
H-ORAM: A Cacheable ORAM Interface for Efficient I/O
Accesses

Liang Liu†, Rujia Wang‡, Youtao Zhang†, Jun Yang†
† University of Pittsburgh, ‡Illinois Institute of Technology

{lil125,youtao,juy9}@pitt.edu,rwang67@iit.edu

ABSTRACT
Oblivious RAM (ORAM) is an effective security primitive to prevent
access pattern leakage. By adding redundant memory accesses,
ORAM prevents attackers from revealing the patterns in the access
sequences. However, ORAM tends to introduce a huge degradation
on the performance. With growing address space to be protected,
ORAM has to store the majority of data in the lower level storage,
which further degrades the system performance.

In this paper, we propose Hybrid ORAM (H-ORAM), a novel
ORAM primitive to address large performance degradation when
overflowing the user data to storage. H-ORAM consists of a batch
scheduling scheme for enhancing the memory bandwidth usage,
and a novel ORAM interface that returns data without waiting for
the I/O access each time. We evaluate H-ORAM on a real machine
implementation. The experimental results show that that H-ORAM
outperforms the state-of-the-art Path ORAM by 20×.

KEYWORDS
Oblivious RAM, memory security, I/O accesses, scheduling, oblivi-
ous shuffle
ACM Reference Format:
Liang Liu†, Rujia Wang‡, Youtao Zhang†, Jun Yang†. 2019. H-ORAM: A
Cacheable ORAM Interface for Efficient I/O Accesses. In The 56th Annual
Design Automation Conference 2019 (DAC ’19), June 2–6, 2019, Las Vegas, NV,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3316781.
3317841

1 INTRODUCTION
Modern trusted hardware, e.g., TPM [3], SGX [7], and XOM [8],
secure the processing of sensitive data through data encryption
and integrity check, which effectively prevent adversaries from
revealing the plaintext or compromising the data.

However, information may be leaked through various side chan-
nels during execution. For instance, the timing information[18],
memory access patterns[6] and the power usage[1] are also the
accessible sources for the malicious adversaries. By observing or
tampering with the sources above, attackers can retrieve sensitive
data without directly reading the data contents. For example, re-
searchers have discovered that on a remote data storage server with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’19, June 2–6, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317841

searchable encryption, access pattern can still leak a significant
amount of sensitive information using a little of prior knowledge[6].

Oblivious RAM (ORAM) is a security method primitive initially
proposed by Goldreich and Ostrovsky to hide the memory access
pattern entirely from adversaries[4]. Several ORAM protocols have
been developed since then. They share the same design philoso-
phy: multiple dummy accesses or dummy data blocks need to be
padded with actual data access, and the address needs to be reshuf-
fled periodically to achieve random accesses. The adversaries can
only observe a list of memory addresses being accessed, but they
cannot correctly guess where the actual sensitive data is. Moreover,
since the actual access pattern should be concealed to the mali-
cious adversaries but revealed to the controller, the designer needs
a protected area in the hardware to store the essential sensitive
information. In the section 2.2, we will discuss the details of the
most representative ORAM schemes.

According to the major invariants of ORAM, to achieve oblivi-
ousness, a single data access will couple with tens or hundreds of
dummy requests. When the ORAM size is small, the entire ORAM
protected data can be entirely loaded into the memory. However,
with the increase of data set size, the ORAM capacity will also
increase linearly. In such case, the main memory is no longer ca-
pable of storing such a large amount of data. Recently, several
researchers[2, 13] propose to extent ORAM to the storage level to
achieve access pattern protection with larger capacity offered, such
that every data request needs to obliviously access both memory
and storage, which adds the I/O access overhead to the original
ORAM access overhead.

In this paper, we present H-ORAM, a novel hybrid ORAM scheme
targets at the slow I/O access bottleneck during ORAM accesses
when the ORAM dataset is split in the memory and storage. This
work tends to accomplish the following goals while still ensure the
security, 1) Construct an ORAM interface with the cache function
enabled: the cache is capable of improving the ORAM access time by
removing unnecessary I/O accesses, without leaking access pattern
by lightweight eviction and shuffle. 2) Decrease the data storage
overhead. Our ORAM construction is more compact and uses less
space compared to other ORAM protocols. We describe the ORAM
background and basics in Section 2, elaborate our motivation in
Section 3, describe the details of our proposed H-ORAM in Section
4. Our theoretical and experimental results are shown in Section 5,
and we conclude this paper in Section 6.

