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Abstract

This paper consists of two parts. In the first part, we focus on the average of a
functional over shifted Gaussian homogeneous noise and as the averaging domain
covers the whole space, we establish a Breuer-Major type Gaussian fluctuation based
on various assumptions on the covariance kernel and/or the spectral measure. Our
methodology for the first part begins with the application of Malliavin calculus around
Nualart-Peccati’s Fourth Moment Theorem, and in addition we apply the Fourier
techniques as well as a soft approximation argument based on Bessel functions of first
kind.

The same methodology leads us to investigate a closely related problem in the
second part. We study the spatial average of a linear stochastic heat equation driven
by space-time Gaussian colored noise. The temporal covariance kernel v, is assumed
to be locally integrable in this paper. If the spatial covariance kernel is nonnegative
and integrable on the whole space, then the spatial average admits Gaussian fluc-
tuation; with some extra mild integrability condition on 7y, we are able to provide
a functional central limit theorem. These results complement recent studies on the
spatial average for SPDEs. Our analysis also allows us to consider the case where
the spatial covariance kernel is not integrable: For example, in the case of the Riesz
kernel, the first chaotic component of the spatial average is dominant so that the
Gaussian fluctuation also holds true.
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1 Introduction

Motivated by the Breuer-Major central limit theorem (CLT) [2] and recent studies
on the spatial averages of SPDEs [14, 15, 7], we devote this paper to seeking general
conditions that lead to the Gaussian fluctuations of averages of Gaussian functionals.

Let us briefly introduce our framework. Let W be a d-dimensional homogenous
Gaussian noise with covariance kernel v, that is, W = {W(¢), ¢ € C>°(R?)} is a centered
Gaussian family of real random variables, defined on a probability space (2, F,P), with
covariance structure given by

EW@W()] = |  d@ewh(z—y)drdy, ¥6,p € CF (R, (1.1)

where v : R — R U {400} is symmetric with v~ 1({c0}) C {0} and v(z) = (Fp)(z) =
f]Rd e~1%8y(d€) for some nonnegative tempered measure i on R, These assumptions on
~ ensure that (1.1) defines a nonnegative definite covariance functional and p is known
as the spectral measure. Notice that v(0) € R is equivalent to the finiteness of u(R?).

It is clear that (1.1) defines an inner product, under which the space C°(R%) can be
extended into a real Hilbert space §). Furthermore, the mapping ¢ € C°(R%) — W (¢)
extends to a linear isometry between §) and the Gaussian Hilbert space spanned by W.
We write W(¢) = [ ¢(x) W(dz) and E[W (¢)W (¢)] = (¢, ¢)s, for any ¢, € . This
gives us an isonormal Gaussian process over ).
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Now consider a real random variable F' € L2?({2) that is measurable with respect to
W and has the following Wiener chaos expansion:

FW) =E[F]+> L'(f,), (1.2)

p>1

where IZV () denotes the pth multiple stochastic integral with respect to W and f,
belongs to the symmetric subspace H®P of the pth tensor product H®?, Vp € IN; see [21]
for more details. Along the paper we will denote by II, F' the orthogonal projection of F’
onto the pth Wiener chaos.

In order to formulate our results, we need to introduce the spatial shifts {U,,r € R¢}.
For each z € R% and F given as in (1.2), U, F' is defined by

U F =E[F]+> LV (fY), (1.3)

p>1

with' f2(y1,...,yp) = fp(yr —@,...,y, —x) for any z,y1,...,y, € R? and p € IN. Here
is another look at the above definition. For any z € R? and any ¢ € C>*(R%), we
write ¢”(y) = ¢(y — =) and we introduce W,, the shifted Gaussian field, defined by
W (¢) = W(¢®), for any ¢ € C>°(R?), and by extension for any ¢ € §. The family W, has
the same covariance structure as W and the associated multiple stochastic integrals
satisfy I)V=(f) = I}V (f*) for any f € $§“?, so that U, F (W) = F(W,) shall give us (1.3).

Let F be given as in (1.2). We are interested in the spatial averages of U, F' over
Br = {z € R?: ||z|| < R}, with the particular aim at general conditions on the kernels
{fp,p € N} and the covariance kernel - (and/or the associated spectral measure ;) that
imply

1

law
L Fd N(0,1), 1.4
@) Jp, P e VO (1.4)

where o(R) is a normalization constant and N (m, v?) stands for a real normal distribution
with mean m and variance v2.

To illustrate how this spatial averaging is related to the aforementioned Breuer-Major
theorem and to give a flavor of our results, we provide below a particular case (see
Example 1.2) and refer to Section 2 for more general results. Let us first recall the
continuous-time Breuer-Major theorem (in a slightly different form).

Theorem 1.1. Suppose g € L*(R, e*IQ/Qd:z:) has the following orthogonal expansion in
2 P 2
Hermite polynomials {H, = (—1)Pe® /22 ¢=2"/2 ) ¢ N}
g= Z cpHp, with c,,, # 0, m > 1 known as the Hermite rank of g.
p>m

! For a generalized function f € §), we can define f* as follows. Let {f,,n € N} C C*(R?) be an
approximating sequence of f in §), we can define f for each n € IN and f* to be the limit of the Cauchy
sequence {f¥,n € IN} in §. It is routine to verify that the definition of f* does not depend on the particular
choice of the approximating sequence.
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LetY = {Y,,z € R%} be a centered Gaussian stationary process with covariance
function E[Y,Y;] = p(a — b) such that p(0) = 1. Under the condition p € L™ (R, dx), we
have

R2 [ g(Y,)de —2— N(0,02),
Br R—400

with 0% := Wy ) ., coq! [pa p(x)™ dz € [0,00), wa being the volume of By; see also
[3, 25].

Example 1.2. Now fix a unit vector e € § and put F = g(W(e)), then U, F = g(W,(e)) =
g(Y,), with Y, = W(e*). If g € L*(R, e * /?dzx) has Hermite rank m > 1 and

o

then Theorem 1.1 produces an example of (1.4). Note that in this example, the Gaussian
functional F' = g(W(e)) depends only on one coordinate while our principal concern is
for Gaussian functionals that may depend on infinitely many coordinates.

m

/ e(a)e(b)y(a — b — x)dadb| dx < +oo,
R2d

Recall the chaos expansions (1.2) and (1.3), and from now on, we consider the case
where F' has Hermite rank m > 1, meaning that:

E[F) =0, {f;,j=1,...,m — 1} are zero vectors and f,, € H®™ is nonzero.

In this case, we write

/ U,F dz =Y IV (g,r) with g, p = / f¥ dz for each p > m.
Br Br

p>m

In view of Hu and Nualart’s chaotic central limit theorem [11], based on the Fourth
Moment Theorems of Nualart, Peccati and Tudor [23, 26], it is enough to look for
conditions that guarantee the central limit theorem on each fixed chaos, provided one
has some uniform control of the variance of each chaotic component. More precisely, we
have the following general result.

Theorem 1.3. Consider a sequence of centered square integrable random variables
(Fn,n € IN) with Wiener chaos expansions F, = 3 IV (fqn), where fq, € $7 for
each q,n € IN. Suppose that:

@) Vg > 1, ¢ fynlie. = 05, asn — +00;
(i) Vg > 2 andVr € {1,...,¢ — 1}, || fon @ fonlgeei—2n — 0, asn — 400,

(ii) Imys oo imsup, 4o D sy q!qu,nH%@q =0.

2
p

We refer to [20, 22] for more details on this result and to Section 2 for the definition
of the r-contraction ®,..

Now let us look at the central limit theorem on each chaos. We fix an integer p > 2

and put

Then, as n — oo, I, converges in law to N(0,07), witho® =3 ., o

G;D,R = IZV (gp,R)
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with o2  := Var(Gp r). Assume 0, g > 0 for large R, then according to the Fourth
Moment Theorem of Nualart and Peccati [23], we know that
G W
ZpR_ law N(0,1)

Up,R R—+oco
if and only if
p—1

1
i 0 =0. 1.5
im p 75 1 ||gp R Qr gp,R”g@(?P 2r) (1.5)

Moreover, we have the following rate of convergence in the total variation distance, as a
consequence of the Nourdin-Peccati bound (see [20, Chapter 5]):

G c =

R

drv ( B2 N, 1)) < S g ®r gl e - (1.6)
Op.R %p.R ;21

Throughout this paper, we write C for immaterial constants that may vary from line to
line.

In the first part of this paper (Section 2), we will exploit the above ideas to derive
sufficient conditions for (1.4) to hold, with o(R) growing like CR%?. Note that the order
of o(R) matches the result in Theorem 1.1. Without introducing further notation, we
provide another example of (1.4), which is a corollary of our main result (Theorem 2.15);
see Remark 2.16.

Theorem 1.4. Let the above notation prevail. Assume (0) € (0,00) and v € L™(R¢, dx),
where m > 1 is the Hermite rank of F. If we assume in addition that the kernels
fp € LY(RPY) N H®P, p > m, satisfy

> PO ol gy < 400, (1.7)

p>m

then, R~%/? / U,Fdz —2"— N(0,02), with
Br R—+o0

o —dep'/ Ip(sp) fp(tp / Hvt —sj+2) dz | dspdty € [0,00)

p>m

with sp = (s1,...,p), dtp = dt; - - - dt, and wy being the volume of By = {||z| < 1}.

