, when vi ∈ Vi\V

1−η
2(1+η) δ
i

(1) When |vi · n(xi )| < 1−η
2(1+η) δ, we have (2.75).

(2) When |vi | > 2(1+η)
1−η δ−1,

(a) when |vi,‖| >
1+η
1−η δ

−1, if |vi,‖ − ηi,‖Vm−i+1
‖ (ti )| < δ−1, then |Vm−i+1

‖ (ti )| >

|vi,‖| + δ−1.
(b) when |vi,‖| > 1+η

1−η δ
−1, if |vi,‖ − ηi,‖Vm−i+1

‖ (ti )| ≥ δ−1, then we have (2.77).
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(c) when |vi,⊥| > 1+η
1−η δ

−1, if |vi,⊥ − ηi,⊥Vm−i+1
⊥ (ti )| < δ−1, then |Vm−i+1

⊥ (ti )| >
|vi,⊥| + δ−1 .

(d) when |vi,⊥| > 1+η
1−η δ

−1, if |vi,⊥ − ηi,⊥Vm−i+1
⊥ (ti )| ≥ δ−1, then we have (2.79).

We define Wi,δ as the space that provides the smallness:

Wi,δ := {vi ∈ Vi : |vi,⊥| < 1 − η

2(1 + η)
δ}

⋃
{vi ∈ Vi : |vi,⊥| > 1 + η

1 − η
δ−1

and |vi,⊥ − ηi,⊥Vm−i+1
⊥ (ti )| > δ−1}

⋃
{vi ∈ Vi : |vi,‖| > 1 + η

1 − η
δ−1 and |vi,‖ − ηi,‖Vm−i+1

‖ (ti )| > δ−1}.

Then we have

Vi\V
1−η

2(1+η) δ
i ⊂Wi,δ

⋃
{vi,⊥ ∈ Vi,⊥ : |vi,⊥| > 1 + η

1 − η
δ−1 and |vi,⊥ − ηi,⊥Vm−i+1

⊥ (ti )| < δ−1}
⋃

{vi,‖ ∈ Vi,‖ : |vi,‖| > 1 + η

1 − η
δ−1 and |vi,‖ − ηi,‖Vm−i+1

‖ (ti )| < δ−1}.
(2.100)

By (2.75), (2.77) and (2.79) with 1−η
1+η δ < δ, we obtain

∫
∏k−1

j=i V j

1{vi∈Wi,δ}1{tk>0}d�k,k−1
i,m (tk) ≤ 3δ(2CTM ,ξ )

2(k−i)Ak−1,i . (2.101)

For the subsequence {vl+1, · · · , vl+L } in (2.98), when the number of v j ∈ W j,δ is larger
than L/2, by (2.95) in Lemma 7 with n = L/2 and replacing the condition (2.94) by
v j ∈ W j,δ , we obtain

∫
∏k−1

j=l V j

1{Number of v j∈W j,δ is large than L/2}1{tk>0}d�k,k−1
l,m (tk)

≤ (3δ)L/2(2CTM ,ξ )
2(k−li )Ak−1,l .

(2.102)

This finish the discussion with the cases (1),(2b),(2d). Then we focus on the cases (2a),(2c).
When the number of v j /∈ W j,δ is larger than L/2, by (2.100) we further consider

two cases. The first case is that the number of v j ∈ {v j : |v j,‖| > 1+η
1−η δ

−1 and |v j,‖ −
η j,‖Vm− j+1

‖ (t j )| < δ−1} is larger than L/4. According to the relation of v j,‖ and

Vm− j+1
‖ (t j ), we categorize them into

Set1: {v j /∈ W j,δ : |v j,‖| > 1+η
1−η δ

−1 and |v j,‖ − η j,‖Vm− j+1
‖ (t j )| < δ−1}.

Denote M = |Set1| and the corresponding index in Set1 as j = p1, p2, · · · , pM . Then
we have

L/4 ≤ M ≤ L. (2.103)

By (2.91) in Lemma 6, for those vp j , we have

|vp j ,‖| − |Vm−p j+1
‖ (tp j )| < −δ−1. (2.104)

Set2: {v j ∈ V j\V
1−η

2(1+η)δ
j : |v j,‖| ≥ |Vm− j+1

‖ (t j )|}.
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Denote M = |Set2| and the corresponding index in Set2 as j = q1, q2, · · · , qM.
By (2.103) we have

1 ≤ M ≤ L − M ≤ 3

4
L. (2.105)

Then for those vq j we define

a j := |vq j ,‖| − |Vm−q j+1
‖ (tq j )| > 0. (2.106)

Set3: {v j ∈ V j\V
1−η

2(1+η)δ
j : |v j,‖| ≤ |Vm− j+1

‖ (t j )| ≤ |v j,‖| + δ−1}.
Denote N = |Set3| and the corresponding index in Set3 as j = o1, o2, · · · , oN . Then for

those o j , we have

|vo j ,‖| ≤ |Vm−o j+1
‖ (to j )| ≤ |vo j ,‖| + δ−1. (2.107)

From (2.98), we have vl ∈ V
1−η

2(1+η) δ
l , thus we obtain

−2(1 + η)

1 − η
δ−1 < |vl+L,‖| − |vl,‖| =

L∑
j=1

(|vl+ j,‖| − |vl+ j−1,‖|
)

=
L∑
j=1

(|vl+ j,‖| − |Vm−(l+ j)+1
‖ (tl+ j )|

)

+
L∑
j=1

(|Vm−(l+ j)+1
‖ (tl+ j )| − |vl+ j−1,‖|

)

≤
L∑
j=1

(|vl+ j,‖| − |Vm−(l+ j)+1
‖ (tl+ j )|

) +
L∑
j=1

Cφm (tl+ j−1 − tl+ j ),

where Cφm is defined in (2.18). Take t = t(φm) small enough such that

L+1∑
j=1

Cφm (tl+ j−1 − tl+ j ) ≤ Cφm t ≤ 1. (2.108)

By (2.104), (2.106) and (2.107), we derive that

−2(1 + η)

1 − η
δ−1 − 1 <

M∑
j=1

(|vp j ,‖| − |Vm−p j+1
‖ (tp j )|

) +
M∑
j=1

(|vq j ,‖| − |Vm−q j+1
‖ (tq j )|

)

+
N∑
j=1

(|vo j ,‖| − |Vm−o j+1
‖ (to j )|

) ≤ −Mδ−1 +
M∑
j=1

a j .

Therefore, by L ≥ 100 1+η
1−η and (2.103), we obtain

2(1 + η)

1 − η
δ−1 + 1 ≤ L

10
δ−1 ≤ M

2
δ−1
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and thus
M∑
j=1

a j ≥ Mδ−1 − 2(1 + η)

1 − η
δ−1 − 1 >

Mδ−1

2
. (2.109)

We focus on integrating over Vqi with 1 ≤ i ≤ M, those index satisfy (2.106). We consider
the third line of (2.80) with i = qi and with integrating over {vqi ,‖ ∈ Vqi ,‖ : |vqi ,‖| −
|Vm−q j+1

‖ (tq j )| = ai }. To apply (6.7) in Lemma 16, we set

a = − 1

2Tk−1,qi
+ 1

2Tw(xqi )
, b = 1

2Tw(xqi )r‖(2 − r‖)
, ε = 2(2C)k−1−qi (Ct).

We take t = t(ξ, k, TM , C,C) small enough such that

a + ε − b = − 1

2Tk−1,qi
+ 1

2Tw(xqi )
− 1

2Tw(xqi )r‖(2 − r‖)
+ 2(2C)k−1−qi (Ct) < − 1

4TM
.

(2.110)

Then we use ηqi ,‖ < 1 to obtain

1{|vqi ,‖|−|Vm−qi+1
‖ (tqi )|=ai } ≤ 1{|vqi ,‖|−ηqi ,‖|V

m−qi+1
‖ (tqi )|>ai } ≤ 1{|vqi ,‖−ηqi ,‖V

m−qi+1
‖ (tqi )|>ai }.

(2.111)

By (6.7) in Lemma 16 and (2.111), we apply (2.68) with q = qi to bound the third line
of (2.80)( the integration over Vqi ,‖ ) by

e
− a2i

4TM CTM ,ξ exp

([ [Tk−1,qi − Tw(xqi )][1 − rmin]
2Tw(xqi )[Tk−1,qi (1 − rmin)+ rminTw(xqi )]

+2(2C)k−qi (Ct)
]|Vm−q j+1

‖ (tqi )|2
)
. (2.112)

Hence by the constant in (2.112) we draw a similar conclusion as (2.101):
∫
∏k−1

j=qi
V j

1{tk>0}1{|vqi ,‖|−|Vm−qi+1
‖ (tqi )|=ai }d�

k,k−1
qi ,m (tk) ≤ e

− a2i
4TM (2CTM ,ξ )

2(k−qi )Ak−1,qi .

(2.113)

Therefore, by Lemma 7, after integrating over Vq1,‖,Vq2,‖, · · · ,VqM,‖ we obtain an extra
constant

e−[a2i +a22+···+a2M]/4TM ≤ e−[ai+a2+···+aM]2/(4TMM) ≤ e−[Mδ−1/2]2/(4TMM)

≤ e−[ L8 δ−1]2/(4TM 3
4 L) ≤ e

− 1
96TM

L(δ−1)2 ≤ e−Lδ−1
,

where we have used (2.109) in the last step of first line, (2.103), (2.105) in the first step
of second line and take δ � 1 in the last step of second line. Then e−Lδ−1

is smaller than
(3δ)L/2 in (2.102) and we conclude∫

∏k−1
j=l V j

1{M=|Set1|≥L/4}1{tk>0}d�k,k−1
l,m (tk) ≤ (3δ)L/2(2CTM ,ξ )

2(k−li )Ak−1,l .

(2.114)

The second case is that the number of v j ∈ {v j /∈ W j,δ : |v j,⊥| > 1+η
1−η δ

−1} is larger than
L/4. We categorize v j,⊥ into
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Set4: {v j /∈ W j,δ : |v j,⊥| > 1+η
1−η δ

−1 and |v j,⊥ − η j,⊥Vm− j+1
⊥ (t j )| < δ−1}.

Set5: {v j ∈ V j\V
1−η

2(1+η)δ
j : |v j,⊥| > |Vm− j+1

⊥ (t j )|}.
Set6: {v j ∈ V j\V

1−η
2(1+η)δ
j : |v j,⊥| ≤ |Vm− j+1

⊥ (t j )| ≤ |v j,⊥| + δ−1}.
Denote |Set4| = M1 with L/4 ≤ M1 ≤ L and the corresponding index as p′

1, p
′
2, · · · , p′

M1
,

|Set5| = M1 and the corresponding index as q ′
1, q

′
2, · · · , q ′

M1
, |Set6| = N1 and the corre-

sponding index as o′
1, o

′
2, · · · , o′

N1
. Also define b j := |vq ′

j ,⊥|−|Vm−q ′
j+1

⊥ (tq ′
j
)|. By the same

computation as (2.109), we have

M1∑
j=1

b j ≥ M1δ
−1 − 2(1 + η)

1 − η
δ−1 >

M1δ
−1

2
.

We focus on the integration over vq ′
j
. Let 1 ≤ i ≤ M1, we consider the second line of (2.80)

with i = q ′
i and with integrating over {vq ′

i ,⊥ ∈ Vq ′
i ,⊥ : |vq ′

i ,⊥| − |Vm−q ′
i+1

⊥ (tq ′
i
)| = bi }. To

apply (6.12) in Lemma 16, we set

a = − 1

2Tk−1,q ′
i

+ 1

2Tw(xq ′
i
)
, b = 1

2Tw(xq ′
i
)r⊥

, ε = 2(2C)k−q ′
i−1(Ct).

By the same computation as (2.110), we have a + ε − b < − 1
4TM

. Similarly to (2.111), we
have

1
{|vq′

i ,⊥|−|Vm−q′
i+1

⊥ (tq′
i
)|=bi }

≤ 1
{|vq′

i ,⊥−ηq′
i ,⊥V

m−q′
i+1

⊥ (tq′
i
)|>bi }

.

Hence by (6.12) in Lemma 18 and applying (2.69), we bound the integration over Vq ′
i ,⊥ by

e
− b2i

16TM CTM ,ξ

exp

([ [Tk−1,q ′
i
− Tw(xq ′

i
)][1 − rmin]

2Tw(xq ′
i
)[Tk−1,q ′

i
(1 − rmin)+ rminTw(xq ′

i
)] + (2C)k−q ′

i (Ct)

]
|Vm−q ′

i+1
⊥ (tq ′

i
)|2

)
.

Therefore,
∫
∏k−1

j=q′
i
V j

1{tk>0}1{|vq′
i ,⊥|−|Vm−q′

i+1

⊥ (tq′
i
)|=bi }

d�k,k−1
q ′
i ,m

(tk) ≤ e
− b2i

16TM (CTM ,ξ )
2(k−q ′

i )Ak−1,q ′
i
.

The integration over Vq ′
1,⊥,Vq ′

2,⊥, · · · ,Vq ′
M1

,⊥ provides an extra constant

e
−[b21+b22+···+b2M1

]/16TM ≤ e
− 1

400TM
L(δ−1)2 ≤ e−Lδ−1

,

where we set δ � 1 in the last step. Then e−Lδ−1
is smaller than (3δ)L/2 in (2.102) and we

conclude∫
∏k−1

j=l V j

1{M1=|Set4|≥L/4}1{tk>0}d�k,k−1
l,m (tk) ≤ (3δ)L/2(2CTM ,ξ )

2(k−l)Ak−1,l .

(2.115)

Finally collecting (2.102), (2.114) and (2.115) we derive the lemma. ��
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Now we prove the Lemma 4.

Proof of Lemma 4 We mainly apply Lemma 8 during the proof. In order to apply Lemma 8,

here we consider the space V
1−η

2(1+η) δ
i and ensure η satisfy the condition (2.89). Also we let

t ′ = t ′(ξ, k, TM , C,C,Cφm ) ( consistent with (2.72) ) satisfy condition (2.108) and (2.110).
In the proof we first construct the η that satisfies the condition (2.89) in Step 1. Then we

prove there can be at most finite number of v j ∈ V\V
1−η

2(1+η) δ
j in Step 2. With such conclusion

in Step 2, we apply Lemma 8 and consider the contribution of all possible subsequence (2.98)
in Step 3. In Step 4 we conclude the lemma.

Step 1
In this step we mainly focus on constructing the η, which is defined in (2.126).
First we consider ηi,‖, which is defined in (2.85). In regard to (2.82) and (2.83), by (2.110)

with t ≤ t ′,

Bi,‖ ≥ 1

2Tk−1,i
− 2(2C)k−1−i t ≥ 1

2 2ξ
ξ+1TM

− (2C)k(Ct) ≥ 1

4TM
. (2.116)

By (2.41), Tk−1,i → TM as k − i → ∞. For any ε1 > 0, there exists k1 s.t when

k ≥ k1, i ≤ k/2, we have Tk−1,i ≤ (1 + ε1)TM . (2.117)

Moreover, by (1.28), there exists ε2 s.t

min{Tw(x)}
TM

>
1 − r‖
2 − r‖

(1 + ε2). (2.118)

Then we have

ε2 = ε2(min{Tw(x)}, TM , r‖, r⊥). (2.119)

We use (2.117) and (2.118) to bound Tw(xi ) in the ηi,‖( defined in (2.85)) below as

Tw(xi ) = Tk−1,i
Tw(xi )

Tk−1,i
≥ Tk−1,i

Tw(xi )

TM

1

1 + ε1
>

1 − r‖
2 − r‖

Tk−1,i
1 + ε2

1 + ε1
. (2.120)

Thus we obtain

ηi,‖ <
1 + 2 (2C)

k (Ct)
Bi,‖

(1 − r‖)2 + 1−r‖
2−r‖

1+ε2
1+ε1 r‖(2 − r‖)

(1 − r‖) =
1 + (2C)k (Ct)

Bi,‖
1 − r‖ + r‖ 1+ε2

1+ε1
. (2.121)

By (2.117), we take

k = k1 = k1(ε2, TM , rmin) (2.122)

large enough such that ε1 < ε2/4. By (2.116) and (2.121), we derive that when k = k1,

sup
i≤k/2

ηi,‖ ≤ 1 + 4TM (2C)k(Ct)
1 − r‖ + r‖ 1+ε2

1+ε2/4
< η‖ < 1. (2.123)

Here we define

η‖ := 1

1 − r‖ + r‖ 1+ε2
1+ε2/2

< 1. (2.124)
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wherewe take t ′ = t ′(k, TM , ε2, C,C, r‖) small enough and t ≤ t ′ such that 4TM (2C)k(Ct) �
1 to ensure the second inequality in (2.123). Combining (2.119) and (2.122), we conclude
the t ′ we choose here only depends on the parameter in (2.72).

Then we consider ηi,⊥ which is defined in (2.88). In regard to (2.86) and (2.87), by (2.116)

we have Bi,⊥ ≥ 1
4TM

. By min{Tw(x)}
TM

>
√
1−r⊥−(1−r⊥)

r⊥ in (1.28) we can use the same compu-
tation as (2.120) to obtain

Tw(xi ) >

√
1 − r⊥ − (1 − r⊥)

r⊥
Tk−1,i

1 + ε2

1 + ε1
,

with ε1 < ε2/4. Thus we obtain

ηi,⊥ < η⊥ < 1.

where we define

η⊥ := 1√
1 − r⊥ + (1 − √

1 − r⊥) 1+ε2
1+ε2/2

< 1, (2.125)

with t ′ = t ′(k, TM , ε2, C,C, r‖)( consistent with (2.72)) small enough and t ≤ t ′.
Finally we define

η := max{η⊥, η‖} < 1. (2.126)

Step 2
We claim that for t � 1,

|t j − t j+1| � (
1 − η

2(1 + η)
δ)3, for v j ∈ V

1−η
2(1+η) δ
j . (2.127)

For t j ≤ 1,

|
∫ t j+1

t j
V m− j (s; t j , x j , v j )ds|2

= |x j+1 − x j |2 � |(x j+1 − x j ) · n(x j )|
= |

∫ t j+1

t j
V m− j (s; t j , x j , v j ) · n(x j )ds|

= |
∫ t j+1

t j
(v j −

∫ s

t j
∇φm− j (τ, X(τ ; t j , x j , v j ))dτ) · n(x j )ds|

≥ |v j · n(x j )||t j − t j+1| − |
∫ t j+1

t j

∫ s

t j
∇φm− j (τ, X(τ ; t j , x j , v j ))dτ) · n(x j )ds|.
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Here we have used the fact that if x, y ∈ ∂� and ∂� isC2 and� is bounded then |x− y|2 ��

|(x − y) · n(x)|(see the proof in [8] and [9]). Thus

|v j · n(x j )| � 1

|t j − t j+1| |
∫ t j+1

t j
V (s; t j , x j , v j )ds|2

+ 1

|t j − t j+1| |
∫ t j+1

t j

∫ s

t j
∇φm− j (τ, X(τ ; t j , x j , v j ))dτ) · n(x j )ds|

� |t j − t j+1|{|v j |2 + |t j − t j+1|3‖∇φm− j‖2∞
+ 1

2
sup

t j+1≤τ≤t j
|∇φm− j (τ, X(τ ; t j , x j , v j )) · n(x j )|}.

Since v j ∈ V
1−η

2(1+η) δ
j ,

|v j · n(x j )| � |t j − t j+1|{δ−2 + t3‖∇φm− j‖2∞ + ‖∇φm− j‖∞}. (2.128)

By t � 1 and ‖∇φ j‖∞ is bounded due to Lemma 1, we can prove (2.127).
In consequence, when tk > 0, by (2.127) and t � 1, there can be atmost {[C�(

2(1+η)
(1−η)δ )

3]+
1} numbers of v j ∈ V

1−η
2(1+η) δ
j . Equivalently there are at least k − [C�(

2(1+η)
(1−η)δ )

3] numbers of

v j ∈ V j\V
1−η

2(1+η) δ
j .

Step 3
In this step we combine Step 1 and Step 2 and focus on the integration over

∏k−1
j=1 V j .

By (2.127) in Step 2, we define

N :=
[
C�

(2(1 + η)

δ(1 − η)

)3] + 1. (2.129)

For the sequence {v1, v2, · · · , vk−1}, suppose there are p number of v j ∈ V
1−η

2(1+η) δ
j with

p ≤ N , we conclude there are at

(
k − 1
p

)
number of these sequences. Below we only

consider a single sequence of them.
In order to get (2.124),(2.125)< 1, we need to ensure the condition (2.117). Thus we take

k = k1(TM , ξ, r⊥, r‖) and only use the decomposition V j =
(
V j\V

1−η
2(1+η) δ
j

)
∪ V

1−η
2(1+η) δ
j for

1 ≤ j ≤ k/2. Thus we only consider the half sequence {v1, v2, · · · , vk/2}. We derive that

when tk > 0, there are at most N number of v j ∈ V
1−η

2(1+η) δ
j and at least k/2 − N number of

v j ∈ V j\V
1−η

2(1+η) δ
j in

∏k/2
j=1 V j .

In this single half sequence {v1, · · · , vk/2}, in order to apply Lemma 8, we only want to
consider the subsequence (2.98) with l + 1 < l + L ≤ k/2 and L ≥ 100 1+η

1−η . Thus we
need to ignore those subsequence with L < 100 1+η

1−η . By (2.98) one can see at the end of this

subsequence, it is adjacent to a vl ∈ V
1−η

2(1+η) δ
l . By (2.129), we conclude

There are at most N number of subsequences (2.98)withL ≤ 100
1 + η

1 − η
. (2.130)
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We ignore these subsequences. Thenwedefine the parameters for the remaining subsequence(
with L ≥ 100 1+η

1−η ) as:

M1 := the number of v j ∈ V j\V
1−η

2(1+η) δ
j in the first subsequence starting from v1.

n := the number of these subsequences.

Similarly we can define M2,M3, · · · ,Mn as the number in the second, third, · · · , n-th
subsequence. Recall that we only consider

∏k/2
j=1 V j , thus we have

100
1 + η

1 − η
≤ Mi ≤ k/2, for 1 ≤ i ≤ n. (2.131)

By (2.130), we obtain

k/2 ≥ M1 + · · · Mn ≥ k/2 − 100
1 + η

1 − η
N . (2.132)

Take Mi with 1 ≤ i ≤ n as an example. Suppose this subsequence starts from vli+1 to vli+Mi ,
by (2.99) in Lemma 8 with replacing l by li and L by Mi , we obtain∫

∏k−1
j=li

V j

1{tk>0}1
{vli+ j∈Vli+ j \V

1−η
2(1+η) δ
li+ j for 1≤ j≤Mi }

d�k,k−1
li ,m

(tk)

≤ (3δ)Mi /2(2CTM ,ξ )
2(k−l)Ak−1,li . (2.133)

Since (2.133) holds for all 1 ≤ i ≤ n, by Lemma 7 we can draw the conclusion for the
Step 3 as following. For a single sequence {v1, v2, · · · , vk−1}, when there are p number

v j ∈ V
1−η

2(1+η) δ
j , we have

∫
∏k−1

j=1 V j

1
{p number v j∈V

1−η
2(1+η) δ
j for a single sequence}

1{tk>0}d�k
k−1,m(tk)

≤ (3δ)(M1+···+Mn)/2(2CTM ,ξ )
2kAk−1,1.

(2.134)

Step 4
Now we are ready to prove the lemma. By (2.129), we have

∫
∏k−1

j=1 V j

1{tk>0}d�k
k−1,m(tk) ≤

N∑
p=1

∫
{Exactly p number of v j∈V

1−η
2(1+η) δ
j }

1{tk>0}d�k
k−1,m(tk).

(2.135)

Since (2.134) holds for a single sequence, we derive

(2.135) ≤ (2CTM ,ξ )
2k

N∑
p=1

(
k − 1
p

)
(3δ)(M1+M2+···Mn)/2Ak−1,1

≤ (2CTM ,ξ )
2k N (k − 1)N (3δ)k/4−101 1+η

1−η NAk−1,1, (2.136)

where we use (2.132) in the second line.
Take k = N 3, the coefficient in (2.136) is bounded by

(2CTM ,ξ )
2N3

N 3N+1(3δ)N
3/4−101 1+η

1−η N ≤ (2CTM ,ξ )
2N3

N 4N (3δ)N
3/5, (2.137)
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where we choose N = N (η) large such that N 3/4 − 1011+η
1−η N ≥ N 3/5.

Using (2.129), we derive

3δ = C(�, η)N−1/3.

Finally we bound (2.137) by

(2CTM ,ξ )
2N3

N 4N (C(�, η)N−1/3)N
3/5

≤ e2N
3 log(2CTM ,ξ )e4N log Ne(N

3/5) log(C(�,η)N−1/3)

= e4N log Ne(N
3/5)(log(C(�,η))− 1

3 log N )e2N
3 log(2CTM ,ξ )

= e4N log N− N3
15 (log N−3 logC�,η−30 log(2CTM ,ξ ))

≤ e4N log N− N3
30 log N ≤ e− N3

50 log N = e− k
150 log k ≤ (

1

2
)k,

where we choose δ small enough in the second line such that N = N (�, η,CTM ,ξ ) is large
enough to satisfy

log N − 3 logC(�, η)− 30 log(2CTM ,ξ ) ≥ log N

2
,

4N log N − N 3

30
log N ≤ −N 3

50
log N .