2 BACKGROUND
2.1 Threat Model
Our threat model is similar to most of threat models that need
ORAM to protect[11, 12, 14, 17]. We assume that the victim appli-
cation is safe and the attacker can observe the access pattern of

https://doi.org/10.1145/3316781.3317841
https://doi.org/10.1145/3316781.3317841
https://doi.org/10.1145/3316781.3317841

the victim application. We do not consider the side channel infor-
mation leakage across multiple applications/ users, and the ORAM
dataset is private. The application could be run on a computing
node with secure hardware such as SGX so that the processor, as
well as the on-chip cache, is protected and trusted. Although SGX
suffers from side channel attacks, mitigate the vulnerabilities is
orthogonal to our work. Therefore, in our model, we focus on the
off chip memory and I/O traffic. With encryption, we can preserve
data privacy, however, the access pattern may still be observed if
the attacker is able to tamper the memory bus. Another scenario is
that the application is running on the secure local machine, and it
is accessing a remote storage server. The user outsourced data to
the cloud storage vendor and the communication (load and store)
patterns could leak information.

2.2 ORAM Basics

Path ORAM Square-Root ORAM

Position map
Stash Permutation List

Stash data

Storage data
: Trusted Hardware

: Accessed Path

Figure 1: Basic ORAM schemes.

Oblivious RAM protects the system from access pattern leakage
by randomly remapping the address after access. Path ORAM [15]
is one of the most simple and practical ORAM protocol, which
organizes the memory as a tree-like layout, as shown in Figure 1
left. Encrypted data can be stored at each node of the tree, and the
ORAM controller translates each access into a path access with
O(logN) access overhead. After fetching the data inside of the
secure ORAM controller, the accessed data will be decrypted and
remapped to a different path. Therefore, repeatedly accessing the
same data will not reveal the same access pattern on the memory
bus. Stash, position map, as well as other components in ORAM
controller, need to be stored in securely. Path ORAM requires extra
storage space to store dummy blocks, and the best utilization rate
is around 50%[15], so storing N real blocks requires 2N space.

A different type of ORAM organizes the memory space as a
flat space. Square-root ORAM [5, 19] maintains a permutation list
which stores the mapping between the physical address and vir-
tual address, as shown in Figure 1 on the right. To initiate, N data
blocks need to be padded with

√
N dummy blocks and reshuffled,

to generate the permutation list. When a block is not found in the
stash, the ORAM controller fetches the data from memory, and
when the data is found in the stash, a dummy block also need to
be fetched from the memory to avoid information leakage. After
T accesses, all dummy blocks in the stash and need to be removed
and the whole structure need to be shuffled and re-initialized. Com-
pared with Path ORAMwith O(logN) access overhead, square root
ORAM requires a O(

√
N) of access overhead. Partition ORAM [14]

also uses flat memory organization and divides the storage into
multiple partitions to reduce the shuffle overhead each time with
more frequent shuffle operations.

3 MOTIVATION
3.1 Limitations of current ORAM designs
Except from the access overhead brought by ORAM protocols,
current ORAM designs do not consider the deep memory and
storage hierarchy in modern computing systems. For example, in
ZeroTrace[13], when the data set is larger than the main memory
capacity, they directly extend the leaf nodes to the storage(HDD)
backend, as shown in Figure 2 a). The tree-top cache is a straight-
forward design since most levels are in the fast memory region.
However, each path access is translated into multiple fast memory
accesses and multiple slow I/O accesses. Also, the tree type organi-
zation is hard to adopt other cache techniques because of the low
locality. Considering the performance gap between the memory
and I/O access, plus the imbalance of memory and I/O usage, such
design is inefficient regarding I/O bandwidth overhead.