One may want to compare our Theorem 1.4 with Theorem 1.1 and Example 1.2. We
refer the readers to Section 2 for more results with this flavor and here we briefly give a
literature overview:

1. To the best of our knowledge, problem (1.4) first received attention in the 1976
paper [18] by Maruyama, using the method of moments. Proofs and extensions of
Maruyama’s CLT were published in his 1985 paper [19].
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2. In 1983, Breuer and Major provided a CLT [2], motivated by the non-central
limit theorems of Dobrushin, Major, Rosenblatt and Taqqu during 1977-1981 (see
[8, 17, 27, 28, 29]). Unlike these works, Breuer and Major were interested at the
asymptotic normality of nonlinear functionals over stationary Gaussian fields when
the corresponding correlation function decay fast enough. Although Breuer-Major’s
theorem (see Theorem 1.1) takes a simpler form compared to Maruyama’s CLT, it
has found a tremendous amount of applications in theory and practice.

3. Chambers and Slud established further extensions to Maruyama’s CLT in [4] and
obtained the Breuer-Major theorem as a corollary (when assuming the existence
of spectral density). In both [4] and Maruyama’s work [18, 19], the story always
begins with a real stationary Gaussian process with time-shifts {U,,s € R} and
they formulated the chaos expansion based on the spectral (probability) measure.

4. In the present work, we provide sufficient conditions for (1.4) in terms of the
spectral measure. Comparing our assumptions based on the spectral measure
with those in [4], both sets of assumptions essentially cover our Theorem 1.4 as a
particular case, while they are different in their full generality. Moreover, we also
provide sufficient conditions for (1.4) in terms of the covariance kernel.

Our methodology from the first part can be applied to the study of spatial averages
of the stochastic heat equation driven by Gaussian colored noise and this constitutes
the second part of our paper. More precisely, we consider the following stochastic heat
equation with a multiplicative Gaussian colored noise on R, x R¢:

ou 1 .
—=-A w 1.8
5 = gAu +u (1.8)
where the Laplacian A = Zle 83 concerns only spatial variables and the initial condi-
tion is fixed to be ug , = 1.

The notation W stands for % and the noise W is formally defined as a centered
Gaussian family {W(¢), ¢ € C°(R4 x R?)}, with covariance structure

E[W (o)W (¥)] = / dsdtyo(t — s)(B(s,®),71 * P (t, ®)) L2(Ra)

2
]R+

-,

for any ¢, ¢ € C°(R, x R?), where .# denotes the Fourier transform with respect to the
spatial variables and the following two conditions are satisfied:

dsdtyo(t — 3)/

R

B M1 (d£>y¢(sa 5)52¢(t7 _6) ) (19)

2
T+

1. 70 : R — [0, o0] is locally integrable and nonnegative-definite,

2. 1 is a measure, such that v; = % ; for some nonnegative tempered measure g,
called the spectral measure, satisfying Dalang’s condition (see e.g. [6])

d
/ ) (1.10)
ra 1+ [|€]]
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If , is absolutely continuous with respect to the Lebesgue measure on R?, we still
denote by 74 its density and then

<¢(8’ .)7 Y1 * w(ta .)>L2(]Rd) = /RM ¢)(57 l‘)’}q (.13 - y)¢(t7 y)d'rdy

We will use this notation even if v; is a measure. The basic example is d = 1 and v; =
and in this case y; is (27)~! times Lebesgue measure.

We point out that (1.9) defines an inner product, under which C°(R x R%) can be
extended into a Hilbert space 7. As we did before, we can build an isonormal process
{W(h),h € #} from {W(h),h € C®(Ry x RY)}. We denote by I}V (f) the pth multiple
integral of a symmetric element f € s#“P. For general f € %P, we denote by fthe
canonical symmetrization of f, that is,

1
f(51,y17527yz7~ . ')S;Dvyp) = H Z f(80(1)7ya(1)7 .- ~a5fr(p)aya(p))7

foe6G,
where the sum runs over the permutation group &, over {1,...,p}. Quite often in this
paper, we write f(sp,¥yp) for f(si,91,...,Sp, Yp), Whenever it is convenient.

For each t > 0, let F; be the o-algebra generated by { W(¢) : ¢ is continuous with
support contained in [0, ¢] x R?}. We say that a random field u = {u; 4, (t, ) € Ry x R%}
is adapted if for each (¢, x), the random variable u; , is F;-measurable.

We interpret equation (1.8) in the Skorokhod sense and recall the definition of mild
solution from [9, Definition 3.1].

Definition 1.5. An adapted random field u = {u;,,t > 0,2 € R?} such that E[u} ] <
+oo for all (t,x) is said to be a mild solution to equation (1.8) with initial conditoin
up, =1, if forany t € Ry, x € RY, the process {G(t — s,z — Y)usylpg(s) s >0,y € R4}
is Skorokhod integrable and

t
Upg =1+ / / G(t — s,z — y)us ,W(ds,dy) ,
0 JRd

where G(t,z) = (2rt)~%?exp ( — ||z||?/(2t)) fort > 0 and = € R™.

The above stochastic heat equation has a unique mild solution u with explicit Wiener
chaos expansion given by (see [9, Theorem 3.2])

Ut = 1+ Z Iy(ft,z,n)»

n>1
where
1 n—1
ftom(8n,Yn) = ] H G(85(i) = So(i+1)s Yo (i) — Yo(i+1))s (1.11)
T =0

with o € &,, being such that ¢ > s,1) > -+ > $5(,) > 0. In the above expression we have
used the convention s,y =t and y,) = =. We also refer interested readers to [10, 13]
for more general noises.
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Notice that u; , — E[u; ;| has Hermite rank 1 and it is known that for any fixed t € R,
{u 1z € R?} is strictly stationary meaning that the finite-dimensional distributions of
the process {u; 1y, 2 € R} do not depend on y. So the following integral

/ (up — 1) da (1.12)
Br

resembles the object in (1.4) and we are able to establish its Gaussian fluctuation under
some mild assumptions. The spatial averages (1.12) have been studied in recent articles
[14, 15, 7]

(i) Huang, Nualart and Viitasaari [14] initiated their study by looking at the one-
dimensional (nonlinear) stochastic heat equation driven by a space-time white
noise.

(ii) Huang, Nualart, Viitasaari and Zheng [15] continued to study the d-dimensional
stochastic heat equation driven by Gaussian noise that is white in time and colored
in space, with the spatial covariance described by the Riesz kernel.

(iii) Delgado-Vences, Nualart and Zheng [7] carried out similar investigation for the
one-dimensional stochastic wave equation.

In the above references, the Gaussian noise is assumed to be white in time, which
gives rise to a martingale structure. This is important for applying It6 calculus (e.g.
Burkholder-Davis-Gundy inequality and Clark-Ocone formula) to obtain quantitative
central limit theorems for (1.12).

In the present paper, we consider a linear stochastic heat equation driven by space-
time colored noise, so It6 calculus can not be applied anymore; while due to the linearity,
an explicit chaos expansion of the solution is available for us to apply the chaotic central
limit theorem (Theorem 1.3).

We define

At(R) = /; (ut,z - 1) dx

and let II,,A;(R) be the projection of A,(R) on the pth Wiener chaos, that is,

II,Ay(R) :== 1,V ( /B ft,ﬂ,pdx)

Throughout this paper, we assume that 7,7y, are nontrivial, meaning that

t et
1 (RY) >0 and / / ~Yo(r — v)drdv > 0
0 Jo

for any t > 0. The following is our main result.

Theorem 1.6. Suppose 7 : R — R4 U {+o0} is locally integrable, v, satisfies Dalang’s
condition (1.10) and v, (R?) < co. Then as R — +oo, {R™%?A(R), t > 0} converges to a
centered continuous Gaussian process {G;,t > 0} in finite-dimensional distributions. The
covariance structure of G is given by

E[G,G/] =: s, = wd/ (E [eﬁs»@} - 1) dz € (0, 00), (1.13)
Rd
EJP 0 (2020), paper O. http://www.imstat.org/ejp/
Page 8/64

a pdfelement

The Trial Version



http://dx.doi.org/vVOL-PID
http://www.imstat.org/ejp/

Averaging Gaussian functionals

where .
Bsi(2) := / / Yo(r —v)m (XT1 — Xg + z)drdv
o Jo

with X', X2 two independent standard Brownian motions on R¢.
If in addition, there exist some ty > 0 and some « € (0,1/2) such that

to to
/ / Yo(r — v)r~ v %drdv < 400, (1.14)
o Jo

then as R — +oo, { R"%?A4(R), t > 0} converges weakly to {G,,t > 0} in the space of
continuous functions C(R).

Notice that (1.14) is satisfied when ~y = dg. In this case 7, is not a function but the
result can be properly formulated.

One may ask what happens if 7, (R?) is not finite, and this includes an important
example, the Riesz kernel v (z) = ||z||# with 3 € (0,2 A d).
Theorem 1.7. Suppose v, : R — R U {oo} is locally integrable and ~; (R?) = +oo0.

