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Comparison between fluid simulation with test particles and
hybrid simulation for the Kelvin-Helmholtz instability
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2 Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska, USA.

Key Points:

+ Kelvin-Helmholtz (KH) vortices in Hall MHD simulation can form large magnetic
islands to transport plasma.

+ Plasma mixing is mainly through diffusion in hybrid simulation of the KH instabil-
ity.

+ Anisotropic temperature can be formed by the nonlinear KH instability, which can

drive kinetic-scale waves.
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Abstract

A quantitative investigation of plasma transport rate via the Kelvin-Helmholtz (KH) in-
stability can improve our understanding of solar-wind-magnetosphere coupling processes.
Simulation studies provide a broad range of transport rates by using different measure-
ments based on different initial conditions and under different plasma descriptions, which
makes cross literature comparison difficult. In this study, the KH instability under similar
initial and boundary conditions (i.e., applicable to the Earth’s magnetopause environment)
is simulated by Hall MHD with test particles and hybrid simulations. Both simulations
give similar particle mixing rates. However, plasma is mainly transported through a few
big magnetic islands caused by KH driven reconnection in the fluid simulation, while
magnetic islands in the hybrid simulation are small and patchy. Anisotropic temperature
can be generated in the nonlinear stage of the KH instability, in which specific entropy
and magnetic moment are not conserved. This can have an important consequence on the
development of secondary processes within the KH instability as temperature asymmetry
can provide free energy for wave growth. Thus, the double-adiabatic theory is not appli-
cable and a more sophisticated equation of state is desired to resolve meso-scale process

(e.g., KH instability) for a better understanding of the multi-scale coupling process.

1 Introduction

The Kelvin-Helmholtz (KH) instability, as one of the main mechanisms of viscous-
like interaction between the solar wind and the planets’ magnetosphere/ionosphere, has
been widely observed at various solar system objects for decades (see Johnson et al. [2014]
and their reference). Driven by the large sheared flow, it can operate under different inter-
planetary magnetic field (IMF) orientations [Kavosi and Raeder, 2015; Henry et al., 2017].
It can be responsible for the transport of momentum and energy [Miura, 1984; Pu and
Kivelson, 1983]. In addition, the KH instability can trigger secondary instabilities (e.g.,
reconnection and wave-particle interaction) in the nonlinear stage to break the frozen-in
condition, which transports plasma, flux tube entropy, and magnetic flux [Ohsawa et al.,
1976; Otto and Fairfield, 2000; Nykyri and Otto, 2004; Ma et al., 2014a,b; Ma et al., 2017,
Delamere et al., 2011, 2018]. Furthermore, several nonadiabatic heating mechanisms are
expected to be attributed to the KH instability and the associated secondary instability

(e.g., [Moore et al., 2016; Masson and Nykyri, 2018]).
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Quantitative investigation of the transport processes in the KH instability as a macro
scale diffusion process under different IMF conditions is critical to our understanding of
the interaction between the solar wind and the Earth’s magnetosphere. Simulation stud-
ies from magnetohydrodynamics (MHD) to particle-in-cell (PIC) simulation show a large
range of transport rates from 10 m?s~! to 10! m?s™! for Earth’s magnetopause environ-
ments [Miura, 1984; Nykyri and Otto, 2001, 2004; Cowee et al., 2009, 2010; Delamere
etal., 2011; Ma et al., 2017; Nakamura et al., 2017]. The difference among these studies
is not only due to considering different physics, but also because of using different onset
conditions, as well as using different methods to quantify the transport rate, which actually
represent different transported quantities and even different transport processes. For in-
stance, Miura [1984] estimated the anomalous viscosity (i.e., momentum and energy trans-
port rates) based on Maxwell and Reynolds stresses in a high-plasma-beta region (8 > 1)
for a symmetric configuration. In contrast, Nykyri and Otto [2001, 2004] calculated the
plasma entry rate (i.e., mass and flux transport rates) based on the total plasma in the re-
connected magnetic island for an asymmetric configuration with a plasma beta value close
to unity. Hybrid simulations [Cowee et al., 2009, 2010] used a mixing parameter deter-
mined by the number of particles in a given cell which originated on a given side of the
boundary. This allows to evaluate the mixing rate of superdiffusion driven by the KH in-
stability with no initial perturbation and low plasma beta (8 = 0.1). The fully kinetic 3-D
simulation with periodic boundary conditions along the third dimension showed that in the
later nonlinear stage the KH vortices lead to a spectrum of secondary KH and Rayleigh-
Taylor instabilities, giving a mixing velocity that is about one percent of the initial shear
flow speed [Nakamura et al., 2013; Nakamura and Daughton, 2014]. As such, it is difficult
to identify the relative importance between different physics (e.g., Hall physics and ion fi-
nite Larmor radius effects) and physical processes (e.g., reconnection and superdiffusion )

in the KH instability by comparing various studies from the literature.

