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ABSTRACT
PIM (Processing-in-memory)-based CNN (Convolutional neural
network) accelerators leverage the characteristics of basic memory
cells to enable simple logic and arithmetic operations so that the
bandwidth constraint can be e�ectively alleviated. However, it
remains a major challenge to support multiplication operations
e�ciently on PIM accelerators, in particular, DRAM-based PIM
accelerators. This has prevented PIM-based accelerators from being
immediately adopted for accurate CNN inference.

In this paper, we propose LAcc, a DRAM-based PIM accelerator
to support LUT- (lookup table) based fast and accurate multiplica-
tion. By enabling LUT based vector multiplication in DRAM, LAcc
e�ectively decreases LUT size and improve its reuse. LAcc further
adopts a hybrid mapping of weights and inputs to improve the hard-
ware utilization rate. LAcc achieves 95 FPS at 5.3 W for Alexnet
and 6.3 ⇥ e�ciency improvement over the state-of-the-art.

1 INTRODUCTION
The proliferation of Convolutional Neural Networks (CNNs) has
motivated the development of novel ASIC CNN accelerators to
improve their inference as well as training performance. Most such
accelerators focus on achieving a good tradeo� between improv-
ing computation e�ciency and alleviating memory constraints.
When exploiting mature integrated circuit designs to construct
high performance computing blocks, CNN accelerators often face
tight memory bandwidth and capacity constraints. For example,
Dadiannao [4] chooses eDRAM instead of SRAM as the on-chip
memory to improve the on-chip memory capacity, which helps to
store weights and activation parameters and decrease the o�-chip
data movement. EIE [11] leverages the sparsity of neural networks
to compress CNN data, which improves the e�ective o�-chip mem-
ory bandwidth.
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Alternatively, memory-centric designs, e.g., Neural Cache [9],
Drisa [16], DrAcc[7], Neurocube [14] and PRIME [5], prioritize the
memory subsystem to construct processing in memory (PIM) or
processing near memory (PNM) designs. By avoiding massive data
movement via integrating the processing unit and the memory
together, PIM designs strive to achieve a balance between compu-
tation e�ciency and memory performance.

However, it is challenging to support multiplication operation
in PIM designs. Most memory-centric designs choose quantized
neural networks that use binary or ternary weights, which elimi-
nate most multiplication operations. Neural Cache[9] and SCOPE
[17] are two PIM designs that support multiplication operation.
The former leverages natural accumulation to implement multipli-
cation while the latter adopts stochastic computing to implement
approximate multiplication. Lacking high performance multipli-
cation support has prevented PIM-based accelerators from being
immediately adopted for accurate CNN inference.

In this paper, we propose LAcc, a DRAM-based PIM accelerator
that supports LUT (lookup table) based fast and accurate vector
multiplication for CNNs. Our contributions are as follows:

• We propose an LUT-based vector multiplication approach. LAcc
leverages decomposed multiplication to decrease the LUT size
and makes a tradeo� between LUT reuse and pre-calculation.
LAcc studies the hardware utilization and the page parallelism
when adopting di�erent addends and batch sizes, and proposes a
hybrid mapping of weights and inputs.

• LAcc implements the LUT-based vector multiplication in DRAM.
It gives the corresponding data and hardware mapping methods
and proposes an optimized XOR operation to further accelerate
addition operations in DRAM.

• We simulate our proposed design and compare it with other
PIM-based accelerator designs. Our experimental results show
that LAcc improves the multiplication performance 6.8⇥ over the
ideal baseline, and achieves 6.3⇥ e�ciency improvement over
the state-of-the-art without accuracy loss.

2 MULTIPLICATION IN CNNS
Multiplication is an important operation in CNNs. For example,
in the inference stage of Alexnet, the MAC (Multiplication-and-
accumulation) operations account for 85%-90% of the total opera-
tions [8]. While it is viable to adopt quantized CNNs to eliminate
multiplication for high e�ciency in mobile and IoT devices, there



is a non-negligible inference error, e.g., 7% error of ImageNet top-1
inference, between binary neural network [6] and the best case [24].
Considering the increasing complexity of future tasks, e.g., object
detection and generative adversarial network (GAN), multiplication
is necessary for accurate CNN inference.