Using square-root ORAM or partition ORAM in such case will
reduce the I/O overhead because each time only one data block
needs to be fetched from the storage backend, as shown in Figure
2 b). In addition, the flat memory organization allows efficient
caching on the top layer. However, the shuffle operation needs to
be performed frequently, and the entire storage needs to wait for
the shuffle completed before next ORAM operation.

Memory
MemoryMemory

a) Path ORAM with Tree-Top Cache b) Square-Root ORAM c) Our Proposal: H-ORAM

Storage Storage Storage

Figure 2: Derivation from Square-Root ORAM.

3.2 Our design goal
The limitations of the existing ORAM protocols motivate us to
design a cacheable ORAM interface with low shuffle overhead.

Considering the basic structure of square-root ORAM, as is men-
tioned in Section 2.2, the data is chunk into two parts: stash data
and storage data. All data in the stash needs to be accessed when
there is an ORAM access, which is an O(

√
N) overhead. Accessing

the data in the storage only requires a single access, but it needs
periodically shuffle. The stash data can be stored in the fast memory.
However, the speed of memory is hard to afford O(

√
N) of redun-

dant accesses. Our first design goal is to minimize the in-memory
access overhead while remain the obliviousness. We adopt the Path
ORAM for the in-memory data storage, and reduce the overhead
from O(

√
N) to O(log

√
N).

Another inevitable overhead of the square root ORAM is the shuf-
fle process. Unlike the naive shuffle algorithm, ORAM requires an
oblivious version of shuffle algorithm such as permutation network,
cache Shuffle or Melbourne shuffle [9, 10], all of which bring exces-
sive overhead. Our second design goal is to minimize the shuffle
overhead by introducing a new lightweight shuffle process deli-
cately designed for ORAM. As a result, with the above approaches,
our H-ORAM, can theoretically and experimentally outperform
the state-of-the-art Path ORAM design in terms of performance

and storage overhead. The basic sketch of the H-ORAM memory
organization is shown in Figure 2c).

4 H-ORAM: DESIGN AND IMPLEMENTATION
4.1 Design Layout and Data Flow
H-ORAM distributes the data to three different physical layers: a
control layer, a memory layer, and a storage layer. The first layer
is the secure shelter, which utilizes secure hardware such as Intel
SGX, and the operations and data inside of the secure shelter are
considered tamper-resistant. The second layer in the middle is in
memory and it stores data that can be accessed at a high speed. The
third layer stores data in the slow but large storage. The design
layout of the three layers is shown in Figure 3.

Shelter

In-Memory
ORAM

M

H

H H

Permutation List

Scheduler

Request
Queue

Request
Request
Request

Request

Storage ORAM

Position map (4MB)

Tree controller

1

3

2

4

Stash

Figure 3: Design Layout
Control layer: The control layer should be protected by the

secure hardware. In H-ORAM, the position map for in-memory
Path ORAM and the permutation list for storage side ORAM need
to be protected. In addition, the control layer contains the scheduler
for secure scheduling.

Memory layer: The data inside is organized as a Path ORAM
tree, which can store up to n data blocks (up to 50% are real blocks).
The in-memory ORAM works as the cache during the H-ORAM
access. In the beginning, the tree is empty, and data is brought from
the storage to the tree. After n/2 blocks have been loaded, the tree
is evicted back to the storage and will be reconstructed again.

Storage layer: The data inside is organized into N data blocks,
each of which stores a small, encrypted and permuted data block. To
ensure the security, we need to shuffle all the blocks in the storage
periodically.

To serve anORAM request, the scheduler needs to pick and group
requests inside of the Request Queue. The H-ORAM periodically
swaps between two periods: access period and shuffle period. Since
the in-memory ORAM can support up to n/2 I/O accesses before
next shuffle, we allow n/2 I/O accesses for each access period. For
each access, the scheduler will scan the Request Queue from the
beginning and fetch c requests in the table. (see Section 4.2). Then,
the scheduler will firstly check the permutation list for each request.
The permutation list records: 1) a Boolean bit represents whether a
block is loaded into memory already, 2) its file address if in storage
(or the position map id if in memory). After scanning the Request
Queue, the scheduler computes 1 I/O address and c in-memory path
addresses. The I/O fetches the miss data from the storage to the
stash of in-memory path ORAM and assign an random leaf id to it.