And thus we choose k = N 3 = k2 = k2(�, η,CTM ,ξ ) and we also require log k > 150 in
the last step. Then we get (2.73).

Therefore, by the condition (2.117), eventually we choose k = k0 = max{k1, k2}. By the
definition of η (2.126) with (2.124) and (2.125), we obtain η = η(TM , C, r⊥, r‖, ε2). Thus
by (2.119) and (2.122), we conclude the k0 we choose here does not depend on t and only
depends on the parameter in (2.71). We derive the lemma. ��

Now we are ready to prove the Proposition 2, we will combine Lemmas 2– 4 to close the
estimate.

2.3 Proof of Proposition 2

Proof of Proposition 2 First we take

t∞ ≤ t ′. (2.138)

with t ′ defined in (2.72). Then we let k = k0 with k0 defined in (2.71) so that we can apply
Lemmas 4 and 3. Define the constant in (2.5) as

C∞ = 3(2CTM ,ξ )
k0 , (2.139)

where CTM ,ξ is defined in (2.56), k0 in defined in (2.71).
We mainly use the formula given in Lemma 2 and we use Lemmas 3, 4 to control every

term in (2.13). We consider two cases.
Case1: t1 ≤ 0,
We consider (2.11) in Lemma 2. Since

e− ∫ t
s

C
2 〈Vm (τ )〉2dτ ≤ e

C
2 (s−t)〈v〉2eCCφm (t−s)2〈v〉,
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by (2.11) and using the definition of �m
gain(s) in (2.15) we have

|hm+1(t, x, v)| ≤ |h0(Xm(0; t, x, v), Vm(0; t, x, v))| (2.140)

+
∫ t

0
e
C
2 (s−t)

(
〈v〉2−2Cφm (t−s)〈v〉

)
e−C〈Vm (s)〉2seθ |Vm (s)|2

∫
R3×S2

B(Vm(s)− u, w)
√
μ(u) (2.141)

+
∣∣∣ hm(t, x, v)

e−C〈v〉2t+θ |v|2
(
s, Xm(s), u′(u, Vm(s)

))∣∣∣
∣∣∣ hm(t, x, v)

e−C〈v〉2t+θ |v|2(
s, Xm(s), v′(u, Vm(s)

))∣∣∣dωduds, (2.142)

where u′(u, Vm(s)
)
and v′(u, Vm(s)

)
are defined by (1.4). Then we have

(2.142) ≤ ( sup
0≤s≤t

‖hm(s)‖L∞)2 ×
∫ t

0

∫
R3×S2

e
C
2 (s−t)

(
〈v〉2−2Cφm (t−s)〈v〉

)
B
(
Vm(s)− u, w

)

× √
μ(u)e−C〈Vm (s)〉2seθ |Vm (s)|2e−θ(|u|2+|Vm (s)|2)eC(〈u〉2+〈Vm (s)〉2)sdωduds

� ( sup
0≤s≤t

‖hm(s)‖L∞)2
∫ t

0

∫
R3

e
C
2 (s−t)

(
〈v〉2−2Cφm (t−s)〈v〉

)
|Vm(s)

− u|K√
μe−θ |u|2eC〈u〉2sduds

�C∞ ‖h0‖2L∞

∫ t

0
e
C
2 (s−t)

(
〈v〉2−2Cφm (t−s)〈v〉

)
〈Vm(s)〉Kds

� ‖h0‖2L∞

∫ t

0
e
C
2 (s−t)

(
〈v〉2−2Cφm (t−s)〈v〉

)(〈v〉K + (t − s)K
)
ds

≤ ‖h0‖2L∞

∫ t

0
e
C
2 (s−t)

(
〈v〉2−2Cφm (t−s)〈v〉

)(〈v〉K + 1
){1|v|>N + 1|v|≤N }ds

� ‖h0‖2L∞
[ ∫ t

0
e
C
4 (s−t)〈v〉2〈v〉K1|v|>Nds +

∫ t

0
〈v〉K1|v|>N

]

�‖h0‖∞
( 1

N 2 + Nt
)
,

where 0 ≤ K ≤ 1. Therefore, we obtain

(2.142) ≤ C(C∞, ‖h0‖∞)(
1

N 2 + Nt) ≤ 1

k0
‖h0‖∞, (2.143)

where we choose

N = N (C∞, ‖h0‖∞, k0) � 1, t∞ = t∞(N ,C∞, ‖h0‖∞, k0) � 1, (2.144)

with t ≤ t∞ to obtain the last inequality in (2.143).
Finally collecting (2.140) and (2.142) we obtain

‖hm+1(t, x, v)1{t1≤0}‖∞ ≤ 2‖h0‖∞ ≤ C∞‖h0‖∞, (2.145)

where C∞ is defined in (2.139).
Case2: t1 ≥ 0,
We consider (2.12) in Lemma 2. First we focus on the first line. By (2.143) we obtain∫ t

t1
e− ∫ t

s
C
2 〈Vm (τ )〉2dτ e−C〈Vm (s)〉2seθ |Vm (s)|2�m

gain(s)ds ≤ 1

k0
‖h0‖∞. (2.146)
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Then we focus on the second line of (2.12). Using θ = 1
4TM ξ

we bound the second line
of (2.12) by

exp

([ 1

2TM
2ξ
ξ+1

− 1

2Tw(x1)

]|Vm(t1)|2
)∫

∏k0−1
j=1 V j

H . (2.147)

Nowwe focus on
∫∏k0−1

j=1 V j
H . We compute H term by term with the formula given in (2.13).

First we compute the first line of (2.13). By Lemma 3 with p = 1, for every 1 ≤ l ≤ k0 − 1,
we have∫

∏k0−1
j=1 V j

1{tl+1≤0<tl }|h0
(
Xm−l(0), Vm−l(0)

)|d�k0
l,m(0)

≤ ‖h0‖∞
∫
∏k0−1

j=1 V j

1{tl+1≤0<tl }d�
k0
l,m(0)

≤ (2CTM ,ξ )
l‖h0‖∞ exp

(
(Tl,1 − Tw(x1))(1 − rmin)

2Tw(x1)[Tl,1(1 − rmin)+ rminTw(x1)] |V
m(t1)|2

+ (2C)l(Ct)|Vm(t1)|2
)
.

(2.148)

In regard to (2.147) we have

exp

([ 1

2TM
2ξ
ξ+1

− 1

2Tw(x1)

]|Vm(t1)|2
)

× (2.148)

= (2CTM ,ξ )
l‖h0‖∞ exp

([ −1

2
(
Tw(x1)rmin + Tl,1(1 − rmin)

) + 1

2TM
2ξ
ξ+1

]
|Vm(t1)|2

+ (2C)l(Ct)|Vm(t1)|2
)
.

Using the definition (2.40) we have Tw(x1) <
2ξ
ξ+1TM and Tl,1 <

2ξ
ξ+1TM , then we take

t∞ = t∞(TM , k0, ξ, C,C) (2.149)

small enough and t ≤ t∞ so that the coefficient for |Vm(t1)|2 is
−1

2
(
Tw(x1)rmin + Tl,1(1 − rmin)

) + 1

2TM
2ξ
ξ+1

+ (2C)l(Ct)

≤ −1

2
(
TMrmin + Tl,1(1 − rmin)

) + 1

2TM
2ξ
ξ+1

+ (2C)k0(Ct) ≤ 0.
(2.150)

Since (2.148) holds for all 1 ≤ l ≤ k0 − 1, by (2.150) the contribution of the first line
of (2.13) in (2.147) is bounded by

(2CTM ,ξ )
k0‖h0‖∞. (2.151)

Then we compute the second line of (2.13). For each 1 ≤ l ≤ k0 − 1 such that
max{0, tl+1} ≤ s ≤ tl , by (2.14), we have

d�k0
l,m(s) = e− ∫ tl

s
C
2 〈Vm−l (τ )〉2dτd�k0

l,m(tl).
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Therefore, we derive
∫ tl

max{0,tl }

∫
∏k0−1

j=1 V j

e−C〈Vm−l (s)〉2seθ |Vm−l (s)|2 |�m−l
gain (s)|d�k0

l,m(s)ds

≤
∫
∏k0−1

j=1 V j

∫ tl

max{0,tl }
e− ∫ tl

s
C
2 〈Vm−l (τ )〉2dτ e−C〈Vm−l (s)〉2seθ |Vm−l (s)|2 |�m−l

gain (s)|dsd�k0
l,m(tl)

≤ 1

k0
‖h0‖∞

∫
∏k0−1

j=1 V j

�
k0
l,m(tl)

≤ 1

k0
‖h0‖∞(2CTM ,ξ )

l exp

(
(Tl,1 − Tw(x1))(1 − rmin)

2Tw(x1)[Tl,1(1 − rmin)+ rminTw(x1)] |V
m(t1)|2

+ (2C)l(Ct)|Vm(t1)|2
)
,

(2.152)

where we apply (2.143) in the third line and apply Lemma 3 in the last line.
In regard to (2.147), by (2.150) we obtain

exp

([ 1

2TM
2ξ
ξ+1

− 1

2Tw(x1)

]|Vm(t1)|2
)

× (2.152) ≤ 1

k0
(2CTM ,ξ )

l‖h0‖∞.

Since (2.152) holds for all 1 ≤ l ≤ k0 − 1, the contribution of the second line of (2.13)
in (2.147) is bounded by

k0 − 1

k0
(2CTM ,ξ )

k0‖h0‖∞. (2.153)

Last we compute the third term of (2.13). By Lemma 4 and the Assumption (2.5) we
obtain∫

∏k0−1
j=1 V j

1{0<tk0 }|hm−k0+2(tk0 , xk0 , Vm−k0+1(tk0)
)|d�k0

k0−1,m(tk0)

≤ ‖hm−k0+2‖∞
∫
∏k0−1

j=1 V j

1{0<tk0 }d�k0
k0−1,m(tk0)

≤ 3(2CTM ,ξ )
k0(

1

2
)k0‖h0‖∞ exp

(
(Tl,1 − Tw(x1))(1 − rmin)

2Tw(x1)[Tl,1(1 − rmin)+ rminTw(x1)] |V
m(t1)|2

+ (2C)l(Ct)|Vm(t1)|2
)
.

(2.154)

In regard to (2.147), by (2.150) we have

exp

([ 1

2TM
2ξ
ξ+1

− 1

2Tw(x1)

]|Vm(t1)|2
)

× (2.154) ≤ (2CTM ,ξ )
k0‖h0‖∞.

Thus the contribution of the third line of (2.13) in (2.147) is bounded by

(2CTM ,ξ )
k0‖h0(x, v)‖∞. (2.155)

Collecting (2.151) (2.153) (2.155) we conclude that the second line of (2.12) is bounded
by

(2CTM ,ξ )
k0 × (2 + k0 − 1

k0
)‖h0‖∞. (2.156)
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Adding (2.156) to (2.146) we use (2.12) to derive

‖hm+1(t, x, v)1{t1≥0}‖∞ ≤ 3(2CTM ,ξ )
k0‖h0‖∞. (2.157)

Combining (2.145) and (2.157) we derive (2.6).
Last we focus the parameters for t∞ in (2.7). In the proof the constraints for t∞

are (2.138), (2.144) and (2.149). We obtain

t∞ = t∞(t ′, N ,C∞, ‖h0‖∞, TM , k0, ξ, C,C)
= t∞(k0, ξ, TM ,min{Tw(x)}, C, r⊥, r‖,C,CTM ,ξ , ‖h0‖∞,Cφm ).

By the definition of k0 in (2.71), definition of CTM ,ξ in (2.56), definition of C in (2.59),
definition of Cφm in (2.18) and the condition for C in (2.30), (2.16), (2.65), we derive (2.7).

��

3 WeightedW1,p Estimate for fm+1

For proving the uniqueness of the solution as mentioned in the introduction, we rely on
the estimate for ∇x f . In this section we prove the weighted W 1,p estimates for f m+1 =
Fm+1/

√
μ that satisfies (1.44) with boundary condition (1.45). We will be proving the

following proposition.

Proposition 3 Assume all the assumption in Proposition 2 holds true ( so that we have (2.8)
). Let f m+1 solving (1.44) with boundary condition (1.45). Define

Em(t) := sup
l≤m

[
λ‖wθ̃e

−λt〈v〉 f l(t)‖p
p + λ

∫ t

0
|wθ̃e

−λs〈v〉 f l(s)|pp,+

+ 1

2
‖e−λt〈v〉wθ̃α

β

f l−1,ε
∇x,v f

l(t)‖p
p

+
∫ t

0
|e−λs〈v〉wθ̃α

β

f l−1,ε
∇x,v f

l(s)|pp,+

+ λ

4

∫ t

0
‖e−λs〈v〉〈v〉wθ̃α

β

f l−1,ε
∇x,v f

l(s)‖p
p

]
.

(3.1)

Then for small enough θ̃ so that 0 < θ̃ < θ � 1 and λ � 1, there exists tW � 1 (tW ≤ t∞)
and CW � 1 such that for

p − 2

p
< β <

2

3
for 3 < p < 6, (3.2)

if

sup
0≤t≤tW

Em(t) ≤ 2CW {‖wθ̃ f0‖p
p + ‖wθ̃α

β
f0,ε

∇x,v f0‖p
p} < ∞, (3.3)

then

sup
0≤t≤tW

Em+1(t) ≤ 2CW {‖wθ̃ f0‖p
p + ‖wθ̃α

β
f0,ε

∇x,v f0‖p
p}. (3.4)

Here CW is a constant defined in (3.65), and tW satisfies the condition (3.66).
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This proposition implies the uniform in m bound of the weightedW 1,p norm of f m . This
gives us an a-priori estimate for the later proof for the uniqueness. The “energy” term defined
in (3.1) has two components that depend on p-norm of f , and three components on p-norm
of ∂ f . Therefore in the proof for the proposition, we need to provide the estimates for these
components. Some lemmas from [2,15] will be repeatedly used and we cite them here first.

We note that in bulk this part of proof is rather similar to that in [2]. The main diffi-
culty comes in through the boundary treatment as mentioned in the introduction, and this
complexity is reflected Step 1 for f and Step 5 for ∂ f in the proof.

For the initial problems of the transport equation with time-independent field E(t, x),
source H(t, x, v), and damping term ψ(t, x, v) ≥ 0, let h solves:

∂t h + v · ∇xh + E · ∇vh + ψh = H , (3.5)

then we have the following estimates for h:

Lemma 9 (Lemma 5 in [2]) For p ∈ [1,∞) assume that h, ∂t h + v · ∇xh − ∇φ · ∇vh ∈
L p([0, T ]; L p(�×R

3)) and hγ− ∈ L p([0, T ]; L p(γ )). Then h ∈ C0([0, T ]; L p(�×R
3))

and hγ+ ∈ L p([0, T ]; L p(γ )) and for almost every t ∈ [0, T ] :

‖h(t)‖p
p +

∫ t

0
|h|pγ+,p = ‖h(0)‖p

p +
∫ t

0
|h|pγ−,p

+
∫ t

0

∫∫
�×R3

{∂t h + v · ∇xh + E · ∇vh + ψh}|h|p−1.

(3.6)

Lemma 10 (Lemma 6 in [2]) Assume E ∈ L∞, then for t � 1, ε > 0,∫ t

0

∫
γ+\γ ε+

|h|dγ ds

≤ C(ε)

{
‖h0‖1 +

∫ t

0
‖h(s)‖1 + ‖[∂t + v · ∇x + E · ∇v + ψ]h(s)‖1ds

}
,

(3.7)

where

γ ε+ = {(x, v) ∈ γ+ : n(x) · v < ε or |v| > ε−1}. (3.8)

The next result is about the integrability of α,

Proposition 4 (Proposition 3 in [2]) Assume E(t, x) ∈ C1
x is given. Then for 0 ≤ s ≤ t � 1,

0 < σ < 1 and N > 1 and x ∈ �̄,∫
|u|≤N

du

α f ,ε(s, x, u)σ
�σ,�,N 1, (3.9)

and, for any 0 < κ ≤ 2,
∫

|u|≥N

e−C |v−u|2

|v − u|2−κ
1

α f ,ε(s, x, u)σ
du �σ,�,N ,κ 1. (3.10)

We will also need the C2 estimate for φ:

Lemma 11 Assume (3.2). If φ solves (1.24) then

‖φ(t)‖
C
2,1− 3

p
≤ (C1)

1/p{‖ f (t)‖p + ‖e−λt〈v〉αβf ,ε∇x f (t)‖p} for p > 3. (3.11)
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Proof Applying the Schauder estimate to (1.24) we deduce

‖φ‖
C
2,1− 3

p
�p,�

∥∥∥
∫
R3

f (t)
√
μdv

∥∥∥
C
0,1− 3

p (�̄)
for p > 3. (3.12)

By the Morrey inequality, W 1,p ⊂ C0,1− 3
p for p > 3, we derive

∥∥∥
∫
R3

f (t)
√
μdv

∥∥∥
C
0,1− n

p (�̄)
�

∥∥∥
∫
R3

f (t)
√
μdv

∥∥∥
W 1,p(�)

�
( ∫

R3
μq/2dv

)1/q‖ f (t)‖L p(�×R3)

+
∥∥∥
∫
R3

∇x f (t)
√
μdv

∥∥∥
L p(�)

.

By the Hölder inequality,we have
∣∣∣
∫
R3

∇x f (t, x, v)
√
μ(v)dv

∣∣∣

≤ ∥∥
√
eλt〈·〉μ(·)

α f ,ε(t, x, ·)β ‖
L

p
p−1 (R3)

∥∥e−λt〈·〉α f ,ε(t, x, ·)β∇x f (t, x, ·)‖L p(R3)

=
( ∫

R3

μ(v)
p

2(p−1)

α(t, x, v)
β p
p−1

dv
) p−1

p ‖e−λt〈·〉αβf ,ε∇x f (t, x, ·)‖L p(R3).

From the assumption p−2
p−1 <

β p
p−1 <

2
3

p
p−1 < 1. We draw the conclusion. ��

Weneed some estimates about the collision operator� for Proposition 3. Define a notation

kρ(v, u) = 1

|v − u| exp{−ρ|v − u|2 − ρ
||v| − |u||2
|v − u|2 }. (3.13)

The velocity derivative for the nonlinear Boltzmann operator reads

∇v

(
�gain( f

m, f m)− �loss( f
m, f m+1)

)
= �gain(∇v f

m, f m)+ �gain( f
m,∇v f

m)− �loss(∇v f
m, f m+1)

− �loss( f
m,∇v f

m+1)

+ �v,gain( f
m, f m)− �v,loss( f

m, f m+1).

(3.14)

Here we have defined

�v,gain( f
m, f m)− �v,loss( f

m, f m+1)

:=
∫
R3

∫
S2

|u · ω| f m(v + u⊥) f m(v + u‖)∇v

√
μ(v + u)dωdu

−
∫
R3

∫
S2

|u · ω| f m(v + u) f m+1(v)∇v

√
μ(v + u)dωdu.

(3.15)

Lemma 12 For 0 < θ
4 < ρ, if 0 < ρ̃ < ρ − θ

4 , 0 ≤ s ≤ t � ρ̃, then

k�(v, u)
eθ |v|2

e⊆|u|2
eλs〈u〉

eλs〈v〉
� k�̃(v, u). (3.16)
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Moreover, ∫
R3

kρ̃ (v, u)du � 〈v〉−1. (3.17)

For the nonlinear Boltzmann operator we have

|�gain( f
m, f m)− �loss( f

m, f m+1)|
�

(‖wθ ′ f m‖∞ + ‖wθ ′ f m+1‖)
∫
R3

k�(v, u)| f m(u)|du.
(3.18)

For (3.14) we have

|wθ̃�gain(∇v f
m, f m)| + |wθ̃�gain( f

m,∇v f
m)|

� ‖wθ ′ f m‖∞
∫
R3

k�̃(v, u)|wθ̃∇v f
m(u)|du. (3.19)

|wθ̃�loss(∇v f
m, f m+1)|

� ‖wθ ′ f m+1‖∞
∫
R3

k�̃(v, u)|wθ̃∇v f
m(u)|du,

|wθ̃�loss( f
m,∇v f

m+1)|
� 〈v〉‖wθ ′ f m‖∞|wθ̃∇v f

m+1(v)|. (3.20)

|wθ̃�v,loss( f
m, f m+1)|

� 〈v〉 wθ̃ (v)

wθ ′(v)
‖wθ ′ f m+1‖∞‖e−λ〈u〉swθ̃ (u) f

m‖p. (3.21)

|wθ̃�v,gain( f
m, f m)|

� ‖wθ ′ f m‖∞
∫
R3

k�̃(v, u)|wθ ′ f m(u)|du. (3.22)

For (x, v) ∈ γ−, we have the following bound for ∇x,v f m+1 on the boundary:

|∇x,v f
m+1(t, x, v)| � 〈v〉2e[ 1

4TM
− 1

2Tw(x) ]|v|2
(
1 + 1

|n(x) · v|
)

× (3.24) (3.23)

with∫
n(x)·u>0

[
〈u〉|∇x,v f

m(t, x, u)|

+ 〈u〉2| f m | + ‖wθ ′ f m‖∞
∫
R3

kρ(u, u′)| f m−1(u′)|du′ + 〈u〉| f m |‖∇xφ
m−1‖∞

]

e
−[ 1

4TM
− 1

2Tw(x) ]|u|2
dσ(u, v).

(3.24)

Proof The proof of (3.16) is given in appendix.
The nonlinear Boltzmann operator (1.23) equals

∫
R3

∫
S2

|u · ω|g1(v + u1)g2(v + u2)
√
μ(v + u)dωdu

−
∫
R3

∫
S2

|u · ω|g1(v + u)g2(v)
√
μ(v + u)dωdu,

(3.25)
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where u1 = (u · ω)ω and u2 = u − u1. By exchanging the role of
√
μ and w−1, we

conclude (3.18).
The estimates (3.19)– (3.22) follows from the standard way using (3.25). The readers can

also find them in chapter 4 of [2].
Then we focus on the derivative on the boundary. By (1.22) we have

∂n f
m+1(t, x, v) = −1

n(x) · v

{
∂t f

m+1 +
2∑

i=1

(v · τi )∂τi f m+1 − ∇xφ
m · ∇v f

m+1

+
(

v

2TM
· ∇xφ

m
)

f m+1 − �gain( f
m, f m)+ �loss( f

m, f m+1)

}
.

(3.26)

Let τ1(x) and τ2(x) be unit tangential vectors to ∂� satisfying τ1(x)·n(x) = 0 = τ2(x)·n(x)
and τ1(x) × τ2(x) = n(x). Define the orthonormal transformation from {n, τ1, τ2} to the
standard bases {e1, e2, e3},

T (x)n(x) = e1, T (x)τ1(x) = e2, T (x)τ2(x) = e3, T −1 = T T .

By a change of variable u′ = T (x)u, v′ = T (x)v we have

u⊥ = n(x) · u = n(x) · T T (x)u′ = n(x)T T T (x)u′ = [T (x)n(x)]T u′ = e1 · u′ = u′
1,

u‖ = [τ1(x) · u]τ1(x)+ [τ2(x) · u]τ2(x) = [τ1(x) · T T (x)u′]τ1(x)+ [τ2(x) · T T (x)u′]τ2(x)
= {[T τ1(x)]T u′}τ1(x)+ {[T τ2(x)]T u′}τ2(x) = u′

2τ1(x)+ u′
3τ2(x)

= u′
2T T (x)e2 + u′

3T T (x)e3,

v⊥ = v′
1, v‖ = v′

2T T (x)e2 + v′
3T T (x)e3.