Unfortunately, while it is highly e�cient to support bitwise logic
and arithmetic operations inside memory devices, it is challenging
to support multiplication with PIM designs. We next present two
alternative multiplication implementations.

2.1 Multiplication Decomposition
It is well known that a multiplication operation can be decomposed
into a chain of addition operations. In recent studies, Stripes[13]
and Bit-pragmatic[1] leverage the decomposition to mitigate the
bit-level operation sparsity. Bit fusion[22] decompose a 16-bit mul-
tiplication into multiple 2-bit multiplications to achieve a �exible
accelerator, concerning the varying operand length in di�erent
layers of CNN.

Assume there are four unsigned operands A=‘01’, B=‘11’, C=‘11’
and D=‘01’. Xn refers to the nth bit of X. To calculate Y=A*B+C*D,
we may perform two multiplications and then the sum, as shown in
Equation 1. However, we may also decompose a 2-bit multiplication
as shown in Equations 2 and 3, and then sum them up as shown in
Equation 4. In the following discussion, the bit of the decomposed
operand is referred to as select bit (SB) while the original operand
is referred to as addend.

Y = A ⇤ B +C ⇤ D; (1)

A ⇤ B = A ⇤ B0 ⇤ 20 +A ⇤ B1 ⇤ 21; (2)

C ⇤ D = C ⇤ D0 ⇤ 20 +C ⇤ D1 ⇤ 21; (3)

Y = (A ⇤ B0 +C ⇤ D0) ⇤ 20 + (A ⇤ B1 +C ⇤ D1) ⇤ 21; (4)

Given a CNN convolutional layer that has (1) an H*W*N input
matrix (H, W, N are the height, the width, and the depth of the
matrix); (2) an R*C*M output matrix (M, R, C being the height, the
width, and the depth of the matrix); and (3) a set of M kernels with
one kernel being an K*K*N weight matrix (N, K are the depth and
the height/width of the weight matrix). Assume L is the bit length
of operands and S is the stride, we may transform the convolution
using multiplication decomposition, as shown in Figure 1.

Comparing to the original CNN algorithm, the one in Figure 1
has an extra L loop to accumulate the results of di�erent bit o�set,
and an additional accumulation in theM loop. The computation in
the box refers to the equation of the weight addend, and the outside
one refers to the equation of the input addend.

Figure 1: The Addition-based Algorithm in LAcc.

2.2 LUT-Based Multiplication
Another multiplication implementation method is to use LUTs
(lookup tables). Table 1 shows an ideal comparison among di�erent
implementations of addition and multiplication. All the algorithms
are implemented in one platform for fair comparison and the results
are normalized by the latency of one memoryWT/RD. The required
input operands are ready in the function units. A multiplication
operation in Neural Cache needs 16 addition, 15 data copy and
1 data restore operations. A multiplication operation in SCOPE
needs one AND operation. Implementing a multiplication operation
using LUT costs only one memory WT/RD and achieves the best
performance. However, it is challenging to implement LUT-based
multiplication inside DRAM.
• The setup time and the memory overhead of the lookup
table are costly. Ideally, LUT needs to contain all the result can-
didates of themultiplication. However, the space of LUT increases
rapidly with the data length. For example, a 16-bit �xed point
multiplication needs to cover a result space of 232 possibilities.
The storage overhead of LUT makes it non-preferable in DRAM.
An 8Gb DRAM can hold only 2 such LUTs. Furthermore, the
timing overhead of pre-calculation is una�ordable, concerning
the limited computation resources in DRAM.

• Thehint variety of LUTdecreases thehardware parallelism
and utilization rate. The process of accumulation-based multi-
plications and additions are hardware lockstep. Threads with the
same operations can be perfectly distributed on the same DRAM
page. However, it is hard for LUT-based multiplications to �ll up
the DRAM page. Because the input operands decide the entry of
LUT. Only threads with identical inputs can be allocated on the
same DRAM page, which brings unavoidable waste operations
and induces a poor page utilization and system performance loss.

Table 1: Di�erent Addition Implementations Comparison

Addition Multiplication
Scheme Delay Accuracy Delay Accuracy
Neural Cache-like Case 13 100% 224 100%
SCOPE-like Case 13 100% 4 99%
LUT-based Case 13 100% 1 100%

3 LACC OPTIMIZATION ON VECTOR
MULTIPLICATION

Most multiplication operations in CNNs are vector dot product, i.e.,
given two vectors ÆX and ÆY , we need to compute their dot product
as shown in Equation 5. We assume each vector had D items and
each item is of L bits. A 16-bit scalar multiplication is considered
as a special case of vector multiplication. We next elaborate our
optimization on vector multiplication.