When the group of accesses is finished, the tree access brings the
data back to the Request Queue, while the I/O access brings data to
the stash of the in-memory path ORAM.

When reaching the n/2 limit, the H-ORAM will call the shuffle
function. The shuffle period includes three procedures: 1) Evict the
path ORAM tree. 2) Shuffle the entire storage data. 3) Initialize a
new Path ORAM tree. The detail is shown in the section 4.3.

4.2 Secure Scheduler for Cache Purpose
A high hit rate cache can greatly improve the system performance.
When it comes to a cache designed for ORAM, it not only needs to
provide high performance, but also preserves the system security.
In this section, we introduce the scheduler’s group strategy and
the I/O pre-fetching to improve the hit rate while remaining the
oblivious access pattern.

Cycle I Cycle 2 Cycle 3 Cycle 4

H3H2H1

Requests

Scheduler

H5H4M1 H6M3M2

Read:

Load: load
M1

Dummy

load
M2

load
M3

load
dummy

Cycle 2

𝑛"

Load M2idle

Read H1
Mem

I/O

𝑛# 𝑛$ 𝑛" 𝑛# 𝑛$ 𝑛" 𝑛# 𝑛$
Read H2 Read H3

Cycle 3

idleSchedule

Transmission Detail

Figure 4: An Example of Request Scheduler with Pre-fetch

For the security consideration, the hit or miss information cannot
be leaked to the adversaries. In our ORAM design, we use the group
strategy to hide the information. The scheduler groups every c
of the in-coming requests {R1,R2, . . .Rc } as a group. The c value
depends on the hit-rate of the current stage, and our goal is to make
that on average in every group, there are c of hit requests and 1
miss. Our scheduler will firstly schedule the I/O load for the miss
request, and after the miss request is fetch to memory, we conduct
c of in-memory reads for the next cycle.

Since there exist variances among the requests, we can not ex-
actly find c hit and 1 miss in every cycle, so we have to pad the
dummy reads or loads to fill the blank. We further propose an I/O
pre-fetching optimization to reduce the dummy requests padded
per cycle by early searching next available requests in the Request
Queue.

we define a distance d : d > c such that during each I/O cycle,
the scheduler will scan the next d requests to find a proper match
for the current schedule group. Figure 4 shows an example of our
group strategy with I/O pre-fetching optimization. In the example,
we assume that c = 3 and d = 9. At the first cycle, the scheduler
scans all 9 requests in the queue and schedules the first miss request
M1 as a I/O load task. The missed data will then be loaded into
the stash and has its path position recorded in the position map. In
the second cycle, three hit in-memory Path ORAM read requests
H1,H2,H3 and the next missM2 are serviced. After the Cycle 2 is
done, theM1 is potentially written back to the in-memory ORAM

tree, or still in the stash. Therefore, at Cycle 3, if the M1 is in the
ORAM,we read the data as a hit request, and ifM1 is in the stash, we
read the corresponding path and writeM1 back to the in-memory
ORAM. The scheduler repeats the same strategy to reorder and
group requests, to minimize the number of dummy requests needed
per cycle.

Although the hit rate varies across the execution, we use c to
represent the average hit rate over a constant period. The whole
access period can be divided into s stages, and we use different
c value for different stage to evaluate. At the beginning, the in-
memory ORAM is empty, so the c is set at a small value. When the
in-memory ORAM caches more data, c can be set at a bigger value
to issue more in-memory hit requests.

4.3 Evict and Shuffle
In this section, we discuss how data is managed during the shuffle
period of H-ORAM.

Oblivious Tree Evict: Since the in-memory data tree is exposed
to adversaries, when we call the eviction function, we should ensure
its obliviousness (without leaking which block is dummy). Here
we design a simple approach: 1) Read all the block (both real and
dummy) from tree into a temporary buffer. 2) Run the oblivious
shuffle on this buffer. 3) Scan the shuffled buffer and remove the
dummy. The reorganized evicted data is shown in read in Figure 5.

Group and partition shuffle: The original square-root ORAM
has an oblivious shuffle stage which brings too much overhead
(O(4N) of I/O overhead)[19]. To reduce the shuffle overhead, we
divide the storage into multiple partitions.

