LAcc: Exploiting Lookup Table-based Fast and Accurate Vector
Multiplication in DRAM-based CNN Accelerator

Quan Deng
College of Computer
National University of Defense Technology
dengquanl2@nudt.edu.cn

Minxuan Zhang
College of Computer
National University of Defense Technology
mxzhang@nudt.edu.cn

ABSTRACT

PIM (Processing-in-memory)-based CNN (Convolutional neural
network) accelerators leverage the characteristics of basic memory
cells to enable simple logic and arithmetic operations so that the
bandwidth constraint can be effectively alleviated. However, it
remains a major challenge to support multiplication operations
efficiently on PIM accelerators, in particular, DRAM-based PIM
accelerators. This has prevented PIM-based accelerators from being
immediately adopted for accurate CNN inference.

In this paper, we propose LAcc, a DRAM-based PIM accelerator
to support LUT- (lookup table) based fast and accurate multiplica-
tion. By enabling LUT based vector multiplication in DRAM, LAcc
effectively decreases LUT size and improve its reuse. LAcc further
adopts a hybrid mapping of weights and inputs to improve the hard-
ware utilization rate. LAcc achieves 95 FPS at 5.3 W for Alexnet
and 6.3 X efficiency improvement over the state-of-the-art.

1 INTRODUCTION

The proliferation of Convolutional Neural Networks (CNNs) has
motivated the development of novel ASIC CNN accelerators to
improve their inference as well as training performance. Most such
accelerators focus on achieving a good tradeoff between improv-
ing computation efficiency and alleviating memory constraints.
When exploiting mature integrated circuit designs to construct
high performance computing blocks, CNN accelerators often face
tight memory bandwidth and capacity constraints. For example,
Dadiannao [4] chooses eDRAM instead of SRAM as the on-chip
memory to improve the on-chip memory capacity, which helps to
store weights and activation parameters and decrease the off-chip
data movement. EIE [11] leverages the sparsity of neural networks
to compress CNN data, which improves the effective off-chip mem-
ory bandwidth.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC 19, June 2-6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6725-7/19/06....$15.00
https://doi.org/10.1145/3316781.3317845

Youtao Zhang
Computer Science Department
University of Pittsburgh
zhangyt@cs.pitt.edu

Jun Yang
Electrical and Computer Engineering Department
University of Pittsburgh
juy9@pitt.edu

Alternatively, memory-centric designs, e.g., Neural Cache [9],
Drisa [16], DrAcc[7], Neurocube [14] and PRIME [5], prioritize the
memory subsystem to construct processing in memory (PIM) or
processing near memory (PNM) designs. By avoiding massive data
movement via integrating the processing unit and the memory
together, PIM designs strive to achieve a balance between compu-
tation efficiency and memory performance.

However, it is challenging to support multiplication operation
in PIM designs. Most memory-centric designs choose quantized
neural networks that use binary or ternary weights, which elimi-
nate most multiplication operations. Neural Cache[9] and SCOPE
[17] are two PIM designs that support multiplication operation.
The former leverages natural accumulation to implement multipli-
cation while the latter adopts stochastic computing to implement
approximate multiplication. Lacking high performance multipli-
cation support has prevented PIM-based accelerators from being
immediately adopted for accurate CNN inference.

In this paper, we propose LAcc, a DRAM-based PIM accelerator
that supports LUT (lookup table) based fast and accurate vector
multiplication for CNNs. Our contributions are as follows:

e We propose an LUT-based vector multiplication approach. LAcc
leverages decomposed multiplication to decrease the LUT size
and makes a tradeoff between LUT reuse and pre-calculation.
LAcc studies the hardware utilization and the page parallelism
when adopting different addends and batch sizes, and proposes a
hybrid mapping of weights and inputs.

e LAcc implements the LUT-based vector multiplication in DRAM.
It gives the corresponding data and hardware mapping methods
and proposes an optimized XOR operation to further accelerate
addition operations in DRAM.

e We simulate our proposed design and compare it with other
PIM-based accelerator designs. Our experimental results show
that LAcc improves the multiplication performance 6.8% over the
ideal baseline, and achieves 6.3X efficiency improvement over
the state-of-the-art without accuracy loss.