Then the boundary condition becomes

f m+1(t, x, v) = e
[ 1
4TM

− 1
2Tw(x) ]|v|2

∫
u′
1>0

f m(t, x, T T (x)u′)e−[ 1
4TM

− 1
2Tw(x) ]|u′|2

dσ ′(u, v),

where we define

dσ ′(u, v) = 1

r⊥r‖(2 − r‖)π/2
|u′

1|
(2Tw(x))2

I0

(
1

2Tw(x)

2(1 − r⊥)1/2v′
1u

′
1

r⊥

)

exp

(
− 1

2Tw(x)

[
|u′

1|2 + (1 − r⊥)|v′
1|2

r⊥

+|u′
2T T (x)e2 + u′

3T T (x)e3 − (1 − r‖)[v′
2T T (x)e2 + v′

3T T (x)e3]|2
r‖(2 − r‖)

])
du′.
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We can further take the tangential derivatives ∂τi , for (x, v) ∈ γ−,

|∂τi f m+1(t, x, v)|

� e
[ 1
4TM

− 1
2Tw(x) ]|v|2

(∣∣∣ |v|
2∂τi Tw(x)

2[Tw(x)]2
∫
n(x)·u>0

f m(t, x, u)e
−[ 1

4TM
− 1

2Tw(x) ]|u|2
dσ(u, v)

∣∣∣
+

∣∣∣
∫
n(x)·u>0

∂τi f
m(t, x, u)e

−[ 1
4TM

− 1
2Tw(x) ]|u|2

dσ(u, v)
∣∣∣

+
∣∣∣
∫
n(x)·u>0

∇v f
m(t, x, u)∂τi T T (x)T (x)ue−[ 1

4TM
− 1

2Tw(x) ]|u|2
dσ(u, v)

∣∣∣

+
∣∣∣
∫
n(x)·u>0

f m(t, x, u)e
−[ 1

4TM
− 1

2Tw(x) ]|u|2 −|u|2∂τi Tw(x)
2[Tw(x)]2 dσ(u, v)

∣∣∣

+
∣∣∣
∫
n(x)·u>0

f m(t, x, u)e
−[ 1

4TM
− 1

2Tw(x) ]|u|2 −2∂τi Tw(x)

Tw(x)
dσ(u, v)

∣∣∣

+
∣∣∣
∫
n(x)·u>0

f m(t, x, u)e
−[ 1

4TM
− 1

2Tw(x) ]|u|2 [−∂τi Tw(x)

T 2
w(x)

(1 − r⊥)1/2v′
1u

′
1

r⊥
]dσ(u, v)

∣∣∣

+
∣∣∣
∫
n(x)·u>0

f m(t, x, u)e
−[ 1

4TM
− 1

2Tw(x) ]|u|2 ∂τi Tw(x)

2(Tw(x))2
(|v|2 + |u|2)dσ(u, v)

∣∣∣

+
∣∣∣
∫
n(x)·u>0

f m(t, x, u)e
−[ 1

4TM
− 1

2Tw(x) ]|u|2 1

2Tw(x)

[|u|2 + |v|2∂τi T T (x)

r‖(2 − r‖)
]
dσ(u, v)

∣∣∣
)
.

(3.27)

Then we take velocity derivatives and obtain for (x, v) ∈ γ−,
∇v f

m+1(t, x, v)

= v[ 1

2TM
− 1

Tw(x)
]e[ 1

4TM
− 1

2Tw(x) ]|v|2
∫
n(x)·u>0

f m(t, x, u)e
−[ 1

4TM
− 1

2Tw(x) ]|u|2
dσ(u, v)

+ e
[ 1
4TM

− 1
2Tw(x) ]|v|2

∫
n(x)·u>0

f m(t, x, u)e
−[ 1

4TM
− 1

2Tw(x) ]|u|2 (1 − r⊥)1/2u⊥
Tw(x)r⊥

n(x)dσ(u, v)

+ e
[ 1
4TM

− 1
2Tw(x) ]|v|2

∫
n(x)·u>0

f m(t, x, u)e
−[ 1

4TM
− 1

2Tw(x) ]|u|2

(
− 1

Tw

[ (1 − r⊥)v⊥
r⊥

n(x)− u‖ − (1 − r‖)v‖
r‖(2 − r‖)

(1 − r‖)(I3×3 − n(x)⊗ n(x))
])

dσ(u, v),

(3.28)

where we use

∇vv⊥ = n(x),∇vv‖ = ∇v(v − v⊥ · n(x)) = I3×3 − n(x)⊗ n(x).

From (1.22), the temporal derivative is

∂t f
m+1(t, x, v) = e

[ 1
4TM

− 1
2Tw(x) ]|v|2

∫
n(x)·u>0

∂t f
m(t, x, u)e

−[ 1
4TM

− 1
2Tw(x) ]|u|2

dσ(u, v)

= e
[ 1
4TM

− 1
2Tw(x) ]|v|2

∫
n(x)·u>0

[
− u · ∇x f

m + ∇xφ
m−1 · ∇v f

m

− (
u

2TM
· ∇xφ

m−1) f m + �gain( f
m−1, f m−1)− �loss( f

m−1, f m)
]

e
−[ 1

4TM
− 1

2Tw(x) ]|u|2
dσ(u, v).

(3.29)

123



Local Well-Posedness of Vlasov–Poisson–Boltzmann Equation... 583

Combine (3.26)-(3.29) we conclude (3.23), where we use Tw ∈ C1
x . ��

We are now ready to show Proposition 3.

Proof of Proposition 3 Setting t ≤ tW ≤ t∞ so that Proposition 2 holds valid. In the following,
we first examine the terms related to p-norm of f in Step 1, and it will be followed by Step
2, in which we examine the boundedness of ∂ f terms. In Step 3 we collect these estimates
to form the conclusion. The Green’s identity used in Step 2 leads to two terms (bulk and
boundary), to bound which, heavy computation is involved and we present the details in Step
4 and 5 respectively.

Step 1: estimate of p-norm of f :
Since f m+1 solves (1.44), its weighted version then satisfies:

∂t
[
e−λt〈v〉wθ̃ f

m+1] + v · ∇x
[
e−λt〈v〉wθ̃ f

m+1] − ∇xφ
m · ∇v

[
e−λt〈v〉wθ̃ f

m+1] + [
ν(Fm)

+ λ〈v〉 + v

2TM
· ∇xφ

m − λt∂v〈v〉 + 2θ̃v · ∇xφ
m][e−λt〈v〉wθ̃ f

m+1]

= e−λt〈v〉wθ̃�gain( f
m, f m).

(3.30)

For tW = tW (λ) � 1, one can take λ = λ(t,Cφm ) large enough so that

ν(Fm)+ λ〈v〉 + v

2TM
· ∇xφ

m − λt∂v〈v〉 + 2θ̃v · ∇xφ
m ≥ ν(Fm)+ λ

2
〈v〉 > λ

2
〈v〉,

(3.31)

and thus we apply Lemma 9, and combine with (3.18) to have:

‖e−λt〈v〉wθ̃ f
m+1(t)‖p

p +
∫ t

0
|e−λs〈v〉wθ̃ f

m+1|pp,+ + λ

2

∫ t

0
‖〈v〉1/pe−λs〈v〉wθ̃ f

m+1‖p
p

�p ‖wθ̃ f (0)‖p
p +

∫ t

0
|e−λs〈v〉wθ̃ f

m+1|pp,−

+ ‖wθ ′ f m‖∞
∫ t

0

∫
�×R3

|e−λs〈v〉wθ̃ f
m+1(v)|p−1e−λs〈v〉wθ̃

∫
R3

k�(v, u)| f m(u)|du.

(3.32)

To deal with the last term in (3.32), we note that by using Hölder inequality and Young’s
inequality, with (3.16), we have:
∫
R3

|e−λs〈v〉wθ̃ f
m+1(v)|p−1

∫
R3

k�(v, u)
wθ̃ (v)

wθ̃ (u)

eλs〈u〉

eλs〈v〉
|e−λs〈u〉wθ̃ (u) f

m(u)|dudv

�p ‖e−λs〈v〉wθ̃ f
m+1‖p−1

L p
v

∥∥∥∥
∫
R3

k�̃(v, u)
1/qk�̃(v, u)

1/p|e−λs〈u〉wθ̃ f
m(u)|du

∥∥∥∥
L p
v

� ‖e−λs〈v〉wθ̃ f
m+1‖p−1

L p
v

(∫
R3

k�̃(v, u)du
)1/q

∥∥∥∥∥
(∫

R3
k�̃(v, u)|e−λs〈u〉wθ̃ f

m(u)|pdu
)1/p

∥∥∥∥∥
L p
v

� ‖e−λs〈v〉wθ̃ f
m+1‖p−1

L p
v

‖e−λs〈v〉wθ̃ f
m‖L p

v

(∫
R3

k�̃(v, u)du
)1/q (∫

R3
k�̃(v, u)dv

)1/p

� ‖e−λs〈v〉wθ̃ f
m+1‖p−1

L p
v

‖e−λs〈v〉wθ̃ f
m‖L p

v
�p ‖e−λs〈v〉wθ̃ f

m+1‖p
L p
v

+ ‖e−λs〈v〉wθ̃ f
m‖p

L p
v
,

(3.33)

which gives a bound for the last term in (3.32) as:

C(p) sup
m

‖wθ ′ f m‖∞
( ∫ t

0
‖e−λs〈v〉wθ̃ f

m+1‖p
p +

∫ t

0
‖e−λs〈v〉wθ̃ f

m‖p
L p
v

)
. (3.34)
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One can further absorb the first term above to the left hand side of (3.32) by choosing large
enough λ:

λ

4
≥ C(p) sup

m
‖wθ ′ f m‖∞. (3.35)

To deal with
∫ t
0 |e−λs〈v〉wθ̃ f

m+1|pp,− in (3.32), we first decompose

γ+ = γ
v,x,ε
+,1 ∪

(
γ+(x)\γ v,x,ε+,1

)
,

where

γ
v,x,ε
+,1 = {(x, u) ∈ γ+ : |n(x) · u| ≤ ε or |u‖ − 2TM (1 − r‖)

2TM + (Tw(x)− 2TM )r‖(2 − r‖)
v‖| ≥ ε−1

or |u⊥ − 2TM
√
1 − r⊥

2TM + (
Tw(x)− 2TM

)
r⊥

v⊥| ≥ ε−1}.
(3.36)

This leads to∫ t

0
|e−λs〈v〉wθ̃ f

m+1|pp,− =
∫ t

0

∫
∂�

∫
n(x)·v<0

|n(x) · v|e−pλs〈v〉w p
θ̃
| f m+1|p

�θ̃

∫ t

0
|n(x) · v|

∫
∂�

∫
n(x)·v<0

e−pλs〈v〉w p
θ̃
(v)e

p[ 1
4TM

− 1
2Tw(x) ]|v|2

×
([ ∫

γ
v,x,ε
+,1

+
∫
γ+\γ v,x,ε+,1

]
|e−λs〈u〉wθ̃ (u) f

m |e−[ 1
4TM

− 1
2Tw(x) ]|u|2

dσ(u, v)

)p

,

(3.37)

where we used

| f m | = |e−λs〈u〉wθ̃ f
m ||eλs〈u〉w−1

θ̃
(u)| �θ̃ |e−λs〈u〉wθ̃ f

m |.

We further expand dσ(v, u) by (1.25) and apply Hölder inequality using 1 = 1
p + 1

p∗ for:

(3.37) �p

∫ t

0

∫
∂�

(∫
γ
v,x,ε
+,1 (x)

|e−λs〈u〉wθ̃ (u) f
m |p{n(x) · u}du

)

∫
n(x)·v<0

|n(x) · v|e−pλs〈v〉w p
θ̃
(v)e

p[ 1
4TM

− 1
2Tw(x) ]|v|2

(∫
γ
v,x,ε
+,1 (x)

|n(x) · u|e−p∗[ 1
4TM

− 1
2Tw(x) ]|u|2

I0
(
p∗ (1 − r⊥)1/2v⊥u⊥

Tw(x)r⊥

)

e
− p∗

2Tw(x)

[ |u⊥|2+(1−r⊥)|v⊥|2
r⊥ + |u‖−(1−r‖)v‖|2

r‖(2−r‖)
]
du

)p/p∗

(3.38)

+
∫ t

0

∫
∂�

(∫
γ+\γ v,x,ε+,1

|e−λs〈u〉wθ̃ (u) f
m |p{n(x) · u}

)

∫
n(x)·v<0

|n(x) · v|e−pλs〈v〉w p
θ̃
(v)e

p[ 1
4TM

− 1
2Tw(x) ]|v|2

(∫
γ+\γ v,x,ε+,1 (x)

|n(x) · u|e−p∗[ 1
4TM

− 1
2Tw(x) ]|u|2

I0
(
p∗ (1 − r⊥)1/2v⊥u⊥

Tw(x)r⊥

)
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e
− p∗

2Tw(x)

[ |u⊥|2+(1−r⊥)|v⊥|2
r⊥ + |u‖−(1−r‖)v‖|2

r‖(2−r‖)
]
du

)p/p∗

, (3.39)

where we apply Hölder inequality for I0 to have

I p
∗

0 (y) = (
1

π

∫ π

0
ey cos θdθ)p

∗ ≤ 1

π p∗

∫ π

0
ep

∗ y cos θdθπ1/p = π1/p−1/p∗
I0(p

∗y).

We now separate the discussion of (3.38) and (3.39).

– Estimate of (3.38): to control this term, we will first control the integrand, which itself
is an integration in u, shown on the second line, and with this term bounded, we move
forward to control the next layer integration in v.

– Based on the decomposition (3.36), the u-integration in the second line of (3.38) is
further split into
∫

|n(x)·u|≤ε︸ ︷︷ ︸
term I

+
∫

|u‖− 2TM (1−r‖)
2TM+(Tw(x)−2TM )r‖(2−r‖) v‖|≥ε−1

︸ ︷︷ ︸
term II

+
∫

|u⊥− 2TM
√

1−r⊥
2TM+(Tw(x)−2TM )r⊥ v⊥|≥ε−1︸ ︷︷ ︸

term III

.(3.40)

To control term I, we draw the similarity to (2.75) in Lemma 5. To be more specific,
we apply (6.10) with

a = −
[

p∗

4TM
− p∗

2Tw(x)

]
, b = p∗

2Tw(x)r⊥
, ε = 0, w = √

1 − r⊥v⊥.

Thus by (2.81) with Tk−1,i replaced by 2TM , term I is bounded by

ε exp

(
p∗[2TM − Tw(x)][1 − rmin]

2Tw(x)[2TM (1 − rmin)+ rminTw(x)] |v|
2
)
. (3.41)

Similar techniques can be applied to analyze term II and term III. With

a = −
[

p∗

4TM
− p∗

2Tw(x)

]
, b = p∗

2Tw(x)r‖(2 − r‖)
, ε = 0, w = (1 − r‖)v‖

and

a = −
[

p∗

4TM
− p∗

2Tw(x)

]
, b = p∗

2Tw(x)r⊥
, ε = 0, w = √

1 − r⊥v⊥

respectively, we have either

b

b − a − ε
w = 2TM (1 − r‖)

2TM + (Tw(x)− 2TM )r‖(2 − r‖)
v‖,

or

b

b − a − ε
w = 2TM

√
1 − r‖

2TM + (Tw(x)− 2TM )r⊥
v⊥,

which further bound the two terms by (3.41). Putting them back into (3.40) we have:

(3.40) � ε exp

(
p[2TM − Tw(x)][1 − rmin]

2Tw(x)[2TM (1 − rmin)+ rminTw(x)] |v|
2
)
. (3.42)
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– With the integrand controlled, wemove to the v-integration in (3.38). Plugging (3.42)
into (3.38), we have the boundedness of the integrand:

�p ε|n(x) · v|e−pλs〈v〉w p
θ̃
(v) exp

(
p

[
1

4TM
− 1

2[2TM (1 − rmin)+ rminTw(x)]
]

|v|2
)
.

(3.43)

Taking θ̃ = θ̃ (TM , rmin) � 1 such that

pθ̃ + p
[ 1

4TM
− 1

2[2TM (1 − rmin)+ rminTw(x)
] ]

≤ pθ̃ + p
[ 1

4TM
− 1

2[2TM (1 − rmin)+ rminTM
] ] < 0, (3.44)

one has (3.43)∈ L1
v(R

3).

Pull out the constant we finally conclude with

(3.38) �p,TM ,rmin ε

∫ t

0
|e−λs〈u〉wθ̃ (u) f

m |pp,+. (3.45)

– Estimate of (3.39): note that comparing with the integrand in (3.38), here the integration
in u is taken on γ+\γ v,x,ε+,1 , which does not provide a small ε. With brute-force calculation
we only get:

�p |n(x) · v|e−pλs〈v〉w p
θ̃
(v)

exp
(
p
[ 1

4TM
− 1

2[2TM (1 − rmin)+ rminTw(x)]
]|v|2) ∈ L1

v(R
3).

Now we decompose the v-integration into
∫
n(x)·v<0

=
∫
n(x)·v<0

1|v|>ε−1 + 1|v|≤ε−1 .

– When |v| > ε−1, using the exponential decaying function (3.44) we obtain,

(3.39)1|v|>ε−1 �p,TM ,rmin ε

∫ t

0
|e−λs〈u〉wθ̃ (u) f

m |pp,+. (3.46)

– When |v| ≤ ε−1, since u ∈ γ+\γ v,x,ε+,1 , for any x ∈ �,

|u| ≤ |u⊥| + |u‖| ≤ |u⊥ − 2TM
√
1 − r⊥

2TM + (
Tw(x)− 2TM

)
r⊥

v⊥|

+ | 2TM
√
1 − r⊥

2TM + (
Tw(x)− 2TM

)
r⊥

v⊥|

+ |u‖ − 2TM (1 − r‖)
2TM + (Tw(x)− 2TM )r‖(2 − r‖)

v‖|

+ | 2TM (1 − r‖)
2TM + (Tw(x)− 2TM )r‖(2 − r‖)

v‖| ≤ 6ε−1.

(3.47)
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In the derivation we used (1.28), r‖ ≤ 1 in the assumption (1.10) for

2TM (1 − r‖)
2TM + (Tw(x)− 2TM )r‖(2 − r‖)

<
1

(1 − r‖)+ Tw(x)r‖(2−r‖)
2TM (1−r‖)

≤ 1

1 − 1
2r‖

≤ 2,

(3.48)

and similarly to have

2TM
√
1 − r⊥

2TM + [Tw(x)− 2TM ]r⊥ ≤ 2.

Then u ∈ γ+(x)\γ ε/6+ (x), where γ ε/6+ is defined in (3.8). By Lemma 10 we obtain

(3.39)1|v|≤ε−1 �ε

∫ t

0

∫
∂�

∫
γ+(x)/γ ε/6+ (x)

|e−λs〈u〉wθ̃ (u) f
m |p{n(x) · u}dudSxds

�ε

[
‖wθ̃ (v) f (0)‖p

p +
∫ t

0
‖e−λs〈v〉wθ̃ (v) f

m‖p
p + (3.50)

]
(3.49)

with

∫ t

0

∫∫
�×R3

[∂t + v · ∇x − ∇xφ
m−1 · ∇v + LHS of (3.31)]|e−λs〈u〉wθ̃ (u) f

m |p

�p sup
m

‖wθ ′ f m‖∞
( ∫ t

0
‖e−λs〈v〉wθ̃ (v) f

m‖p
p +

∫ t

0
‖e−λs〈v〉wθ̃ (v) f

m−1‖p
p

)
,

(3.50)

where we apply (3.34) and replace m + 1, m by m, m − 1 respectively.

Adding (3.45), (3.46) and (3.49) back into (3.37), one has:

∫ t

0
|e−λs〈v〉wθ̃ (v) f

m+1|pp,−

≤ C(p, TM , rmin)× ε

∫ t

0
|e−λs〈v〉wθ̃ (v) f

m |pp,+
+ C(p, TM , rmin)C(ε) sup

m
‖wθ ′ f m‖∞

×
(
‖wθ̃ (v) f (0)‖p

p +
∫ t

0
‖e−λs〈v〉wθ̃ (v) f

m‖p
p +

∫ t

0
‖e−λs〈v〉wθ̃ (v) f

m−1‖p
p

)
,

(3.51)

where C(ε) comes from (3.49), C(p, TM , rmin) comes from�p,TM ,rmin and C(p) comes
in (3.34).
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We finally plug (3.34) and (3.51) back in (3.32), with condition for λ in (3.35) satisfied,
we conclude with

‖e−λt〈v〉wθ̃ (v) f
m+1(t)‖p

p +
∫ t

0
|e−λs〈v〉wθ̃ (v) f

m+1|pp,+

+ λ

4

∫ t

0
‖〈v〉1/pe−λs〈v〉wθ̃ (v) f

m+1(t)‖p
p

≤ C(p, TM , rmin)× ε

∫ t

0
|e−λs〈v〉wθ̃ (v) f

m |pp,+
+ C(p, TM , rmin)C(ε) sup

m
‖wθ ′ f m‖∞

(
‖wθ̃ (v) f (0)‖p

p

+ t sup
0≤s≤t

‖e−λs〈v〉wθ̃ f
m−1(s)‖p

p + t sup
0≤s≤t

‖e−λs〈v〉wθ̃ f
m(s)‖p

p

)
.

(3.52)

Step 2: estimate of p-norm of ∂ f :
We first write down the equation for e−λt〈v〉wθ̃∂ f

m+1 with ∂ ∈ {∇xi ,∇vi }. According
to (1.44) one has

[∂t + v · ∇x − ∇xφ
m · ∇v + νλ,φm ,w](e−λt〈v〉wθ̃∂ f

m+1) = e−λt〈v〉wθ̃G
m, (3.53)

with

Gm = −∂v · ∇x f
m+1 + ∂∇φm · ∇v f

m+1 + ∂�gain( f
m, f m)− ∂�loss( f

m, f m+1)

−∂
(

v

2TM
· ∇φm(t, x)

)
f m+1. (3.54)

Considering (3.15) we have:

|Gm | � |∇x f
m+1| + |∇2φm ||∇v f

m+1| + |�gain(∂ f
m, f m)|

+ |�gain( f
m, ∂ f m)| + |�v,gain( f m, f m)|

+ |�loss(∂ f
m, f m+1)| + |�loss( f

m, ∂ f m+1)| + |�v,loss( f m, f m+1)|
+ w

−1/2
θ (|∇φm | + |∇2φm |)‖wθ ′ f m+1‖∞.

(3.55)

By (3.31), we have

νλ,φm ,w := λ〈v〉 + v

2TM
· ∇xφ

m(t, x)+ ∇xφ
m · ∇v[e−λt〈v〉wθ̃ ]
e−λt〈v〉wθ̃

≥ λ

2
〈v〉. (3.56)

Since α is invariant to the transport equation, according to (1.43), we have

p|e−λt〈v〉wθ̃α
β
f m ,ε∂ f

m+1|p−1[∂t + v · ∇x − ∇xφ · ∇v + νλ,φm ,w]|e−λt〈v〉wθ̃α
β
f m ,ε∂ f

m+1|
= pe−λpt〈v〉w p

θ̃
α
β p
f m ,ε |∂ f m+1|p−1Gm .

(3.57)
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These allow us to apply Lemma 9 to (3.57) for

‖e−λt〈v〉wθ̃α
β
f m ,ε∂ f

m+1(t)‖p
p + λ

2

∫ t

0
‖e−λs〈v〉〈v〉1/pwθ̃α

β
f m ,ε∂ f

m+1‖p
p

+
∫ t

0
|e−λs〈v〉wθ̃α

β
f m ,ε∂ f

m+1|pp,+

≤ ‖wθ̃α
β
f ,ε∂ f (0)‖p

p +
∫ t

0
|e−λs〈v〉wθ̃α

β
f m ,ε∂ f

m+1|pp,−︸ ︷︷ ︸
(3.58)γ−

+
∫ t

0

∫∫
�×R3

pe−λps〈v〉αβ pf m ,εw
p
θ̃
|∂ f m+1|p−1|Gm |

︸ ︷︷ ︸
(3.58)Gm

.

(3.58)

The two terms will be separately considered in the later steps (Step 4 and 5 respectively).
In the end we will obtain:

(3.58)γ− ≤ C(p, TM , rmin)× ε

∫ t

0
|e−λs〈v〉wθ̃α

β

f m−1,ε
∂ f m |pp,+

+ C(p, TM , rmin)C(ε)‖wθ̃α
β

f m−1,ε
∇x,v f (0)‖p

p+

+ C(p, TM , rmin)C(ε) sup
m

‖wθ ′ f m‖∞
( ∫ t

0
‖e−λs〈v〉〈v〉1/pwθ̃α

β

f m−1,ε
∇x,v f

m‖p
p

+
∫ t

0
|e−λs〈v〉wθ̃ f

m |pp,+
)

+ C(p, TM , rmin)C(ε)× (sup
m

‖wθ ′ f m‖∞ + sup
l≤m

‖∇2φl‖∞)

×
( ∫ t

0
‖e−λs〈v〉wθ̃ f

m−1‖p
p +

∫ t

0
‖e−λs〈v〉wθ̃α

β

f m−2,ε
∇x,v f

m−1‖p
p

+
∫ t

0
‖e−λs〈v〉wθ̃α

β

f m−1,ε
∇x,v f

m‖p
p

)
,

(3.59)

and that

(3.58)Gm ≤C(p)

[(
1 + sup

m
‖wθ ′ f m‖∞

) ∫ t

0
‖e−λs〈v〉〈v〉1/pwθ̃α

β
f m ,ε∂ f

m+1‖p
p

+
(
1 + sup

m
‖wθ ′ f m‖∞ + ‖∇2φm‖∞

)
∫ t

0

(
‖e−λs〈v〉wθ̃α

β

f m−1,ε
∂ f m‖p

p + ‖e−λs〈v〉wθ̃α
β
f m ,ε∂ f

m+1‖p
p

)

+
(
1 + sup

m
‖wθ ′ f m‖∞

) ∫ t

0
‖e−λs〈v〉wθ̃ f

m‖p
p

]
.