Similar to the Partition ORAM[14], we divide the whole data set
into

√
N of partitions and each partition stores

√
N blocks of data.

As is shown in Figure 5, during the shuffle period, the partitions are
shuffled sequentially from the left to right. During the ith shuffle,
the controller firstly reads ith partition (cold data) to the memory
and concatenates it with the ith pieces of evicted data(hot data)
and shuffle them as whole. The in-memory shuffle algorithm is free
to choose because memory is fast enough, and we use the cache
shuffle here. Finally, we write the shuffled partition to the storage
and then process the i + 1th shuffle.

Memory

1.shuffle and remove dummy

Storage

Partition
2

Partition
1

Memory

Partition
3

Partition
4

2.Load the partition to memory

Memory

Partition
2

Partition
1

Partition
3

Partition
4

3. Shuffle in memory and evict to storage

Storage

4.Repeat

Memory

Figure 5: Evict and Shuffle Stage of H-ORAM

Security proof: The different between the proposed group par-
tition shuffle and the partition ORAM is the order of partition

to shuffle. We conduct the shuffle from the first partition to the
√
N partition :{1, 2, . . . ,

√
N }. The partition ORAM conduct the

shuffle by randomly choosing a partition p, which products a se-
quence {p1,p2, . . .p√N }. However, since both of our H-ORAM and
partition ORAM provide the unbiased partition access, which en-
sure the equivalent possibility of access every partition, which is
∀i ⊂ {1, 2, . . .

√
N },P(i) = 1√

N
. Therefore, the expect value of i th

partition to be shuffle for both schemes is equal. Therefore, our pro-
posed partition shuffle has the equivalent security to the partition
ORAM shuffle stage.

4.4 Security Analysis
Our proposed H-ORAM is secure in the following aspects:

Access Security: The H-ORAM achieves highest security pro-
tectionwhen conducting in-memory and I/O access. The in-memory
access is protected by path ORAM protocol, which is proof secure
by randomly changing the location of data. The data fetch from
I/O is shuffled after n accesses, and only accessed once per access
period, which is also proof secure by the square-root ORAM.

Scheduler Security: We use the group strategy to hide the hit
or miss information to all parties except the user. The adversaries
are not able to infer anything from the hit/miss observed on the
memory bus, because each scheduling group has the same hit and
miss pattern.

Shuffle Obliviousness: Our eviction and shuffle ensures the
data is periodically permuted in storage. Our design follows the
setting of partition ORAM, and group the evicted data with cold
data in storage into

√
N for partition shuffle, which achieves the

equivalent security of partition ORAM.

5 RESULTS
5.1 Theoretical Analysis
Our baseline is the tree-top-cache path ORAM. In the rest calcula-
tion, we denote N as the total amount of block, Z as the bucket size,
n/2 as the amount of real block in memory. In section 4.2, we define
c as the number of memory requests serviced when waiting for one
I/O request. To simplify the process, we compute the average value
ĉ , which considers the different execution stages, where cini are
the number of the memory requests serviced per stage.

ĉ =
2
n
(c1n1 + c2n2 + . . . csns)

Then, we calculate the I/O overhead of the Path ORAM. Since
Path ORAM needs to include dummy data no less than the real data,
the total size of baseline Path ORAM to store N real blocks is 2N .
Therefore, the path level is calculated as:

path level = log2
n

Z
+ (log2

2N
Z

− log2
n

Z
)

= log2
n

Z
(MEM) + log2

2N
n

(I/O)

Here, we extract the right most part to calculate the I/O overhead.
For the load and store operation, The average I/O overhead of Path
ORAM is:

(Z log2
2N
n

) reads + (Z log2
2N
n

) writes

In comparison, our H-ORAM fetches 1 block each time during the
access period. When finishing nĉ/2 I/O accesses, we need to shuffle
the entire dataset. During the shuffle period, H-ORAM fetches N −n
blocks of data and rewrite N blocks back to storage. Therefore, the
average access overhead is:

{1 + 2(N − n)

nĉ
} reads +

2N
nĉ

writes

By substitute the practical values, we use a moderate Path ORAM
parameter where Z = 4. The result shows that when the ratio (N /n)
is small, the H-ORAM can achieve better performance over Path
ORAM. For example, when ĉ = 4, and N

n = 8, we can achieve
around 8x I/O access overhead reduction.