2 MULTIPLICATION IN CNNS

Multiplication is an important operation in CNNs. For example,
in the inference stage of Alexnet, the MAC (Multiplication-and-
accumulation) operations account for 85%-90% of the total opera-
tions [8]. While it is viable to adopt quantized CNNs to eliminate
multiplication for high efficiency in mobile and IoT devices, there

is a non-negligible inference error, e.g., 7% error of ImageNet top-1
inference, between binary neural network [6] and the best case [24].
Considering the increasing complexity of future tasks, e.g., object
detection and generative adversarial network (GAN), multiplication
is necessary for accurate CNN inference.

Unfortunately, while it is highly efficient to support bitwise logic
and arithmetic operations inside memory devices, it is challenging
to support multiplication with PIM designs. We next present two
alternative multiplication implementations.

2.1 Multiplication Decomposition

It is well known that a multiplication operation can be decomposed
into a chain of addition operations. In recent studies, Stripes[13]
and Bit-pragmatic[1] leverage the decomposition to mitigate the
bit-level operation sparsity. Bit fusion[22] decompose a 16-bit mul-
tiplication into multiple 2-bit multiplications to achieve a flexible
accelerator, concerning the varying operand length in different
layers of CNN.

Assume there are four unsigned operands A=‘01", B="11", C="11
and D=01". X,, refers to the n;j, bit of X. To calculate Y=A*B+C*D,
we may perform two multiplications and then the sum, as shown in
Equation 1. However, we may also decompose a 2-bit multiplication
as shown in Equations 2 and 3, and then sum them up as shown in
Equation 4. In the following discussion, the bit of the decomposed
operand is referred to as select bit (SB) while the original operand
is referred to as addend.

Y =AxB+CxD; (1
AxB=AxBg#20 +Ax By x2%;)
CxD=CxDy*2°+CxDy %2\ ®3)

Y = (A% By +CxDp) x2° + (A% By + C * Dp) % 21; 4)

Given a CNN convolutional layer that has (1) an H*W*N input
matrix (H, W, N are the height, the width, and the depth of the
matrix); (2) an R*C*M output matrix (M, R, C being the height, the
width, and the depth of the matrix); and (3) a set of M kernels with
one kernel being an K*K*N weight matrix (N, K are the depth and
the height/width of the weight matrix). Assume L is the bit length
of operands and S is the stride, we may transform the convolution
using multiplication decomposition, as shown in Figure 1.

Comparing to the original CNN algorithm, the one in Figure 1
has an extra L loop to accumulate the results of different bit offset,
and an additional accumulation in the M loop. The computation in
the box refers to the equation of the weight addend, and the outside
one refers to the equation of the input addend.

For(r=0;r<R;r++)
For(c=0;c<C;c++)
For(m=0;m<M;m++)
O[m[r][c]= ZiZ" O[m][r][c][i]*2'
For(n=0;n<N;n++)
For(I=0;1<L;1++)
O[m][r][e]m][1]=2{%5" £/55" Wm][n][]G]* Hn][r*S+i][c*S+][1]
(LOImIrlel]2 5 In][r*S +il[c*S+1* WIm][n][i][i][1] }
O[m][r][c][1]+= O[m][r][c][n][1]
Figure 1: The Addition-based Algorithm in LAcc.

2.2 LUT-Based Multiplication

Another multiplication implementation method is to use LUTs
(lookup tables). Table 1 shows an ideal comparison among different
implementations of addition and multiplication. All the algorithms
are implemented in one platform for fair comparison and the results
are normalized by the latency of one memory WT/RD. The required
input operands are ready in the function units. A multiplication
operation in Neural Cache needs 16 addition, 15 data copy and
1 data restore operations. A multiplication operation in SCOPE
needs one AND operation. Implementing a multiplication operation
using LUT costs only one memory WT/RD and achieves the best
performance. However, it is challenging to implement LUT-based
multiplication inside DRAM.