(3.60)
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Inserting these back in (3.58) and using supl≤m sup0≤s≤t ‖∇2φl(s)‖∞ � Em < ∞ and
supm ‖wθ ′ f m‖∞ < ∞ according to Proposition 2, we have:

‖e−λt〈v〉wθ̃α
β
f m ,ε∂ f

m+1(t)‖p
p + λ

4

∫ t

0
‖e−λs〈v〉〈v〉1/pwθ̃α

β
f m ,ε∂ f

m+1‖p
p

+
∫ t

0
|e−λs〈v〉wθ̃α

β
f m ,ε∂ f

m+1|pp,+

≤ C(p, TM , rmin)× ε

∫ t

0
|e−λs〈v〉wθ̃α

β

f m−1,ε
∂ f m |pp,+

+ C(p, TM , rmin)C(ε)‖wθ̃α
β

f m−1,ε
∂ f (0)‖p

p

+ C(p, TM , rmin)C(ε) sup
m

‖wθ ′ f m‖∞(

∫ t

0
|e−λs〈v〉wθ̃ f

m |pp,+

+
∫ t

0
‖e−λs〈v〉〈v〉1/pwθ̃α

β

f m−1,ε
∂ f m‖p

p)

+ tC(p, TM , rmin, ε)× (sup
m

‖wθ ′ f m‖∞ + Em)

× sup
0≤s≤t

(‖e−λs〈v〉wθ̃ f
m−1‖p

p + ‖e−λs〈v〉wθ̃ f
m‖p

p

+ ‖e−λs〈v〉wθ̃α
β
f m ,ε∂ f

m+1‖p
p + ‖e−λs〈v〉wθ̃α

β

f m−1,ε
∂ f m‖p

p

+ ‖e−λs〈v〉wθ̃α
β

f m−2,ε
∂ f m−1‖p

p
)
.

(3.61)

Step 3: summarize (collecting (3.52) and (3.61) for the conclusion):
Multiplying λ � 1 to (3.52) and adding to (3.61) we derive that

λ‖e−λt〈v〉wθ̃ f
m+1(t)‖p

p + ‖e−λt〈v〉wθ̃α
β
f m ,ε∂ f

m+1(t)‖p
p

+ λ

4

∫ t

0
‖e−λs〈v〉〈v〉1/pwθ̃α

β
f m ,ε∂ f

m+1(s)‖p
p

+
∫ t

0
|e−λs〈v〉wθ̃α

β
f m ,ε∂ f

m+1(s)|pp,+ + λ

∫ t

0
|e−λs〈v〉wθ̃ f

m+1|pp,+
≤ C(p, TM , rmin)C(ε)λ

(‖wθ̃ f (0)‖p
p + ‖wθ̃α

β
f ,ε∂ f (0)‖p

p
) + C(p, TM , rmin)

× ε

∫ t

0
|e−λs〈v〉wθ̃α

β

f m−1,ε
∂ f m |pp,+

+ C(p, TM , rmin)
(C(ε) supm ‖wθ ′ f m‖∞

λ
+ ε

)
λ

∫ t

0
|e−λs〈v〉wθ̃ f

m |pp,+

+ C(p, TM , rmin)
4C(ε)

λ

λ

4

∫ t

0
‖e−λs〈v〉〈v〉1/pwθ̃α

β

f m−1,ε
∂ f m‖p

p)

+ tC(p, TM , rmin)C(ε)× (sup
m

‖wθ ′ f m‖∞ + Em)λ

×
[

sup
l=m,m−1

sup
0≤s≤t

(
‖e−λs〈v〉wθ̃ f

l‖p
p

+ ‖e−λs〈v〉wθ̃α
β

f l−1,ε
∂ f l‖p

p

)
+ ‖e−λs〈v〉wθ̃α

β
f m ,ε∂ f

m+1‖p
p

]
.

(3.62)
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Recall the definition of Em in (3.4), we have

(3.62) ≤ C(p, TM , rmin)C(ε)λ
(‖wθ̃ f (0)‖p

p + ‖wθ̃α
β
f ,ε∂ f (0)‖p

p
) + Em × C(p, TM , rmin)[

ε + (C(ε) supm ‖wθ ′ f m‖∞
λ

+ ε
) + 4C(ε)

λ
+ t × C(ε)(sup

m
‖wθ ′ f m‖∞ + Em)λ

]

+ C(p, TM , rmin)tC(ε)(sup
m

‖wθ ′ f m‖∞ + Em)λ‖e−λs〈v〉wθ̃α
β
f m ,ε∂ f

m+1‖p
p.

(3.63)

First we take ε = ε(p, TM , rmin) � 1 such that 2εC(p, TM , rmin) ≤ 1
10 . Then with ε

fixed we let λ = λ(p, TM , rmin, ε) � 1 satisfy

C(p, TM , rmin)×
(C(ε) supm ‖wθ ′ f m‖∞

λ
+ 4C(ε)

λ

)
≤ 1

10
. (3.64)

Then with ε, λ fixed we can define the constant CW in (3.4) as

CW := C(p, TM , rmin)C(ε)λ � 1, (3.65)

where C(p, TM , rmin)C(ε)λ is the coefficient for the first term in the RHS of (3.63).
Last we take tW = tW (p, TM , rmin, ε, λ,CW , f0) small with t ≤ tW and apply the

assumption in (3.4) such that

tW × C(p, TM , rmin)C(ε)× (sup
m

‖wθ ′ f m‖∞ + Em)λ ≤ 1

10
. (3.66)

Finally collecting (3.62), (3.64), (3.65) and (3.66), since (3.62) holds for all 0 < t ≤ tW , we
obtain

sup
t≤tW

(
λ‖e−λt〈v〉wθ̃ f

m+1(t)‖p
p + 9

10
‖e−λt〈v〉wθ̃α

β
f m ,ε∂ f

m+1(t)‖p
p

+ λ

4

∫ t

0
‖e−λs〈v〉〈v〉1/pwθ̃α

β
f m ,ε∂ f

m+1(s)‖p
p

+
∫ t

0
|e−λs〈v〉wθ̃α

β
f m ,ε∂ f

m+1(s)|pp,+ + λ

∫ t

0
|e−λs〈v〉wθ̃ f

m+1|pp,+
)

≤ C(p, TM , rmin)C(ε)λ
(‖wθ̃ f (0)‖p

p + ‖wθ̃α
β
f ,ε∂ f (0)‖p

p
) + 3

10
sup
t≤tW

Em(t)

≤ (CW + 3 × 2

10
CW )

(‖wθ̃ f (0)‖p
p + ‖wθ̃α

β
f ,ε∂ f (0)‖p

p
)

≤ 2CW
(‖wθ̃ f (0)‖p

p + ‖wθ̃α
β
f ,ε∂ f (0)‖p

p
)
.

Thus we prove (3.4) and conclude Proposition 3.
Step 4: estimate of (3.58)Gm :
First we consider (3.58)Gm . Directly the first two terms |∇x f m+1| + |∇2φm ||∇v f m+1|

of (3.54) in (3.58) is bounded by

(1 + ‖∇2φm‖∞)

∫ t

0
‖e−λs〈v〉wθ̃α

β
f m ,ε∂ f

m+1(s)‖p
p. (3.67)

From (3.19) (3.20), the contribution of

|�gain(∂ f
m, f m)| + |�loss(∂ f

m, f m+1)| + |�gain( f
m, ∂ f m)|
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of (3.54) in (3.58)Gm is bounded by

(
1 + ‖wθ ′ f m‖∞ + ‖wθ ′ f m+1‖∞

)

×
∫ t

0

∫∫
�×R3

|e−λs〈v〉αβf m ,εwθ̃ ∂ f
m+1(v)|p−1

∫
R3
α
β
f m ,ε(v)kρ(v, u)wθ̃ (v)|∂ f m(u)|dudvdxds.

(3.68)

The estimate of (3.68) will be carried out in Step3.
From (3.20), the contribution of |�loss( f m, ∂ f m+1)| of (3.54) in (3.58)Gm is bounded by

‖wθ ′ f m‖∞
∫ t

0
‖e−λs〈v〉〈v〉1/pwθ̃α

β
f m ,ε∂ f

m+1‖p
p. (3.69)

From (3.21), the contribution of |�v,loss( f m, f m+1)| of (3.54) in (3.58)Gm is bounded by

‖wθ ′ f m+1‖∞
∫ t

0

∫∫
�×R3

pe−λ(p−1)s〈v〉|αβf m ,εwθ̃ ∂ f
m+1|p−1

e−λs〈v〉αβf m ,ε〈v〉
wθ̃

wθ ′
‖e−λs〈u〉wθ̃ (u) f

m(s, x, u)‖L p(R3)

� ‖wθ ′ f m+1‖∞
( ∫ t

0

∫∫
�×R3

|e−λs〈v〉αβf m ,ε∂ f
m+1|p

+
∫ t

0

∫∫
�×R3

|e−λs〈u〉wθ̃ (u) f
m(u)|p

)
,

(3.70)

where we use

e−λs〈v〉αβf m ,ε〈v〉
wθ̃

wθ ′
� w

−1/2
θ ′ .

From (3.22), the contribution of |�v,gain( f m, f m)| in (3.58)G is bounded by

‖wθ ′ f m‖∞
∫ t

0

∫∫
�×R3

e−λ(p−1)s〈v〉αβ pf m ,ε |wθ̃∂ f
m+1(v)|p−1

∫
R3

kρ(v, u)
eλs〈u〉wθ̃ (v)

eλs〈v〉wθ̃ (u)
e−λs〈u〉wθ̃ (u)| f m(u)|

�p ‖wθ ′ f m‖∞
( ∫ t

0
‖〈v〉1/pe−λs〈v〉αβf m ,εwθ̃ ∂ f

m+1‖p
p

+
∫ t

0
‖e−λs〈v〉wθ̃ f

m‖p
p

)
,

(3.71)
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where we have used, for 1/p + 1/p∗ = 1 and 0 < ρ̃ � ρ, from (3.16) and (3.17)

∫ t

0

∫∫
�×R3

e−λ(p−1)s〈v〉αβ pf m ,ε |wθ̃∂ f
m+1(v)|p−1

∫
R3

kρ(v, u)
eλs〈u〉wθ̃ (v)

eλs〈v〉wθ̃ (u)
e−λs〈u〉wθ̃ (u)| f m(u)|

≤
∫ t

0

∫∫
�×R3

α
β
f m ,ε(v)

〈v〉(p−1)/p
|〈v〉1/pe−λs〈v〉αβf m ,εwθ̃ ∂ f

m+1|p−1

×
( ∫

R3
kρ̃ (v, u)du

)1/p∗(
kρ̃ (v, u)|e−λs〈u〉wθ̃ f

m(u)|pdu
)1/p

dv

≤
∫ t

0

∫
�

( ∫
R3

|〈v〉1/pe−λs〈v〉αβf m ,εwθ̃ ∂ f
m+1|p

) p−1
p
( ∫

R3

∫
R3

kρ̃ (v, u)|e−λs〈u〉wθ̃ f
m(u)|p

)1/p

�p

∫ t

0

∫∫
�×R3

|e−λs〈v〉〈v〉1/pαβf m ,εwθ̃ ∂ f
m+1|p + |e−λs〈u〉wθ̃ f

m |p.

In the last step we have applied the Young’s inequality.
We focus on (3.68).We split the u-integration of (3.68) into the integration over {|u| ≤ N }

and {|u| > N }.
The contribution of {|u| ≥ N } in (3.68) is bounded by

∫ t

0

∫
�×R3

|e−λs〈v〉〈v〉1/pwθ̃α
β
f m ,ε∂ f

m+1(v)|p−1
α
β
f m ,ε

〈v〉p/(p−1)

×
∫

|u|≥N
kρ(v, u)

wθ̃ (v)

wθ̃ (u)

e−λs〈v〉

e−λs〈u〉 |e−λs〈u〉wθ̃∂ f
m(u)|dudvdxds

≤
∫ t

0

∫
�

(∫
R3

|e−λs〈v〉〈v〉1/pwθ̃α
β
f m ,ε∂ f

m+1(v)|p
)1/p∗

(∫
|u|≥N

|e−λs〈u〉wθ̃α
β

f m−1,ε
∂ f m(u)|p

∫
v

kρ̃ (v, u)
)1/p

≤
∫ t

0
‖e−λs〈v〉〈v〉1/pwθ̃α

β
f m ,ε∂ f

m+1(s)‖p
pds +

∫ t

0
‖e−λs〈v〉wθ̃α

β

f m−1,ε
∂ f m(s)‖p

pds,

(3.72)

where we use Hölder inequality, Proposition 4 with β
p

p−1 < 1,
α
β

f m ,ε

〈v〉p/(p−1) ≤ 1. And we
apply (3.16) to get

∫
|u|≥N

kρ(v, u)
wθ̃ (v)

wθ̃ (u)

e−λs〈v〉

e−λs〈u〉 |e−λs〈u〉wθ̃∂ f
m(u)|du

≤
∫

|u|≥N
kρ̃ (v, u)

1

α
β

f m−1,ε

|e−λs〈u〉αβ
f m−1,ε

wθ̃ (u)∂ f
m(u)|du

�

⎛
⎝
∫

|u|≥N
kρ̃ (v, u)

1

α
β p∗
f m−1,ε

(u)

⎞
⎠

1/p∗ (∫
|u|≥N

kρ̃ (v, u)|e−λs〈u〉αβ
f m−1,ε

wθ̃ (u)∂ f
m(u)|p

)1/p

�
(∫

|u|≥N
kρ̃ (v, u)|e−λs〈u〉αβ

f m−1,ε
wθ̃ (u)∂ f

m(u)|p
)1/p

.
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The contribution of {|u| ≤ N } in (3.68) is bounded by, from Hölder inequality,

∫ t

0

∫∫
�×R3

|e−λs〈v〉〈v〉1/pwθ̃α f m ,ε(v)
β∂ f m+1(v)|p−1

×
∫

|u|≤N
kρ(v, u)

wθ̃ (v)

wθ̃ (u)

e−λs〈v〉

e−λs〈u〉
α f m ,ε(v)

β |e−λs〈u〉wθ̃α
β

f m−1,ε
∂ f m(u)|

〈v〉(p−1)/pα
β

f m−1,ε
(u)

dudvdxds

≤
∫ t

0
‖e−λs〈v〉〈v〉1/pwθ̃α

β
f m ,ε∂ f

m+1(v)‖p−1
p

×
[ ∫∫

�×R3

⎛
⎝
∫

|u|≤N
kρ̃ (v, u)

|e−λs〈u〉wθ̃α
β

f m−1,ε
∂ f m(u)|

α
β

f m−1,ε
(u)

du

⎞
⎠

p

dvdx

]1/p
ds.

(3.73)

By the Hölder inequality, the u-integration part of (3.73) as

‖e−λs〈v〉wθ̃α
β

f m−1,ε
∂ f m(·)‖L p(R3) ×

⎛
⎝
∫
R3

e−p∗ρ̃|v−u|2

|v − u|p∗
1|u|≤N

α
β p∗
f m−1,ε

(u)

⎞
⎠

1/p∗

. (3.74)

Note that

⎛
⎝
∫
R3

e−p∗ρ̃|v−u|2

|v − u|p∗
1|u|≤N

α
β p∗
f m−1,ε

(u)

⎞
⎠

1/p∗

≤
∣∣∣ 1

| · |p∗ ∗ 1|·|≤N

α
β p∗
f m−1,ε

∣∣∣1/p
∗
.

By the Hardy-Littlewood-Sobolev inequality with

1 + 1

p/p∗ = 1

3/p∗ + 1
3
2
p−1
p

,

we have
∥∥∥∣∣ 1

| · |p∗ ∗ 1|·|≤N

α
β p∗
f m−1,ε

(u)

∣∣∥∥∥
L p(R3)

=
∥∥∥ 1

| · |p∗ ∗ 1|·|≤N

α
β p∗
f m−1,ε

(u)

∥∥∥
L p/p∗ (R3)

� ‖ 1|·|≤N

α
β p∗
f m−1,ε

(·)
‖
L

3(p−1)
2p (R3)

�

⎛
⎝
∫
R3

1|v|≤N

α f m−1,ε(v)
p

p−1β
3(p−1)

2p

dv

⎞
⎠

2p
3(p−1)

p−1
p

�

⎛
⎝
∫
R3

1|v|≤N

α
3β/2
f m−1,ε

(v)

⎞
⎠

2/3

� 1,

(3.75)

where we use 3β/2 < 1 and Proposition 4. Using (3.75) (3.74) (3.72) we have

(3.68) � (1 + sup
m

‖wθ ′ f m‖∞)
[ ∫ t

0
‖e−λs〈v〉〈v〉1/pwθ̃α

β
f m ,ε∂ f

m+1‖p
p

+
∫ t

0
‖e−λs〈v〉wθ̃α

β

f m−1,ε
∂ f m‖p

p

]
. (3.76)
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Finally from (3.67) (3.69) (3.72) (3.71) (3.70) (3.76), (3.58)Gm has a bound as

C(p)

[(
1 + sup

m
‖wθ ′ f m‖∞

) ∫ t

0
‖e−λs〈v〉〈v〉1/pwθ̃α

β
f m ,ε∂ f

m+1‖p
p

+
(
1 + sup

m
‖wθ ′ f m‖∞ + ‖∇2φm‖∞

) ∫ t

0

(
‖e−λs〈v〉wθ̃α

β

f m−1,ε
∂ f m‖p

p

+ ‖e−λs〈v〉wθ̃α
β
f m ,ε∂ f

m+1‖p
p

)

+
(
1 + sup

m
‖wθ ′ f m‖∞

) ∫ t

0
‖e−λs〈v〉wθ̃ f

m‖p
p

]
.

(3.77)

In order to control the first line in (3.77) by λ
2

∫ t
0 ‖e−λs〈v〉〈v〉1/pwθ̃α

β
f m ,ε∂ f

m+1‖p
p in (3.58),

we require the λ satisfy

λ

4
≥ C(p)(1 + sup

m
‖wθ ′ f m‖∞). (3.78)

Step 5: estimate of (3.58)γ−:
We focus on (3.58)γ−. The overall strategy is similar to (3.51). From (3.23) (3.24)

∫ t

0
|e−λs〈v〉wθ̃α

β
f m ,ε∂ f

m+1|pp,−

=
∫ t

0

∫
∂�

∫
n(x)·v<0

|n(x) · v|β p|e−λs〈v〉wθ̃∇x,v f
m+1(t, x, v)|p|n(x) · v|dv

�
∫ t

0

∫
∂�

∫
n(x)·v<0

〈v〉2p

e−λps〈v〉ep[
1

4TM
− 1

2Tw(x) ]|v|2w p
θ̃

(
|n(x) · v|β p+1 + |n(x) · v|(β−1)p+1

)
× |(3.24)|pdv.

(3.79)

Now we bound |(3.24)|p .

– First line of (3.24), we split the u-integration into γ v,x,ε+,2 ∪
(
γ+(x)\γ v,x,ε+,2

)
, where

γ
v,x,ε
+,2 = {(x, u) ∈ γ+ : |n(x) · u| ≤ ε or |u‖ − 2Tζ (1 − r‖)

2Tζ + (Tw(x)− 2Tζ )r‖(2 − r‖)
v‖| ≥ ε−1

or |u⊥ − 2Tζ
√
1 − r⊥

2Tζ + (
Tw(x)− 2Tζ

)
r⊥

v⊥| ≥ ε−1},
(3.80)

and Tζ will be defined later in (3.88).
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By the Hölder inequality

(∫
n(x)·u>0

|e−λs〈u〉wθ̃α
β

f m−1,ε
∇x,v f

m(s, x, u)|{eλs〈v〉w−1
θ̃
α

−β
f m−1,ε

(u)}〈u〉

e
−[ 1

4TM
− 1

2Tw(x) ]|u|2
dσ(u, v)

)p

�
(∫

γ
v,x,ε
+,2 (x)

|e−λs〈u〉wθ̃α
β

f m−1,ε
∇x,v f

m(s, x, u)|p{n(x) · u}du
)

×
(∫

γ
v,x,ε
+,2 (x)

{e−λs〈u〉wθ̃α
β

f m−1,ε
(u)}−p∗

︸ ︷︷ ︸
(I )

|n(x) · u|〈u〉p∗
e
−p∗[ 1

4TM
− 1

2Tw(x) ]|u|2

×I0
( (1 − r⊥)1/2u⊥v⊥

Tw(x)r⊥

)p∗
e
− p∗

2Tw(x)

[ |u⊥|2+(1−r⊥)|v⊥|2
r⊥ + |u‖−(1−r‖)v‖|2

r‖(2−r‖)
]
du

)p/p∗

(3.81)

+
(∫

γ+(x)\γ v,x,ε+,2 (x)
|e−λs〈u〉wθ̃α

β

f m−1,ε
∇x,v f

m(s, x, u)|p{n(x) · u}du
)

×
(∫

γ+(x)\γ v,x,ε+,2 (x)
{e−λs〈u〉wθ̃α

β
f m ,ε(s, x, u)}−p∗ |n(x) · u|〈u〉p∗

e
−p∗[ 1

4TM
− 1

2Tw(x) ]|u|2

×I0
( (1 − r⊥)1/2u⊥v⊥

Tw(x)r⊥

)p∗
e
− p∗

2Tw(x)

[ |u⊥|2+(1−r⊥)|v⊥|2
r⊥ + |u‖−(1−r‖)v‖|2

r‖(2−r‖)
]
du

)p/p∗

. (3.82)

Similar to Step 1, we separate the discussion of (3.81) and (3.82).

– estimate of (3.81).

– To compute the u-integration, for any c > 0 we bound

eλsp
∗〈u〉|n(x) · u|c〈u〉p∗ � ep

∗ζ |u|2 , (3.83)

where ζ will be defined later in (3.89). Then we introduce c1 > 1 with 1 = 1
c1

+ 1
c∗
1

to deal with the α f m−1,ε in (I). Then the u-integration is

�
∫
γ
v,x,ε
+,2 (x)

{e−λs〈u〉wθ̃α
β

f m−1,ε
(u)}−p∗ |n(x) · u|1/c1 |n(x) · u|1/c∗

1 〈u〉p∗
e
−p∗[ 1

4TM
− 1

2Tw(x) ]|u|2

× I0
( (1 − r⊥)1/2u⊥v⊥

Tw(x)r⊥

)p∗
e
− p∗

2Tw(x)

[ |u⊥|2+(1−r⊥)|v⊥|2
r⊥ + |u‖−(1−r‖)v‖|2

r‖(2−r‖)
]
du

�
∫
γ
v,x,ε
+,2 (x)

[
wθ̃α

β

f m−1,ε
(u)

]−p∗
|n(x) · u|1/c∗

1 ep
∗ζ |u|2e−p∗[ 1

4TM
− 1

2Tw(x)

]
|u|2

× I0
(
p∗ (1 − r⊥)1/2u⊥v⊥

Tw(x)r⊥

)
e
− p∗

2Tw(x)

[ |u⊥|2+(1−r⊥)|v⊥|2
r⊥ + |u‖−(1−r‖)v‖|2

r‖(2−r‖)
]
du,

(3.84)
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where we have applied (3.83). Applying the Hölder inequality once more with 1 =
1
c1

+ 1
c∗
1
, we obtain

(3.84) �
( ∫

γ
v,x,ε
+,2 (x)

[
wθ̃α

β

f m−1,ε
(u)

]−p∗c1du
) 1

c1 (3.85)

×
(∫

γ
v,x,ε
+,2 (x)

|n(x) · u|e−c∗
1 p

∗[ 1
4TM

− 1
2Tw(x)−ζ ]|u|2

I0
(
c∗
1 p

∗ (1 − r⊥)1/2u⊥v⊥
Tw(x)r⊥

)

(3.86)

e
− c∗1 p∗

2Tw(x)

[ |u⊥|2+(1−r⊥)|v⊥|2
r⊥ + |u‖−(1−r‖)v‖|2

r‖(2−r‖)
]
du

) 1
c∗1
. (3.87)

We choose c1 to be close to 1+ to guarantee β p∗c1 < 1. Using Proposition 4 with

v = 0 and w−p∗c1
θ̃

= e−θ̃ p∗c1|u|2 , we have (3.85)�p 1.

For (3.87) we let ζ < 1
4TM

and denote

1

4Tζ
= 1

4TM
− ζ, Tζ > TM . (3.88)

By 0 < rmin ≤ 1, we choose ζ = ζ(TM , rmin) to be small such that

2Tζ (1 − rmin)+ TMrmin < 2TM ,
TM
Tζ

> 1/2. (3.89)

– To control (3.87), recall the definition of (3.80). Here we simply replace the TM
in (3.36) by Tζ . Thus we can apply the same decomposition as in (3.40) and obtain
the result as (3.42) in Step 1 with replacing TM by Tζ . We get

(3.87) � ε exp
( 2Tζ − Tw(x)

2Tw(x)[2Tζ (1 − rmin)+ rminTw(x)] (1 − rmin)p
∗|v|2

)
.