The motivation of this study is to understand how kinetic physics affects the KH
instability transport processes by comparing a fluid simulation with test particle and hy-
brid simulation under the same KH onset condition. In principle, the KH onset condition
and the growth rate are mainly determined by the shear flow speed with respect to the lo-
cal fast mode speed (i.e., the sum of the Alfvén speed and acoustic speed), the magnetic
field along the sheared flow direction, and the KH wavelength with respect to the width

of initial sheared flow and other typical length scales (i.e., ion inertia length or ion Lar-
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mor radius) [Miura and Pritchett, 1982]. The density, thermal pressure, and transverse
magnetic field (i.e., the magnetic field perpendicular to the KH wave vector) affect the
KH growth rate via the local fast mode speed. However, the density asymmetry affects
the mass transport rate. As an extreme case, no net plasma mass is transported by KH
driven reconnection for a symmetric density and magnetic field condition. Therefore, the
transport rate by KH instability driven reconnection is measured by the area of a magnetic
island rather than the mass in the magnetic island in this study (see next section). In con-
trast, the plasma mixing due to the finite Larmor radius, being largely determined by the
thermal pressure and magnetic field, always exists even without magnetic reconnection.
The detailed numerical model and measurement of transport rate are introduced in Section

2. The results, discussion and summary are presented in Sections 3, and 4, respectively.

2 Methods
2.1 Fluid and hybrid simulations

The KH instability in two-dimensional (2-D) geometries will be simulated by both
fluid (i.e., Hall MHD) and hybrid simulation under similar initial and boundary conditions
within the same simulation domain. The behavior of test particles introduced into the fluid
simulation, which evolve in accordance with the electric and magnetic fields, is compared

with particles in the hybrid simulation.

The fluid simulation uses a leap-frog scheme to numerically solve the full set of re-
sistive Hall MHD equations [Potter, 1973; Birn, 1980; Otto, 2001; Nykyri and Otto, 2004],

in which the electric field E is given by
_ i -
E——(u——) X B + nj.
en

Here, u is the ion bulk velocity, j is the current density, and 7 is the resistivity. The col-
lisionless plasma implies a zero resistivity, except in the reconnection diffusion region.
Thus, a current-dependent resistivity model: n = no\/jz——jZH( Jj — je) + np is applied in
the fluid simulation, where 779 = 0.05, critical current density j. = 1.1, H(x) is the Heavi-
side step function [Arfken, 1985], and a background resistivity 7, = 0.01. This resistivity
model switches on a resistivity only if a critical current density is surpassed, and the max-
imum value of the resistivity is less than 0.0475 during the whole simulation time. Our

previous studies [Nykyri and Otto, 2001, 2004; Ma et al., 2014a,b; Ma et al., 2017] demon-
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strated that the overall dynamics of the KH instability are insensitive to the parameters of

this resistivity model.

The hybrid code (i.e., kinetic ions and massless fluid electrons) was first proposed
by Harned [1982], and the particular algorithms for our code were developed by Swift
[1995, 1996] and [Delamere et al., 1999; Delamere, 2009; Delamere et al., 2018]. The
code assumes quasineutrality, and is nonradiative. The Lorentz force equation is solved
following the Boris method [Boris, 1970; Birdsall and Langdon, 1991]. The electric field
and magnetic fields are calculated on a rectangular Yee lattice [Yee, 1966] that ensures an
easy calculation of the curls of the fields and maintains a divergence-free magnetic field.
The magnetic field equations are updated with a second-order, predictor-corrector method.
A resistive term based on ion-electron collisions, v(u, — u;), is included in the electron

momentum equation:

E=-u,xB-v(u, —u),

where ion and electron bulk velocities are u; and u,, respectively. The collision frequency,
v = 2 x 107*wy, is set to alter the amount of diffusion in the hybrid code to ensure nu-
merical stability, where w, is the ion gyrofrequency. The electron pressure term is not

considered in this study.

All simulations are carried out in a rectangular domain |x| < Ly = 20Lg , |y| <

L, = 15Ly, where Ly = ¢/wp; = 139km is the ion inertia length. Here the x direction is
the normal direction outward from the magnetosphere (MSP, x < 0) to the magnetosheath
(MSH, x > 0); the z direction points to the North; and the y direction is mostly along the
sheared flow direction based on the right-hand rule. Both fluid and hybrid simulation have
a uniform grid resolution of 0.1y in all directions. The y boundary conditions are peri-
odic. The x boundary is open with d, = 0. The dimensions of the simulation domain are
sufficiently large that all conclusions drawn in this study are insensitive to a larger simula-

tion size along the x direction.