P( ÆX , ÆY ) = [X 1,X 2, ...,XD ] · [Y 1,Y 2, ...,YD ]T =
D’
i=1

XiYi (5)

3.1 Reducing LUT Size with Decomposition
Given the vector multiplication in Equation 5, the LUT table size
can be greatly reduced if we �x some bits in the vectors. As a
special case, if we �x ÆX , we only need to store 2D⇤L results, a
great reduction from the original size. Figure 2 illustrates how to
reduce LUT table size through decomposition. We represent the



second operand at the bit level where H and V are the vertical and
horizontal partition units, respectively.

There are two decomposition methods. A horizontal partition
(HP) decomposes the second operand to dL/He segments horizon-
tally. The �rst vector is left untouched. P( ÆX , ÆY ) can be computed
from the sum of dL/He sub-vector dot products (with shifts). Each
sub-vector dot product can be looked up from an HP-LUT table
that stores 2D⇤L ⇥ 2D⇤H =2D⇤(L+H ) results. Figure 2 (2) presents the
�rst sub-vector product after horizontal partition.
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Figure 2: Two Basic MAC Partition Methods.
A vertical partition (VP) decomposes the second operand to

dD/V e segments vertically. The �rst operand is also partitioned
to dD/V e sub-vectors. P( ÆX , ÆY ) can be computed from the sum
of dD/V e sub-vector dot products. The result of each sub-vector
dot product can be looked up from a VP-LUT table that stores
2V ⇤L ⇥ 2V ⇤L=22⇤V ⇤L results. Figure 2 (3) presents the �rst sub-
vector product after vertical partition.

A tradeo� between reuse and pre-calculation. In this paper,
we are to �x the �rst vector ÆX in the vector multiplication, we can
further reduce the LUT table sizes to 2D⇤H and 2V ⇤L entries for HP
and VP, respectively. The tradeo� is, we need to pre-calculate the
LUT table when the �rst vector changes. This overhead is amortized
if the table can be reused multiple times. Clearly, the more the table
is reused, the lower the amortized overhead is.

For HP, ÆX needs to multiply with dL/He sub-vectors of ÆY . The
LUT table, after the pre-calculation for the �rst sub-vector multipli-
cation, shall be used dL/He times. As a comparison, for VP, each
sub-vector of ÆX needs to one sub-vector of ÆY . The LUT table is used
only once after pre-calculation.

3.2 Dynamically Mapping the Weights or
Inputs for Performance Optimization

Since a vector multiplication can change the order of two operands,
i.e., P( ÆX , ÆY ) = P( ÆY , ÆX ), we may �x either vector to reduce the LUT
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table size. For the CNN discussed in the paper, one vector is the
vector representation of a subset of items from the input matrix
while the other vector is the vector representation of the weight
matrix. The lengths of both vectors are K*K*N. We next reuse the
notations in Section 2 and compare two data mapping approaches
to �nd the best tradeo� between reuse and page utilization of LUT
for PIM-based CNN.

The �rst mapping approach is to �x the weight vector while de-
composing the input vector, referred to as Weight Addend Mapping
(WAM). Figure 3 illustrates how the weights and LUTs are mapped
in the DRAM cell arrays. For each of the M weight vectors, we
calculate a di�erent LUT table. In the �gure, the di�erent entries
of one weight vector are placed in di�erent memory rows, which
simpli�es the pre-calculation of the LUT tables with in-memory
operations. We place the aligned items ofM weight vectors (or LUT
entries) in one memory row to improve the page utilization during
lookup. Considering the regular operations of LUT pre-calculation,
multiple sets of weight vectors are mapped into one page to im-
prove the page utilization during LUT pre-calculation under the
premise of the page utilization of LUT. Furthermore, VP partitions
the original LUT into sub-LUTs, which helps to �ll up the page to
improve the page utilization during LUT pre-calculation.