(1) Assume that 1 admits a density ¢, that satisfies

/ ©1(€) + p1(£)?
re 1+ [&]°

Then, R~*Var (I1; A¢(R)) diverges to infinity as R — +oco and

de < +oc. (1.15)

REIEOO R_d;Var(HpAt(R)) = wy /Rd IE(eB“(Z) — Bii(z) —1)dz € (0,00).

As a consequence, we have
At (R) law
Var(A¢(R)) R=rtoe

N(0,1).

(2) When 7, (z) = ||z||~? for some 3 € (0,2 A d), we have

A R aw
« ,3 — Y N(0, k), (1.16)
Ri—3 R—+oco

t oot
Kg 1= </ / drdvyo(r — U)) / dzdyl|x — y”iB'
0 Jo B?

Note that the Riesz kernel in part (2) satisfies the modified version of Dalang’s
condition (1.15) if and only if d/2 < 8 < 2 A d, which is equivalent to

with

Be(1/2,1) ford=1
B e (1,2) ford =2 (1.17)
B e (3/2,2) ford=3.

In particular, in dimension one, 8 € (1/2,1) is equivalent to the fractional noise with
Hurst parameter H € (1/2,3/4).
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Remark 1.8. Unlike previous studies, we consider a noise that is colored in time, and
our results complement, in particular, those in [14, 15]. In [14] where the noise is white
in space and time, the authors were able to obtain the chaotic central limit theorem for
the linear equation (parabolic Anderson model), proving also a rate of convergence in
the total variation distance. The quantitative CLT in the case vy = d and v;(z) = ||z[| =7,
was obtained in [15] for the nonlinear equation, and the authors of [15] also proved that
for the linear equation, the first chaos is dominant so the central limit theorem is not
chaotic.

We point out that in both parts of Theorem 1.7 the first chaos dominates, that is, the
central limit theorem is not chaotic. Moreover, we are able to provide the following
functional version of Theorem 1.7.

Theorem 1.9. Suppose v, : R — R U {oo} is locally integrable and v, (R?) = +oo0.
(1) Let the assumptions in part (1) of Theorem 1.7 hold and we assume that the
condition (1.14) is satisfied. We put

&(R) = Z 1L, (At(R))7

p>2

then as R — oo, the process (R™%/24,(R) : t € Ry) converges in law to a centered

~

continuous Gaussian process G with covariance given by

~ o~

E[gsgt] = wd/ E |:8BS,1,(Z) — Bst(2) — 1} dz.
R4

(2) If condition (1.14) is satisfied for some « € (0,1/2) and v,(z) = ||z||~” for some
B € (0,2 Ad), then the process (R‘d+§At(R) :t € Ry) converges in law to a centered
continuous Gaussian process G, as R — co. Here the covariance structure of G is given

by
o t S
E[gsgt]:( [ drdmo(r—v)) [ dwylle =y,
o Jo B2

We will organize the rest of our article into three sections. Section 2 begins with a
subsection on some preliminary knowledge, where we provide some important lemmas
for our later analysis. We devote Section 2.2 to the investigation of the central limit
theorems on a fixed chaos by looking at assumptions on the covariance kernel and on the
spectral measure separately. We derive the corresponding chaotic central limit theorems
in Section 2.3. Section 3 is devoted to the proof of Theorems 1.6, 1.7 and 1.9. For
Theorem 1.6. we show the convergence of the finite-dimensional distributions and the
tightness. Theorem 1.7 and Theorem 1.9 are proved as a by-product of the estimations
in the proof of Theorem 1.6. Finally, Section 4 provides the proofs of some technical
results stated in previous sections.
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2 Infinite version of the Breuer-Major theorem

2.1 Preliminaries

In this section, we introduce some notation for later reference and we provide several
lemmas needed for our proofs.

Recall from our introduction that {W(h),h € $} is an isonormal Gaussian process
such that for any ¢, € 9,

EW@OW)] = 6.0 = [ o@inte—ndady = [ o F0(-On(de)

where ~ is the covariance kernel and u is the spectral measure whose Fourier transform
is 7, understood in the generalized sense. Let §), be the Hilbert space of functions
g: R? — C such that g(—x) = g(z) for u-almost every z € R? and

/\M@FM@><+w-
Rd

Here Z is the complex conjugate of z € C. It is clear that the Fourier transform stands as
a linear isometry from ) to §,,.

For any integer p > 2, let H®? (resp. $HP) the pth tensor product (resp. symmetric
tensor product) of §). Note that for any integer p > 2, the pth multiple stochastic integral
IZYV is a linear and continuous operator from $H®? into L?(Q2). We can define spaces like
ﬁﬁp and .691’ in the obvious manner.

To simplify the display, we introduce some compact notation below.

Notation A: For any R > 0, Br(z) stands for the d-dimensional Euclidean (closed) ball
centered at = with radius R and we have used Bp for Br(0). We write vol(A4) for the

volume of A C R? and wy = vol(B;). We use || - || to denote the Euclidean norm in any
dimension.
For r € N and z, = (z1,...,2,), we write —z, for (—z1,...,—z,), dg, = dz;y - - - dz,

and p(dzy) = p(dzy) - - - p(dx,.); we also write 7(z,) = 21+ - -+ ,. For integers 1 <r < p,
we write (gla cee 75?) = 6? = (61‘777?—"‘) with E"‘ = (fla ce 757‘) and Mp—r = (£T+17 ce 7&?)'
With the above compact notation, we define the contraction operators ®, as follows.
For f € $®P and g € H% (p,q € IN), their r-contraction, with 0 < r < p A ¢, belongs to
H®Pta—2r and is defined by

(f ®r 9)(Ep—r+Mg—r) 22/

R2rd

f(gp—raar)g(nq—ﬁar) H ’Y(Clj - %)darcﬁr
j=1

for &,— € RP4""4 and 9,_, € R4, In particular, f ®y g = f ® g is the usual tensor
product and if p = ¢, f ®, g = (f, g) se»; see also [20, Appendix B]. Let us introduce some
useful lemmas now.

For p positive, we denote by J, the Bessel function of first kind with order p:

Jp(z) = % /W(Siné?)gp cos (zcosf) df, z€R; (2.1)
vrl'(p+3) Jo
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see [16, (5.10.4)]. Let us also record here

/2
wg =vol(By) = ———, (2.2)
r(1+4)
with I' the Euler’s Gamma function.
Lemma 2.1. (1) Given ¢ € R? and R > 0, we have
e au = nry e s (Rl
Br
where J;,, is the Bessel function of the first kind with order d/2.
(2) Given a positive real number p, we have
2 1
JIp(x) ~ \/2/(mx) cos (x - #) as xz — 400, (2.3)
P
Jp(ﬂ?) ~ m asx — 0. (24)

As a consequence, we have sup{|J,(z)| : © € R} } < +oc and |J,(z)| < C|z|~'/? for any
x € R, here C' is some absolute constant.

(3) Put (g(z) = wy'||z||~?Ja2(R|z|])% then {¢g : R > 0} is an approximation of the
identity.

Proof. (1) Let us suppose first that R = 1. In this case, one sees that the Fourier
transform of 1, <1} is rotationally symmetric, so without losing any generality, we
assume & = (0,...,0, p) with p = ||¢]| > 0. Then for d > 2,

/ e L uy<1y du
Rd

1 1 d—1
_ —ipzq _ —ipxq 2\ T2
= / e 4471 l{Hftd—leSl—zi}dzd_l d:Ed = / € wd_l(l xd) dﬂjd

-1 -1

1 a1 ™
= Wwy—_1 / cos(py) (1 — 4?) % dy = wg—1 / cos(pcos(f)) sin(8) do
~1 0

= (27T)d/2p_d/2<]d/2(/))a

where the last equality follows from the expressions (2.2) and (2.1). That is, for d > 2,

/}Rd e M u<ay du = (2m) Y2172 T 0 (|1€]))-

The above equality also holds true for d = 1, as one can verify by a direct computation
for both sides. So the result in part (1) is established for R = 1. The general case follows
from a change of variable.

(2) The asymptotic behavior of Bessel functions can be found in e.g. page 134 of
the book [16]. The uniform boundedness of J, on R, follows immediately from this
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asymptotic behavior. By (2.3), we can find some L > 0 such that |J,(z)| < 1/\/x for
any = > L, while it follows from (2.1) that |J,(x)| < CizP for any « > 0. It suffices to
pick C' = 1+ C,LP*2 such that C; < CL~P~2 to conclude that |J,(z)| < Cl|z|~!/2 for any
z € R.

(3) It suffices to show 1 = H€1||L1(]Rd). It follows from point (1) that

1 a 2
—d 2 . . . 2
/]Rd ||~ Tay2(|2]])*de = /}Rd (Eﬁ?m)d/z /}Rd exp (—lf ‘T = ZHQ?H ) 1{|§|<1}d5> dx
= lim/ déd€ e o 1 / exp (—i(f +&)x— g||ac||2) dx
al0 R2d {&.¢7eBu} (27T)d Rd 2

exp (= [l€ + €11/ (2q))

= lim d§d§/1{£,£/631}

al0 R2d (27ra)d/2
i (B N B e—lI€l?/(2a)
—alil(} RdVO( 1N 1(5))W—wd,

where interchanges of integrals and limits are valid due to the dominated convergence
theorem. Our proof of this lemma is finished. O

The following lemma has its discrete analogue in [20, (7.2.7)] and for the sake of
completeness, we provide a short proof; see also [25, (3.3)].