o The setup time and the memory overhead of the lookup
table are costly. Ideally, LUT needs to contain all the result can-
didates of the multiplication. However, the space of LUT increases
rapidly with the data length. For example, a 16-bit fixed point
multiplication needs to cover a result space of 232 possibilities.
The storage overhead of LUT makes it non-preferable in DRAM.
An 8Gb DRAM can hold only 2 such LUTs. Furthermore, the
timing overhead of pre-calculation is unaffordable, concerning
the limited computation resources in DRAM.

e The hint variety of LUT decreases the hardware parallelism
and utilization rate. The process of accumulation-based multi-
plications and additions are hardware lockstep. Threads with the
same operations can be perfectly distributed on the same DRAM
page. However, it is hard for LUT-based multiplications to fill up
the DRAM page. Because the input operands decide the entry of
LUT. Only threads with identical inputs can be allocated on the
same DRAM page, which brings unavoidable waste operations
and induces a poor page utilization and system performance loss.

Table 1: Different Addition Implementations Comparison

Addition Multiplication
Scheme Delay | Accuracy || Delay | Accuracy
Neural Cache-like Case 13 100% 224 100%
SCOPE-like Case 13 100% 4 99%
LUT-based Case 13 100% 1 100%

3 LACC OPTIMIZATION ON VECTOR
MULTIPLICATION

Most multiplication operations in CNNs are vector dot product, i.e.,
given two vectors X and Y, we need to compute their dot product
as shown in Equation 5. We assume each vector had D items and
each item is of L bits. A 16-bit scalar multiplication is considered
as a special case of vector multiplication. We next elaborate our
optimization on vector multiplication.

D
P(X,¥) = [X1,X2,...Xp] - [Y1,Y2,... Ypl" =) Xi¥; (5)
i=1

3.1 Reducing LUT Size with Decomposition

Given the vector multiplication in Equation 5, the LUT table size
can be greatly reduced if we fix some bits in the vectors. As a
special case, if we fix)? we only need to store 2D*L regults, a
great reduction from the original size. Figure 2 illustrates how to

reduce LUT table size through decomposition. We represent the

second operand at the bit level where H and V are the vertical and
horizontal partition units, respectively.

There are two decomposition methods. A horizontal partition
(HP) decomposes the second operand to [L/H| segments horizon-
tally. The first vector is left untouched. P(X,Y) can be computed
from the sum of [L/HT sub-vector dot products (with shifts). Each
sub-vector dot product can be looked up from an HP-LUT table
that stores 2P*L x 2D*H _pD(L+H) reqults. Figure 2 (2) presents the
first sub-vector product after horizontal partition.

LUT(W, I):[Wo Wi Wy Wy == Wp3 Wp, Wm]

\Hf—/ 2
D o1
(1) LUT in MAC
H
—
Ay Al Ay Ay e 20
By By B By * 2!
G C GG o 22
Dy Dy D, Dy =+ .
R Y | e :)
My M M, M-
H/—/ No N; N, Ny .
Oy Oy Oy O3+)
D P, P, P, Py Sl
(2) HP-LUT in MAC
20
2!
Ag Ay Ay Ay = Ay A Ay 22
By By By By =+ By; By By, .
VP-LUT(W, I):[Wy Wi W, W] G C GG Cy Cy Gy p N . L
Do Dy D; Dy == Dy Dy, Dy .
R/_/ .. o3
92
N 1

(3) VP-LUT in MAC
Figure 2: Two Basic MAC Partition Methods.

A vertical partition (VP) decomposes the second operand to
[D/V] segments vertically. The first operand is also partitioned
to [D/V] sub-vectors. P()?, 17) can be computed from the sum
of [D/V] sub-vector dot products. The result of each sub-vector
dot product can be looked up from a VP-LUT table that stores
2V*L x VL _p2#V+L regylts. Figure 2 (3) presents the first sub-
vector product after vertical partition.

A tradeoff between reuse and pre-calculation. In this paper,
we are to fix the first vector X in the vector multiplication, we can
further reduce the LUT table sizes to 2P*H and 2V*L entries for HP
and VP, respectively. The tradeoff is, we need to pre-calculate the
LUT table when the first vector changes. This overhead is amortized
if the table can be reused multiple times. Clearly, the more the table
is reused, the lower the amortized overhead is.