The initial steady state condition is a one dimensional tangential discontinuity layer,
in which number density, n = 0.4 cm™3, thermal pressure, p = ,BBg /(2up), magnetic field
By = Bysin6 and B, = Bjcos 6 components are constant across the velocity shear, u, =
ug tanh(x/Lg). Here, the magnetic field By = 50 nT, the magnetic field tilt angle 6 = 5°,
sheared flow velocity ug = 0.5v4, the Alfvén speed v4 = Bo/+/tonomy = 172km s~L

with vacuum permeability, uo, and ion mass, my. The plasma beta, g is set to 0.25. The
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fast mode speed at the boundary is vy = JJe+ vf‘ = \¥YB/2 + 1va = 1.1va, and the fast

mode Mach number ug/vy = 0.45. The Alfvén speed along the shear flow direction is

va| =sinfvy = 0.09v4, and the associated Mach number uo/v4) = 5.7.

In principle, hybrid simulations for the KH instability can be self-seeded, resulting
in initial small-scale KH waves that inversely cascade to larger scales at the later stage
[Delamere et al., 2018]. The small-scale KH waves can diffuse the boundary layer, which
affects the longest wavelength with respect to the initial width of the sheared flow. Hence,
both fluid and hybrid simulations are triggered by a velocity perturbation in this study,
which is given by du = duV®(x, y)xe,, where the stream function is @ (x,y) = —cos (ky y) cosh™ (
and the KH wave number along the y direction is ky, = 7/Ly. The amplitude of the pertur-
bation, v, is slightly different in the hybrid and fluid simulation for a convenient compari-

son, which will be explained in more detail in Section 3.

This study only allows a single KH wave mode to operate in the simulation system,
which serves the purpose of comparison between Hall MHD with test particle and hybrid
simulations. The pairing process in a larger simulation box is often observed in numerical
experiments (e.g., [Faganello et al., 2009; Cowee et al., 2009, 2010]). It is suggested that
the pairing process increases the anomalous viscosity [Miura, 1997]. In contrast, MHD
simulations with dimensions that allow the pairing process [Nykyri et al., 2017] showed
that the overall mass transport rate is comparable to the results without the pairing process
in a much smaller simulation box [Nykyri and Otto, 2001, 2004]. This result also agrees
with the hybrid simulation results that a typical diffusion coefficient for KH instability
with the pairing process is about 10 x 108 m?s~! to 10 x 10° m?s™!, and this value de-

creases with more density asymmetry [Cowee et al., 2009, 2010].

2.2 Measurement of plasma mixing and reconnected area

The growth of KH instability is measured by the range of bulk velocity u, compo-
nent [Nykyri and Otto, 2004; Ma et al., 2014a]. The momentum transport rate (anomalous

viscosity), v, is given by

pdus; [ dx
where, T = B Byuy' and TX = —pu,u, are the xy component of Maxwell and Reynolds
stress, respectively, u, is the bulk velocity uy, component in the magnetospheric frame

(i.e., x < 0 region), and the overline indicates the spatial average of the quantity T)ﬁ‘;’ , Tfy,
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and uy;, over one wave period [Miura, 1984]. This measurement can be directly applied to

both fluid and hybrid simulation.

Magnetic islands can be generated via magnetic reconnection driven by 2-D nonlin-
ear KH modes [Nykyri and Otto, 2001, 2004]. Integrating the density over the area of the
detached magnetic islands is used to estimate the mass entry velocity (in units kms™!)
from the magnetosheath into the magnetosphere, and the diffusion coeflicient (in units
m?s~!) with an additional assumption of 1000 km wide boundary layer [Nykyri and Otto,
2001, 2004]. The identification of the magnetic island transport direction is based on the
density inside of the magnetic island, which requires initially different density across the
sheared flow. This method has only been applied to the configuration where magnetic field
components along the KH wave vector direction keep the same direction across the bound-
ary, which is referred to as “type-II"’ reconnection by Nakamura et al. [2006]. In this case,
the newly reconnected magnetic field line is still connected to the same side of shear flow
boundary (i.e., magnetosheath to magnetosheath or magnetosphere to magnetosphere). In
contrast, the “type-I” reconnection operates when magnetic field components along the
KH wave vector direction are antiparallel across the boundary, which connects magnetic
field lines from both the magnetosheath and magnetospheric sides [Nakamura et al., 2006;
Nykyri et al., 2006]. As such, the reconnected magnetic island mixes the plasma from both

sides.