(3.90)

Thus we obtain

(3.81) �p exp
( 2Tζ − Tw(x)

2Tw(x)[2Tζ (1 − rmin)+ rTw(x)] (1 − rmin)p|v|2
)

×ε
∫
γ
v,x,ε
+,2 (x)

|e−λs〈u〉wθ̃α
β

f m−1,ε
∇x,v f

m(s, x, u)|p{n(x) · u}du. (3.91)

– With the integrand controlled, we move to the v-integration (3.79). Plugging (3.91)
into (3.79) we have the boundedness of the integrand:

〈v〉2pe−λps〈v〉 (|n(x) · v|β p+1 + |n(x) · v|(β−1)p+1
)
w

p
θ̃

× exp

(
p
[ 1

4TM
− 1

2[2Tζ (1 − rmin)+ rminTw(x)]
]|v|2

)
,

(3.92)

where we apply the same computation as (3.43).
By (3.2), (β−1)p+1 > −1, thus |n(x) ·v|(β−1)p+1 ∈ L1

loc. Using (3.89) we derive

2[2Tζ (1 − rmin)+ Tw(x)rmin] < 4TM ,
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We take θ̃ = θ̃ (ζ, rmin, TM ) � 1 to obtain

pθ̃ + p
[ 1

4TM
− 1

2[2Tζ (1 − rmin)+ rminTw(x)]
]
< 0. (3.93)

Thus we derive (3.92)∈ L1
v .

Therefore, the contribution of (3.81) in (3.58)γ− is

�p,TM ,rmin ε

∫ t

0
|e−λs〈u〉wθ̃α

β

f m−1,ε
∇x,v f

m |pp,+. (3.94)

– estimate of (3.82). Similar to the Step 1, the integration in u does not provide a small ε.
Thus we have

(3.82) � exp
( 2Tζ − Tw(x)

2Tw(x)[2Tζ (1 − rmin)+ rminTw(x)] (1 − rmin)p|v|2
)

×
( ∫

γ+(x)\γ v,x,ε+,2 (x)
|e−λs〈u〉wθ̃α

β

f m−1,ε
∇x,v f

m(s, x, u)|p{n(x) · u}du
)
.

(3.95)

Plugging (3.95) into (3.79) we conclude the integrand is given by (3.92)∈ L1
v . Again we

decompose v into 1|v|≤ε−1 and 1|v|>ε−1 .

– When |v| > ε−1, by the exponential decaying function in (3.92) the contribution
of (3.82)1|v|>ε−1 in (3.58)γ−

�p,TM ,rmin ε

∫ t

0

∫
∂�

(3.95) ≤ ε

∫ t

0
|e−λs〈u〉wθ̃α

β
f m ,ε∇x,v f

m |pp,+. (3.96)

– When |v| ≤ ε−1, since u ∈ γ+\γ v,x,ε+,2 , for any x ∈ ∂� we have

|u| ≤ 2ε−1 + | 2Tζ
√
1 − r⊥

2Tζ + (Tw(x)− 2Tζ )r⊥
v‖|

+| 2Tζ (1 − r‖)
2Tζ + (Tw(x)− 2Tζ )r‖(2 − r‖)

v‖| ≤ 10ε−1.

In the derivation we used (3.88) and (3.48) to conclude

2Tζ
√
1 − r⊥

2Tζ + (Tw(x)− 2Tζ )r⊥
≤ 1

(1 − r‖)+ Tw(x)r‖(2−r‖)
4TM (1−r‖)

≤ 4,

and similarly to have

2Tζ
√
1 − r⊥

2Tζ + [Tw(x)− 2Tζ ]r⊥ ≤ 4.

Thus u ∈ γ+(x)/γ ε/10+ , where γ ε/6+ is defined in (3.8). From Lemma 10 the contri-
bution of (3.82)1|v|≤ε−1 in (3.58)γ− is

�ε

∫ t

0

∫
∂�

∫
γ+(x)/γ ε/10+ (x)

|e−λs〈u〉wθ̃α
β

f m−1,ε
∇x,v f

m(s, x, u)|p{n(x) · u}dudSxds

�ε ‖wθ̃α
β

f m−1,ε
∇x,v f (0)‖p

p +
∫ t

0
‖e−λs〈v〉wθ̃α

β

f m−1,ε
∇x,v f

m‖p
p + (3.98)

(3.97)
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with∫ t

0

∫∫
�×R3

[∂t + v · ∇x − ∇xφ
m−1 · ∇v + νφm−1,λ,w

θ̃
]|e−λs〈v〉wθ̃α

β

f m−1,ε
∇x,v f

m |p

(3.98)

≤
∫ t

0

∫∫
�×R3

pe−λps〈v〉w p
θ̃
α
β p
f m−1,ε

|∇x,v f
m |p−1|Gm−1|. (3.99)

Clearly (3.99)� (3.77) with replacing all m + 1 by m and m by m − 1.

Collecting (3.94) (3.96) (3.97) (3.98), the contribution of the first line (3.24) in (3.58)γ−
is

�p,TM ,rmin ε

∫ t

0
|e−λs〈v〉wθ̃α

β

f m−1,ε
∂ f m |pp,+ + C(ε)

[
‖wθ̃α

β
f m ,ε∇x,v f (0)‖p

p

+
∫ t

0
‖e−λs〈v〉wθ̃α

β

f m−1,ε
∇x,v f

m‖p
p + (3.58)Gm−1

]
,

(3.100)

where C(ε) comes from (3.97).

– Second line of (3.24). By the Hölder inequality, we have

(∫
n(x)·u>0

(
〈u〉2‖∇xφ

m−1‖L∞| f m |
)

+ ‖wθ ′ f m‖L∞
∫
R3

kρ(u, u′)| f m−1(u′)|du′e−[ 1
4TM

− 1
2Tw(x) ]|u|2

dσ(u, v)

)p

�
(∫

n(x)·u>0

(
〈u〉2‖∇xφ

m−1‖L∞|e−λs〈u〉wθ̃ (u) f
m |

)
eλs〈u〉w−1

θ̃
(u)dσ(u, v)

+ ‖wθ ′ f m‖L∞
∫
R3

kρ(u, u′)|e−λs〈u′〉wθ̃ (u
′) f m−1(u′)|du′e−[ 1

4TM
− 1

2Tw(x) ]|u|2

eλs〈u〉w−1
θ̃
(u)dσ(u, v)

)p

.

(3.101)

Similarly to (3.83), we bound 〈u〉2 as 〈u〉2 � eζ |u|2 with the same ζ satisfying (3.89). Using
eλs〈u〉w−1

θ̃
(u) � 1 we obtain

(3.101) �
∫
n(x)·u>0

|e−λs〈u〉wθ̃ (u) f
m |p{n · u}du ×

(∫
n(x)·u>0

ep
∗ζ |u|2e−p∗[ 1

4TM
− 1

2Tw(x) ]|u|2

× I0
( p∗(1 − r⊥)1/2u⊥v⊥

Tw(x)r⊥

)
e
− p∗

2Tw(x)

[ |u⊥|2+(1−r⊥)|v⊥|2
r⊥ + |u‖−(1−r‖)v‖|2

r‖(2−r‖)
]
du

)p/p∗

+ ‖wθ ′ f m‖L∞
(∫

n(x)·u>0

( ∫
R3

kρ(u, u′)du′)p/q
( ∫

R3
kρ(u, u′)|e−λs〈u′〉wθ̃ (u

′) f m−1(u′)|pdu′)1/p

× e
−[ 1

4TM
− 1

2Tw(x) ]|u|2{n(x) · u}I0e− 1
2Tw(x)

[
|u⊥|2+(1−r⊥)|v⊥|2

r⊥ + |u‖−(1−r‖)v‖|2
r‖(2−r‖)

]
du

)p

.
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Then we can apply the same computation as in (3.81), (3.82) for the u-integration. Thus
by (3.91) we derive

(3.101) �
∫
n(x)·u>0

|e−λs〈u〉wθ̃ (u) f
m |p{n · u}du × (3.91)

+ ‖wθ ′ f m‖L∞
( ∫

R3

∫
R3

kρ(u, u′)|e−λs〈u′〉wθ̃ (u
′) f m−1(u′)|pdu′du

)
× (3.91)

�
( ∫

n(x)·u>0
|e−λs〈u〉wθ̃ (u) f

m |p{n · u}du + ‖e−λs〈u〉wθ̃ (u) f
m−1‖p

p

)
× (3.91).

By exactly the same computation as (3.92), the integrand for the v-integration in (3.79) is
∈ L1

v . Thus the contribution of the second line of (3.24) in (3.58)γ− is

�p,TM ,rmin ‖wθ ′ f m‖∞
( ∫ t

0
|e−λs〈u〉wθ̃ (u) f

m |pp,+ +
∫ t

0
‖e−λs〈u〉wθ̃ (u) f

m−1‖p
p

)
.

(3.102)

Collecting (3.100) (3.102) we conclude that
∫ t

0
|e−λs〈v〉wθ̃α

β
f m ,ε∂ f

m+1|pp,−

≤ C(p, TM , rmin)× ε

∫ t

0
|e−λs〈v〉wθ̃α

β

f m−1,ε
∂ f m |pp,+

+ C(p, TM , rmin)C(ε)‖wθ̃α
β

f m−1,ε
∇x,v f (0)‖p

p+

+ C(p, TM , rmin)C(ε) sup
m

‖wθ ′ f m‖∞
( ∫ t

0
‖e−λs〈v〉〈v〉1/pwθ̃α

β

f m−1,ε
∇x,v f

m‖p
p

+
∫ t

0
|e−λs〈v〉wθ̃ f

m |pp,+
)

+ C(p, TM , rmin)C(ε)× (sup
m

‖wθ ′ f m‖∞ + sup
l≤m

‖∇2φl‖∞)

×
( ∫ t

0
‖e−λs〈v〉wθ̃ f

m−1‖p
p +

∫ t

0
‖e−λs〈v〉wθ̃α

β

f m−2,ε
∇x,v f

m−1‖p
p

+
∫ t

0
‖e−λs〈v〉wθ̃α

β

f m−1,ε
∇x,v f

m‖p
p

)
,

(3.103)

where C(p, TM , rmin) comes from�p,TM ,rmin and C(p) in (3.77). Similar to Step 1, here it’s
important to note that in the second line, the first term has ε � 1, while the second term has
C(ε), which can be large number depends on ε.

Remark 8 Wecomment the largeness ofλ comes from (3.31), the boundedness of f (3.35), the
boundedness of ∂ f (3.78) and in (3.64). The smallness of θ̃ comes from (3.44) and (3.93).
The largeness of the constant CW in (3.4) comes from (3.65). The smallness the time tW
in (3.4) comes from (3.66).

4 L3xL
1+
v -Estimate of∇vf and L1+-Stability

As we mention in the introduction, to conclude the uniqueness we need to control ∇v f with
certain norm. With W 1,p estimate for ∇x f in Sect. 3, we will establish the L3

x L
1+
v -estimate
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for the sequence solution ∇v f m+1 in Proposition 5 in the section. With such estimate for
∇v f , we then show the sequence f m+1 is L1+ Cauchy in Proposition 6. The L1+ Cauchy
is crucial to show the existence of the VPB equation. These two propositions lead to the
L3
x L

1+
v -estimate for ∇v f and the L1+-stability for f that satisfies (1.1) under good initial

condition. These two propositions are given in Proposition 7, 8 respectively. The L1+ stability
directly leads to the uniqueness of VPB system.

Proposition 5 Assume f m+1 solves (2.2) and satisfy all assumptions in Proposition 3. We
also assume extra initial condition

‖wθ̃∇v f0‖L3
x,v

< ∞. (4.1)

There exists tδ � 1 (tδ < tW ) and Cδ such that when 0 ≤ t < tδ , if

sup
0≤s≤t

‖e−λs〈v〉∇v f
m(s)‖L3

x L
1+δ
v

≤ 2Cδ

[
‖wθ̃∇v f (0)‖L3

x,v
+ sup

n
sup

0≤s≤t
‖wθ ′ f n(s)‖∞ + sup

n
sup

0≤s≤t
‖e−λs〈u〉wθ̃α

β

f n−1,ε
∇x,v f

n(s)‖p

]
︸ ︷︷ ︸

(4.2)∗

,

(4.2)

then we have

‖e−λt〈v〉∇v f
m+1(t)‖L3

x L
1+δ
v

≤ (4.2)∗. (4.3)

Here Cδ is defined in (4.31) and tδ satisfies (4.32).

Proof of Proposition 5 First we take tδ ≤ tW with tW defined in Proposition 3 so that we can
apply Proposition 3 and Proposition 2. We have

[∂t + v · ∇x − ∇xφ
m · ∇v](e−λt〈v〉∂v f m+1)

+ [λ〈v〉 − λt + v

2TM
· ∇xφ

m + ν(Fm)](e−λt〈v〉∂v f m+1)

= e−λt〈v〉 ×
[

− ∇x f
m+1 − 1

2TM
∇xφ

m f m+1 + ∂v

(
�gain( f

m, f m)
)]
.

(4.4)

By (3.28), we have boundary bound for (x, v) ∈ γ−

∣∣∂v f m+1(t, x, v)
∣∣ � |v|2e[ 1

4TM
− 1

2Tw(x) ]|v|2∫
n·u>0

| f m(t, x, u)||u|e−[ 1
4TM

− 1
2Tw(x) ]|u|2

dσ(u, v) on γ−. (4.5)

By (3.31) we have

λ〈v〉 − λt∂v〈v〉 + v

2TM
· ∇xφ

m + ν(Fm) ≥ λ

2
〈v〉.
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Then we bound |e−λt〈v〉∇v f m+1| along the characteristics

|e−λt〈v〉∂v f m+1(t, x, v)|
≤ 1tb(t,x,v)>t |∂v f (0, X(0; t, x, v), V (0; t, x, v))| (4.6)

+ 1tb(t,x,v)<t |vb|2e[ 1
4TM

− 1
2Tw(x) ]|vb|2 (4.7)∫

n(xb)·u>0
| f m(t − tb, xb, u)||u|e−[ 1

4TM
− 1

2Tw(x) ]|u|2
dσ(u, vb) (4.8)

+
∫ t

max{t−tb,0}
‖∇xφ

m‖∞|v||wθ ′(V (s; t, x, v))|−1‖wθ ′ f m+1‖∞ds (4.9)

+
∫ t

max{t−tb,0}
|∇x f

m+1(s, X(s; t, x, v), V (s; t, x, v))|ds (4.10)

+
∫ t

max{t−tb,0}
(1 + ‖wθ ′ f m‖∞)

∫
R3

k�(V (s; t, x, v), u)|∂v f m(s, X(s), u)|duds.
(4.11)

We will discuss every term in (4.6)-(4.11) separately. In Step 1 we analyze (4.6)-(4.9).
In Step 2,3 we analyze (4.10),(4.11) respectively. In Step 4 we conclude this lemma by
summarizing all the estimates in previous steps.

Step 1.
Note that if |v| > 2Cφm t , for 0 ≤ s ≤ t ,

|V (s; t, x, v)| ≥ |v| −
∫ t

0
|∇xφ

m(τ ; t, x, v)|dτ ≥ |v| − Cφm t ≥ |v|
2
. (4.12)

Therefore

sup
s,t,x

∥∥∥∥ 1

wθ̃ (V (s; t, x, v))
∥∥∥∥
Lrv

�θ̃ 1 for any 1 ≤ r ≤ ∞. (4.13)

– Estimate of (4.6). We derive

‖(4.6)‖L3
x L

1+δ
v

�

⎛
⎝
∫
�

(∫
R3

|wθ̃∂v f (0, X(0), V (0))|3
)(∫

R3

1

|wθ̃ (V (0))|(1+δ)
3

2−δ
dv

) 2−δ
1+δ

⎞
⎠

1/3

�θ̃

(∫∫
�×R3

|wθ̃ (V (0; t, x, v))∂v f (0, X(0; t, x, v), V (0; t, x, v))|3dvdx
)1/3

= ‖wθ̃∂v f (0)‖L3
x,v
,

(4.14)

where we have used a change of variables (x, v) 
→ (X(0; t, x, v), V (0; t, x, v)) and
(4.13).

– Estimate of (4.9). Clearly with θ ′ > 0,

‖(4.9)‖L3
x L

1+δ
v

�θ ′ sup
0≤s≤t

‖wθ ′ f m+1(s)‖∞. (4.15)
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– Estimate of (4.7),(4.8). We bound (4.7) (4.8) by

‖wθ ′ f m‖∞|vb|2e[ 1
4TM

− 1
2Tw(x) ]|vb |2

∫
n(xb)·u>0

e−θ ′u2 |u|e−[ 1
4TM

− 1
2Tw(xb )

]|u|2
dσ(u, vb)

� ‖wθ ′ f m‖∞|vb|2e[ 1
4TM

− 1
2Tw(x) ]|vb |2

∫
n(xb)·u>0

e
−[ 1

4TM
− 1

2Tw(xb )
]|u|2

dσ(u, vb)

� ‖wθ ′ f m‖∞|vb|2e[ 1
4TM

− 1
2Tw(xb )

]|vb |2 exp
([ [2TM − Tw(xb)][1 − rmin]

2Tw(xb)
[
2TM (1 − rmin)+ rminTw(xb)

] ]|vb|2
)

= ‖wθ ′ f m‖∞|vb|2 exp
([ 1

4TM
− 1

2[2TM (1 − rmin)+ rminTw(xb)]
]|vb|2

)
,

where we use (2.52) and directly apply (2.60) with replacing 2ξ
ξ+1TM by 2TM , t by 0 in

the third line for the u-integration. Using

1

4TM
− 1

2[2TM (1 − rmin)+ rminTw(xb)] < 0,

we obtain

‖(4.7) (4.8)‖L3
x L

1+δ
v

�TM ,rmin sup
0≤s≤t

‖wθ ′ f m(s)‖∞. (4.16)

Step 2.

– Estimate of (4.10). We claim

‖(4.10)‖L3
x L

1+δ
v

�θ̃ ,β,p

∫ t

0
‖e−λs〈v〉wθ̃α

β
f m ,ε∇x f

m+1(s)‖L p
x,v
. (4.17)

For 3 < p < 6, by the Hölder inequality 1
1+δ = 1

p+pδ
p−1−δ

+ 1
p ,∥∥∥∥∥

∥∥∥∥
∫ t

max{t−tb,0}
∂x f

m+1(s, X(s; t, x, v), V (s; t, x, v))ds
∥∥∥∥
L1+δ
v (R3)

∥∥∥∥∥
L3
x

�

∥∥∥∥∥∥
∥∥∥∥∥
∫ t

max{t−tb,0}

e−λs〈V (s;t,x,v)〉wθ̃α
β
f m ,ε∂x f

m+1(s, X(s; t, x, v), V (s; t, x, v))
e−λs〈V (s;t,x,v)〉wθ̃α

β
f m ,ε (s, X(s; t, x, v), V (s; t, x, v))

ds

∥∥∥∥∥
L1+δ
v (R3)

∥∥∥∥∥∥
L3
x

� sup
s,x

∥∥∥∥∥
eλs〈v〉wθ̃ (v)

−1

α f m ,ε (s, x, v)β

∥∥∥∥∥
L

p+pδ
p−1−δ
v (R3)

×
∥∥∥∥∥
∥∥∥∥
∫ t

0
e−λs〈V (s;t,x,v)〉wθ̃α

β
f m ,ε∂x f

m+1(s, X(s; t, x, v), V (s; t, x, v))ds
∥∥∥∥
L p
v (R

3)

∥∥∥∥∥
L3
x

� sup
s,x

∥∥∥∥∥
eλs〈v〉wθ̃ (v)

−1

α f m ,ε (s, x, v)β

∥∥∥∥∥
L

p+pδ
p−1−δ
v (R3)

×
∫ t

0
‖e−λs〈v〉wθ̃α

β
f m ,ε∂x f

m+1(s)‖L p
x,v
ds,

(4.18)

where we have used α f m ,ε(t, x, v) = α f m ,ε(s, X(s; t, x, v), V (s; t, x, v)) for t −
tb(t, x, v) ≤ s ≤ t and the change of variables (x, v) 
→ (X(s; t, x, v), V (s; t, x, v))
and the Minkowski inequality.
For β in (3.2), we have β p

p−1 < 1 since 2
3 <

p−1
p for 3 < p. Therefore, we can choose

0 < δ = δ(β, p) � 1 so that β satisfies

β × p + pδ

p − 1 − δ
< 1. (4.19)
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We apply Proposition 4 to conclude that

sup
s,x

∥∥∥∥∥
eλs〈v〉wθ̃ (v)

−1

α f m ,ε(s, x, v)β

∥∥∥∥∥
p+pδ
p−1−δ

L
p+pδ
p−1−δ
v (R3)

�θ̃ sup
s,x

∫
R3

1

α f m ,ε(s, x, v)
β

p+pδ
p−1−δ

dv �β,p 1.

(4.20)

Finally, from (4.18), (4.20), we conclude the claim (4.17).

Step 3.

– Estimate of (4.11). We consider (4.11). We split the u-integration of (4.11) into two parts
with N � 1 as ∫

|u|≤N
k�(V (s; x, t, v), u)|∇v f

m(s, X(s), u)|du (4.21)

+
∫

|u|≥N
k�(V (s; t, x, v), u)|∇v f

m(s, X(s), u)|du. (4.22)

Firstwebound (4.21). From the changeof variables (x, v) 
→ (X(s; t, x, v), V (s; t, x, v))
for t − tb(t, x, v) ≤ s ≤ t

∥∥∥∥
∫

|u|≤N
k�(V (s; t, x, v), u)|∇v f

m(s, X(s; t, x, v), u)|du
∥∥∥∥
L3
x L

1+δ
v

�
∥∥∥∥
∫

|u|≤N
k�(v, u)|e−λs〈u〉∇v f

m(s, x, u)|du
∥∥∥∥
L3
x L

1+δ
v

,

(4.23)

wherewe use eλs〈u〉 � 1when |u| ≤ N . If |v| ≥ 2N then |v−u|2 � |v|2 and |v−u| ≥ N ,
thus for |v| ≥ 2N and |u| ≤ N ,

k�(v, u) � e−C1|v|2

|v − u| = O(1/N ).

If |v| ≤ 2N , for 0 < δ � 1 with 3(1+δ)
1−2δ > 3,

(4.23) �
∥∥∥∥∥
∥∥∥∥
∫

|u|≤N
k�(v, u)|e−λs〈u〉∇v f

m(s, x, u)|du
∥∥∥∥
L1+δ
v ({|v|≥2N })

∥∥∥∥∥
L3
x

+
∥∥∥∥∥
∥∥∥e−C |v|2

∥∥∥
L3/2
v

∥∥∥∥
∫

|u|≤N

1

|v − u| |e
−λs〈u〉∇v f

m(s, x, u)|du
∥∥∥∥
L

3(1+δ)
1−2δ

v ({|v|≤2N })

∥∥∥∥∥
L3
x

� ‖e−λs〈v〉∇v f
m(s)‖L3

x L
1+δ
v

+
∥∥∥∥∥
∥∥∥∥1|v|≤2N

|v − ·| ∗ |e−λs〈·〉∇v f
m(s, x, ·)|

∥∥∥∥
L

3(1+δ)
1−2δ

v

∥∥∥∥∥
L3
x

.

(4.24)

Then by the Hardy-Littlewood-Sobolev inequality with 1+ 1
3(1+δ)
1−2δ

= 1
3 + 1

1+δ , we derive
that

(4.24) �δ

∥∥∥‖e−λs〈v〉∇v f
m(s, x, v)‖L1+δ

v

∥∥∥
L3
x

= ‖e−λs〈v〉∇v f
m(s)‖L3

x L
1+δ
v

.
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Combining the last estimate with (4.23), (4.24), we prove that

‖(4.21)‖L3
x L

1+δ
v

�δ ‖e−λs〈v〉∇v f
m(s)‖L3

x L
1+δ
v

. (4.25)

Now we consider (4.22). We have

(4.22) �
∫

|u|≥N

1

wθ̃−t (V (s; t, x, v))1/2
wθ̃−t (V (s; t, x, v))

wθ̃ (u)

k�(V (s; t, x, v), u)eλs〈u〉

α f m−1,ε(s, X(s; t, x, v), u)β

× 1

wθ̃−t (V (s; t, x, v))1/2
e−λs〈u〉wθ̃ (u)α f m−1,ε(s, X(s; t, x, v), u)β
|∇v f

m(s, X(s; t, x, v), u)|du.

By the Hölder inequality with 1
p + 1

p∗ = 1 with 3 < p < 6,

|(4.22)| � 1

wθ̃−t (V (s; t, x, v))1/2∥∥∥∥∥
wθ̃−t (V (s; t, x, v))

wθ̃ (u)

k�(V (s; t, x, v), u)eλs〈u〉

α f m−1,ε(s, X(s; t, x, v), u)β
∥∥∥∥∥
L p∗ ({|u|≥N })

×
∥∥∥∥∥

e−λs〈u〉wθ̃ (u)

wθ̃−t (V (s; t, x, v))1/2
α f m−1,ε(s, X(s; t, x, v), u)β

|∇v f
m(s, X(s; t, x, v), u)|∥∥L p

u (R
3)
.