For HP, X needs to multiply with [L/H] sub-vectors of Y. The
LUT table, after the pre-calculation for the first sub-vector multipli-
cation, shall be used [L/H] times. As a comparison, for VP, each
sub-vector of X needs to one sub-vector of Y. The LUT table is used
only once after pre-calculation.

3.2 Dynamically Mapping the Weights or
Inputs for Performance Optimization

Since a vector multiplication can change the order of two operands,
ie, P(X,Y) = P(Y, X), we may fix either vector to reduce the LUT

T :D M = K*K*N
Buffer 1 'DRA D]
_________ L _IBANK||F = (N
! LUT, ! Hin| € | Select Bit Buffer l.-ll
: int K*K*N
e I T
—t— — -
--------- " Adiend” : N
Addend g | KON ANENEE | A
H Addend, |

Weight Vectors Input Vectors

Effective Waste Threads

Threads ‘WAM Example
Figure 3: An Weight Addend Mapping(WAM) Example.

table size. For the CNN discussed in the paper, one vector is the
vector representation of a subset of items from the input matrix
while the other vector is the vector representation of the weight
matrix. The lengths of both vectors are K*K*N. We next reuse the
notations in Section 2 and compare two data mapping approaches
to find the best tradeoff between reuse and page utilization of LUT
for PIM-based CNN.

The first mapping approach is to fix the weight vector while de-
composing the input vector, referred to as Weight Addend Mapping
(WAM). Figure 3 illustrates how the weights and LUTs are mapped
in the DRAM cell arrays. For each of the M weight vectors, we
calculate a different LUT table. In the figure, the different entries
of one weight vector are placed in different memory rows, which
simplifies the pre-calculation of the LUT tables with in-memory
operations. We place the aligned items of M weight vectors (or LUT
entries) in one memory row to improve the page utilization during
lookup. Considering the regular operations of LUT pre-calculation,
multiple sets of weight vectors are mapped into one page to im-
prove the page utilization during LUT pre-calculation under the
premise of the page utilization of LUT. Furthermore, VP partitions
the original LUT into sub-LUTs, which helps to fill up the page to
improve the page utilization during LUT pre-calculation.

After adopting both VP and HP with VP size V and HP size H,
each input vector is partitioned to K*K*N*L/(V*H) sub-vectors. As
such, we need to pre-calculate K’K*N/V LUT tables for each weight
vectors. Each LUT table has 2V*H entries with each entry being L
bits, and will be searched R*C*B times with B being the batch size,
i.e., the number of images that perform inference simultaneously.
As the weights are the same for different inference tasks, the LUT
table reuse increases with B. Since one memory row stores only
the aligned entries from M LUT tables and each entry is of L bits.
The page utilization of LUT, i.e., the percentage of memory bits to
be used after fetching one memory row for lookup, is computed as
M = L/P where P is the row size. We choose a 4KB row size in this
paper.

The second mapping approach is to fix the input vector while
decomposing the weight vector, referred to as Input Addend Map-
ping (IAW). We need to pre-calculate K*K*N/V LUT tables for each
input vectors. Since the R*C*B input vectors may potentially be
processed together, the page utilization of LUT is R*C*B*L/P. Since
there are M weight vectors only, each LUT table is to be reused
only M times.

Clearly, with different CNN parameters and VP/HP partition
sizes, we may get different page utilization and LUT reuse values.
We use an example to show the effect on performance. We use the
third convolutional layer of Alexnet, which uses 3x3x128 weight

CNN —

Configuration

IArray|

HOST CPU

Instruction
chuest

1. Data Fetch Instruction
2. Operation Instruction

Col DEC Col DEC Col DEC Col DEC
Tor) yroxeam | [mio:m B @
L= —

|
[
[
[
|
|
[
| :
-
[
[
[
=
|
[
[
[

e

WL_Shift

—_—————————— — — — \ i . -
| |__|_L
S Subarray / 2 — EN_Shift
I
|
D A — s WL_NOT
C Sanll Uy : EN_NOT
N i -
el = — WL_XNORO
€ €\l | H
l | j :
N |
SA | | '
I | : =0 - EN_PRE
: : =+ | WL XNORI
[N e e
|
BDNY BL

Figure 4: The Hierarchical Architecture of LAcc in DRAM.