It appears that the plasma transport and mixing by “type-I” and “type-II"’ recon-
nection, which is largely determined by the KH wave vector direction, are fundamentally
different. In reality, the KH wave vector is mainly along the most unstable direction. As
such, the type of reconnection can be very sensitive for the quasi-transverse magnetic field
case, suggesting the singularity of the strict transverse magnetic field case. However, such
singularity is caused by 2-D geometry, which does not exist in 3-D geometry. In 3-D ge-
ometry (non-periodic boundary condition along the third dimension), the localized non-
linear KH wave can cause a pair of reconnection sites away from the equatorial plane,
which exchanges a portion of magnetosheath and magnetospheric flux tube and conse-
quently transports plasma [Otto, 2006]. This process is called “double mid-latitude recon-
nection” [Faganello et al., 2012; Borgogno et al., 2015]. Note that this process does not
provide a net mass transport in a symmetric configuration. Ma et al. [2017] estimated the
mass transport rate with asymmetric density by identifying double-reconnected flux though

fluid parcel and magnetic field line tracing, and found the mass transport rate can reach



198

199

200

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

109 m? s~!. However, the presence of a flow-aligned magnetic field component (either
“type-I” and “type-II"’) breaks the north-south asymmetry, which reduces the transport rate

[Ma et al., 2017].

The KH instability diffusion coefficient is also measured by particle mixed area in
hybrid and PIC simulations, where a mixed cell is defined as one containing both ion
species where the density of each species in the cell must be at least 25% of its initial
nominal density [Cowee et al., 2009, 2010; Delamere et al., 2018]. Although the value of
25% is arbitrary, the overall result is insensitive to this value. Note that plasma mixing
can be caused by magnetic reconnection, especially for “type-I”’ reconnection, it can also
operate simply due to ion finite Larmor radius effects [Cowee et al., 2009]. For numeri-
cal computation, a value p = 1 or O is assigned to a particle, if the initial position x of
this particle is > 0 or < 0. For a given point xo = (xg,yg), representing a small area
|x — xg| < d = 0.2, the average of the p, (i.e., p), in this area indicates the mixing rate
of this area, in which p = 0 or 1 means no mixing, and p = 0.5 means fully mixed. For
a better visualization, the mixing rate is redefined as ryy = 1 — 2|0.5 — p| [Matsumoto
and Hoshino, 2006], where rp; = 1 means fully mixed, rp; = 0 means no mixing, and

ry = 0.5 is called the mixed region.

For fluid simulations, test particles are introduced to estimate the mixing rate. In
order to compare with the hybrid simulation results, a Maxwellian distribution of 100 par-
ticles per each 0.1 x 0.1 grid cell is initialized. The Maxwellian is based on the velocity,
temperature, and density in the vicinity of the cell. The test particles are introduced only
for |x| < 15, because trajectories of the particles outside of this region are dominated by
the E x B drift. The charged particles are traced by solving the Lorentz equation of motion
using the Boris [1970] method, which has been used to investigate high-energy particles
in the cusp diamagnetic cavity [Nykyri et al., 2012]. The instantaneous values of the fields
are determined by interpolating in time between snapshots of the fluid simulation results
spaced one Alfvén time apart (i.e., 74 = Lo/va =~ 0.81s). Note the parallel electric can
efficiently accelerated the charge particle, which is often exaggerated by the resistivity
model in the fluid simulation. Thus, the electric field in the test particle excludes the 7j
term. We interpreted magnetic B and (u - ej—n) at particles’ positions first, and then ap-
plied the cross product to obtain the electric field, which avoids the parallel electric field

from the numerical interpretation. The symmetric treatment of the time derivative in the

Boris method maintains the temporal reversibility of the Lorentz equation. As such, this
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code can trace back the test particles to reconstruct particle distributions based on Liou-

ville’s theory [Birn et al., 1997, 1998].

3 Results

Figure 1 shows the velocity u, component (panel A), the anomalous viscosity, V.,
(panel B), the area of magnetic island, A, (panel C), and the area of mixed region, Ays
(panel D), as functions of the time from top to bottom, respectively, which roughly repre-
sents the overall dynamic properties of the fluid with test particle simulation (blue lines)
and the hybrid simulation (red crosses). The yellow, green, and cyan background indicate
the linear stage (¢ < 75), the early nonlinear stage (75 < t < 150), and the later nonlin-
ear stage ( > 150). The separation between early and later nonlinear stage at ¢+ = 150
is because the mixing area from fluid with test particle appears different from the result
from hybrid simulation, suggesting small scale physical processes missing from the fluid
simulation may begin to play a role. The velocity normal component (i.e., uy) is used to
represent the growth of the KH instability, which is almost identical between the fluid and
hybrid simulations after + = 20. The fluid system has a slightly faster growth rate than the
hybrid system. The different KH growth rate between fluid simulation and kinetic simu-
lation has been discussed by Nakamura et al. [2010] and Henri et al. [2013]. They noted
that the typical MHD initial configuration for KH instability is not a kinetic equilibrium.
The initial relaxing process leads to a quick enlargement of the original shear layer in PIC
simulations, on which the KH instability grows at a lower rate. Since this study is mostly
focused on the nonlinear stage, a smaller initial perturbation is applied to the fluid simu-
lation to make both systems almost simultaneously arrive to the nonlinear stage at about

t =75, which is convenient for a detailed comparison.