(4.26)

Then by the Hölder inequality with 1
1+δ = 1

p + 1
(1+δ)p
p−(1+δ)

,

‖(4.22)‖L1+δ
v

�
∥∥∥∥∥

1

wθ̃−t (V (s; t, x, v))1/2
∥∥∥∥∥
L

(1+δ)p
p−(1+δ)
v

× sup
v

∥∥∥∥∥
wθ̃−t (V (s; t, x, v))

wθ̃ (u)

k�(V (s; t, x, v), u)eλs〈u〉

α f m−1,ε(s, X(s; t, x, v), u)β
∥∥∥∥∥
L p∗ ({|u|≥N })

×
∥∥∥∥∥
∥∥∥∥∥

e−λs〈u〉wθ̃ (u)

wθ̃−t (V (s; t, x, v))1/2
α f m−1,ε(s, X(s; t, x, v), u)β

|∇v f
m(s, X(s; t, x, v), u)|∥∥L p

u

∥∥∥
L p
v

.

From (3.16), for some 0 < �̃ < � we have

k�(v, u)
e(θ̃−t)|v|2eλs〈u〉

eθ̃ |u|2 � k�(v, u)
e(θ̃−t)|v|2

e(θ̃−t)|u|2
eλt〈u〉

et |u|2 � k�̃(v, u).
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Hence using (4.13) we derive,
∥∥∥‖(4.22)‖L1+δ

v

∥∥∥
L3
x

��,β,p sup
X ,V

∥∥∥∥∥
e− �̃

10 |V−u|2

|V − u|
1

α f m−1,ε(s, X , u)β

∥∥∥∥∥
L p∗ ({|u|≥N })

×
∥∥∥∥∥

e−λs〈u〉wθ̃ (u)

wθ̃−t (V (s; t, x, v))1/2
α f m−1,ε(s, X(s; t, x, v), u)β |∇v f

m(s, X(s; t, x, v), u)|
∥∥∥∥∥
L p
u,v,x

.

By (3.10) in Proposition 4 with p−2
p−1 < β p∗ < 1 from (3.2) and applying the change of

variables (x, v) 
→ (X(s; t, x, v), V (s; t, x, v)), we derive that
∥∥∥‖(4.22)‖L1+δ

v

∥∥∥
L3
x

��,p,β

∥∥∥∥∥
∥∥∥∥∥

e−λs〈u〉

wθ̃−t (v)
1/2wθ̃ (u)α f m−1,ε(s, x, u)

β |∇v f
m(s, x, u)|

∥∥∥∥∥
L p
v

∥∥∥∥∥
L p
u,x

�
∥∥∥∥∥

1

wθ̃−t (v)
1/2

∥∥∥∥∥
L p
v

∥∥∥e−λs〈u〉wθ̃ (u)α f m−1,ε (s, x, u)
β |∇v f

m(s, x, u)|
∥∥∥
L p
u,x

�θ̃

∥∥∥e−λs〈u〉wθ̃α
β

f m−1,ε
|∇v f

m(s)|
∥∥∥
L p

.

(4.27)

Combining (4.26) and (4.27) we conclude that

‖(4.22)‖L3
x L

1+δ
v

��,β,p,θ̃ ‖e−λs〈u〉wθ̃α
β

f m−1,ε
∇v f

m(s)‖L p
x,v
. (4.28)

Finally from (4.25) and (4.28), and using the Minkowski inequality, we conclude that

‖(4.11)‖L3
vL

1+δ
x

��,β,p,θ̃ (1 + ‖wθ ′ f m‖∞)

∫ t

0

[‖e−λs〈v〉∇v f
m(s)‖L3

x L
1+δ
v

+ ‖e−λs〈v〉wθ̃α
β

f m−1,ε
∇v f

m(s)‖L p
x,v

]
ds.

(4.29)

Step 4. Since all assumption in Proposition 2,3 are satisfied, we have the uniform in n
bound

sup
n

‖wθ ′ f n‖∞ < ∞, sup
n

‖e−λs〈v〉wθ̃α
β

f m−1,ε
∇x,v f

n‖p < ∞.

Collecting terms from (4.14), (4.15),(4.16), (4.17), and (4.29), we derive

‖e−λt〈v〉∇v f
m+1(t)‖L3

x L
1+δ
v

≤ C(�, p, β, θ̃ )× (1 + ‖wθ ′ f m‖∞)
[
‖wθ̃∇v f (0)‖L3

x,v
+ sup

n
sup

0≤s≤t
‖wθ ′ f n(s)‖∞

+ sup
n

sup
0≤s≤t

‖e−λs〈u〉wθ̃α
β

f n−1,ε
∇x,v f

n(s)‖p + t sup
0≤s≤t

‖e−λs〈v〉∇v f
m(s)‖L3

x L
1+δ
v

]
.

(4.30)

Now we define the constant in (4.2) as

Cδ = C(�, p, β, θ̃ )(1 + sup
n

‖wθ ′ f n‖∞). (4.31)
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For the last term in (4.30) by the assumption (4.2), we take t < tδ = tδ(Cδ) � 1 small
enough such that

C(�, p, β, θ̃ )(1 + sup
n

‖wθ ′ f n‖∞)t sup
0≤s≤t

‖e−λs〈v〉∇v f
m(s)‖L3

x L
1+δ
v

≤ tδC
2
δ

[
‖wθ̃∇v f (0)‖L3

x,v
+ sup

n
sup

0≤s≤t
‖wθ ′ f n(s)‖∞

+ sup
n

sup
0≤s≤t

‖e−λs〈u〉wθ̃α
β

f n−1,ε
∇x,v f

n(s)‖p

]

≤ Cδ

[
‖wθ̃∇v f (0)‖L3

x,v
+ sup

n
sup

0≤s≤t
‖wθ ′ f n(s)‖∞

+ sup
n

sup
0≤s≤t

‖e−λs〈u〉wθ̃α
β

f n−1,ε
∇x,v f

n(s)‖p

]
. (4.32)

Finally we get

‖e−λt〈v〉∇v f
m+1(t)‖L3

x L
1+δ
v

≤ 2Cδ

[
‖wθ̃∇v f (0)‖L3

x,v
+ sup

n
sup

0≤s≤t
‖wθ ′ f n(s)‖∞

+ sup
n

sup
0≤s≤t

‖e−λs〈u〉wθ̃α
β

f n−1,ε
∇x,v f

n(s)‖p

]
.

We prove (4.3) and derive the proposition. ��
The next proposition follows from the Proposition 5.

Proposition 6 Suppose f m+1 and f m solve (1.44)with boundary condition (1.45), and satisfy
all assumption in Proposition 2 3 5. Then there exists t̄ � 1 (t̄ ≤ tδ) with t ≤ t̄ such that

sup
0≤s≤t

‖e−λs〈v〉[ f m+1(s)− f m(s)
]‖L1+δ(�×R3) +

∫ t

0
|e−λs〈v〉( f m+1 − f m)(s)|1+δ1+δ,+

≤ 1

2
sup

0≤s≤t
‖e−λs〈v〉[ f m(s)− f m−1(s)

]‖L1+δ(�×R3)

+ 1

2

∫ t

0
|e−λs〈v〉( f m − f m−1)(s)|1+δ1+δ,+.

(4.33)

Here t̄ satisfies (4.43).

Remark 9 This proposition is crucial to show the existence of the solution. In Proposition 9
we will use the L1+ Cauchy with (2.8) to conclude the existence of the solution f .

Proof First we take t̄ ≤ tδ with tδ defined in Proposition 5 so that we can apply all the
previous Propositions.

Assume f m+1 and f m solve (1.44), then

∂t
[
e−λt〈v〉( f m+1 − f m)

] + v · ∇x
[
e−λt〈v〉( f m+1 − f m)

] − ∇xφ
m · ∇v

[
e−λt〈v〉( f m+1 − f m)

]
+

(
λ〈v〉 + v

2TM
· ∇xφ

m − λt∂v〈v〉 + ν(Fm)
)[
e−λt〈v〉( f m+1 − f m)

]

= (∇xφ
m − ∇xφ

m−1)∇v(e
−λt〈v〉 f m)− v

2TM
· (∇xφ

m − ∇xφ
m−1)(e−λt〈v〉 f m)

+ e−λt〈v〉
[
�gain( f

m , f m)− �gain( f
m−1, f m−1)+ f m

(
ν(Fm−1)− ν(Fm)

)]
.

(4.34)
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By (3.31) we have

λ〈v〉 + v

2TM
· ∇xφ

m − λt∂v〈v〉 + ν(Fm) ≥ λ

2
〈v〉.

Then using Lemma 9 for L1+δ-space with 0 < δ � 1, we obtain

‖e−λt〈v〉( f m+1 − f m)(t)‖1+δ1+δ +
∫ t

0
|e−λs〈v〉( f m+1 − f m)(s)|1+δ1+δ,+

+ λ

2

∫ t

0
‖〈v〉e−λs〈v〉( f m+1 − f m)(s)‖1+δ1+δ

≤ ‖[ f m+1 − f m](0)‖1+δ1+δ +
∫ t

0

∫∫
�×R3

|RHS of (4.34)|e−λs〈v〉( f m+1 − f m)|δ

+
∫ t

0
|e−λs〈v〉( f m+1 − f m)|1+δ1+δ,−.

(4.35)

We now analyze the three terms in RHS of (4.34).

– Estimate of the first term. For 0 < δ � 1, by the Hölder inequality with 1 = 1
3(1+δ)
2−δ

+
1
3 + 1

1+δ
δ

and the Sobolev embedding W 1,1+δ(�) ⊂ L
3(1+δ)
2−δ (�) when � ⊂ R

3, the

contribution of the first term of the RHS of (4.34) is bounded by

∫ t

0

∫
�×R3

|(∇xφ
m − ∇xφ

m−1) · ∇v

(
e−λs〈v〉 f m

)||e−λs〈v〉( f m+1 − f m)|δ

�
∫ t

0
‖∇xφ

m − ∇xφ
m−1‖

L
3(1+δ)
2−δ

x

‖e−λs〈v〉∇v f
m‖L3

x L
1+δ
v

‖e−λs〈v〉[ f m+1 − f m]δ‖
L

1+δ
δ

x,v

� sup
0≤s≤t

‖e−λs〈v〉∇v f
m(s)‖L3

x L
1+δ
v

×
∫ t

0
‖e−λs〈v〉( f m+1 − f m)(s)‖1+δ1+δds.

(4.36)

– Estimate of the second term. By the Hölder inequality with 1 = δ
1+δ + 1

1+δ , the contri-
bution of the second term of the RHS of (4.34) is bounded by

∫ t

0

∫
�×R3

v

2TM
· (∇xφ

m − ∇xφ
m−1)(e−λs〈v〉 f m)|e−λs〈v〉( f m+1 − f m)|δ

�
∫ t

0
sup
x

‖〈v〉 f m‖L1+δ
v

‖∇xφ
m − ∇xφ

m−1‖L1+δ
x

‖e−λs〈v〉( f m+1 − f m)δ‖
L

1+δ
δ

x,v

��

[‖wθ ′ f m‖∞ + ‖wθ ′ f m+1‖∞
] ∫ t

0
‖e−λs〈v〉( f m+1 − f m)(s)‖1+δ1+δds.

(4.37)
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– Estimate of the third term. By (3.18), using the Hölder inequality with 1 = δ
1+δ + 1

1+δ ,
the contribution of the last term of the RHS of (4.34) is bounded by∫ t

0

∫
�×R3

e−λs〈v〉[�gain( f
m , f m)− �gain( f

m−1, f m−1)+ �loss( f
m−1, f m)

− �loss( f
m , f m)

]|e−λs〈v〉( f m+1 − f m)|δ

�
∫ t

0

∫
�×R3

[
�gain( f

m , f m)− �gain( f
m , f m−1)

+ �gain( f
m , f m−1)− �gain( f

m−1, f m−1)

+ �loss( f
m−1, f m)− �loss( f

m , f m)
]|e−λs〈v〉( f m+1 − f m)|δ

�
[‖wθ ′ f m‖∞ + ‖wθ ′ f m−1‖∞

] ∫ t

0

∫
x

∫
v

∫
u
e−λs〈v〉kρ(v, u)| f m(u)− f m−1(u)|

|e−λs〈v〉[ f m+1(v)− f m(v)
]|δ

�
∫ t

0

∫
x

∫
v

∫
u

[‖wθ ′ f m‖∞ + ‖wθ ′ f m−1‖∞
]
kρ(v, u)|e−λs〈v〉[ f m+1(v)− f m(v)

]|δ

�
∫ t

0

∫
x

∫
v

|e−λs〈v〉[ f m+1(v)− f m(v)
]|1+δ

∫
u

(
kρ(v, u)

)1+δ

�
∫ t

0
‖e−λs〈v〉[ f m+1(v)− f m(v)

]‖1+δ1+δ.

(4.38)

Since all assumptions in Proposition 2 and Proposition 5 are satisfied, we have

sup
0≤s≤t

sup
n

{‖e−λs〈v〉∇v f
n(s)‖L3

x L
1+δ
v

+ ‖wθ ′ f n(s)‖∞
}
< ∞. (4.39)

Collecting (4.36) (4.37) and (4.38), in (4.35) we have∫ t

0

∫∫
�×R3

|RHS of (4.34)||e−λs〈v〉( f m+1 − f m)|δ

�� (4.39)×
∫ t

0
‖e−λs〈v〉( f m+1 − f m)‖1+δ1+δ.

(4.40)

Following the proof of the Step 1 in Proposition 3,we apply the same decomposition (3.38)
to γ+(x). By (4.40), we can obtain∫ t

0
|e−λs〈v〉[ f m+1 − f m]|1+δ1+δ,−

�δ,TM ,rmin ,� ε

∫ t

0
|e−λs〈v〉[ f m − f m−1]|1+δ1+δ,+ + C(ε)‖[ f m − f m−1](0)‖1+δ1+δ

+ C(ε)(4.39)×
∫ t

0
‖e−λs〈v〉( f m − f m−1)‖1+δ1+δ.

(4.41)

By (4.35) (4.40) and (4.41), using f m(0) = f m+1(0) = f0 and λ
2

∫ t
0 ‖〈v〉e−λs〈v〉( f m+1−

f m)(s)‖1+δ1+δ ≥ 0,

‖e−λt〈v〉( f m+1 − f m)(t)‖1+δ1+δ +
∫ t

0
|e−λs〈v〉( f m+1 − f m)(s)|1+δ1+δ,+

≤ C(δ, TM , rmin,�)(4.39)×
(
t sup
0≤s≤t

‖e−λs〈v〉( f m+1 − f m)(s)‖1+δ1+δ

+ C(ε)t sup
0≤s≤t

‖e−λs〈v〉( f m − f m−1)(s)‖1+δ1+δ + ε

∫ t

0
|e−λs〈v〉[ f m − f m−1]|1+δ1+δ,+

)
.

(4.42)
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Now we take ε and t < t̄(δ, TM , rmin,�, ε) small enough such that

C(δ, TM , rmin,�)ε × (4.39) <
1

10
,

C(δ, TM , rmin,�)C(ε)t̄ × (4.39) ≤ 1

10
, (4.43)

we derive (4.33) and prove the Proposition. ��
TheProposition 5 suggests, according to (4.3), that the L3

x L
1+δ
v estimate of∇v f is obtained

upon a good initial condition, the boundedness in L∞ and the weighted W 1,p estimate. In
particular, we have the following proposition.

Proposition 7 Assume f and φ solve (1.22) (1.24) (1.9), and satisfy estimates

‖wθ ′ f ‖ < ∞, (4.44)

‖wθ̃e
−λt〈v〉αβf ,ε∇x,v f ‖p < ∞. (4.45)

We also assume extra initial condition

‖wθ̃∇v f0‖L3
x,v

< ∞. (4.46)

Then

‖e−λt〈v〉∇v f ‖L3
x L

1+δ
v

< ∞. (4.47)

Proof By replacing f m+1 and f m by f in (4.4), we obtain bound for ∂v f using (4.6)-(4.9)
with replacing f m and f m+1 into f . Following exactly the same proof in Proposition 5,
by (4.30), we obtain

‖e−λt〈v〉∇v f ‖L3
x L

1+δ
v

≤ C(�, p, β, θ̃ )× (1 + ‖wθ ′ f ‖∞)
[
‖wθ̃∇v f (0)‖L3

x,v
+ ‖wθ ′ f ‖∞

+ ‖e−λs〈v〉wθ̃α
β
f ,ε∇x,v f ‖p

+
∫ t

0
‖e−λs〈v〉∇v f (s)‖L3

x L
1+δ
v

ds
]
.

(4.48)

By assumption (4.44) and (4.45), the first line of the RHS of (4.48) is bounded. We derive
the proposition by the Gronwall’s inequality. ��

The Proposition 6 suggests that the L1+ stability of f can be also obtained upon a good
initial condition.

Proposition 8 Suppose f and g solve (1.22) (1.24) (1.9), and satisfy all assumption in Propo-
sition 7. Then

‖e−λt〈v〉[ f (t)− g(t)
]‖L1+δ(�×R3) � ‖ f0 − g0‖L1+δ(�×R3). (4.49)

Remark 10 Clearly, this proposition serves as a criteria for showing the uniqueness of the
solution. The main assumption is that the solution needs to satisfy the initial condition (4.46)
and the estimates (4.44) and (4.45). In Sect. 5 where we show the uniqueness in Proposition
10, the effort is devoted to bounding (4.45) for the solution f .
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Proof of Proposition 8 By replacing f m+1 = f and f m = g in Proposition 6, using (4.35)
(4.40) and (4.41), we obtain

‖e−λt〈v〉( f − g)(t)‖1+δ1+δ +
∫ t

0
|e−λs〈v〉( f − g)(s)|1+δ1+δ,+

≤ C(δ, TM , rmin,�)C(ε)‖ f0 − g0‖1+δ1+δ + C(δ, TM , rmin,�)

∫ t

0
‖e−λs〈v〉( f − g)(s)‖1+δ1+δ

+ C(δ, TM , rmin)ε

∫ t

0
|e−λs〈v〉( f − g)|1+δ1+δ,+.

(4.50)

We pick ε � 1 such that C(δ, TM , rmin,�)ε <
1
10 . With ε fixed we applying the Gronwall

inequality and derive the L1+δ-stability (4.49). ��

5 Existence and Uniqueness

In this section we finalize the existence and uniqueness of the VPB system. The existence
is stated in Proposition 9 and the uniqueness is given in Proposition 10. The combination of
these two leads to the final Theorem 1.

To show the existence,wefirst realize that due to the linearity of the boundary condition, the
boundary contribution in the integration of the equation tested with a test function converges
to that of its weak limit. The strategy used in the proof for diffuse boundary condition is
carried over, and we adapt the proof of Theorem 6 in [2] to fit our setting.

For the valid application of the propositions in the previous sections, we let t ≤ t̄ with t̄
given in Proposition 6. Then from the assumption in Proposition 2, 3, 5, 6, we have

t̄ ≤ tδ ≤ tW ≤ t∞.

The condition for these four terms are (4.43),(4.32),(3.66) and (2.7) respectively. Thus we
conclude the condition for t̄ as stated in (1.33) in Theorem 1.

Proposition 9 Given the assumption in Proposition 2 and Proposition 6, for t ≤ t̄ there exists
at least one solution f that satisfies

∂t f + v · ∇x f − ∇xφ f · ∇v f + v

2TM
· ∇xφ f = �( f , f ).

Moreover,

‖wθ ′ f ‖∞ < ∞. (5.1)

To prove this proposition we first cite a lemma. This lemma will be used to apply the
average lemma in (5.7).

Lemma 13 (Lemma 14 of [2]) Assume f (s, x, v) = es f0(x, v) for s < 0. Assume � is
convex and sup0≤t≤T ‖E‖L∞(�) < ∞. Let Ē(t, x) = 1�(x)E(t, x) for x ∈ R

3. There exists
f̄ (t, x, v) ∈ L2(R × R

3 × R
3), an extension of fδ , such that

f |�×R3 = fδ and f̄ |γ = fδ|γ , and f̄ |t=0 = fδ|t=0.
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Proof of Proposition 9 Since assumptions on Proposition 6 are all satisfied,we apply the result
for:

sup
0≤s≤t

‖e−λs〈v〉( f l − f m)(s)‖L1+δ ≤ (
1

2
)min{l,m}. (5.2)

Thus e−λs〈v〉 f m is a Cauchy sequence in L1+δ and there exists f such that

e−λt〈v〉 f m → e−λt〈v〉 f strongly in L1+δ(�× R
3). (5.3)

By (2.6) and (5.3), there is a unique weak-* limit(up to subsequence) (wθ ′ f m, wθ ′ f m+1)

⇀∗(wθ ′ f , wθ ′ f ) weakly-* in L∞(R × � × R
3) ∩ L∞(R × γ ) with ‖wθ ′ f ‖∞ < ∞. This

means, if let ϕ ∈ C∞
c ([0, t̄] × �̄× R

3),

∫ t̄

0

∫
�×R3

f m+1[−∂t − v · ∇x ]ϕ + f m+1{∇xφ
m · ∇vϕ + v

2TM
· ∇xφ

mϕ}

+
∫
�×R3

f m+1(t̄, x, v)ϕ(t̄, x, v)−
∫
�×R3

f0(x, v)φ(0, x, v)

=
∫ t̄

0

∫
�×R3

�gain( f
m, f m)ϕ − �loss( f

m, f m+1)ϕ

+
∫ t̄

0

∫
γ+

f m+1ϕ −
∫ t̄

0

∫
γ−

e
[ 1
4TM

− 1
2Tw(x) ]|v|2

∫
n·u>0

f m(u)e
[ 1
2Tw(x)− 1

4TM
]|u|2

dσ(u, v)ϕ.

then all the terms converge to the limit with f replacing f m+1 and f m , except
f m+1{∇xφ

m · ∇vϕ + v
2TM

· ∇xφ
mϕ}, �gain( f m, f m)ϕ, �loss( f m, f m+1)ϕ. We now discuss

the three terms respectively.
We define, for (x, v) ∈ �̄× R

3 and for 0 < δ � 1,

kδ(x, v) = χ(
|n(x) · v|

δ
)[1 − χ(δ|v|)]χ( |v|

δ
− 1) (5.4)

with smooth function

χ(x) =
{
0, x < 0;
1, x ≥ 1.

(5.5)

Then kδ(t, x, v) = 0 if either |n(x) · v| ≤ δ, |v| ≥ 1
δ
, or |v| < δ.

• For the term �loss( f m, f m+1)ϕ, we note:

|
∫ t̄

0

∫
�×R3

�loss( f
m, f m+1)ϕ − �loss( f , f )ϕ|

≤ |
∫ t̄

0

∫
�×R3

∫
R3

|v − u|[ f m(u)− f (u)]√μ(u)du f m+1(v)ϕ(t, x, v)dvdxdt |

+ |
∫ t̄

0

∫
�×R3

∫
R3

|v − u| f (u)√μ(u)du[ f m+1(v)− f (v)]ϕ(t, x, v)dvdxdt |.
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The second term vanishes due to (2.6), and to handle the first term, we apply the Hölder
inequality:

∫ t̄

0

∫
�×R3

∫
R3
(|v| + |u|)e−θ ′|v|2(kδ(x, u)+ 1 − kδ(x, u)

)[ f m(u)− f (u)]√μ(u)du

× ϕ(t, x, v)dvdxdt sup
0≤t≤t̄

‖eθ ′|v|2 f m+1(t)‖∞

�
[ ∫ t̄

0

∫
�×R3

|v|e−θ ′|v|2( ∫
R3

〈u〉√μ(u)kδ(x, u)[ f m(u)− f (u)]du)2dvdxdt]1/2

×
[ ∫ t̄

0

∫
�×R3

ϕ2(t, x, v)dvdxdt
]1/2 + O(δ)

�
[ ∫

R3
|v|e−θ ′|v|2∥∥

∫
R3

kδ(x, u)[ f m(t, x, u)

− f (t, x, u)]〈u〉√μ(u)du
∥∥
L2(�×[0,T ])dv

]1/2 + O(δ).

(5.6)

The O(δ) comes from the integration with 1 − kδ(x, u), a nonzero term only when
|u| ≤ 2δ or |u| ≤ 1

δ
, or |n(x) · u| ≤ δ, and thus

∫ t̄

0

∫
�×R3

∫
R3

|u|√μ1|u|≤2δ or |u|≥δ−1 [· · · ] = O(δ).