Table 2: The Comparison of Different Addends

Weight Addend Input Addend
BZ | PURL(%) | DRT | L(ms) || PURL(%) | DRT | L(ms)
1 18.75 169 5.6 8.25 384 10.8
2 18.75 338 10.7 16.50 384 11.1
4 18.75 676 20.8 33.00 384 11.6
8 18.75 1352 413 66.01 384 12.7

matrix, 13x13x384 output matrix. Table 2 compares the results of
WAM and IAM with fixed VP and HP. BZ refers to batch size; DRT
refers to data reuse time; PURL refers to page utilization rate during
lookup. When the batch size is 1, WAM shows better performance
than that of IAM. After the batch size increases, the performance of
those two approaches reverses. With different HP and VP sizes, the
performance difference is more significant, which indicates that we
need to dynamically fix either the input or the weight matrices for
the best performance improvement.

4 LACC ARCHITECTURE

LAcc is architected as an enhancement to a baseline DRAM main
memory implementation that supports bitwise logic, fast data copy,
and add operations [3, 7]. Figure 4 presents an overview of the
LArcc accelerator. The arrays on the same vertical line share the
same column decoder and input/output buffers while the arrays
of the same horizontal line build a bank. LAcc uses the open bit-
line structure, where two adjacent subarrays share the same sense
amplifiers.

LAcc slightly modifies on the control logic of DRAM[25] to de-
code the PICM commands from CPU. It adds a bypass line from
the I/0 buffer to the control logic and a 96B SB buffer. The control
logic uses the table address and SB to generate the physical opera-
tion address. When all of the buffered commands finish, it sends
instruction requests to the CPU side.

4.1 Hardware Mapping Method

Since LAcc is built as PIM DRAM accelerator, we map the processing
units to banks, arrays, and subarrays. We treat each bank as a single
instruction multiple data (SIMD) processing unit with active pages
being the function units in operation. The input operands are stored
in the same columns and different rows with the corresponding
functional units. The data movement method within a subarray and
across different subarrays leverage similar methods with LISA[3].
The page size of LAcc is 4KB, where there are 2048 16-bits function
units in each page. LAcc preserves 4K rows of each bank for LUT,

1K rows for input data buffer and 3K rows for output buffers in
each bank. The physical size of LUT decides the maximum length
of VP is 12. LAcc keeps using an LUT until there are no operations
within the LUT.

4.2 Data Mapping Method

LAcc uses different data mapping methods for addend, SB and out-
put data. The addends of each thread are stored vertically in the
reserved space of input buffer in the banks. For weight addend,
LAcc directly uploads them from the lower level memory. For input
addend, there is a data reforming step as the inputs are the output
of the previous layer. The SBs and the output data are stored hori-
zontally in the output buffer part, which is the same as original data
in DRAM. When there is an SB read request, it first read the page
out into the local buffer. Then the global column decoder sends the
exact control bits with the same offset into control logic.

4.3 Optimized XOR Operation

In addition to multiplication operations, a CNN needs to frequently
perform add operations. The PIM based add operation implementa-
tion needs two XOR operations to implement the carry look-ahead
algorithm [7]. The in-memory XOR, as being an expensive opera-
tion, account for 46% of the time of an addition operation. We next
present an optimized XOR implementation to accelerate LAcc.

Y = A® B = A&!B+!A&B (6)
B A=0
Y_{!B A=1 @)

Equation 6 and 7 illustrate two different ways to implement XOR.
LAcc adopts the second one in DRAM while existing designs([7, 19]
choose the first method. Figure 4 illustrates the hardware enhance-
ment to realize this optimization. LAcc changes the connections of
the last five DRAM rows. The 2nd row of the lines builds a bypass
between the cell of the 1st row and BLN, and its gate connects the
4th row. The 3rd row is used to guarantee the connection between
the 2nd row and the 4th row can be discharged to the ground.