Table 1 shows a concrete example that we have a 1GB real data
set, and the memory can store up to 128 MB ORAM tree. Follow
the previous calculation, for each access period, we can conduct
262, 144 I/O requests without shuffle.

nĉ

2 =
128 × 1024 × 4

2 = 65536 × 4 = 262, 144
After the 262, 144 requests finish, the entire dataset is shuffled

(see section 4.3), which brings 1 GB (write) + (1GB − 128 MB)(read)
I/O accesses. We calculate the average access overhead as follow:

average access overhead = access overhead + shuffle overhead
number of request

= 1KB reads + 0.875GB (reads) + 1 GB (writes)
262144

= 4.5KB reads + 4KB writes

Table 1: Overhead comparison for one period
(1 GB data size, 128 MB memory size, 1 KB block size)

H-ORAM Path ORAM

Storage/Memory Size 1GB/128MB 1.875GB/128MB
Path ORAM Level 16 16 + 4
Requests Serviced 262144 65536
Access Overhead 1 KB (read) 16KB(read)

+16KB(write)
Shuffle Overhead 0.875 GB(read) N/A

+ 1 GB(write)
Overall Overhead 1 GB (read) 4 GB(read)

+ 1 GB(write) + 4 GB(write)
Average Overhead 4.5 KB (read) 16KB(read)

+ 4KB(write) + 16KB(write)

Discussion on shuffle overhead: From the above computa-
tion, we find that the biggest overhead of our H-ORAM is the
shuffle process, since it uses the expensive I/O to read and rewrite
the whole data-set. In the practical server setting, there are some
opportunities to mitigate the costly shuffle: 1) Perform the shuf-
fle during the off-line time. 2) Considering the client-and-server
setting, the shuffle only runs on the remote server, so there is no
need to transmit data over the slow network. 3) As shown in our
experimental results, the shuffle process consists of sequentially
read and write operations, which is 10 times faster than the random
data access to the disk. For the ideal case, without considering the
shuffle as an extra overhead, our H-ORAM can theoretically achieve
32 times faster access time than the Path ORAM.

5.2 Experimental Results
Experiment Setup: We implement our ORAM interface in a real
machine by using the configurations in Table 2. We use HDD as our
storage backend, with the average read/write throughput shown
below. We implement Path ORAM and H-ORAM with the naive
setting (no recursive). The file size is set to 1KB.We test our interface
through both small dataset(25, 000 requests, 64MB storage) and
large dataset.(500, 000 requests, 1GB storage)

Table 2: Experimental Machine Setup

Operating system Linux Ubuntu 16.4
CPU Intel i7-7700K
Memory DDR4 Pc4-2133 16GB
Disk HDD 7200 RPM 500GB
Read/Write Throughput 102.7 MB/s, 55.2 MB/s

Table 3: Test cases characteristics and results

Locality c # of REQ # of I/O Effective hit%

webserver 0.13 4 25,000 6,539 95.5%
oltp 0.07 4 25,000 6,357 98.4%
varmail 0.015 4 25,000 6,344 98.4%
webserver 0.13 4 500,000 131,210 95.2%

Locality analysis: As is shown in section 4.2, the H-ORAM in-
terface requires users to adjust the cache degree by the data locality,
or, in other word, the distribution of access pattern. In this section,
we test our interface with several workloads from FileBench[16].
Table 3 shows the characteristics of our test cases. As we defined
at Section 4.2, c is the average preset cache degree, the number of
in-memory access during the I/O transmitting. The value of locality
is calculated by the ratio of data that has been accessed over the
total number of data in the storage. We preset a conservative value
c = 4 for all the test case to ensure the obliviousness. If all the
requests hit in the memory, the ideal number of I/O accesses is
25, 000/4 = 6250. The effective hit rate show the actual cache effect
of our design, which is computed as the ideal number (6, 250) of
access over the actual number of I/O access (see Table 3. # of I/O).