We now extend the results in Lemma 13 that treats f̄ m(t, x, v) to deal with
kδ(x, u) f m(t, x, v). Apply the average lemma in [12] to f m(t, x, v), we have:

sup
m

‖
∫
R3

f̄ m(t, x, u)〈u〉√μ(u)du‖
H1/4
t,x (R×R3)

< ∞. (5.7)

Since H1/4 ⊂⊂ L2, we conclude that up to subsequence:
∫
R3

kδ(x, u) f
m(t, x, u)〈u〉√μ(u)du →

∫
R3

kδ(x, u) f (t, x, u)〈u〉√μ(u)du strongly in L2
t,x ,

meaning (5.6) goes to 0 as m → ∞.
• For the term �gain( f m, f m)ϕ, we use a test function ϕ1(v)ϕ2(t, x). By the standard

change of variables (v, u) → (v′, u′) and (v, u) → (u′, u), we get
∫ t̄

0

∫
�×R3

�gain( f
m, f m)ϕ − �gain( f , f )ϕ

=
∫ t̄

0

∫
�×R3

�gain( f
m − f , f m)ϕ +

∫ t̄

0

∫∫
�×R3

�gain( f , f
m − f )ϕ

=
∫ t̄

0

∫
�×R3

( ∫
R3

∫
S2

(
f m(t, x, u)− f (t, x, u)

)√
μ(u′)|(v − u) · ω|ϕ1(u)dωdu

)

× f m(t, x, v)ϕ2(t, x)dvdxdt (5.8)

+
∫ t̄

0

∫
�×R3

( ∫
R3

∫
S2

(
f m(t, x, u)− f (t, x, u)

)√
μ(u)|(v − u) · ω|ϕ1(u′)dωdu

)

× f (t, x, v)ϕ2(t, x)dvdxdt . (5.9)
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Let N � 1 we decompose the integration of (5.9) and (5.8) using

1 = {1 − χ(|u| − N )}{1 − χ(|v| − N )} + χ(|u| − N )

+χ(|v| − N )− χ(|u| − N )χ(|v| − N ). (5.10)

Theχ(|u|−N )+χ(|v|−N )−χ(|u|−N )χ(|v|−N ) component can be easily controlled.
For example, (5.8) becomes:

∫ t̄

0

∫
�×R3

∫
R3

∫
S2

[· · ·] × {χ(|u| − N )+ χ(|v| − N )− χ(|u| − N )χ(|v| − N )}

� sup
m

‖eθ ′|v|2 f m‖∞‖eθ ′|v|2 f ‖∞
( ∫ t̄

0

∫
�×R3

∫
R

e− θ ′
2 |v|2e− θ ′

2 |u|2 [1|v|≥N

+ 1|u|≥N ]dudvdxdt
)

≤ O(
1

N
).

(5.11)

To consider the component involving {1 − χ(|u| − N )}{1 − χ(|v| − N )}, we note that
this term is nontrivial if |v| ≤ N + 1 and |u| ≤ N + 1. Consider its effect in (5.8), we
have:

∫ t̄

0

∫
�×R3

∫
R3

(
f m(t, x, v)− f (t, x, v)

)

× {1 − χ(|u| − N )}
( ∫

S2

√
μ(u′)|(v − u) · ω|ϕ1(u)dω

)
du

× {1 − χ(|v| − N )} f m(t, x, v)ϕ2(t, x)dvdxdt .

(5.12)

Define

�v(u) = {1 − χ(|u| − N )}
∫
S2

√
μ(u′)|(v − u) · ω|ϕ1(u)dω for |v| ≤ N + 1,

(5.13)

then (5.12) is further written as

∫ t̄

0

∫
�

∫
R3
(1 − kδ)

(
f m(t, x, v)− f (t, x, v)

)
�v(u){1 − χ(|v| − N )}

f m(t, x, v)ϕ2(t, x)dvdxdt .

+ kδ
(
f m(t, x, v)− f (t, x, v)

)
�v(u){1 − χ(|v| − N )} f m(t, x, v)ϕ2(t, x)dvdxdt .

(5.14)

The first term in (5.14) is bounded by O(δ) supm ‖eθ ′|v|2 f m‖∞, introducing O(δ) error,
and to handle the second term in (5.14), we form an open cover of {v ∈ R

3 : |v| ≤
N + 1} ⊂ ⋃O(N3/δ3)

i=1 B(vi , δ). δ is small enough so that

|�v(u)−�vi (u)| < ε, if v ∈ B(vi , δ). (5.15)

This leads to
∫ t̄

0

∫
�

∫
R3

∑
i

1v∈B(vi ,δ)
∫
R3

(
f m(t, x, u)− f (t, x, u)

)(
�v(u)−�vi (u)

)
du

× {1 − χ(|v| − N )} f m(t, x, v)ϕ2(t, x)dvdxdt = O(ε).
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By rewriting �v(u) in the second term of (5.14) as �v(u) − �vi (u) + �vi u we finally
obtain

(5.14) ≤ O(ε)+ O(δ)+
∫ t̄

0

∫
�

∑
i

∫
R3

1v∈B(vi ,δ)
∫
R3

kδ(x, u)( f
m(t, x, u)

− f (t, x, u))�vi (u)du

× {1 − χ(|v| − N )} f m(t, x, v)ϕ2(t, x)dvdxdt .

(5.16)

By the average lemma we conclude

max
1≤i≤O( N

3

δ3
)

sup
m

‖
∫
R3

kδ(x, u) f
m(t, x, u)�vi (u)du‖

H1/4
t,x (R×R3)

< ∞. (5.17)

For i = 1 we extract a subsequence m1 ⊂ M1 such that∫
R3

kδ(x, u) f
m(t, x, u)�vi (u)du →

∫
R3

kδ(x, u) f (t, x, u)�vi (u)du strongly in L2
t,x .

(5.18)

Then we follow the Cantor diagonal argument to extract convergent subsequences
M

O( N
3

δ3
)

⊂ · · · ⊂ M2 ⊂ M1. Denote f m the subsequence extracted from m ∈
M

O( N
3

δ3
)
, then we have (5.18) for all i and conclude

(5.12) ≤ Cϕ2,N sup
m

‖eθ ′|v|2 f m‖∞

max
i

∫ t̄

0

∥∥∥
∫
R3

kδ(x, u)( f
m(t, x, u)− f (t, x, u))�vi (u)du

∥∥∥
L2
t,x

→ 0. (5.19)

This, combined with (5.11) provides (5.8) goes to 0. Similar argument is applied to
show the convergence of (5.9) and will not be shown here. These together lead to the
convergence of �gain( f m, f m).

• For the term f m+1{∇xφ
m · ∇vϕ + v

2TM
· ∇xφ

mϕ}, we note:

−(�φm −�φ) =
∫

kδ( f
m − f )

√
μ+

∫
(1 − kδ)( f

m − f )
√
μ.

Using the standard elliptic estimate:

‖∇xφ
m − ∇xφ‖L2

t,x
≤ ‖kδ( f m − f )

√
μ‖L2

t,x
+ O(δ) sup

m
‖eθ |v|2 f m‖∞ → 0,

(5.20)

where we run the same argument by applying the average lemma for the strong conver-
gence in L2

t,x . Finally

∫ t̄

0

∫
�×R3

f m+1{∇xφ
m · ∇vϕ + v

2
· ∇xφ

mϕ} − f {∇xφ f · ∇vϕ + v

2
· ∇xφ f ϕ}dvdxdt

≤
∫ t̄

0

∫
�×R3

( f m+1 − f ){∇xφ
m · ∇vϕ + v

2
· ∇xφ

mϕ}dvdxdt

+
∫ t̄

0

∫
�×R3

f {∇x (φ
m − φ f ) · ∇vϕ + v

2
· ∇x (φ

m − φ f )ϕ}dvdxdt .
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Here the first term goes to 0 by the weak∗ convergence of eθ |v|2 f in L∞, the control of
the second term comes from (5.20).

This proves the existence of a weak solution f ∈ L∞. ��
Proposition 10 states the uniqueness of the VPB system.

Proposition 10 Assume ‖wθ f0‖∞ < ∞, Tw satisfies (1.28), ‖wθ̃α
β
f0,ε

∇x,v f0‖p < ∞ for
0 < ε � 1, and that (p, β) satisfy (3.2), then if ‖wθ̃∇v f0‖L3

x,v
< +∞, there is a unique

solution to (1.22) satisfying (1.35) and (1.36) for t ≤ t̄ .

The proof of the proposition is built upon the following lemma.

Lemma 14 Assume that � is convex (1.19). Suppose that supt ‖E(t)‖C1
x
< ∞ and

n(x) · E(t, x) = 0 for x ∈ ∂� and for all t . (5.21)

Assume (t, x, v) ∈ R+ × �̄×R
3 and t + 1 ≥ tb(t, x, v). If x ∈ ∂� then we further assume

that n(x) · v > 0. Then we have

n(xb(t, x, v)) · vb(t, x, v) < 0. (5.22)

Proof Step 1.Note that locally we can parameterize the trajectory (see Lemma 15 in [15] for
details). We consider local parametrization (1.18). We drop the subscript p for the sake of
simplicity. If X(s; t, x, v) is near the boundary then we can define (Xn, X‖) to satisfy

X(s; t, x, v) = η(X‖(s; t, x, v)) + Xn(s; t, x, v)[−n(X‖(s; t, x, v))]. (5.23)

For the normal velocity we define

Vn(s; t, x, v) := V (s; t, x, v) · [−n(X‖(s; t, x, v))]. (5.24)

We define V‖ tangential to the level set
(
η(X‖)+ Xn(−n(X‖))

)
for fixed Xn . Note that

∂
(
η(x‖)+ xn(−n(x‖))

)
∂x‖,i

⊥ n(x‖) for i = 1, 2.

We define (V‖,1, V‖,2) as

V‖,i :=
(
V − Vn[−n(X‖)]

)
·
(∂η(X‖)

∂x‖,i
+ Xn

[
− ∂n(X‖)

∂x‖,i

])
. (5.25)

Therefore we obtain

V (s; t, x, u) = Vn[−n(X‖)] + V‖ · ∇x‖η(X‖)− XnV‖ · ∇x‖n(X‖). (5.26)

Directly we have

Ẋ(s; t, x, u) = Ẋ‖ · ∇x‖η(X‖)+ Ẋn[−n(X‖)] − Xn Ẋ‖ · ∇x‖n(X‖).

Comparing coefficients of normal and tangential components, we obtain that

Ẋn(s; t, x, v) = Vn(s; t, x, v), Ẋ‖(s; t, x, v) = V‖(s; t, x, v). (5.27)

On the other hand, from (5.26),

V̇ (s) = V̇n[−n(X‖)] − Vn∇x‖n(X‖)Ẋ‖ + V‖ · ∇2
x‖η(X‖)Ẋ‖ + V̇‖ · ∇x‖η(X‖)

− Ẋn∇x‖n(X‖)V‖ − Xn∇x‖n(X‖)V̇‖ − XnV‖ · ∇2
x‖n(X‖)Ẋ‖.

(5.28)
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From (5.28)·[−n(X‖)], (5.27), and V̇ = E , we obtain that

V̇n(s) = [V‖(s) · ∇2η(X‖(s)) · V‖(s)] · n(X‖(s))+ E(s, X(s)) · [−n(X‖(s))]
− Xn(s)[V‖(s) · ∇2n(X‖(s)) · V‖(s)] · n(X‖(s)).

(5.29)

Step 2. We prove (5.22) by the contradiction argument. Assume we choose (t, x, v) sat-
isfying the assumptions of Lemma 14. Let us assume

Xn(t − tb; t, x, v)+ Vn(t − tb; t, x, v) = 0. (5.30)

First we choose 0 < ε � 1 such that Xn(s; t, x, v) � 1 and

Vn(s; t, x, v) ≥ 0 for t − tb(t, x, v) < s < t − tb(t, x, v)+ ε. (5.31)

The sole case that we cannot choose such ε > 0 is when there exists 0 < δ � 1 such
that Vn(s; t, x, v) < 0 for all s ∈ (t − tb(t, x, v), t − tb(t, x, v) + δ). But from (5.27) for
s ∈ (t − tb(t, x, v), t − tb(t, x, v)+ δ)

0 ≤ Xn(s; t, x, v) = Xn(t − tb(t, x, v); t, x, v) +
∫ s

t−tb(t,x,v)
Vn(τ ; t, x, v)dτ < 0.

Now with ε > 0 in (5.31), temporarily we define that t∗ := t − tb(t, x, v) + ε,
x∗ = X(t − tb(t, x, v) + ε; t, x, v), and v∗ = V (t − tb(t, x, v) + ε; t, x, v). Then
(Xn(s; t, x, v), X‖(s; t, x, v)) = (Xn(s; t∗, x∗, v∗), X‖(s; t∗, x∗, v∗)) and
(Vn(s; t, x, v), V‖(s; t, x, v)) = (Vn(s; t∗, x∗, v∗), V‖(s; t∗, x∗, v∗)).

Now we consider the RHS of (5.29). From (1.19), the first term [V‖(s) · ∇2η(X‖(s)) ·
V‖(s)] · n(X‖(s)) ≤ 0. By an expansion and (5.21) we can bound the second term

E(s, X(s)) · n(X‖(s))
= E(s, Xn(s), X‖(s)) · n(X‖(s))
= E(s, 0, X‖(s)) · n(X‖(s))+ ‖E(s)‖C1

x
O(|Xn(s)|)

= ‖E(s)‖C1
x
O(|Xn(s)|).

(5.32)

From (1.38) and assumptions of Lemma 14,

|V‖(s; t, x, v)| ≤ |v| + tb(t, x, v)‖E‖∞ ≤ |v| + (1 + t)‖E‖∞.

Combining the above results with (5.29), we conclude that

V̇n(s; t∗, x∗, v∗) � (|v| + (1 + t)‖E‖∞)2Xn(s; t∗, x∗, v∗), (5.33)

and hence from (5.27) for t − tb(t, x, v) ≤ s ≤ t∗
d

ds
[Xn(s; t∗, x∗, v∗)+ Vn(s; t∗, x∗, v∗)]
� (|v| + (1 + t)‖E‖∞)2[Xn(s; t∗, x∗, v∗)+ Vn(s; t∗, x∗, v∗)].

(5.34)

By the Gronwall inequality and (5.30), for t − tb(t, x, v) ≤ s ≤ t∗
[Xn(s; t∗, x∗, v∗)+ Vn(s; t∗, x∗, v∗)]

� [Xn(t − tb(t, x, u))+ Vn(t − tb(t, x, u))]eCε(|v|+(1+t)‖E‖∞)2)

= 0.

From (5.31) we conclude that Xn(s; t, x, v) ≡ 0 and Vn(s; t, x, v) ≡ 0 for all s ∈
[t − tb(t, x, u), t − tb(t, x, u) + ε]. We can continue this argument successively to deduce
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that Xn(s; t, x, v) ≡ 0 and Vn(s; t, x, v) ≡ 0 for all s ∈ [t − tb(t, x, v), t]. Therefore
xn = 0 = vn which implies x ∈ ∂� and n(x) · v = 0. This is a contradiction since we chose
n(x) · v > 0 if x ∈ ∂�. ��

Now we finish the proof for the uniqueness.

Proof of Proposition 10 Since all the assumption in Proposition 2 3 6 are valid, from Proposi-
tion 9 we have the existence of the solution f to (1.22). To conclude the uniqueness, we need
to apply Proposition 8 and need to verify the condition (4.44) and (4.45). The first condition
is already given in (5.1) in Proposition 9.We here focus on establishing the second condition.

For f satisfying (1.22), we claim

sup
0≤t≤t̄

‖wθ̃ f (t)‖p
p + sup

0≤t≤t̄
‖e−λt〈v〉wθ̃α

β
f ,ε∇x,v f (t)‖p

p

+
∫ t̄

0
|e−λt〈v〉wθ̃α

β
f ,ε∇x,v f (t)|pp,+

� ‖wθ̃ f0‖p
p + ‖wθ̃α

β
f0,ε

∇x,v f0‖p
p.

(5.35)

By the weak lower-semicontinuity of L p we know that

wϑ̃α
β

f ",ε
∇x,v f

"+1⇀F, sup
0≤t≤t̄

‖F(t)‖p
p ≤ lim inf sup

0≤t≤t̄
‖wϑ̃α

β

f ",ε
∇x,v f

"+1(t)‖p
p,

and
∫ t̄

0
|F |pp,+ ≤ lim inf

∫ t̄

0
|wϑ̃α

β

f ",ε
∇x,v f

"+1(t)|pp,+.

We need to prove that

F = wϑ̃α
β
f ,ε∇x,v f almost everywhere except γ0. (5.36)

We claim that, up to some subsequence, for any given smooth test function ψ ∈ C∞
c (�̄×

R
3\γ0)

lim
"→∞

∫ t

0

∫∫
�×R3

wϑ̃α
β

f ",ε
∇x,v f

"+1ψdxdv =
∫ t

0

∫∫
�×R3

wϑ̃α
β
f ,ε∇x,v fψdxdv.

(5.37)

We note that we need to extract a single subsequence, let say {"∗} ⊂ {"}, satisfying (5.37)
for all test functions in C∞

c (�̄× R
3\γ0).

We will exam (5.37) by the identity obtained from the integration by parts
∫ t

0

∫∫
�×R3

wϑ̃α
β

f ",ε
∇x,v f

"+1ψdxdv

= −
∫ t

0

∫∫
�×R3

α
β

f ",ε
f "+1∇x,v(wϑ̃ψ)dxdv (5.38)

+
∫ t

0

∫∫
γ

nαβ
f ",ε

f "+1(wϑ̃ψ) (5.39)

−
∫ t

0

∫∫
�×R3

∇x,vα
β

f ",ε
f "+1(wϑ̃ψ)dxdv. (5.40)
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For each N ∈ N we define a set

SN :=
{
(x, v) ∈ �̄× R

3 : dist(x, ∂�) ≤ 1

N
and |n(x) · v| ≤ 1

N

}
∪ {|v| > N }.

(5.41)

For a given test function we can always find N � 1 such that

supp(ψ) ⊂ (SN )
c := �̄× R

3\SN . (5.42)

We focus on proving the convergence of (5.38) and (5.39). From (1.41), Lemma 1 and the
uniform in " estimate (2.6) , if (x, v) ∈ (SN )

c then

sup
"≥0

|αβ
f ",ε

(t, x, v)| � |v|β + (t + ε)β sup
"≥0

‖∇φ"‖β∞

� Nβ + (t̄ + ε)β sup
"≥0

‖wϑ f "‖β∞ ≤ CN < +∞.

Hence we extract a subsequence (let say {"N }) out of subsequence in Proposition 9 such

that αβ
f "N ,ε

∗
⇀A ∈ L∞ weakly−∗ in L∞((0, t̄)× (SN )

c)∩ L∞((0, t̄)× (γ ∩ (SN )
c)). Note

that αβ
f "N ,ε

satisfies [∂t + v · ∇x − ∇xφ
"N · ∇v]αβf "N ,ε = 0 and αβ

f "N ,ε
|γ− = |n · v|β . By

passing a limit in the weak formulation we conclude that [∂t +v ·∇x −∇xφ f ·∇v]A = 0 and
A|γ− = |n · v|β . By the uniqueness of the Vlasov equation (∇φ f ∈ W 1,p for any p < ∞)

we derive A = α
β
f ,ε almost everywhere and hence conclude that

α
β

f "N ,ε

∗
⇀α

β
f ,ε weakly − ∗ in L∞((0, t̄)× (SN )

c) ∩ L∞((0, t̄)× (γ ∩ (SN )
c)).

(5.43)

Now the convergence of (5.38) and (5.39) is a direct consequence of strong convergence
of (5.3) and the weak−∗ convergence of (5.43):

lim
"→∞(5.38)+ (5.39) = −

∫ t

0

∫∫
�×R3

α
β
f ,ε f ∇x,v(wϑ̃ψ)dxdv +

∫ t

0

∫∫
γ

nαβf ,ε f (wϑ̃ψ).

(5.44)

We now show the convergence of (5.40).
Step 1. Let us choose (x, v) ∈ (SN )

c. From (1.41),

If t f
"

b ≥ t + ε then α f ",ε(t, x, v) = 1. (5.45)

From now we only consider that case

t f
"

b (t, x, v) ≤ ε + t . (5.46)

If |v| ≥ 2(ε + t̄) sup" ‖∇φ"‖∞ then

|V f " (s; t, x, v)| ≥ |v| −
∫ t

s
‖∇φ"(τ)‖∞dτ

≥ (ε + t̄) sup
"

‖∇φ"‖∞ f or all " and s ∈ [−ε, t̄].

Then we apply a velocity lemma derived in (3.32) of [2]. We define

α̃(t, x, v) :=
√
ξ(x)2 + |∇ξ(x) · u|2 − 2(u · ∇2

x ξ(x) · u)ξ(x). (5.47)
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For |u| ≥ N and t − tb(t, x, u) ≥ −ε/2,

α f ,ε(t, x, u)
2 � α̃(t, x, u)2 � α f ,ε(t, x, u)

2. (5.48)

At s = t − t f
"

b (t, x, v), we obtain

|n(x f "

b ) · v f "

b | ≥ e
− C�

sup" ‖∇φ"‖∞

C�

× 1

N
f or all ". (5.49)

Step 2. From now on we assume (5.46) and

|v| ≤ 2(ε + t̄) sup
"

‖∇φ"‖∞,

or , f rom (1.38), |V f " (s; t, x, v)| ≤ 3(ε + t̄) sup
"

‖∇φ"‖∞ f or s ∈ [−ε, t̄].
(5.50)

Let (X f "
n , X f "

‖ , V f "
n , V f "

‖ ) satisfy (5.27), (5.25), and (5.29) with E = −∇φ".
Let us define

τ1 := sup
{
τ ≥ 0 : V f "

n (s; t, x, v) ≥ 0 f or all s ∈ [t − t f
"

b (t, x, v), τ ]}. (5.51)

Since (X f " (s; t, x, v), V f " (s; t, x, v)) is C1 (note that ∇φ" ∈ C1
t,x ) in s we have

V f "
n (τ1; t, x, v) = 0.
We claim that, there exists some constant δ∗∗ = Oε,t̄,sup" ‖∇φ"‖C1

( 1
N ) in (5.57) which does

not depend on " such that

If 0 ≤ V f "
n (t − t f

"

b (t, x, v); t, x, v) < δ∗∗ and (5.50),

then V f "
n (s; t, x, v) ≤ eC |s−(t−t f

"

b (t,x,v))|2V f "
n (t − t f

"

b (t, x, v); t, x, v)
f or s ∈ [t − t f

"

b , τ1].
(5.52)

For the proofwe regard the equations (5.27), (5.25), and (5.29) as the forward-in-timeproblem

with an initial datum at s = t−t f
"

b (t, x, v). Clearlywe have X f "
n (t−t f

"

b (t, x, v); t, x, v) = 0

and V f "
n (t − t f

"

b (t, x, v); t, x, v) ≥ 0 from Lemma 14. Again from Lemma 14, if V f "
n (t −

t f
"

b (t, x, v); t, x, v) = 0 then X f "
n (s; t, x, v) = 0 for all s ≥ t − t f

"

b (t, x, v). From now on

we assume V f "
n (t−t f

"

b (t, x, v); t, x, v)] > 0. From (5.29), as long as t−t f
"

b (t, x, v) ≤ s ≤ t̄
and

V f "
n (s; t, x, v) ≥ 0 and X f "

n (s; t, x, v) ≤ 1

N
� 1, (5.53)
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then we have

V̇ f "
n (s) = [V f "

‖ (s) · ∇2η(X f "

‖ (s)) · V f "

‖ (s)] · n(X f "

‖ (s))︸ ︷︷ ︸
≤0 f rom (1.19)

− ∇φ"(s, X f " (s)) · [−n(X f "

‖ (s))]︸ ︷︷ ︸
=O(1) sup" ‖∇φ"‖C1×X f "

n (s) f rom (5.32)

− X f "
n (s)[V f "

‖ (s) · ∇2n(X f "

‖ (s)) · V f "

‖ (s)] · n(X f "

‖ (s))︸ ︷︷ ︸
=O(1){3(ε+t̄) sup" ‖∇φ"‖∞}2×X f "

n (s) f rom (5.50)

≤ C(1 + ε + t̄)2(sup
"

‖∇φ"‖C1 sup
"

‖∇φ"‖∞)× X f "
n (s).

(5.54)

Let us consider (5.54) together with Ẋ f "
n (s; t, x, v) = V f "

n (s; t, x, v). Then, as long as s
satisfies (5.53),

V f "
n (s) = V f "

n (t − t f
"

b )+
∫ s

t−t f
"

b

V̇ f "
n (τ )dτ

≤ V f "
n (t − t f

"

b )+
∫ s

t−t f
"

b

C(1 + ε + t̄)2(sup
"

‖∇φ"‖C1 sup
"

‖∇φ"‖∞)× X f "
n (τ )dτ

= V f "
n (t − t f

"

b )+
∫ s

t−t f
"

b

C(1 + ε + t̄)2(sup
"

‖∇φ"‖C1 sup
"

‖∇φ"‖∞)

∫ τ

t−t f
"

b

V f "
n (τ ′)dτ ′dτ

≤ C(1 + ε + t̄)2(sup
"

‖∇φ"‖C1 sup
"

‖∇φ"‖∞)

∫ s

t−t f
"

b

|s − (t − t f
"

b )|V f "
n (τ ′)dτ ′.