To perform an optimized XOR operation, LAcc first activates
the row that stores operand B and restores it into XNORO. It then
uploads operand A to Sel. Next, LAcc reads operand B into the
sense amplifier and then activates the bypass of XNOR1. If A is
‘1", the complementary of B overwrites the original B. EN_PRE
is enabled unless the WL_XNOR1 is enabled. Figure 5 shows the

—o—BL —©—VC1—4—VCO——BLN—<—Inner

1.0

=

g 0.5

5 :

S RS AL

g g . .
0.0 ORI H R — RO OB T M XK ((‘0((01!.-! (0‘ RIS K>
0.00E+000 5.00E-009 1.00E-008

TIME

(a) Signals of BLs
—o— XNORO —o— Sel —— XNOR1

T
5.00E-009

0.00E+000 1.00E-008

TIME
(b) Signals of WLs

Figure 5: Hspice Results of Optimized XNOR.

circuit simulation result with Hspice. The optimized XOR operation
decreases the operating time of addition from 13 AAP operations
to 10 AAP operation.

5 EVALUATION

To evaluate our proposed LAcc design, we use Hspice and CACTI to
study the circuit modification and the DRAM structure, respectively.
We assemble a set of benchmark programs — Lenet-5(MNIST),
Alexnet, VGG16, VGG19, Resnet152, which cover both small and
large input image sizes of CNNs. Lenet-5 uses 512 batch size while
the other use 128 batch size. We perform fixed vertical partition
(HP) of 1 but vary the granularity for horizontal partition (VP) to
optimize the performance improvement. In the experiments, we
evaluate the following schemes.

BW. It denotes accumulation-based design with WAM.

BI. It denotes accumulation-based design with IAM.

H. It denotes accumulation-based design with hybrid addends.
RW. It denotes LUT-based design with WAM.

RI. It denotes LUT-based design with IAM.

HR. It denotes LUT-based design with hybrid addends.

Table 3: The Configuration of LAcc

Bank Size 32 DRAM Tech. 25nm
Memory Capacity 8 Gb Subarray Size | 512x512
DRAM Bandwidth | 4.15GBps || I/O interface 64b
Timing ns Energy nJ
RAS 14.4 Activation 1.27
RP 5.8 Read/Write 0.63
RCD 8.7 Precharge 1.19

5.1 Performance

Figure 6 shows the normalized performance of those six bench-
marks. On average, HR achieves 64.2X, 7.9%x and 6.8X performance
speedups over that of BW, BI and H, respectively. LAcc achieves the
maximum performance improvement in Alexnet due to high page
utilization. For this benchmark, BI and RI have low page utilization
and performance for the fully connect layers of Alexnet — they
spend about 50% of the total latency in these layers. Since the ra-
tio (M/(R*C)) for the fully connected layers in Alexnet is 4096, BI
and RI would need to increase their batch size to 2048 in order to

achieve the same page utilization as those in BW and RW. However,
their batch sizes are 128 only.

RI achieves better performance than HR in Lenet-5. This is be-
cause the sizes of its last two fully connected layers are 11500 and
1*1%10, respectively. The weight addend mapping (WAM) loses its
advantage on a large batch size.

0]
2 7718w R I 5 H [R S R I HR
[+

(<]

5 8-

o

8

N 4';'

© g

E ol

§ Lenet-5 Alexnet VGG16 VGG19 Resnet152 AVG

Figure 6: Comparing the performance of different schemes.

Figure 7 compares the system page utilization ratio, which equals
the sum of the active page ratio multiplies the latency ratio of each
layer. A 100% page utilization ratio means the operands in all active
pages are effective through the entire processing time. The system
page utilization ratios of BW and RW achieve the lowest, and that
of HR achieves highest except Lenet-5. RI in Lenet-5 gets a 7%
improvement over BI, while the average improvement is 3.8%. HR
has an average improvement of 12.4% over BI. With a fixed batch
size, the proposed design decreases the time ratio of the parts with
low effective page utilization ratio.

o JZZ2BW R BIETH
c
S 084
©
Nosl N
= 044 NH
) =
& 024-RH
o :
0.0 -
Lenet-5 Alexnet VGG16 VGG19 Resnet152 AVG

Figure 7: Comparing the page utilization.