Table 4: 64 MB data set with 25,000 requests

H-ORAM Path ORAM

Storage/Memory Size 64 MB/8MB 120 MB / 8MB
Number of I/O Accesses 6,539 25,000

I/O latency 77 µs 1,032 µs
Shuffle time 729 ms × 1 N/A
Total time 1,232 ms 25,575 ms

Table 5: 1 GB data size with 500,000 requests

H-ORAM Path ORAM

Storage/Memory Size 1 GB/ 128 MB 1.875 GB / 128 MB
Number of I/O Accesses 131,210 500,000

I/O latency 107 µs 1,364 µs
Shuffle time 9,743 ms × 2 N/A
Total Time 33,525 ms 682,041 ms

In addition, we show two sets of results that represent small and
large size of data set in Table 4 and 5.

The experimental results show the I/O latency for one ORAM
access is reduced by approximately 13 times. The performance

gain mainly comes from the reduction of I/O accesses summarized
below:

H-ORAM :1page (Read)
path ORAM :4pages (Read) + 4pages (Write)

For the system setting in the table 2, the tested HDD backend
has as a read speed twice faster than the write. As the result, the
theoretical gains for I/O latency is 4+ 4× 2 = 12 times of H-ORAM,
which is closed to the measured improvement (13×).

In addition, we observe that the shuffle speed is much faster
than the theoretical calculation due to the intrinsic properties of
HDD. The access speed is greatly depends on the randomness
of requests. When the Path ORAM accessing 4 buckets, it needs
to go through 4 sparse locations to fetch the data. For example,
{4161, 41090, 114948, 262665} are 4 bucket addresses when the Path
ORAM access the leaf 33289. We observe a large variance between
these four addresses, which adds extra overhead when using the
HDD. On the other hand, for the H-ORAM, during the shuffle pro-
cess, the whole data set is sequentially loaded and written, and it
can benefit from the fast sequential access speed of HDD devices,
which is 10× to 20× faster than the random page reading.

5.3 Discussion on optimization
After years of exploration, numerous of optimization methods have
been developed for the Path ORAM and this trendwill continue. Our
proposed H-ORAM, also assembly the Path ORAM on the top level
and optimize the protocol to suit larger data set with a cacheable
interface design. The previous studies, that aims at optimizing the
position map, stash or tree-top data can also be applied to our H-
ORAM. In this section, we discuss a few potential optimization that
can be build on H-ORAM to improve the performance.

Partial shuffle: As shown in the experimental results, we re-
duced the ORAM I/O overhead to a minimal amount. The most
significant time spent on H-ORAM, is the shuffle period, which
happen every n I/O operations. A full shuffle of entire data is costly,
therefore, we propose a lightweight and flexible partial shuffle pro-
tocol. For every shuffle period, we only need to shuffle a portion of
the data, for example, r = 1/4N . Instead of shuffling each partition
every period, one partition is going to shuffle every 4 periods. The
evicted data from memory keep concatenating on the top of each
partition until 4 period after last shuffled. With the partial shuffle,
we need to issue oblivious access that touches more redundant data
each time. The less we shuffle, the more redundant accesses are
required. Through this method, we can compute a proper shuffle
ratio with a system profiling, which balances the shuffle overhead
and the I/O overhead.

Multi-users Case: Another use case is that, when the ORAM
protected data set is shared by multiple users, the system needs to
provide high throughput while maintain the obliviousness access
between different users. Our proposed H-ORAM groups multiple
requests in the scheduler, to maximize the memory bandwidth.
When there are multiple users, we can continue to use the group
strategy so that requests from different users can be issued at the
same time. To protect the access pattern from potential malicious
users, some access control protection is required and can be added
to our scheduler.

6 CONCLUSIONS
Current ORAM designs such as square root ORAM, Path ORAM,
face the challenges when the data set grows out of the capacity
of main memory. The unavoidable I/O accesses brings extra over-
head to the expensive protocols. Meanwhile, it is hard to cache the
ORAM accesses because of the unique memory organization. In this
work, we propose a novel cacheable ORAM interface, H-ORAM, to
reduce the I/O access overhead per ORAM access, and the reshuffle
overhead which happens on background. In our theoretical and
experimental results, we show that our proposed H-ORAM outper-
forms the state-of-the-art Path ORAM by 19.8 times for a small data
set and 22.9 times for a large data set.