Lemma 2.2. If ¢ : R? — R belongs to LP(R?, dx) for some positive number p. Then for
any r € (0,p), one has

1 r R—4o0

Proof. Fix ¢ € (0,1). We deduce from Holder’s inequality that

1 , 1 . 1 )
Rd(lwl)/BR |p(x)]"dx = Rd(lwl)/Bm |p(z)] d$+Rd(1,,pl)/BR\BJR|¢($) dx

) r/p » r/p
< o5da=rr™) (/ |¢(x)|de> + 0(1 _ gdi=rp >) (/ |¢(x)pdx> .
Rd Br\Bsr

Note that for any fixed 6 € (0, 1), the second term goes to zero, as R — +oo, while the
first term can be made arbitrarily small by choosing sufficiently small 4. O

At the end of this section, we record a consequence of Young’s inequality.

Lemma 2.3. Suppose ¢ : R? — R belongs to L4(R%, dz) with ¢ = p/(p — 1) for some
integer p > 2. Then,

[F2d

|oo S ||@||iq(]Rd)a (25)

where the p-convolution can be defined iteratively: p*? = ¢ x @, ..., P = @ x P71,
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Proof. Young’s convolution inequality states that

th * h,g‘

rwd) < |[hallLerayllhell Laray

for any hy € LP(R%) and hy € L9(RY) withp~ ' +¢ ! =1+r"'and 1 < p,q,r < cc. As a
consequence, we obtain the following inequalities:

[0*P[loo = [l * 0P Moo < l@llLameylle™ Hlpa rey With g1 = p,

0*P~ | Lar (may = I * @*P 72| par (ray < @l parey |92 || a2 (ray With g2 = p/2,
0% 72| Laz (ray = I * ©*P 73| Laz (ray < @]l La(rey ||| pas (ray With gs = p/3,
||<P*2|\L%72(1Rd) = [l * ‘pHLqP*Q(]Rd) < ”‘:D”L‘I(Rd)H(pHLqpfl(]Rd) with ¢,—1 = p%l‘

This completes the proof of (2.5). O

Recall from our introduction that we consider the case where F =Y, I/V(f;) has
Hermite rank m > 1 with f;, € H©F for each k > m. We write

GR = Ude.’E = Z IZV(gk’R) = Z Gk,R with 9k,R = f;f dx .

Br k>m k>m Br

In what follows, we first investigate the central limit theorem on each chaos based on
two sets of assumptions. One involves the covariance kernel v and the other is based
on the spectral measure p. This is the content of Section 2.2, and in Section 2.3, we
consider the case where F' has a general chaos expansion. In each situation, the random
variable may depend on infinitely many coordinates, which shall be distinguished from
the classical Breuer-Major theorem.

2.2 Central limit theorems on a fixed chaos

Fix an integer p > 2 and note that the random field {I}V (f¥),z € R"} is centered,
strictly stationary. We put

E[LY (f) L (f)] = @y(z — y).

Then, if
/ |®,(x)|dz < oo, (2.6)
]Rd
we have, with the notation G, z = I}V (g,,r).
. Var(Gp,R) o
RLITOO —fpd = wq /Rd O, (x)d. 2.7)
Indeed,
Var(Gp r) = / O, (x —y)dady = / vol(Br N Br(—2))®,(2)dz.
B% Br
EJP 0 (2020), paper O. http://www.imstat.org/ejp/
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Because vol(Bg N Br(—z))/vol(Bg) is bounded by one and convergent to one, as R —
400, (2.7) follows from (2.6) and the dominated convergence theorem. This fact leads us
to stick on the situation that the normalization o(R) in (1.4) is of order RY2 as R — +o0.
Such an order is also consistent with the Breuer-Major theorem (see Theorem 1.1).

2.2.1 CLT under assumptions on the covariance kernel

We write

P

‘I)p(x) = p!<f;7 fp>56®19 = p! /]R%d fp(fp)fp(np) H'Y(éi -+ Jﬁ)dfp dnp -

=1
Therefore, a sufficient condition for (2.6) to hold is the following hypothesis:

)
(H1) f, € HOP satisfies /Rd /11{2 |fp(&p) fo(mp)] H V(& — mi + x) dnp dépda < co.
v i=1

Define
kip(&p —Mp) = / [1(& =i+ 2)d=. (2.8)

R G

Then, under (H1),

/ B, (z)dz = p! / FoE0) o )50 Ep — 11p) dEp I,
R4 R2pd

Suppose that v € LP(R?) and f, € L'(RP?). Then, hypothesis (H1) is satisfied. In fact,
using Holder’s inequality, we obtain

p
L ) TT 16 = 1+ )y dmpde < 191 gy 1 oy < 0
v i=1

Remark 2.4. (i) In the particular case where p = 1, the conditions f; € L*(R%) N $ and
v € L*(R?) are necessary, since hypothesis (H1) becomes

AW fs)] | It = s+ 2)dzdtds = [| 1] gayl17] 21 (me) < 00
(R4)
]R2d ]Rd
Under these necessary conditions, it is clear that
[ i
Br
is a centered Gaussian random variable with

Var (/ va(ff)dx) ~ wde”fl”QLl(]Rd)/ v(2)dz, as R — +oo0.
Br R4
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(ii) Here is an example of non-integrable covariance kernel: ~(z) = ||z|| =%, with
B € (0,d). Now let us search for sufficient condition for x, to be well defined. Notice that

P P
v(a; + z)dz = / la; + z||7? dz

and for ay, ..., a, mutually distinct, the product [[?_, ||a; + z||~# is integrable near the
singularities. Indeed, choosing ¢ = 1 min{|a; — ax| : 1 <i < k < p}, we can write for
eachj=1,...,p,

p £
/ H||ai+z||_ﬁdz§0/ laj + 2||~* dz:C/ ||z||_de:C/ rArd=1ldr,
Be(aj) ;-1 Bc(aj) B. 0

which is finite. Thus, we only need to control the integral at infinity. Notice that for
L > 0 large (that may depend on the a;’s), there exist two constants C, C; such that

p
cl/ ||z||_'6pdz§/ H|\ai+z||_5dz§02/ 2] =P dz.
IzlI>L IzI>L ;=1 IzI>L

Then the finiteness of the integral at infinity is equivalent to p > d/5. In other words,
the function &, given in (2.8), makes sense only for p > d/3. This forces us to consider
chaoses of order at least |d/3] + 1 =: my. Now for p > my, the kernel f, € H®P satisfies
(H1) if

p
/]R2 . | fo(@p) fo(¥p)| /Rd H 2 = yi + z[| 77 dzdzpdy, < oo
P i=1

The following result is a central limit theorem under some restrictions on ~.

Theorem 2.5. Fix an integerp > 2, f, € HP and assume that the hypothesis (H1)
holds. Moreover, suppose that one of the following two conditions hold true:

(i) The kernel f, has the form* f, = sym(h; ® - -- ® h,,), where the h; € $ satisfy

>,

4,5=1

P
/ hi(s)h;(t)y(s —t + z)dsdt| dz < oo. (2.9)
R2d

(ii) v € LP(RY) and f, € L*(RP?). (Note that (ii) implies (H1).)

Then a

p,R law N(0 2

g
}%UQ Rotoo ( ) p%
where
2 _
7 =l [ Fola) fylty ity — sp) y d
P
2If h1, ..., hp € H, we denote by sym(h1 @ - - @ hy) the symmetrization of the tensor product b1 @ - -+ @ hp:

1
sym(h1 ® -+ ® hyp) ::H Z hr() ® -+ ® hr(p)
R ISICIN

where &, is the permutation group on the first p positive integers.
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Proof. In view of the Fourth Moment Theorem of Nualart and Peccati [23], to prove this
central convergence it suffices to establish

) 1
R1—1>I-§r—loo ﬁng,R p gp,RHiewp—w =0

forr =1,...,p— 1. By definition, we can write

T

gp,R(sp—ﬁa"r)gp,R(tp—m br) H ’Y(ai - bz) da, dbr .

i=1

(gP,R Or gp,R) (sp—'mtp—r) = /

R27d
As a consequence,

2
9p,r @7 9p7RHy3®<2p—2r>

= /4 . da, dbrdar dgr dtp—r dsp—r d‘t;z—r dgp—rgp,R(sp—ra a‘r)gp,R(tp—m br)
R4P

X gp,R(8p—r,8r)gp,r( tp —r;b (H'V _gi)> H'Y V(55 — s5)

= /B day /R _ day dbyda, dby dty—r dsp—r dtp—r dBp—r [2* (Sp—r,@r) [72 (tp—r, by)
R P

p—r
X f;g(gp—raar) i (tp—r,br <H’Y i v(a; — bz)) H’Y(t]’ —%)’7(% —s;). (2.10)
j=1

Shifting the variables from the kernels to the covariance, we write

2
ng,R &Qr gp,R ||5~3®(2p—2r)

- / dza | day dbydG, dby dty_p dsp_r dby—r dBp_r fo(Sp—r@r) fp(tp—r, br)
B R4dp

Xfp(sp Taa'r)fp tp —r,br (H'Y —bi+x1 —z2)y(a _b +$3—1‘4)>

p—r
H ’}/(t]‘ — tj + T2 — 1‘4)’Y(§j — 8 +x3 — 1‘1)
j=1

Making the change of variables x1 — 22 = 21, 3 — x4 = 22 and x5 — x4 = 23 (SO
XT3 — X1 =22 — 23 — Zl), we obtain

R72d||9p,R Or gp,R||,%®(2p—2r)

<CR™“ / dz3
B3g

X fp(tp—rv )fp(sp—r’ar)fp tp—ra r (H’Y — b+ Zl)’Y(az‘ —gi + ZQ))

da, dbyda, dby dty—p dsp—r dip—r dp—r f»(8p—rar)

R4dp
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p—r
X Hv(tj—tj—f—z;g)*y(gj —Sjtz2—21 —23) . (2.11)
J=1

The rest of our proof will be split into two cases.