5.2 Power and Area
Figure 8 shows the power of those six schemes, of which the dif-
ference is less than 4%. The power mainly contains two parts, i.e.,
the power of active pages and the power of data movement. In
most of the time, LAcc leverages all the active pages in banks to do
computing. Thus, the power of the first part in those schemes is
very close. The difference of the power is caused by the latter one.
The overall extra area of LAcc is less than 1% compared with
the baseline[7]. The optimized XNOR changes the connections of
the last five DRAM rows of each subarray, which decreases 0.2% of
DRAM capacity. The area of the added SB buffer in control logic is
132.2um?.

[77181 R Bw B R [Rw D H I R

1.00 4 A B o8 %I N
0.95 %

Lenet-5 Alexnet VGG16 VGG19 Resnet152 AVG

Normalized Power

Figure 8: Power of LAcc

5.3 Batch Size Effects

Figure 9 and figure 10 show the performance and the page utilization
ratio with different batch sizes in Alexnet. BW and RW show steady
performance with increasing batch size, while their page utilization
ratio shows the same tendency. HR shows the best performance
improvement speed. The system page utilization ratio first meets
a decrease with a batch size of 9. Because the parallel threads size
exceeds the page size. There needs more page to hold all those
threads. In return, the system page utilization ratio decreases and
the speed of the performance improvement of HR slows down. The
performance of RI keeps growing, which can be even better than
HR with large batch size. The needed batch size can be thousands
considering the fully connected layer size. However, the optional
batch size of CNN is only 128/256/512. HR shows better applicability
on CNN inference.

. 75'+B|+BW+R|+RW+H+HR
&

@ 50 <

(&}

c 4

g //

€ 25

£

[

o

10

Batch Size
Figure 9: Performance with Different Batch Sizes

———Bl—0—BW-—4—R|l—~v-RW-—#—-H—<—HR
0.8 < <

& -

0.4

Page Utilization

0.0

o 2 4 6 8 10
Batch Size
Figure 10: Page Utilization with Different Batch Sizes
5.4 Comparison with Other PIMs

We compare LAcc with an ideal scheme and three PIM designs, i.e.
DRISA[16], SCOPE[17] and Neural Cache[9], to show the design
efficiency of LAcc. The ideal scheme refers to the best scheme
of LAcc without LUT-based vector multiplication, where we set
an ideally page utilization of 100%. Neural Cache is implemented
in SRAM, while the others are all implemented in DRAM. The
benchmark is Alexnet, and the batch size is 64. The results of DRISA,
SCOPE and Neural Cache are shrank from 8 bits to 16 bits.

LAcc achieves the best efficiency, which is 6.8x and 6.3X over
the ideal scheme and SCOPE, respectively. The ideal scheme and
LAcc utilize optimized XOR, which decreases the AAP number of
addition from 13 to 10. The performance difference gives the credit
to LUT-based vector multiplication and hybrid addend mapping.
The efficiency of Neural Cache is limited by the large cell density
and leakage power of SRAM. Although the efficiency of SCOPE is
lower than that of LAcc, it achieves the best perf./area. Because the
DRAM structures of LAcc and SCOPE are different. The maximum
number of active pages of LAcc and SCOPE are 32 and 16K, and the
page sizes are 4KB and 2Kb, respectively. Considering the similar
contributions between SCOPE and LAcc, we make a comparison
of the multiplication optimization effect. Compared with DRISA,
SCOPE improves the perf./area by 4.11X and efficiency by 2.26x.

Compared with the ideal scheme, LAcc improve the perf./area and

efficiency by 6.82x. LAcc achieves 1.66x perf./area improvement

and 3X efficiency over SCOPE on multiplication optimization.
Table 4: PIM design Comparison

Parameter DRISA | SCOPE | Neural Cache | Ideal Scheme | LAcc
Performance 147 2528 7.2 14.0 95.6
Power(W) 98 176.4 53 53 53

Area(mm?) | 652 273 10.1 54.8 54.8
Capacity 2Gb 8Gb 35MB 8Gb 8Gb
Perf/Area 2.25 9.26 0.7 0.25 1.74
(Fr./s/mm?)