The anomalous viscosity for both fluid and hybrid simulation correlates to the growth
of KH until the early nonlinear stage (i.e., t ® 100), and both reach their peak value when
the instability saturates. In the late nonlinear stage (i.e. ¢ > 150), the anomalous viscosity
value becomes scattered, which is likely affected by secondary small-scale processes (e.g.,
magnetic reconnection) driven by the KH mode. The fluid simulation shows that the mag-
netic island is switched on at ¢ = 110, and the total magnetic island area, A,, remains over
500 after + = 150. The magnetic island fully depends on the tiny diffusion point, requiring
a thin current layer, which can be widened by the KH dynamics and consequently switch

off reconnection. Therefore, there are several sharp jumps between ¢ = 100 and 150 in
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panel C, and this process can be exaggerated by the nonlinear resistivity model. Thus it
should not be considered as a robust feature. In contrast, the hybrid simulation gradually
increases the magnetic island area and saturates at a smaller value (= 100) compared to
the fluid result. The mixed area from fluid with test particle simulation and hybrid simu-
lation are identical until + = 150. The smaller amplitude oscillation in this interval is due
to the ion gyroradius motion. The missing feedback from the test particles to the electro-
magnetic field in the fluid simulation allows for an additional artificial mixing such that

the fluid mixing is larger in the final stages of the simulation.

Matsumoto and Hoshino [2006] used a similar initial configuration but without mag-
netic By, components, in which the mixed region is defined as A,, = f ryedxdy. This def-
inition of mixed region has only a minor difference compared to our definition. The final
diffusion width (i.e., mixed region normalized by the KH wavelength) is almost identi-
cal between our hybrid simulation results and their full particle simulation, although we
used about twice the KH wavelength. This result suggested that for the given magne-
tosheath and magnetosphere conditions, the final diffusion layer is insensitive to the KH

wavelength.

Figure 2 shows the selected results of fluid with test particle simulation. The top
two panels show plasma density, p (color index), in-plane velocity, u, and u, (white ar-
rows), and magnetic field lines (black lines) at + = 108 (left) and 162 (right). The bot-
tom two panels show the plasma mixing rate, rp; (color index) at + = 108 (left) and 162
(right). The white contour lines highlight rpy = 0.5 (i.e., the definition of mixed area
rye 2 0.5), and magenta lines are the boundary of magnetic islands formed by mag-
netic reconnection. There is a clear vortex structure with a thin spine region in the mid-
dle of the simulation box at the early nonlinear stage (e.g., + = 108), while the neighbor-
ing vortices begin to collapse to a broad boundary layer at the later nonlinear stage (e.g.,
t = 162). Although the magnetic field has been strongly bent at + = 108, the current
sheet is not sufficiently thin to trigger magnetic reconnection, therefore, no magnetic is-
land is formed at that moment. After the onset of magnetic reconnection, the majority of
the vortex region becomes magnetic island. In contrast, the description of particle motion
using test particles in the fluid simulation shows the mixing of particles has already oper-
ated along the interface between the two sides of fluid at + = 108. Thus, the highly mixed
region (i.e., the yellow belt bounded by the white lines) highlights the strongly modified

boundary layer. The width of the yellow belt (i.e. mixed area) is close to the gyroradius,

—10-



279

280

282

1.57 | | Hall MHD+test particle
A < Hybrid x

: 5u$
0.5

U(],?’LO_

800 |
600 |
400 | _
200 Bt
| = | 200

At X 1100

| | | 0
0 50 100 150 200 250

Figure 1. Fluid with test particle (blue lines) and hybrid simulation (red crosses) results of velocity u
component, the anomalous viscosity, v,,,, the area of magnetic island, A,, and the area of mixed area, Ay,
as functions of time from top to bottom, respectively. The yellow, green, and cyan background indicate linear
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which appears insensitive to the time. Thus, the increase of the mixed area is mainly due
to the extension of the length of interface, which is caused by the KH instability. This re-
sult agrees with the previous hybrid simulation by Terasawa et al. [1992] and Thomas and
Winske [1993]. Note that the mixed region barely overlaps with the magnetic island, be-

cause these two concepts describe two fundamentally different physics processes.