Proof under (i). Using the tensor-product structure of the kernels, we can further bound
(2.11) by

CR /B dzsd(21) () D23 (22 — 1 — 2P,

3
2R

with
p

¢(2) =

i,7=1

/]R?d hi(a)h;j(b)y(a — b+ z)dadb‘ .

In view of (2.9), the function ¢ belong to LP(R?). It follows immediately from Hélder’s
inequality that

R g1 @r 5.1 [ gorey-2y < C ( / ) ¢><zl>1’dzl) R / dzdzsd(z2)" d(z)" "
R B

3R
=C ( ¢(zl)sz1> R4 ( ¢(zQ)’“dz2> ( ¢(23)P—sz3) .
R4 Bar Bar
Then, we can conclude our proof under the condition (i) by using Lemma 2.2. O

Proof under (ii). Note first that due to Holder’s inequality,
r p—r
[ (IInl@ -0 ) ([ TTIG = s+ 222 —20) | dan < [ piaraz,
Bar \j=1 j=1 e

which implies that (2.11) can be further bounded by

ClA gy I ol 1 oy B dzydzsdbyday dby dty_p dby_p dSp_y

B2, xR3dp
~ ~ r ~ p—r ~
X |fp(tp——rabr)fp('gp—r’ar)fp(tp—r’br)| (H |y (@ — b; + ZQ)) H |’Y‘(tj —l; + 23)
i=1 j=1

<C dbyrd@y dby dty—r dty—r dBpr|fy(tprbr) fp(Bpers@r) fp(Ep—r,br)| X L,

IRSdp

where Ly = Ly (6,,5,,?,,_,.,tp_,.) is given by

r p—r
Lp=R¢ < H Iv|(@; — b; + ZQ)dZQ) / H [v[(t; —t; + z3)dzs
B

BQR i=1 2R j:1
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Note that by Holder’s inequality and Lemma 2.2,

, 1/r
1 L~
Lr < (H Ra(—rp=1) /Bm [yI" (@i — b; + 22)d22>

=1

p—r 1/(p—r)
! - g R—+o00
. HW/ Pt =t + 28)dzs 0,
j=1 Bar

and that

Li < CR 5oy RY7 111 ey B = ClAIE ey < o0

Thus, it follows from the dominated convergence theorem that, as R — oo,
—2d
R 2 ||gp,R r gp,R||j27)®(2p72r) —0

forall r € {1,...,p — 1}. This completes the proof. O

2.2.2 CLT under assumptions on the spectral measure

Let us first study the asymptotic variance using the Fourier transform. Throughout this
section, we are going to assume that p(d§) = ¢(£)dE, that is, the spectral measure is
absolutely continuous with respect to the Lebesgue measure on R¢. Note that ¢(¢) =

(=¢).

We first write,

By(a =) = Mf F)sor =2 [ (ZEENFR(6) uldey)

=it [ e (=it —9) - 76) |7 (E) nldey).

where 7(§p) := &1 + - -+ + &,. As a consequence of Lemma 2.1, we obtain
Var(Gpm) =t [ [ exp (=i —1)-7(6)) 174, 6) n(dey) dady
B p
= pl(27R)? /

R

y 17 &) |~ Jas2 (RIT &) |7 fol* (&) 1(dp) (2.12)

Now making the change of variables 7(£,) = = yields

Var(Gy )R = p(2e)" | el e (]9, (o),

where
p—1
() = /R TR G r = &) e = 76-1) [[ 0(€)depa. 213)
pe- i=1
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We remark that U, is defined almost everywhere on R? and recall that

{tr(@) = wg oll™ a2 (Rl2)?} s

is an approximation of the identity. Therefore, it is natural to introduce the following
hypothesis:

(H2) ¥, defined in (2.13), is uniformly bounded on R? and continuous at zero.

Under (H2), we have

lim Var(G,LR)

R->}o0 R = p!(2m) wa¥,(0),

where

p—1

0,00 = [ 1P 5 () e(rm) [[ ). @10

i=1

Note that for the particular case p = 1, ¥, (z) = |.Z f1|?(z)p(z); if f; € L*(R?) and ¢ is
uniformly bounded with continuity at zero, then the function ¥, is uniformly bounded
and continuous at zero.

Remark 2.6. (1) Heuristically, we can rewrite ¥,(0) as follows:

_ ar 2 & Ny
Bo = [ 6P [ ems)

i=1

where v is the surface measure on the hyperplane {7(§,) = 0}. This is an informal
expression, because the trace of .7 f, on the hyperplane {7(§,) = 0} is not properly
defined for an arbitrary kernel f,.

Var(Gp. r)

(2) Notice that the quantity Gri)piog

is equal to

Lo (L detntarote = (6 25, €~ 7€) ) TT ol60tpr.

It is clear that |Z f,|*(ép—1,7 — T({p—1)) is well-defined almost everywhere with

respect to ¢(z — 7(€p—1))dz, and ¢(z — 7(€p-1))|F fo|?(€p—1,2 — T(€p—1)) is integrable
with respect to the probability measure ¢/ (z)dz. We can also read from (2.14) that
the function &1 — |.Z f,|*(§p—1, —7({p-1)) is integrable with respect to the measure

¢(7(&-1)) Hf:_f ©0(&i)dép—1.

To obtain the Gaussian fluctuation of G, g, one shall first establish the order of
the variance and then compute the contractions. Our hypothesis (H2) gives the exact
asymptotic behavior of Var(G,, r). In fact, it is enough to impose a weaker condition,
known as the Maruyama’s condition concerning the variance; see [18].
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Proposition 2.7 (Maruyama'’s condition). Put
B~ [ Z 1 € dey).
{lIT(ép)II<h}

If

0 < liminf h=% U, (k) < limsup h~? U, (h) < oo, (2.15)
h]0 )

then we have, with o} p = Var(Gy r)

. 2 —d . 2 —d
0< %r_r:iré(f) %,RR < lim sup op)RR < Q.
R—+o0

We will provide a proof of Proposition 2.7 in Section 4, see also [4, Corollary 2.2].

The following lemma provides sufficient conditions for (H2) to hold. One of the
conditions is ¢ € L9(R%), which is the condition imposed on the spectral density in the
version of the classical Breuer-Major theorem proved in [1, Theorem 2.10].

Lemma 2.8. Suppose that f, € L'(RP?) N H®P and ¢ € LY(R?), with g =p/(p — 1). Then
V¥, is bounded and continuous on R4, in particular hypothesis (H2) is true.

The proof of Lemma 2.8 is given in Section 4.

Remark 2.9. It is worth comparing the sufficient conditions for the hypotheses (H1)
and (H2) here:

{y € LP(R?) and f, € L'(R*")} = (H1)

{o € LY(RY) and f, € L'(R"")} = (H2).
This is natural in view of the Hausdorff-Young’s inequality. Indeed, ¢ = p/(p — 1) € (1, 2],
so v = . belongs to L?(R%), provided ¢ € L?(R?). Note that both hypotheses imply
that the fluctuation of G, r is of order RY/2; moreover, as we will see shortly, both

hypotheses (v € LP(R?) and ¢ € L(R?)) imply that the fluctuation of G, r is Gaussian,
as R tends to infinity.

Let us introduce the following hypothesis, which can be seen as the contraction-
analogue of (H2).

(H3) Forl<r<p-—landanyd >0, \I!,(,r"s) is uniformly bounded on R? and continuous
at zero, where

7,0
(O (z,y) (2.16)

= Azpd—zd d&rdnp—rdgr—ldﬁp—r—ﬂﬁfpp (l”p—rvg;‘—l’ T — T(ﬂp_r) — T(E;._l))gp(&n)

r—1
X |Z fpl® (ﬁp—r—h Y — 7(fp—r—1) — T(ﬁr)@r) (H <P(§i)<P(€~i)> L{jir(€m) +(np—r) | <6}
=1
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p—r—1

% o0y )p(r(pr—1) +7&) =) | T] @)e(@) | o(rpr) + 7o) = 2).