Efficiency 0.023 0.052 0.013 0.048 0.329
(Fr./J/mm?)

6 CONCLUSION

In this paper, we propose LAcc, a DRAM-based accelerator to
support LUT-based fast and accurate vector multiplication. LAcc
achieves 6.3X efficiency improvement over state-of-the-art and im-
proves the multiplication performance 6.8X over the ideal baseline.

7 ACKNOWLEDGMENTS

This work is supported in part by NSF under Grant CCF-1718080
and CCF-1617071, in part by the National Natural Science Founda-
tion of China under Grant 61802427 and HGJ National key project
of China under Grant 2017Z2X01028103. The authors thank the
anonymous reviewers for their constructive comments.

REFERENCES

[1]], Albericio, et al. Bit-pragmatic deep neural network computing. MICRO, 2017.
[2] H, Bagherinezhad, et al. Lcnn: Lookup-based convolutional neural network.
CVPR, 2017.
[3] K, Chang, et al. Low-cost inter-linked subarrays (LISA): Enabling fast inter-
subarray data movement in DRAM. HPCA, 2016.
[4] Y, Chen, et al. Dadiannao: A machine-learning supercomputer. MICRO, 2014.
[5] P, Chi, et al. PRIME: A Novel Processing-in-Memory Architecture for Neural
Network Computation in ReRAM-Based Main Memory. ISCA, 2016.
[6] M, Courbariaux, et al. Binarized neural networks: Training deep neural networks
with weights and activations constrained to+ 1 or-1. arXiv, 2016.
[7] Q, Deng, et al. DrAcc: a DRAM based accelerator for accurate CNN inference.
DAC, 2018.
[8] G, Desoli, et al. A 2.9TOPS/W deep convolutional neural network SoC in FD-SOI
28nm for intelligent embedded systems. ISSCC, 2017.
[9] C, Eckert, et al. Neural Cache: Bit-Serial In-Cache Acceleration of Deep Neural
Networks. ISCA, 2018.
[10] A, Fuchs, et al. Scaling Datacenter Accelerators With Compute-Reuse Architec-
tures. ISCA, 2018.
[11] S, Han, et al. EIE: efficient inference engine on compressed deep neural network.
ISCA, 2016.
[12] K,Hegde, et al. UCNN: Exploiting Computational Reuse in Deep Neural Networks
via Weight Repetition. ISCA, 2018.
[13] P,Judd, et al. Stripes: Bit-serial deep neural network computing. MICRO, 2016.
[14] D, Kim, et al. Neurocube: A programmable digital neuromorphic architecture
with high-density 3D memory. ISCA, 2016.
[15] A, Lavin, et al. Fast algorithms for convolutional neural networks. CVPR, 2016.
[16] S, Li, et al. Drisa: A dram-based reconfigurable in-situ accelerator. MICRO, 2017.
[17] S, Li, et al. SCOPE: A Stochastic Computing Engine for DRAM-based In-situ
Accelerator. MICRO, 2018.
[18] M, Razlighi, et al. Looknn: Neural network with no multiplication. DATE, 2017.
[19] V, Seshadri, et al. Ambit: In-memory accelerator for bulk bitwise operations
using commodity DRAM technology. MICRO, 2017.
[20] V, Seshadri, et al. RowClone: fast and energy-efficient in-DRAM bulk data copy
and initialization. MICRO, 2013.
[21] A, Shafiee, et al. ISAAC: A convolutional neural network accelerator with in-situ
analog arithmetic in crossbars. ACM SIGARCH Computer Architecture News, 2016.
[22] H, Sharma, et al. Bit fusion: Bit-level dynamically composable architecture for
accelerating deep neural network. ISCA, 2018.
[23] A, Yasoubi, et al. Power-efficient accelerator design for neural networks using
computation reuse. CAL, 2017.
[24] A, Zhou, et al. Incremental network quantization: Towards lossless cnns with
low-precision weights. arXiv, 2017.
[25] MICRON DRAM, et al. https://www.micron.com/products/dram. , 2018.