After adopting both VP and HP with VP size V and HP size H ,
each input vector is partitioned to K*K*N*L/(V*H) sub-vectors. As
such, we need to pre-calculate K*K*N/V LUT tables for each weight
vectors. Each LUT table has 2V ⇤H entries with each entry being L
bits, and will be searched R*C*B times with B being the batch size,
i.e., the number of images that perform inference simultaneously.
As the weights are the same for di�erent inference tasks, the LUT
table reuse increases with B. Since one memory row stores only
the aligned entries fromM LUT tables and each entry is of L bits.
The page utilization of LUT, i.e., the percentage of memory bits to
be used after fetching one memory row for lookup, is computed as
M ⇤ L/P where P is the row size. We choose a 4KB row size in this
paper.

The second mapping approach is to �x the input vector while
decomposing the weight vector, referred to as Input Addend Map-
ping (IAW). We need to pre-calculate K*K*N/V LUT tables for each
input vectors. Since the R*C*B input vectors may potentially be
processed together, the page utilization of LUT is R*C*B*L/P. Since
there are M weight vectors only, each LUT table is to be reused
onlyM times.

Clearly, with di�erent CNN parameters and VP/HP partition
sizes, we may get di�erent page utilization and LUT reuse values.
We use an example to show the e�ect on performance. We use the
third convolutional layer of Alexnet, which uses 3x3x128 weight
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Table 2: The Comparison of Di�erent Addends

Weight Addend Input Addend
BZ PURL(%) DRT L(ms) PURL(%) DRT L(ms)
1 18.75 169 5.6 8.25 384 10.8
2 18.75 338 10.7 16.50 384 11.1
4 18.75 676 20.8 33.00 384 11.6
8 18.75 1352 41.3 66.01 384 12.7

matrix, 13x13x384 output matrix. Table 2 compares the results of
WAM and IAM with �xed VP and HP. BZ refers to batch size; DRT
refers to data reuse time; PURL refers to page utilization rate during
lookup. When the batch size is 1, WAM shows better performance
than that of IAM. After the batch size increases, the performance of
those two approaches reverses. With di�erent HP and VP sizes, the
performance di�erence is more signi�cant, which indicates that we
need to dynamically �x either the input or the weight matrices for
the best performance improvement.
4 LACC ARCHITECTURE
LAcc is architected as an enhancement to a baseline DRAM main
memory implementation that supports bitwise logic, fast data copy,
and add operations [3, 7]. Figure 4 presents an overview of the
LArcc accelerator. The arrays on the same vertical line share the
same column decoder and input/output bu�ers while the arrays
of the same horizontal line build a bank. LAcc uses the open bit-
line structure, where two adjacent subarrays share the same sense
ampli�ers.

LAcc slightly modi�es on the control logic of DRAM[25] to de-
code the PICM commands from CPU. It adds a bypass line from
the I/O bu�er to the control logic and a 96B SB bu�er. The control
logic uses the table address and SB to generate the physical opera-
tion address. When all of the bu�ered commands �nish, it sends
instruction requests to the CPU side.
4.1 Hardware Mapping Method
Since LAcc is built as PIMDRAMaccelerator, wemap the processing
units to banks, arrays, and subarrays. We treat each bank as a single
instruction multiple data (SIMD) processing unit with active pages
being the function units in operation. The input operands are stored
in the same columns and di�erent rows with the corresponding
functional units. The data movement method within a subarray and
across di�erent subarrays leverage similar methods with LISA[3].
The page size of LAcc is 4KB, where there are 2048 16-bits function
units in each page. LAcc preserves 4K rows of each bank for LUT,

1K rows for input data bu�er and 3K rows for output bu�ers in
each bank. The physical size of LUT decides the maximum length
of VP is 12. LAcc keeps using an LUT until there are no operations
within the LUT.
4.2 Data Mapping Method
LAcc uses di�erent data mapping methods for addend, SB and out-
put data. The addends of each thread are stored vertically in the
reserved space of input bu�er in the banks. For weight addend,
LAcc directly uploads them from the lower level memory. For input
addend, there is a data reforming step as the inputs are the output
of the previous layer. The SBs and the output data are stored hori-
zontally in the output bu�er part, which is the same as original data
in DRAM. When there is an SB read request, it �rst read the page
out into the local bu�er. Then the global column decoder sends the
exact control bits with the same o�set into control logic.
4.3 Optimized XOR Operation
In addition to multiplication operations, a CNN needs to frequently
perform add operations. The PIM based add operation implementa-
tion needs two XOR operations to implement the carry look-ahead
algorithm [7]. The in-memory XOR, as being an expensive opera-
tion, account for 46% of the time of an addition operation. We next
present an optimized XOR implementation to accelerate LAcc.