We remark that the function \I/Z(f’é) is defined almost everywhere on R?? and with
the same proof as in Lemma 2.8, we can show that f, € L'(RP?) and ¢ € L9(R?) for
g =p/(p— 1) guarantee (H3).

Lemma 2.10. Suppose that f, € L'(RP))NH®P and ¢ € LY(R?), withq = p/(p—1). Then

foreveryr € {1,...,p—1} and § > 0, \I',(]"é) is bounded continuous on R?¢. In particular
hypothesis (H3) is true.

For the sake of completeness, we provide a proof in Section 4.

Theorem 2.11. Fix an integer p > 2 and f, € HOP satisfying hypotheses (H2) and (H3).
Then,
Gp,R  law
}%d/Q R—+o0

where o2 = p!(27)%wq ¥, (0), with ¥,(0) given by (2.14).

If (H2) is replaced by the Maruyama’s condition (2.15), we have the following
corollary.

N(0, ),

Corollary 2.12. Fix an integer p > 2 and f, € H®? satisfying hypotheses (H3). Assume
that Maruyama’s condition (2.15) holds true. Then,

CELR law

N(0, 1),

Op, R BR—+oc

with o, g being the standard deviation of G r.

We will omit the proof of this corollary, as it follows simply from Proposition 2.7 and
the following proof of Theorem 2.11.

Proof of Theorem 2.11. It suffices to show the contraction condition (1.5). We spilt the
proof into several steps. We will use Fourier transform to rewrite (2.10) in Steps 1-3 and
we will carry out the asymptotic analysis in Step 4.

Step 1: Plancherel’s formula implies
/ f;l(sp—r,ar)ff(tp—rabr)H'Y(ai — bi)day db,
R2rd i=1

= /}R AT L) Spr &) (T Fy) (b, —6r) ().

and

/]RZ y f;s (gp—ra ar)f tp—m H v(a day dby
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= /R Td(%f;f"’)(gp—r,gr)(%f;‘"‘)@—m —&) p(dEy) ,

where %, denotes the Fourier transform with respect to the right-most r variables
Step 2: Similarly, we have

tp

Lo B &) (P byr ~6) Z ) Gr ) Z ) per )

p—r
< | [Tt = t)vGi = 1) | dtpr dsp—r dtp—r dBp_s
j=1

~ p—r
— /}Rz( ) (Zr F2) (Spmrs &) (T £72) Bpers &) [ [ 7(5i — 51)dSp—r dBpr
p—r)d ]:1
~ ~ b—r - _
8 /1;2(p77*)d (yrf;?)(tp_,,., _ér)(‘gzrfgél)(tp—rv &) H ~y(t; — ti)dtp_,. dtp—r

Jj=1

= (/]deml (]:P—Tyrfgl)(np—r;ér)(fp—ryrf;gfs)(_np—ra _gr) M(d’l]p_r)>

([ T P prs &) o B T ) lpr) )

where F,_, denotes the Fourier transform with respect to the left-most p — r variables
It is clear that the composition of F,_, and .%#, is the usual Fourier transform.

Step 3: Using basic properties of the Fourier transform, we have (F, .7, f7)(&) =

e 17&)(F f,)(&). So combining facts from the above steps yields that the second
integral in (2.10) is equal to

[ ) ety £,) Oy 60) (7 £,) <p—r —E5)

X (F L) s~ )(F ) (T ) 1 (D (0] i (T (@),

with the notation a = 7(§,),b = 7(p—r), a = T(Z;) and b = T(p—r) throughout this proof.
It follows from Lemma 2.1 that

K
By

= (27R)*||a + bl|~*?|[b — o ~*/*|[@ + b] ~/?||a — b~/

—ixl‘(a+b)e—ix2-(E—a)e—ix3~(—5—b)e—ix4~(’d—g) day

x Jaya(Rlla+0]) Jaja (RIb — all) Jays (Rl@ + bl|) Jay2 (Rll@ = b])).
Thus, we have forr € {1,...,p—1},
Tr = (27R) !\ gyp.1 @1 9p.1|[ o020 (2.17)
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= [ ) 1l i) 7 1) g6 Z ) )
X f) Tpry ~E0) (F ) (~Tlpr &)@ + ]~/ [b — al| =/ @ + b =2
% ([ = B2 Jay (Rlla+ b)) Jaja (RIb — all) Jaja (RIG + bl) Jaj2 (Rl@ — B]).
Step 4: In what follows, we prove that limp_, ., Zr = 0.

We decompose the above integral into two parts: Zrp = / + / , with
Rrd xDs RPd X DS

Ds = {(& 1lp—r) € R" : [la + b]| > 4}

To ease the presentation, we introduce for every ¢ € [0, ),
— 2
Ts(R) := / 1(dep)| 7 Fl* (Ep)IIT(Ep) I~ Tay2 (Rl (€)I1) "
{lI7(€p)11=6}

Note that, by (2.12) and the symmetry of i, we have

Var(G),
To(R) = p!(2(7rR)}Z)’

which, under the hypothesis (H2), converges to wq¥,(0), as R — +oc.

Now on RP? x Ds, we can write, using Cauchy-Schwarz inequality,

/I;Pd X D5

<[ i tdng-r)| £y e )0+ V2 Ty (Rl + 81D £y (~pr, 6
X |§fp|(ﬁp—ra _fr)Hg_ all_d/QHa + bH_dﬂ’Jdm (RHE - a||)<]d/2 (RHZi + b||)|
< VT5(R) /R ) i)\ ol (g, &) [0 = B~ /2| Ty (Rl — ]|

= /R 1) 1(dipmr )| T Fol (~Thpmr, &) 1@ — B 72| T2 (Rl — B

X (/D (A )i(dttp—r )| Z fo* (<p—rs =& )| Z o | Flpr, —&r)

1/2
~ —di~ _ =~ 2 ~ 2
x |lb— al| =@+ bl| =" Jaj2 (RIb — all) " Ja2 (R + bl]) )

<v Té(R)TO(R)</R N(dgr)ﬂ(dﬁp—r)ﬂ(d{r)l‘(dnp—r)|§fp|2(*"7p—ra *Er)

2pd
1/2
~ ~ —di~ _ =~ 2 ~ 2
X |Z [l (p—r, =€) b — al =@+ bl = Jay2 (RIIb — all)"Jay2 (Rl[a + b]]) )

=To(R)*?*\/Ts(R).
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We claim that

for any fixed 6 > 0, Ts5(R) — 0, as R — +oc. (2.18)

Indeed, on {||7(&)| > ¢ > 0}, Jd/2(R||7-(§1l,)||)2 converges to zero, as R — +oo; and
clearly;,

Ts(R) <5 ¢ <sup Jd/z(t)2> /” . )”>6u(d€p)lﬂ’fpl2(§p) < 00,

teR4

so claim (2.18) follows from the dominated convergence theorem. Therefore, the first
part fmpdxm goes to zero, as R tends to infinity.

Then, it remains to estimate the integral over RP? x Ds. Similarly, we obtain, by
applying Cauchy-Schwarz inequality,

/]Ri’d xD§

< [ itder)tanyr)la+ = T (Rlla +) |7 | pmr- )
% VTo(R) ( [ D o (RIE b1 oo (RID = o)

1/2
< |.F fol* (—tipr, Er>|ffp|2<ﬁp_,-,am(dé)u(dﬁp_r)) :

Recall that i is symmetric. We can write, after the change of variable (ﬁp_r — —?')p_r)
and then applying Cauchy-Schwarz inequality,

/]de xDg

Kp:= / (&) 1 (dmp—r ) 1 (0 ) o (dFp—r ) [ + bI| [l + B]|
Red x {[la-+b]| <5

< To(R)Kr,

where

X Jaya (BIG +bl) " Jaja (Rlla+ 1)1 7 £, P (p—r &) ol Fp-r. &r)-
From previous discussion, it holds under hypothesis (H2) that
sup {To(R) : R > 0} < +o0.
So it remains to show that Kr — 0, as R — +oc.
Making the following change of variables
G+b> 2, Opr&r) = (T oot o — 7(0pr) — 7E1))
bta=y, (prib) > (Tpmr1.y — Tp-r—1) — 7). &)
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yields
Kn = [ dedyla(o)n(n)¥y ) .0),
R

where \Ilff’é)(a:, y) is defined in (2.16). By our hypothesis (H3), we have as R — +oo, that
w; *Kp is convergent to

7,0
w{m0(0,0)

= /]R2 o df'rd"’]p—rdgr—lCﬁ'ip—r-l|=g~fp|2 (np-ragr—la _T(np—r) - T(gr—l))

X ‘yfp‘Q(ﬁp—r—l, *T(ﬁp—r—l) - 7_(61‘);61‘) (H 30(51)90(51)> @(T(np—r) + T(gr—l))
=1

p—r—1
< (&) (p—r)e (TAp—r—1) + 7(&)) | TI €M) | 1iirer)ormpnii<sy -
j=1

which converges to zero, as ¢ | 0. This concludes our proof. O

Recall the Hilbert-space notation §),, and ﬁff’p from the beginning of Section 2. It is
clear that

& € R* v Fr(&) = (F f,) (&) IT(E) I~ Jusa (RI|7(&)1)

belongs to H%? for each R > 0, since .Zf, € H%P and ||7(&)||~Y*Jay2(RlIT(&)]) is
uniformly bounded for any given R > 0 (see Lemma 2.1). We can also define the
corresponding contractions in this framework. For h; € ﬁﬁ’p and hs € 5’)%"1 (p,q € IN),
their r-contraction, with 0 < r < p A ¢, belongs to H¥P*4~2" and is defined by

(ha Qr.p h2)(§p—ra”7p—r) = i hy (fp—rvar)}g("lp—raar) p(day.) .