REFERENCES
[1] Dakshi Agrawal, Bruce Archambeault, Josyula R Rao, and Pankaj Rohatgi. 2002.

The EM side-channel(s). In International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 29–45.

[2] Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq Sarfaraz, and Byoungyoung
Lee. 2018. OBLIVIATE: A Data Oblivious File System for Intel SGX. (2018).

[3] Sundeep Bajikar. 2002. Trusted platformmodule (tpm) based security on notebook
pcs-white paper. Mobile Platforms Group Intel Corporation (2002), 1–20.

[4] Oded Goldreich. 1987. Towards a theory of software protection and simulation
by oblivious RAMs. In Proceedings of the nineteenth annual ACM symposium on
Theory of computing. ACM, 182–194.

[5] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation
on oblivious RAMs. Journal of the ACM (JACM) 43, 3 (1996), 431–473.

[6] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access
Pattern disclosure on Searchable Encryption: Ramification, Attack andMitigation..
In Ndss, Vol. 20. 12.

[7] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank Mckeen.
2016. Intel® Software Guard Extensions: EPID Provisioning and Attestation
Services. White Paper 1 (2016), 1–10.

[8] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh,
John Mitchell, and Mark Horowitz. 2000. Architectural support for copy and
tamper resistant software. ACM SIGPLAN Notices 35, 11 (2000), 168–177.

[9] Olga Ohrimenko, Michael T Goodrich, Roberto Tamassia, and Eli Upfal. 2014.
The Melbourne shuffle: Improving oblivious storage in the cloud. In International
Colloquium on Automata, Languages, and Programming. Springer, 556–567.

[10] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. 2017. Cacheshuffle: An oblivious
shuffle algorithm using caches. arXiv preprint arXiv:1705.07069 (2017).

[11] Ling Ren, Christopher W Fletcher, Albert Kwon, Marten van Dijk, and Srinivas
Devadas. 2017. Design and Implementation of the Ascend Secure Processor. IEEE
Transactions on Dependable and Secure Computing (2017).

[12] Ling Ren, Xiangyao Yu, Christopher W Fletcher, Marten Van Dijk, and Srinivas
Devadas. 2013. Design space exploration and optimization of path oblivious
ram in secure processors. In ACM SIGARCH Computer Architecture News, Vol. 41.
ACM, 571–582.

[13] Sajin Sasy, Sergey Gorbunov, and Christopher W Fletcher. 2017. ZeroTrace:
Oblivious memory primitives from Intel SGX. In Symposium on Network and
Distributed System Security (NDSS).

[14] Emil Stefanov and Elaine Shi. 2013. Oblivistore: High performance oblivious cloud
storage. In Security and Privacy (SP), 2013 IEEE Symposium on. IEEE, 253–267.

[15] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: an extremely simple
oblivious RAM protocol. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. ACM, 299–310.

[16] Vasily Tarasov, Erez Zadok, and Spencer Shepler. 2016. Filebench: A flexible
framework for file system benchmarking. login: The USENIX Magazine 41, 1
(2016).

[17] Rujia Wang, Youtao Zhang, and Jun Yang. 2017. Cooperative Path-ORAM for
Effective Memory Bandwidth Sharing in Server Settings. In High Performance
Computer Architecture (HPCA), 2017 IEEE International Symposium on. IEEE, 325–
336.

[18] Zhenghong Wang and Ruby B Lee. 2006. Covert and side channels due to proces-
sor architecture. In Computer Security Applications Conference, 2006. ACSAC’06.
22nd Annual. IEEE, 473–482.

[19] Samee Zahur, Xiao Wang, Mariana Raykova, Adrià Gascón, Jack Doerner, David
Evans, and Jonathan Katz. 2016. Revisiting square-root ORAM: efficient ran-
dom access in multi-party computation. In Security and Privacy (SP), 2016 IEEE
Symposium on. IEEE, 218–234.