Y = A � B = A&!B+!A&B (6)

Y =

⇢
B A = 0
!B A = 1 (7)

Equation 6 and 7 illustrate two di�erent ways to implement XOR.
LAcc adopts the second one in DRAM while existing designs[7, 19]
choose the �rst method. Figure 4 illustrates the hardware enhance-
ment to realize this optimization. LAcc changes the connections of
the last �ve DRAM rows. The 2nd row of the lines builds a bypass
between the cell of the 1st row and BLN, and its gate connects the
4th row. The 3rd row is used to guarantee the connection between
the 2nd row and the 4th row can be discharged to the ground.

To perform an optimized XOR operation, LAcc �rst activates
the row that stores operand B and restores it into XNOR0. It then
uploads operand A to Sel. Next, LAcc reads operand B into the
sense ampli�er and then activates the bypass of XNOR1. If A is
‘1’, the complementary of B overwrites the original B. EN_PRE
is enabled unless the WL_XNOR1 is enabled. Figure 5 shows the
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Figure 5: Hspice Results of Optimized XNOR.

circuit simulation result with Hspice. The optimized XOR operation
decreases the operating time of addition from 13 AAP operations
to 10 AAP operation.

5 EVALUATION
To evaluate our proposed LAcc design, we use Hspice and CACTI to
study the circuit modi�cation and the DRAM structure, respectively.
We assemble a set of benchmark programs — Lenet-5(MNIST),
Alexnet, VGG16, VGG19, Resnet152, which cover both small and
large input image sizes of CNNs. Lenet-5 uses 512 batch size while
the other use 128 batch size. We perform �xed vertical partition
(HP) of 1 but vary the granularity for horizontal partition (VP) to
optimize the performance improvement. In the experiments, we
evaluate the following schemes.
• BW. It denotes accumulation-based design with WAM.
• BI. It denotes accumulation-based design with IAM.
• H. It denotes accumulation-based design with hybrid addends.
• RW. It denotes LUT-based design with WAM.
• RI. It denotes LUT-based design with IAM.
• HR. It denotes LUT-based design with hybrid addends.

Table 3: The Con�guration of LAcc
Bank Size 32 DRAM Tech. 25nm
Memory Capacity 8 Gb Subarray Size 512x512
DRAM Bandwidth 4.15GBps I/O interface 64b
Timing ns Energy nJ
RAS 14.4 Activation 1.27
RP 5.8 Read/Write 0.63
RCD 8.7 Precharge 1.19

5.1 Performance
Figure 6 shows the normalized performance of those six bench-
marks. On average, HR achieves 64.2⇥, 7.9⇥ and 6.8⇥ performance
speedups over that of BW, BI and H, respectively. LAcc achieves the
maximum performance improvement in Alexnet due to high page
utilization. For this benchmark, BI and RI have low page utilization
and performance for the fully connect layers of Alexnet — they
spend about 50% of the total latency in these layers. Since the ra-
tio (M/(R*C)) for the fully connected layers in Alexnet is 4096, BI
and RI would need to increase their batch size to 2048 in order to

achieve the same page utilization as those in BW and RW. However,
their batch sizes are 128 only.

RI achieves better performance than HR in Lenet-5. This is be-
cause the sizes of its last two fully connected layers are 1*1*500 and
1*1*10, respectively. The weight addend mapping (WAM) loses its
advantage on a large batch size.

0.
02
8

Lenet-5 Alexnet VGG16 VGG19 Resnet152 AVG
0

4

8

12

 

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce  BW  BI  H  RW  RI  HR

Figure 6: Comparing the performance of di�erent schemes.
Figure 7 compares the system page utilization ratio, which equals

the sum of the active page ratio multiplies the latency ratio of each
layer. A 100% page utilization ratio means the operands in all active
pages are e�ective through the entire processing time. The system
page utilization ratios of BW and RW achieve the lowest, and that
of HR achieves highest except Lenet-5. RI in Lenet-5 gets a 7%
improvement over BI, while the average improvement is 3.8%. HR
has an average improvement of 12.4% over BI. With a �xed batch
size, the proposed design decreases the time ratio of the parts with
low e�ective page utilization ratio.
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Figure 7: Comparing the page utilization.