One should not confuse this notion with the one introduced in Notation A.

With the notation F'r and ®, ,, we can rewrite Zr in (2.17) as follows:

Ir = /]1{2 , dp FR(Wp—r:fr)FR(Up—rvgr)FiR(ﬁp—ragr)FR(ﬁp—ragr)
P
B /1112 d pu(dpp—r ) p1(lip—r) (FR Or, FR) (np—ra ﬁp—r) (FR Or,n FR) (ﬁp—ra "7p—r)
P
e Frlign
where we used the fact that (Fg ®,., Fr) (Mp—r,Tlp—r) = (Fr @r Fr) (Tlp—r,p—r ), Which

follows simply from the definition of contraction. Hence, we can formulate the following
Fourth Moment Theorem.
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Theorem 2.13. Fix an integer p > 2 and f, € HOP. Assume (H2), which implies that, in
view of (2.12),

op = pl(2m)" lim 1R300 € [0, +00). (2.19)

Then, the following statements are equivalent:

Gp.r
Rd/2

(S1) converges in law to N (0, 012,), as R — +oo;
(S2) E[G} | R™?* converges to 30,, as R — +oo;

(S3) Foreveryr e {l,...,p—1},

Fr Qr,p FR”f)?Qp—QT — 0, as R — +o0.

Remark 2.14. (i) Recall from Lemma 2.1 that on Ry, Jy/»(z) < C(1A %) Therefore,
we obtain the following estimates:

1Fr @y Fallgger-sr < C|FY @py FOY feapa
and

C
”FR Orpu FR||,E)§2P72T < ﬁ ||F(2) Qo F® ||ﬁ§2p—2r,

d4j—1

with FO(&,) = |7 £,(&)||7(&) |~ "=, = 1,2. As a consequence,

(1) if |FOV @, , F(1)||ﬁ§2p72r < oo and p admits a spectral density, then by the
dominated convergence theorem, we have | Fr ®,, Frlge2»-2- — 0, which implies the
I
Gaussian fluctuation;

() if |[F? ®,, F(2)||ﬁ§2p727- < 00, we deduce from (1.6) that
dTV (G;D,R/UP,R’ N(O, 1)) S C/R .
(ii) In view of the Cauchy-Schwarz inequality for contractions, one has
IFD @y FO | gpzr-ar < |[FO|50, forj=1,2.
So one may intend to assume
||F<1>||ﬁ§p A ||F<2>||ﬁ§p < 00, (2.20)

which, however, is not reasonable in our framework. In fact, (2.19) and (2.4) tell us that
||FR|\;§p, which is equal to

R /
ird T |\ fol (&) 11(d€p) + / |7 fol* (&) R (7 (&p)) 1(dEp),
2104 +1)% Jirgp=oy " >0y
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2
Tp

p!(2m)?
/}de (I EN AT &)™) |1 F fol* (€p) 11(dp) < o0

converges to

; if we assume (2.20) or we assume the weaker condition

then the integral over {||7(&p)|| > 0} vanishes asymptotically, so that we can write

A / \ﬁ‘f\ (&) p(dp) =5 % (2.21)
2dI‘(%+1)2 (r(&p)= P P pl(2m)d” ’

This forces the integral in (2.21) to be zero by dominated convergence, so that crf, = 0.

2.3 Chaotic central limit theorems

As a continuation of previous section, we consider the case of infinitely many chaoses
and we derive a chaotic central limit theorem. Recall F € L?(Q) admits the following
chaos expansion (1.2) with Hermite rank m > 1:

= > LV(f,) with f,€HP.

pzm

Let us introduce the following natural hypothesis:

(H4) Zp'/ dtp dsp | fpl(sp)|fpl(tp / H|’Y| S¢+Z)dz<oo.

p>m

Recall the notation &, from (2.8) and we put

I, 5= [ 1oop)olty)ry by — a) iy .

So under (H4),
0% = wy Z p!prHip € [0, 00). (2.22)

p=m

Note that an immediate consequence of our hypothesis (H4) is the following result

lim sup R™* ) Var (/ JpW(f;)dx> =0. (2.23)

N—+oc0 R>0 (SN

In fact, one can write, similarly as before,

sup Var (/ IW(f””)dx>
Rr>0 waR? q;NH Br © 7
vol(Bg N Br(—2)) &
Z p'/ dtp dsp fp(sp) fp(tp) / ( (B ) H7(ti = si +2)dz
q>N+1 R4 vol(Bg) bl
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Z pl/ dtpdsp|fpsp fptp (/ H|7|t—sz—|—z) ) Nortoo, o

q>N+1

Now we state our main result as a consequence of (2.23), Theorems 2.5 and 1.3.

Theorem 2.15. Suppose F € L?(2) admits the chaos expansion (1.2) with Hermite
rank m > 2 and assume that (H4) is satisfied. Suppose that for each p > m, the kernel
fn € $HOP satisfies (i) or (ii) in Theorem 2.5. Let o2 be given by (2.22). Then, as R — +o0,

R*d/Q/ U,F(W)dx converges in law to N(0,0?).
Br

Remark 2.16. (1) In Theorem 2.15, we exclude the first chaos for the following obvious
reason. Under the assumption that {f1,7} C L'(R?), R-%/? [, I}V(f{)dx is a centered
Gaussian random variable with variance tending to wq/| f1 ||2Ll(Rd) Jra7(2)dz, as R — +oc;
see point (i) in Remark 2.4.

(2) Suppose 7(0) < +oo or equivalently u(R%) < 400, then v = .Zu is a function
bounded by (0). If v € L™(R?) (for some integer m > 1), then v € LP(R¢) for any p > m,
so that H7||’£p(Rd) < Y0P [V (| o (gay- As a result,

ZP'/ dtp dsp | fp|(p)|fol(tp) / H|“Y| (ti —si+2)dz

p>m
< Z p'H’Y”Lp R4) ||fp||L1 ®ra)y < C Z py(0 ||fp||L1 (Rpd)*
p>m p>m

This tells us that condition (1.7) implies (H4), so Theorem 1.4 stands as an easy corollary
of our Theorem 2.15 and previous point (1).

We can formulate another chaotic CLT based on the spectral measure.

Theorem 2.17. Suppose that F' € L?(Q2) admits the chaos expansion (1.2) with Hermite
rankm > 1. Assume that the spectral measure has a density. Suppose that foreachp > m,
the function ¥,, defined in (2.13) is continuous at zero and the following boundedness
condition holds (which implies (H2) for each p):

(H4) S I o < oo

pzm

Assume additionally that hypothesis (H3) holds for each p > m. Then,

R [ U F(W)dx m N | 0,(2m)%wq > plw,(0)
Br

p>m
Proof. For m = 1, we should consider the first chaos and it is clear that R~—%/ QGL R is
centered Gaussian with variance tending to w,(27)%¥;(0).

Now let us consider higher-order chaoses. For each p > m V 2, hypotheses (H2)
and (H3) hold true. This implies that G, gk R~%? converges in law to N (0, o), with o,
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introduced in Theorem 2.5. In view of the chaotic central limit theorem (Theorem 1.3), it
remains to check condition (2.23). We can write

d
> o0t Y o[ @@ <en’ Y plvl.

p>N+1 p>N+1 p>N+1

where the last inequality follows from the fact that ¢z (x)dx is a probability measure on
R4; so hypothesis (H4’) implies (2.23). Hence, our proof is finished. O

Corollary 2.18. Suppose that F' € L*(§)) admits the chaos expansion (1.2) with Hermite
rankm > 1 and for each p > m, the kernel f, belongs to LY (RP4) N $HOP, Assume that the
spectral measure p is finite with spectral density ¢ such that ¢ is uniformly bounded
with continuity at zero and

> PUE plSllellh s gay < o0 (2.24)

p>m

Then, R~9/? / U, F(W) dx m N [ 0,(2m)%wq Y p'®,(0)

Br p>m

Proof. Note that g is finite, which is equivalent to ¢ € L!'(R?). This implies with
boundedness of ¢ that ¢ € LI(R%) for any ¢ > 1. It is clear that for any p > 2V m,
fp € LY(R%) N H®? and v € LP/(P~1(R9), so Lemma 2.10 and Lemma 2.8 ensure that
hypotheses (H2) and (H3) are valid on the pth chaos.

If F has the first chaos with f; € L'(R%), then ¥, is uniformly bounded with continuity
at zero (the continuity of ¢ at zero is only required at this point). Therefore, G, rR™?
converges in law to a centered Gaussian with Variance (27r)d\111(0).