From the Gronwall’s inequality, we derive that, as long as (5.53) holds,

V f "
n (s; t, x, v) ≤ V f "

n (t − t f
"

b (t, x, v))eC(1+ε+t̄)2(sup" ‖∇φ"‖C1 sup" ‖∇φ"‖∞)×|s−(t−t f
"

b (t,x,v))|2 .
(5.55)

Now we verify the conditions of (5.53) for all −ε ≤ t − t f
"

b (t, x, v) ≤ s ≤ t̄ . Note that

we are only interested in the case of V f "
n (t − t f

"

b (t, x, v); t, x, v) < δ∗∗. From the argument
of (5.54), ignoring negative curvature term,

|X f "
n (s; t, x, v)|
≤ (ε + t̄)|V f "

n (t − t f
"

b ; t, x, v)|
+ C[1 + (ε + t̄)2 sup

"

‖∇φ"‖∞] sup
"

‖∇φ"‖C1

∫ s

t−t f
"

b

∫ τ

t−t f
"

b

|X f "
n (τ ; t, x, v)|dτds

≤ (ε + t̄)|V f "
n (t − t f

"

b ; t, x, v)| + C
∫ s

t−t f
"

b

|τ − (t − t f
"

b )||X f "
n (τ ; t, x, v)|dτ.
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Then by the Gronwall’s inequality we derive that, in case of (5.46),

|X f "
n (s; t, x, v)| ≤ Cε+t̄ |V f "

n (t − t f
"

b ; t, x, v)| f or all − ε ≤ t − t f
"

b ≤ s ≤ t ≤ t̄ .

(5.56)

If we choose

δ∗∗ = o(1)

|t̄ + ε| × 1

N
, (5.57)

then (5.55) holds for −ε ≤ t − t f
"

b (t, x, v) ≤ s ≤ t̄ . Hence we complete the proof of (5.52).

Step 3. Suppose that (5.50) holds and 0 ≤ V f "
n (t − t f

"

b (t, x, v); t, x, v) < δ∗∗ with
δ∗∗ of (5.57). Recall the definition of τ1 in (5.51). Inductively we define τ2 := sup

{
τ ≥ 0 :

V f "
n (s; t, x, v) ≤ 0 f or all s ∈ [τ1, τ ]

}
and τ3, τ4, · · · . Clearly such points can be countably

many at most in an interval of [t − t f
"

b , t]. Suppose limk→∞ τk = t . Then choose k0 � 1

such that |τk0 − t | � |V f "
n (t − t f

"

b ; t, x, v)|. Then, for s ∈ [τk0 , t], from (5.54) and (5.50),

|V f "
n (t; t, x, v)| � |V f "

n (t − t f
"

b ; t, x, v)|. (5.58)

Now we assume that τk0 < t ≤ τk0+1. From the definition of τi in (5.51) we split the case
in two.

Case 1: Suppose V f "
n (s; t, x, v) > 0 for s ∈ (τk0 , t).

From (5.54) and (5.56)

V f "
n (t; t, x, v) �

∫ t̄

τk0

X f "
n (s) � |V f "

n (t − t f
"

b ; t, x, v)|. (5.59)

Case 2: Suppose V f "
n (s; t, x, v) < 0 for s ∈ (τk0 , t).

Suppose

− V f "
n (t; t, x, v) = |V f "

n (t; t, x, v)| ≥ 1

ε
|V f "

n (t − t f
"

b ; t, x, v)|1/2. (5.60)

From (5.54), now taking account of the curvature term this time, we derive that

−V f "
n (t; t, x, v) ≤

∫ t

τk0

(−1)[V f "

‖ (s) · ∇2η(X f "

‖ (s)) · V f "

‖ (s)] · n(X f "

‖ (s))ds

+ C |V f "
n (t − t f

"

b (t, x, v); t, x, v)|,
where we have used (5.50) and (5.56). From (5.60) the above inequality implies that, for

|V f "
n (t − t f

"

b (t, x, v); t, x, v)| � 1,

1

2ε
|V f "

n (t − t f
"

b ; t, x, v)|1/2 ≤
∫ t

τk0

(−1)[V f "

‖ (s) · ∇2η(X f "

‖ (s)) · V f "

‖ (s)] · n(X f "

‖ (s))ds.

Note that | d
ds V

f "

‖ (s)| and | d
ds X

f "

‖ (s)| are all bound from ∇φ" ∈ C1, (5.50), and (5.56).
By (5.50) and (1.19) we can take ε to be sufficiently small such that∫ t

t−|V f "
n (t−t f

"

b ;t,x,v)|1/2
(−1)[V f "

‖ (s) · ∇2η(X f "

‖ (s)) · V f "

‖ (s)] · n(X f "

‖ (s))ds

≤ |V f "
n (t − t f

"

b ; t, x, v)|1/2CηCε,t̄,sup" ‖∇φ"‖∞ ≤ 1

4ε
|V f "

n (t − t f
"

b ; t, x, v)|1/2.
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Hence we obtain
1

4ε
|V f "

n (t − t f
"

b ; t, x, v)|1/2

≤
∫ t−|V f "

n (t−t f
"

b ;t,x,v)|1/2

τk0

(−1)[V f "

‖ (s) · ∇2η(X f "

‖ (s)) · V f "

‖ (s)] · n(X f "

‖ (s))ds.

(5.61)

On the other hand, if t − |V f "
n (t − t f

"

b ; t, x, v)|1/2 ≤ τk0 then |t − τk0 | ≤ |V f "
n (t −

t f
"

b ; t, x, v)|1/2, which implies that, from (5.54), (5.50), and (5.56),

|V f "
n (t; t, x, v)| � |V f "

n (t − t f
"

b ; t, x, v)|1/2. (5.62)

Now we consider X f "
n (t; t, x, v). From (5.54) and Ẋ f "

n (s; t, x, v) = V f "
n (s; t, x, v)

together with (5.56) and (5.50)

X f "
n (t; t, x, v)
≤ (t̄ + ε)|V f "

n (t − t f
"

b ; t, x, v)|
+

∫ t

τk0

∫ τ

τk0

[V f "

‖ (s) · ∇2η(X f "

‖ (s)) · V f "

‖ (s)] · n(X f "

‖ (s))︸ ︷︷ ︸
≤0

dsdτ

≤ (t̄ + ε)|V f "
n (t − t f

"

b ; t, x, v)|
+ |V f "

n (t − t f
"

b ; t, x, v)|1/2
∫ t−|V f "

n (t−t f
"

b ;t,x,v)|1/2

τk0

[V f "

‖ (s) · ∇2η(X f "

‖ (s)) · V f "

‖ (s)] · n(X f "

‖ (s))ds

≤ (t̄ + ε)|V f "
n (t − t f

"

b ; t, x, v)| − 1

4ε
|V f "

n (t − t f
"

b ; t, x, v)|1 f rom (5.61)

< 0.

(5.63)

Clearly this cannot happen since x ∈ �̄ and xn ≥ 0. Therefore our assumption (5.60) was
wrong and we conclude (5.62).

Step 4 From (5.52), (5.58), (5.59), and (5.62) in Step 1 and Step 2, we conclude that the

same estimate (5.62) for |V f "
n (t − t f

"

b ; t, x, v)| � 1 in the case of (5.46) and (5.50). Finally
from (5.45), (5.49), (5.52), and (5.62) Therefore we conclude that

|V f "
n (t − t f

"

b (t, x, v); t, x, v)| �
(

1

N 2

)
(t, x, v) ∈ [0, t̄] × (SN )

c. (5.64)

From (2.36), (2.37), (2.40), and (2.41) in Lemma 2.4 in [17],

sup
"∈N, (x,v)∈(SN )

c,

−ε≤t−t f
"

b (t,x,v)≤t≤t̄

|∇x,vα
β

f ",ε
(t, x, v)| � 1

|V f "
n (t − t f

"

b ; t, x, v)|2−β
�ε,N ,t̄ 1.

Hence we extract another subsequence out of all previous steps (and redefine this as {"N })
such that

∇x,vα
β

f "N ,ε

∗
⇀∇x,vα

β
f ,ε weakly − ∗ in L∞((−ε, t̄)× (SN )

c). (5.65)
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Note that the limiting function is identified from (5.43). Finally the trong convergence of (5.3)
and the weak−∗ convergence of (5.65) justifies the convergence of (5.40):

lim
"→∞(5.40) = −

∫ t

0

∫∫
�×R3

∇x,vα
β
f ,ε f (wϑ̃ψ)dxdv. (5.66)

Nowwe extract the final subsequence {"∗} from the previous subsequence: By theCantor’s
diagonal argument we define

"∗ = "". (5.67)

Combining (5.44) and (5.66) we have (5.37) with this subsequence for any test function ψ .
For any ψ ∈ C∞

c (�̄ × R
3\γ0) there exists Nψ ∈ N such that supp(ψ) ⊂ (SNψ )

c. Hence
(5.36) follows from (5.37).

Finally we obtain (5.35). Assumptions in Proposition 7 thus hold. Applying Proposition
7 8, assuming f1 and f2 are both solutions, then

‖e−λt〈v〉[ f1(t)− f2(t)
]‖L1+δ(�×R3) � ‖ f1(0)− f2(0)‖L1+δ(�×R3),

so the solution is unique. ��
Acknowledgements Q.L. is support in part by National Science Foundation under award 1619778, 1750488.
H.C. is support in part by Wisconsin Data Science Initiative. C.K. is research is partly support in part by
National Science Foundation under award NSF DMS-1501031, DMS-1900923.

6 Appendix

Lemma 15 For R(u → v; x, t) given by (1.11), given any u such that u · n(x) > 0,∫
n(x)·v<0

R(u → v; x, t)dv = 1. (6.1)

Proof We can transform the basis from {n, τ1, τ2} to the standard bases {e1, e2, e3}. For the
sake of simplicity, we assume Tw(x) = 1. The integration over V‖, after the orthonormal
transformation, becomes integration over R2. We have

∫
R2

1

r‖(2 − r‖)
exp

( |v‖ − (1 − r‖)u‖|2
r‖(2 − r‖)

)
dv‖,

which is obviously normalized.
Then we consider the integration over V⊥, which is e3 < 0 after the transformation. We

want to show

2

r⊥

∫ 0

−∞
−v⊥e

− |v⊥|2
r⊥ e

−(1−r⊥)|u⊥|2
r⊥ I0(

2(1 − r⊥)1/2v⊥u⊥
r⊥

)dv⊥ = 1. (6.2)

The Bessel function reads

J0(y) = 1

π

∫ π

0
eiy cos θdθ =

∞∑
k=0

1

π

∫ π

0

(iy cos θ)k

k! dθ =
∞∑
k=0

∫ π

0

(iy cos θ)2k

(2k)! dθ

∞∑
k=0

∫ π

0

(−1)k(y)2k(cos θ)2k

(2k)! dθ =
∞∑
k=0

(−1)k
( 14 y

2)k

(k!)2 ,
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where we use the Fubini’s theorem and the fact that
∫ π

0
cos2k θ = π

22k

(
2k
k

)
.

Hence

I0(y) = 1

π

∫ π

0
ei(−iy) cos θdθ = J0(−iy) =

∞∑
k=0

( 14 y
2)k

(k!)2 , I0(y) = I0(−y). (6.3)

By taking the change of variable v⊥ → −v⊥, the LHS of (6.2) can be written as

2

r⊥

∫ ∞

0
v⊥e

− |v⊥|2
r⊥ e

−(1−r⊥)|u⊥|2
r⊥ I0(

2(1 − r⊥)1/2v⊥u⊥
r⊥

)dv⊥.

Using (6.3) we rewrite the above term as

∞∑
k=0

2

r⊥

∫ ∞

0
v⊥e

−|v⊥|2
r⊥ e

−(1−r⊥)|u⊥|2
r⊥

(1 − r⊥)kv2k⊥ u2k⊥
(k!)2r2k⊥

dv, (6.4)

where we use the Tonelli theorem. Rescale v⊥ = √
r⊥v⊥ we have

2

r⊥

∫ ∞

0
v⊥e

−|v⊥|2
r⊥ e

−(1−r⊥)|u⊥|2
r⊥

(1 − r⊥)kv2k⊥ u2k⊥
(k!)2r2k⊥

dv

= 2
∫ ∞

0
v⊥e−|v⊥|2e

−(1−r⊥)|u⊥|2
r⊥

(1 − r⊥)kv2k⊥ u2k⊥
(k!)2rk⊥

dv

= 2
∫ ∞

0
v2k+1
⊥ e−|v⊥|2dve

−(1−r⊥)|u⊥|2
r⊥

(1 − r⊥)ku2k⊥
(k!)2rk⊥

= 2
k!
2
e

−(1−r⊥)|u⊥|2
r⊥

(1 − r⊥)ku2k⊥
(k!)2rk⊥

= e
−(1−r⊥)|u⊥|2

r⊥
(1 − r⊥)ku2k⊥

k!rk⊥
. (6.5)

Therefore, the LHS of (6.2) can be written as

e
−(1−r⊥)|u⊥|2

r⊥
∞∑
k=0

(1 − r⊥)ku2k⊥
k!rk⊥

= e
−(1−r⊥)|u⊥|2

r⊥ e
(1−r⊥)|u⊥|2

r⊥ = 1.

��

Lemma 16 For any a > 0, b > 0, ε > 0 with a + ε < b,

b

π

∫
R2

eε|v|2ea|v|2e−b|v−w|2dv = b

b − a − ε
e
(a+ε)b
b−a−ε |w|2 . (6.6)

And when δ � 1,

b

π

∫
|v− b

b−a−ε w|>δ−1
eε|v|2ea|v|2e−b|v−w|2dv ≤ e−(b−a−ε)δ−2 b

b − a − ε
e
(a+ε)b
b−a−ε |w|2 (6.7)

≤ δ
b

b − a − ε
e
(a+ε)b
b−a−ε |w|2 . (6.8)
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Proof
b

π

∫
R2

eε|v|2ea|v|2e−b|v−w|2dv = b

π

∫
R2

e(a+ε−b)|v|2e2bv·we−b|w|2dv

= b

π

∫
R2

e(a+ε−b)|v+ b
a+ε−bw|2e

−b2
a+ε−b |w|2e−b|w|2dv

= b

π

∫
R2

e(a+ε−b)|v|2dve
(a+ε)b
b−a−ε |w|2 = b

b − a − ε
e
(a+ε)b
b−a−ε |w|2 ,

where we apply change of variable v + b
a+ε−bw → v in the first step of the last line, then

we obtain (6.6).
Following the same derivation

b

π

∫
|v− b

b−a−ε w|>δ−1
eε|v|2ea|v|2e−b|v−w|2dv

= b

π

∫
|v− b

b−a−ε w|>δ−1
e(a+ε−b)|v− b

b−a−ε w|2dve
(a+ε)b
b−a−ε |w|2

≤ e−(b−a−ε)δ−2 b

b − a − ε
e
(a+ε)b
b−a−ε |w|2 ≤ δ

b

b − a − ε
e
(a+ε)b
b−a−ε |w|2 ,

thus we obtain (6.8). ��
Lemma 17 For any a > 0, b > 0, ε > 0 with a + ε < b,

2b
∫
R+

veεv
2
eav

2
e−bv2e−bw2

I0(2bvw)dv = b

b − a − ε
e
(a+ε)b
b−a−ε w2

. (6.9)

And when δ � 1,

2b
∫
0<v<δ

veεv
2
eav

2
e−bv2e−bw2

I0(2bvw)dv ≤ δ
b

b − a − ε
e
(a+ε)b
b−a−ε w2

. (6.10)

Proof

2b
∫
R+

veεv
2
eav

2
e−bv2e−bw2

I0(2bvw)dv

= 2b
∫
R+

ve(a+ε−b)v2 I0(2bvw)e
b2

a+ε−bw
2
e

b2
b−a−ε w2

dve−bw2

= 2(b − a − ε)

∫
R+

ve(a+ε−b)v2 I0(2bvw)e
(bw)2
a+ε−b dv

b

b − a − ε
e
(a+ε)b
b−a−ε w2

= b

b − a − ε
e
(a+ε)b
b−a−ε w2

,

where we use (6.2) in Lemma 15 in the last line, then we obtain (6.9).
Following the same derivation we have

2b
∫
0<v<δ

veεv
2
eav

2
e−bv2e−bw2

I0(2bvw)dv

= 2(b − a − ε)

∫
0<v<δ

ve(a+ε−b)v2 I0(2bvw)e
(bw)2
a+ε−b dv

b

b − a − ε
e
(a+ε)b
b−a−ε w2

.

Using the definition of I0 we have

I0(y) = 1

π

∫ π

0
ey cosφdφ ≤ ey .
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Thus when a − b + ε < 0,

2(b − a − ε)

∫
0<v<δ

ve(a+ε−b)v2 I0(2bvw)e
(bw)2
a+ε−b dv

≤ 2(b − a − ε)

∫
0<v<δ

ve(a−b+ε)v2e2vbwe
(bw)2
a−b+ε

= 2(b − a − ε)

∫
0<v<δ

ve(a−b+ε)(v+ bw
a−b+ε )2dv

≤ 2(b − a − ε)

∫
0<v<δ

vdv < δ,

where we use δ � 1 in the last step, then we obtain (6.10). Then we derive (6.13). ��
Lemma 18 For any m, n > 0, when δ � 1, we have

2m2
∫ ∞

n
m u⊥+δ−1

v⊥e−m2v2⊥ I0(2mnv⊥u⊥)e−n2u2⊥dv⊥ � e− m2

4δ2 . (6.11)

In consequence, for any a > 0, b > 0, ε > 0 with a + ε < b,

2b
∫ ∞

b
b−a−ε w+δ−1

veεv
2
eav

2
e−bv2e−bw2

I0(2bvw)dv ≤ e
−(b−a−ε)

4δ2
b

b − a − ε
e
(a+ε)b
b−a−ε w2

(6.12)

≤ δ
b

b − a − ε
e
(a+ε)b
b−a−ε w2

. (6.13)

Proof We discuss two cases. The first case is v⊥ > 2 n
m u⊥. We bound I0 as

I0(2mnv⊥u⊥) ≤ 1

π

∫ π

0
exp

(
2mnv⊥u⊥

)
dθ = exp

(
2mnv⊥u⊥

)
.

The LHS of (6.11) is bounded by

2m2
∫ ∞

max{2 n
m u⊥, nm u⊥+δ−1}

ve−m2(v⊥− n
m u⊥)2dv.

Using v⊥ > 2 n
m u⊥ we have

(v⊥ − n

m
u⊥)2 ≥ (

v⊥
2

+ v⊥
2

− n

m
u⊥)2 ≥ v2⊥

4
.

Thus we can further bound LHS of (6.11) by

2m2
∫ ∞

max{2 n
m u⊥, nm u⊥+δ−1}

v⊥e−m2v2⊥
4 dv⊥ � e− m2

4δ2 .

The second case is 0 ≤ v⊥ ≤ 2 n
m u⊥. Since n

m u⊥ + δ−1 < v⊥, without loss of gen-
erality, we can assume u⊥ > δ−1. We compare the Taylor series of v⊥ I0(2mnv⊥u⊥) and
exp

(
2mnv⊥u⊥

)
. We have

v⊥ I0(2mnv⊥u⊥) =
∞∑
k=0

m2kn2kv2k+1
⊥ u2k⊥

(k!)2 , (6.14)

123



628 Chen et al.

and

exp
(
2mnv⊥u⊥

)
=

∞∑
k=0

2kmknkvk⊥uk⊥
k! . (6.15)

We choose k1 such that when k > k1, we can apply the Sterling formula such that

1

2
≤ | k!

kke−k
√
2πk

| ≤ 2.

Then we observe the quotient of the k-th term of (6.14) and the 2k + 1-th term of (6.15),

m2kn2kv2k+1
⊥ u2k⊥

(k!)2 /
(22k+1m2k+1n2k+1v2k+1

⊥ u2k+1
⊥

(2k + 1)!
)

≤ 4

k2ke−2k2πk
/
( 22k+1mnu⊥
(2k + 1)2k+1e−(2k+1)

√
2π(2k + 1)

)

= 4e

2πmn

(k + 1/2

k

)2k+1
√
2π(2k + 1)

u⊥

= 4e

2πmn

(2k + 1

2k

)2k+1
√
2π(2k + 1)

u⊥
≤ 4e2√

πmn

√
k

u⊥
.

Thus we can take ku = u2⊥ such that when k ≤ ku ,

ku∑
k=k1

m2kn2kv2k+1
⊥ u2k⊥

(k!)2 ≤ 4e2√
πmn

ku∑
k=k1

22k+1m2k+1n2k+1v2k+1
⊥ u2k+1

⊥
(2k + 1)! . (6.16)

Similarly we observe the quotient of the k-th term of (6.14) and the 2k-th term of (6.15),

m2kn2kv2k+1
⊥ u2k⊥

(k!)2 /
(22km2kn2kv2k⊥ u2k⊥

(2k)!
)

≤ 4v⊥
k2ke−2k2πk

/
( 22k

(2k)2ke−2k
√
4πk

)
= 4v⊥√

π
√
k
.

When k > ku = u2⊥, by u⊥ > δ−1 and v⊥ < 2 n
m u⊥ we have

4v⊥√
π

√
k

≤ 4v⊥√
πu⊥

≤ 8n

m
√
π
.

Thus we have

∞∑
k=ku

m2kn2kv2k+1
⊥ u2k⊥

(k!)2 ≤ 8n

m
√
π

∞∑
k=ku

22km2kn2kv2k⊥ u2k⊥
(2k)! . (6.17)

Collecting (6.17) (6.16), when v⊥ < 2 n
m u⊥, we obtain

v⊥ I0(2mnv⊥u⊥) � exp
(2(1 − r⊥)1/2v⊥u⊥

r⊥

)
. (6.18)
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By (6.18), we have
∫ 2 n

m u⊥

n
m u⊥+δ−1

v⊥ I0(2mnv⊥u⊥))e−m2v2⊥en
2v2⊥dv

�
∫ 2 n

m u⊥

n
m u⊥+δ−1

e−m2(v⊥− n
m u⊥)2dv ≤ e−m2δ−2

. (6.19)

Collecting (6.15) and (6.19) we prove (6.11).
Then following the same derivation as (6.9),

2b
∫ ∞

b
b−a−ε w+δ−1

veεv
2
eav

2
e−bv2e−bw2

I0(2bvw)dv

= 2(b − a − ε)

∫ ∞
b

b−a−ε w+δ−1
ve(a+ε−b)v2 I0(2bvw)e

(bw)2
a+ε−b dv

b

b − a − ε
e
(a+ε)b
b−a−ε w2

≤ e
−(b−a−ε)

4δ2
b

b − a − ε
e
(a+ε)b
b−a−ε w2 ≤ δ

b

b − a − ε
e
(a+ε)b
b−a−ε w2

,

where we apply (6.11) in the first step in the third line and take δ � 1 in the last step of the
third line. ��
Lemma 19 If 0 < θ

4 < ρ, if 0 < ρ̃ < ρ − θ
4 , 0 ≤ λt < θ ,

k�(v, u)
eθ |v|2

e⊆|u|2
eλt〈u〉

eλt〈v〉
� k�̃(v, u). (6.20)

Proof When 〈u〉 − 〈v〉 ≤ 1,

eλs〈u〉

eλs〈v〉
≤ eλs .

When 〈u〉 − 〈v〉 ≥ 1,

〈u〉2 − 〈v〉2 = (〈u〉 − 〈v〉)(〈u〉 + 〈v〉) ≥ 〈u〉 − 〈v〉.
Thus by 〈u〉2 = |u|2 + 1,

eλs〈u〉

eλs〈v〉
� 1 + eλs|u|2

eλs|v|2
.

Note

k�(v, u)
eϑ |v|2

eϑ |u|2 = 1

|v − u| exp
{
−�|v − u|2 − �

||v|2 − |u|2|2
|v − u|2 + ϑ |v|2 − ϑ |u|2

}
.

Let v − u = η and u = v − η. Then the exponent equals

−�|η|2 − �
||η|2 − 2v · η|2

|η|2 − ϑ{|v − η|2 − |v|2} − λt{|v| − |v − η|}

= −2�|η|2 + 4�v · η − 4�
|v · η|2
|η|2 − ϑ{|η|2 − 2v · η}

= (−2� − ϑ)|η|2 + (4� + 2ϑ)v · η − 4�
{v · η}2

|η|2 .
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If 0 < ϑ < 4� then the discriminant of the above quadratic form of |η| and v·η
|η| is

(4� + 2ϑ)2 − 4(−2� − ϑ)(−4�) = 4ϑ2 − 16�ϑ < 0.

Hence, the quadratic form is negative definite. We thus have, for 0 < �̃ < � − ϑ
4 , the

following perturbed quadratic form is still negative definite

−(� − �̃)|η|2 − (� − �̃)
||η|2 − 2v · η|2

|η|2 − ϑ{|η|2 − 2v · η} ≤ 0.

For

k�(v, u)
eϑ |v|2

eϑ |u|2
eλt〈u〉2

eλt |v|2

= 1

|v − u| exp
{
−�|v − u|2 − �

||v|2 − |u|2|2
|v − u|2 + (θ − λt)|v|2 − (θ − λt)|u|2

}
.

We just need to replace θ by θ − λt in the previous computation. By λt � θ ,

−(� − �̃)|η|2 − (� − �̃)
||η|2 − 2v · η|2

|η|2 − (θ − λt){|η|2 − 2v · η} ≤ 0.

Therefore, we conclude the lemma. ��
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