As comparison, Figure 3 mimics Figure 2 showing the selected results from the hy-
brid simulation at similar times t = 110 (left) and 160 (right). The hybrid simulation re-
sults are mostly identical to the fluid and test particle results. However, both the size and
the location of magnetic island are different between fluid and hybrid simulations. The
fluid simulation forms relatively fewer but larger scale magnetic islands, and their forma-
tion fully depends on the few tiny localized reconnection sites. For hybrid simulation, the
size of magnetic islands is smaller, and they exist not only inside of the vortex but also
along the spine region, suggesting that the magnetic diffusion region becomes very patchy
in the hybrid simulation, which is likely due to the kinetic physics missing in the fluid de-
scription and numeric noise [Henri et al., 2013]. The difference does not have a strong
influence at the early nonlinear stage, since the thin current layers only appear in a small
region (e.g., spine or part of the vortex region). Nevertheless, with the continuous twisting
of magnetic field lines, KH modes eventually form multiple thin current layers inside of
the vortex region, where the missing kinetic physics becomes important and fluid simu-
lations often exaggerate the diffusion region. This is likely the reason why fluid with test

particle simulation gives a higher mixed area.

In general, the particle distribution moments from the test particle simulation should

represent the fluid results. However, it is more interesting to examine whether the anisotropic

particle distribution from the test particle simulation is comparable to the result from hy-
brid simulation. In test particle and hybrid simulations, the temperature tensor, 7;;, can be
evaluated by calculating the second moment of the particles’ velocity distribution (i.e., the
standard deviation of particles’ velocity, 7;; = (v! — v‘i)(v]’. — V), where the overline rep-
resents the average based on all the individual particles within the selected area), which

is coordinate dependent. Nevertheless, it is easy to find the highest and lowest temper-
ature and their directions by using the minimum or maximum variance analysis (MVA)
[Sonnerup and Scheible, 1998]. For quantification of this property, all particles within a
distance of d = 0.2 from the given point (xg, yg) are selected to evaluate the anisotropic

value, A3/4; at the point (xg, yp), where A3 and A; are the maximum and minimum eigen-
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Figure 2. Selected results of fluid with test particle simulation. The top two panels show plasma density,

p (color index), in-plane velocity, uy and u, (white arrows), and magnetic field lines (black lines) atz = 108
(left) and 162 (right). The bottom two panels show the plasma mixing rate, rps (color index) atz = 108 (left)
and 162 (right). The white contour lines highlight 73y = 0.5, and magenta lines are the boundary of magnetic

islands formed by magnetic reconnection.
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Figure 3. Selected results of hybrid simulation. The top two panels show plasma density, p (color index)

and in-plane velocity, u and uy (white arrows), and magnetic field lines (black lines) atz = 110 (left) and
160 (right). The bottom two panels show the plasma mixing rate, rps (color index) atz = 110 (left) and 160
(right). The white contour lines highlight r3; = 0.5, and magenta lines are the boundary of magnetic island

formed by magnetic reconnection.
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values from the MVA method based on all three velocity components of selected particles.
These eigenvalues represent the maximum and minimum standard deviation of the parti-
cles’ velocities. Therefore, the anisotropic value here means the ratio between highest and
lowest temperature for a given point, which does not tell whether the direction of highest
or lowest temperature is along the magnetic field or not. Figure 4 shows the anisotropic
value, A3/4;, for fluid with test particle simulation (left) and hybrid simulation (right) at
early nonlinear stage (top) and later nonlinear stage (bottom). The results from test parti-
cles quantitatively agree with the hybrid simulations, although the hybrid simulation has a
slightly smaller maximum anisotropic value. Both simulations show the anisotropic value
increase at shear flow boundary with the growth of the KH instability. The highest value
is often in the spine region. It is interesting to note that there is no strong gradient of bulk
velocity in the spine region (see Figure 2 and 3), therefore, the high anisotropic value is

not due to counter streaming.

As a comparison, Figure 5 plots the ratio between parallel and perpendicular tem-
perature, 7)/T, . The test particle simulation agrees well with the hybrid simulation at
the early nonlinear stage, however, there is large deviation in the vortex region at the later
nonlinear stage. For instance, the test particle simulation shows 7} > T, in the vortex re-
gion, while hybrid simulation shows T lower than T, in the same region. Note in Figure
4, these two simulations have similar 13/4; value in the vortex region, meaning this devi-
ation may be attributed to the different magnetic field directions in fluid and hybrid simu-
lations. Nevertheless, both simulations show perpendicular temperature is greater than the
parallel temperature in the spine region, which is a robust feature. This anisotropic tem-
perature is likely to driven small scale kinetic waves (e.g., mirror modes and ion cyclotron
waves [Nykyri et al., 2003, 2011; Dimmock et al., 2015, 2017]) and secondary instabilities

(e.g., firehose instability).