5.2 Power and Area
Figure 8 shows the power of those six schemes, of which the dif-
ference is less than 4%. The power mainly contains two parts, i.e.,
the power of active pages and the power of data movement. In
most of the time, LAcc leverages all the active pages in banks to do
computing. Thus, the power of the �rst part in those schemes is
very close. The di�erence of the power is caused by the latter one.

The overall extra area of LAcc is less than 1% compared with
the baseline[7]. The optimized XNOR changes the connections of
the last �ve DRAM rows of each subarray, which decreases 0.2% of
DRAM capacity. The area of the added SB bu�er in control logic is
132.2um2.
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5.3 Batch Size E�ects
Figure 9 and �gure 10 show the performance and the page utilization
ratio with di�erent batch sizes in Alexnet. BW and RW show steady
performance with increasing batch size, while their page utilization
ratio shows the same tendency. HR shows the best performance
improvement speed. The system page utilization ratio �rst meets
a decrease with a batch size of 9. Because the parallel threads size
exceeds the page size. There needs more page to hold all those
threads. In return, the system page utilization ratio decreases and
the speed of the performance improvement of HR slows down. The
performance of RI keeps growing, which can be even better than
HR with large batch size. The needed batch size can be thousands
considering the fully connected layer size. However, the optional
batch size of CNN is only 128/256/512. HR shows better applicability
on CNN inference.
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Figure 9: Performance with Di�erent Batch Sizes
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Figure 10: Page Utilization with Di�erent Batch Sizes
5.4 Comparison with Other PIMs
We compare LAcc with an ideal scheme and three PIM designs, i.e.
DRISA[16], SCOPE[17] and Neural Cache[9], to show the design
e�ciency of LAcc. The ideal scheme refers to the best scheme
of LAcc without LUT-based vector multiplication, where we set
an ideally page utilization of 100%. Neural Cache is implemented
in SRAM, while the others are all implemented in DRAM. The
benchmark is Alexnet, and the batch size is 64. The results of DRISA,
SCOPE and Neural Cache are shrank from 8 bits to 16 bits.

LAcc achieves the best e�ciency, which is 6.8⇥ and 6.3⇥ over
the ideal scheme and SCOPE, respectively. The ideal scheme and
LAcc utilize optimized XOR, which decreases the AAP number of
addition from 13 to 10. The performance di�erence gives the credit
to LUT-based vector multiplication and hybrid addend mapping.
The e�ciency of Neural Cache is limited by the large cell density
and leakage power of SRAM. Although the e�ciency of SCOPE is
lower than that of LAcc, it achieves the best perf./area. Because the
DRAM structures of LAcc and SCOPE are di�erent. The maximum
number of active pages of LAcc and SCOPE are 32 and 16K, and the
page sizes are 4KB and 2Kb, respectively. Considering the similar
contributions between SCOPE and LAcc, we make a comparison
of the multiplication optimization e�ect. Compared with DRISA,
SCOPE improves the perf./area by 4.11⇥ and e�ciency by 2.26⇥.

Compared with the ideal scheme, LAcc improve the perf./area and
e�ciency by 6.82⇥. LAcc achieves 1.66⇥ perf./area improvement
and 3⇥ e�ciency over SCOPE on multiplication optimization.

Table 4: PIM design Comparison
Parameter DRISA SCOPE Neural Cache Ideal Scheme LAcc
Performance 147 2528 7.2 14.0 95.6
Power(W) 98 176.4 53 5.3 5.3
Area(mm2) 65.2 273 10.1 54.8 54.8
Capacity 2Gb 8Gb 35MB 8Gb 8Gb
Perf/Area 2.25 9.26 0.7 0.25 1.74
(Fr./s/mm2)
E�ciency 0.023 0.052 0.013 0.048 0.329
(Fr./J/mm2)

6 CONCLUSION
In this paper, we propose LAcc, a DRAM-based accelerator to
support LUT-based fast and accurate vector multiplication. LAcc
achieves 6.3⇥ e�ciency improvement over state-of-the-art and im-
proves the multiplication performance 6.8⇥ over the ideal baseline.
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