The double-adiabatic theory is often used for describing an anisotropic MHD sys-

. . T2T, .
tem, which assumes that the specific entropy, s = lz”, and the magnetic moment, u =
P

2
r;};* , are conserved along the trajectory of a fluid parcel. Here, v, is the particle’s perpen-

dicular velocity. Thus, the equation of state can be rewritten as ds/dt = 0, and dh/dt = 0,
where the parallel term is & = T'l‘)—fz, and the material derivative, d/dt, is based on bulk
velocity. Figure 6 shows the change of specific entropy, s/so (top), and the parallel term
h/hy (bottom), in logarithmic scale at r = 120 (left) and 160 (right) from hybrid stimu-

lation, suggesting that neither specific entropy nor the parallel term is conserved. Here,
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the subscript O refers to the initial values. The test particle simulation results are not pre-
sented here, because it is mostly identical to the hybrid result. The specific entropy in-

creases by half an order of the magnitude at the early nonlinear stage to one order of the

magnitude at the later nonlinear stage along the spine region and in the KH vortex region.

This implies nonadiabatic heating processes are triggered in the KH instability, which in-
cludes but is not limited to magnetic reconnection. Nevertheless, the specific entropy en-
hancement is still less than the observation [Ma and Otto, 2014]. The parallel term has

relatively smaller enhancement, and it can also decrease in the edge of the vortex region,

suggesting the first adiabatic invariant is no longer conserved in this condition.

The top panels of Figure 7 show the average change of magnetic moment, log(%),
where the subscript O refers to the initial values, and over-line refers to the geometric
mean for all particles near the given point within a distance d = 0.2. The change of mag-

netic moment can be roughly expressed as follows (see detailed derivation in appendix):

d VJz_ 2 2y vy +vib
_(_):E’YVL'EJ‘-'_(T '(VXE—V'VB),

where y = ¢/m is the charge-to-mass ratio. This can be interpreted as the contribution of
the perpendicular electric field, the magnetic field temporal variation (i.e, curl of the elec-
tric field), and the magnetic field spatial variations along the particle trajectory. Presum-
ing that the guiding center of ions are roughly moving at bulk velocity, the test particle
simulation suggests that ion magnetic moments first decrease when ions are approach-
ing the spine region. Then, their magnetic moments increase along the spine region and
eventually drift into the KH vortex region. It is also interesting to note that the magnetic
moment increase region coincides with the mixing region. In contrast, the bottom pan-
els of Figure 7 show the average change of ion kinetic energy in the drift frame, E4 (i.e.,
the square of ion velocity subtracting the E x B drift velocity), indicating plasma heating,
which mainly increases in the spine region and decreases in the KH vortex region. The
maximum increase of kinetic energy is about a half order of magnitude (i.e., 10°> ~ 3).
As a comparison, the typical magnetosheath ion temperature is about 100eV on the dawn
and dusk flank terminator [Dimmock et al., 2015], while the ion temperature in the cold
and dense plasma sheet (CDPS) is close to 1keV (see [Wing et al., 2014] and references

therein).
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4 Summary and Discussion

This study carefully compared the results from Hall MHD with test particle and hy-
brid simulations for the KH instability. Instead of investigating the path of each individ-
ual ion with a certain energy range, we focused on the macro-scale properties of the ions,
namely, the mixing rate, temperature anisotropy, the average magnetic moment, and the

average kinetic energy in the E x B drift frame.

1. In the current test parameter regime, Hall MHD with test particles and hybrid
simulation give almost identical particle mixing rates. The increase of particle mixing is
largely determined by the extension of the sheared flow interface length of the KH insta-
bility. The overall mixed area is smaller than the reconnected magnetic island area in Hall
MHD, but much greater than the magnetic island area in hybrid simulations, suggesting
that particle mixing by finite gyro-radius is the dominant process in the hybrid simula-
tions. However, it is important to keep in mind that the measurement of particle mixing
in the 2-D geometry and the 3-D geometry with periodic boundary conditions along the
third dimension should not be interpreted as the measurement of the amount of plasma
transport from the MSH into the MSP, because one cannot identify whether these mixing
regions are eventually connected to the MSH or the MSP. Thus, a careful quantification
of plasma transport must define a boundary between the MSH and the MSP based on the
magnetic field configuration first, and then compare the mass change within these regions

(e.g. Ma et al. [2017]; Sorathia et al. [2017]).

2. The nonlinear KH instability can cause anisotropic temperature. Two different
types of temperature anisotropy values are used in this study, that is the ratio of the maxi-
mum and minimum eigenvalues of matrix by using the MVA method based on three com-
ponents of selected particles’ velocities, A3/1; , and the ratio of the parallel and the per-
pendicular temperature, 7} /T,. Note that A3/4; > max (T}/T.,T,/T}). Both test particle
and hybrid simulations show almost identical results for A3/1; and 7)/T, during the early
nonlinear stage and even in the spine region during the later nonlinear stage, implying that
Ty/T. < 1 in the spine region is a robust feature. A large deviation appears for T)/T, in
the vortex region in the later nonlinear stage. Notice, the measurement of A3/1; is inde-
pendent from the measurement of the magnetic field. Therefore, the deviation of T} /T,
between test particles and hybrid simulation is likely to be caused by the different mag-

netic field configuration obtained from these two types of simulation. Nevertheless, the
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nonlinear KH instability significantly increases the anisotropic value, A3/4;, in the spine
and vortex regions, which can potentially be used to identify whether the in-situ observed
KH event is in the early nonlinear stage or later nonlinear stage. The highly anisotropic
temperature regions formed within KH waves are expected to give rise to the firehose,
mirror or ion-cyclotron modes. However, the present results are somewhat limited by the
2-D geometry in this study, because, the magnetic field is mostly along the invariable di-
rection (i.e., k| = 0). Thus, for realistic observation, the maximum and minimum ratio
of parallel and perpendicular temperature is likely to be limited by the firehose mode or

mirror mode onset condition.

3. Compared with double-adiabatic theory, neither specific entropy nor the paral-
lel term is conserved in the nonlinear KH wave, suggesting both adiabatic and nonadia-
batic heating/cooling processes happen along the parallel direction. Thus, a more sophisti-
cated equation of state (e.g., [Meng et al., 2012; Wang et al., 2015]) is desired to resolve
meso-scale process (e.g., KH instability) for a better understanding of the multi-scale
coupling process. The anisotropic velocity distribution is often associated with particle
gyro-motion, in which the first adiabatic invariant, the magnetic moment, is the impor-
tant quantity to be investigated. It is expected that the magnetic moment is no longer con-
served, because the presence of the electric field, and the temporal and spatial variation
of the magnetic field along the particle trajectory. The test particle simulation suggests
that the magnetic moment often decreases before particles drifts into the spine region and

increases along the spine region into the vortex region.

4. The average magnetic moment pattern appears in contrast with the drift frame
kinetic energy, E4, which increases in the spine region and decreases in the vortex region.
The drift frame kinetic energy, E, is representative of particle heating, implying ions can
be heated in the spine region, but by only half an order of magnitude at most, which is

very different from the observation.

Based on this numerical experiment, the test particle simulation appears to provide
an accurate description of particle properties (e.g., diffusion rate and anisotropy temper-
ature) during the KH instability, especially at the early nonlinear stage. Although, at the
later nonlinear stage, small structure formed by the KH vortex eventually requires a hybrid
simulation or even a fully PIC simulation. Practically, for in-situ observations, the early

nonlinear stage of KH vortex often has a relatively clear observational signature to iden-
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tify. Thus, the fluid simulation with test particle is a good method to compare with the

observation.

Nevertheless there are several important observational features which have not been
included in our simulation configuration. For instance, at the Earth’s magnetopause, the
magnetic field and density are highly asymmetric. It is not clear whether the nonadiabatic
heating process in the KH instability favors low temperature/plasma beta particles. Fur-
thermore, the KH instability in three dimensions is fundamentally different from the two-
dimensional geometry. It has been suggested that the middle-latitude double reconnection
process can provide an additional nonadiabatic heating source [Johnson and Wing, 2009],

which will be investigated in our future study.

A: Derivation of Equation 1

From the definition of magnetic moment, we have

d (v zli(vz)_ﬁd_B

dr \ B Bdt\'t) B2 dr
1d(, , VvidB
T Budr (V Vll) B dr’

where, d/dt = 0/dt + v - V represents the variation along the particle trajectory. The

derivative of total energy v with respective to time can be found from

dv? dv
. Jy.—
dt v dt

=2v-y(vxB+E)

=2yv-E.
The equation of parallel velocity is
dvy d
“T_"(-p
dt dt (v-b)
dv db
=— -b4+Vv. —
dt Vi

=y(va+E)-b+v-(2—?+v-Vh)
ob

=yE = -Vb],

YLtV (at+V )

where b is the unit vector of magnetic field B. The last term implies that the change of

parallel velocity can be due to the change of the magnetic field direction along the particle
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trajectory, even without temporal variation of the magnetic field (i.e., adiabatic motion
2
assumption). Thus, the last term is expected to be close to the mirror force, —zv—gb - VB,

when the gyroradius is much smaller than the |B/(VB)|. Notice that:
V-B=b-VB+BV-b=0,
2
such that the mirror force can also be rewritten as %V -b.

With the help of Equation A.5 and A.9, Equation A.2 can be rewritten as:

d (v? 1 db\ v’ dB
S2 ) =2= (yv E—ywE —vyv- — | - == A.10
dt(B) B(yv YVIEL = vIY dt) B? dt (4.10)
2 2vive +v2b\ OB
==yvi-E. - % (5, V- VB) (A11)
2 ZVHVJ_JFVJz_b
=2V Bl | s | (VX E~v - VB). (A.12)

Comparing with du/dt = 0 for adiabatic motion (v, - E; = 0 in the sense of one periodic
gyro-motion, and d/d; = 0), the term associated d/dt ~ v - V should be negligible under

the adiabatic motion assumption.
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