It remains to notice that ¥, (z) < ||[.Z f,|?||__¢™(z) < H|§fp|2||oo||<p||’£p/(p,1)(]Rd) by

(2.5). We know that ||<p||Lp/(p_1)(]Rd < H(pHooHapHLl (ray SO that (H4’) holds in this setting.
To see this, we write

Y PTllee <C D DU follZ el gay
p>m p>m

that is, (H4’) is implied by (2.24). Hence, the proofis done by applying Theorem 2.17. O

3 Proof of Theorems 1.6, 1.7 and 1.9

Let u; , be the mild solution to the linear stochastic heat equation (1.8) with initial
condition ug, = 1 forall z € R¢, driven by a Gaussian noise with temporal and spatial
covariance kernels being vy and v, respectively. We assume 7, : R — [0, oo] locally
integrable and the Fourier transform of ~; is a nonnegative tempered measure p; that
satisfies the Dalang’s condition (1.10).

Recall that -
At(R) = / (Ut,x — 1) dZZZ = ZIZV </ ft7x7pd$> 5
Br p=1 Br
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where, for any integer p > 1, f¢ ., is the kernel appearing in the Wiener chaos expansion
of uy , (see (1.11)).
Let us introduce some notation for later convenience.

Notation B. For givent > 0 andp € N, A,(t) = {sp € R} : t > sy > ... > 5, > 0}
and SIM,(t) = {sp € RY : 51 +--- + s, < t}. For o € 6, we write x5 = (z7,...,27) =

»p
(To(1)s- - To(p)), SO 85 € Ap(t) means t > s,(1) > -+ > S,(p) and we write [, v 55
for f[o fe dspla,(+)(sp). For fixed integers 1 < r < p — 1, the r-contraction f ®;, g of

f,g € A°®P is the element in ##®?P~2" given by
(f Or g) (sp_ragp—rvgp—r;é;—r) = / da,day, H ’YO(ai - az) / dz,dz,
RZ" i=1 R2dr

X (H 'YO(mi - 5@)) f(sp—r,araép—r;xr)g(gp—r;arygp—ryir)v
i=1

which may be a generalized function.

Here is the plan for the proof of Theorems 1.6 and 1.7. Section 3.1 deals with
computing the limit of the covariance function of the process A;(R) as R — +o0, provided
that 1 (R?) is finite. Section 3.2 is devoted to the proof of the convergence of the finite-
dimensional distributions, and we prove the tightness of {R~%2A,(R),t > 0} in Section
3.3 under the extra assumption (1.14). As a by-product of the computations in Section
3.1, we provide a proof of Theorem 1.7 in Section 3.4.

3.1 Limiting covariance structure in Theorem 1.6
The main ingredient is the following Feymann-Kac representation.

Lemma 3.1 (Feynman-Kac formula). Let vg,v, be given as in Theorem 1.6 and we fix
t,s > 0. Then for any x,y € R?, we have

¢t,s(x - y) = ]El:ut,wus,y] =K [eﬂi,ﬁ(w_y)}

with .
Brs(2) == / / Yolu — v)7 (X; - Xf + 2z)dudv,
o Jo

where X', X? are two independent standard Brownian motions on R¢ that start at zero.

We refer to [9, Theorem 3.6] for the proof of a more general statement. We point out
that in this reference, the moment formula is stated for x = y and t = s, see equation
(3.21) therein; one can prove the case = # y or t # s verbatim.

It follows from Lemma 3.1 that

Yor = lim RTB[A(R)A,(R)] = lim R (¢r,s(x —y) — 1)dzdy

R+o00 R—+4o00 B}z2
= lim R¢ z) —1)vol(BR N Br(—2))dz = w z)—1)dz,
Glim B[ (60,(2) = )vol(Ba 0 Br(=2))dz = [ (01020 =1)
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provided the integral f]Rd (qﬁtys(z) — 1)dz is finite. Note that in our setting, ¢(z) > 1 for
every z € R%; note also that, since 7, is integrable,

/]Rd (¢,5(z) — 1)dz > /}Rd E[f:.,(2)|dz

= </Ot /OS vo(u — v)dudv> /]Rd v1(z)dz € (0, 00), (3.1)

where the equality follows from Fubini’s theorem.

Note that ,
[, @) -0z = 3 5 [ B[yl

p=>1
where the object 5 ;(z) can be understood as the “weighted” intersection local time of
two independent Brownian motions X' and X?2.

In order to show that f]Rd ((bt,s(z) — l)dz < 00, we first estimate the pth moment of
Bt,s(z). Without losing any generality, we assume s < t. Using that v; is the Fourier
transform of the spectral density (i1, which is continuous and bounded due to the
finiteness of v; (R%), we can write

P P
E[5..(7] = | L6 =) | BT (XL — X2 +2) | dspiry
=1

[0,s]P x[0,¢]? Jj=1

P p
- dépdsydr Yo(s; —15) ©1(&5)
Lo L e IECEAIEIC

u —i&; (X! —X2 42)
NE D H P ey By
Jj=1

p P
:/[o o o otsptre | TLots =r) | TLer(&) | e
,s]P %[0, ’

j=1

()
Il
Jan

1
X exp —5 IS%:SP(Si A\ S+ A Tj)fi . fj R (3.2)
which is a nonnegative, uniformly continuous and uniformly bounded function in z.
Indeed, it is clear that 0 < E[S;+(2)P] < E[(8s.:(0)?] < +oco and the uniform continuity
follows from the dominated convergence theorem. Then by the monotone convergence
theorem, we write

P - P € 2
/le E[fs.+(2)"]dz = lim E[fs.¢(2)"] exp (—2 IIz]] ) dz € [0, 0.

EJ,O Rd

Recall from (3.2) that the finiteness of [E [Bs,t(o)ﬂ allows us to apply Fubini’s theorem to
get for any € > 0,

Tpe = /]Rd E[Bs,t(z)p} exp (—%HZ”Q) dz
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P P
~ (2n) / depidspiry | [Tr0(s5 — ) | | [ er(€)
[0,5]7x[0,]7 JRPd ot

j=1
1

x G(e 7)) exp | =5 D (sihsj+rinr)éi-& |,
1<ij<p

which is finite.
Consider first the case p > 2. Using that s <t and

1
exp | =5 Z (rinr)&i-& | <1,
1<4,5<p

we can bound T}, . as follows

p
(2m)T? / / 13
T, [ | o | TTor(6)

XG(67T(§p))exp —% Z (sinsj)&i-& |,

1<4,j<p

where the constant I'; := fi , Yo(u)du is finite for each ¢ > 0 in view of the local integra-
bility of . Making the change of variables &, = (m1 — 12, - .., p—1 — Np, Np), yields, with
the convention 5,1 = 0 and 7y =0,

S|

Tpe < (277 dl‘\ppl/ / dS e 22_7 1 (sj—=s541) 161+ +§_7H G 5 - Ep H
Rt a0

= (27r)dI‘fp!/ dan(s,np)/ dnp_l/ dprgol nj —nj—1)e —gw;llng |1
R4 Rpd—d SIM,,
Put
Qp(1p) :/ dnp-l/ H‘Pl Je —guslnll’
Rpd—d SIM,,(t)
then we just obtained
Tpe < (QW)drfp! /le dnpG(e,1p)Qp(np)-

In the following, we will prove that @, (7,) is uniformly bounded and provide an estimate.
We rewrite Q,(1,) as follows. With h;(n) = exp ( — 3w;|n/|?),

Qp(np) = / dw, hp(np)/ dnk—1 ©1(m)hi(m)e1(n2 — n1)h2(n2)
SIM,, (t) Rpd—d
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X @1(ns = n2)hs(ns) > -+ X o1(p—1 = Mp—2)hp—1 (1hp—1) @1 (11p — Mp—1) -
Using that ¢, is bounded, we get

[ ermentm = mhmdn < ol [ emmmin. @3

On the other hand, using (4.3), we have

/ dnih;(n;)e1(nj+1 — ;) S/ dnjer(n;)hi(n;)
R4 R4

forj=2,...,p—1. So,

p—1
_1 2 —wllna 1?2
Qp(np) < lelloo/s ()dwpe 2rll7p | ||/}Rd6 Wil I o1 ()i
t
j=1

P

p—1
—Lop g2
< thpilloc / / IT 1 (€e 10 du,—y de—y
Rpd=d JSIM,_1(t) ;1
p—1

— 1N\ . X
<tsolllooz<pj >j!D3V(2ON)P—1—J, (3.4)

=0
where the last inequality follows from Lemma 3.3 in [9], with the notation

901(5)
- d 3.5
" /{mw} lefz % (3.5)

and

Dy = dg.
v /~{|£II<N}%(£)f

Notice that these quantities are finite for any N > 0 by condition (1.10). We fix NV such
that 0 < 4I':C'y < 1. This gives us the uniform boundedness of (), and moreover,

tDN)

Tpe < 20) Tl Qplloe < llpnlloo (2m)TYpl(4CN)P ™ exp <ﬁ

which immediately implies

tD
/ B[61(2)7)d= < lpalloe 2m) TEpH(ACK ) exp (52) < o0 (3.6)
R4 N
and
1 27)4 t tD
5 1 Jo BByl < Pt ey (S20) Saricy
p>2 P JRd N N p>2
4 0o (24U CNT2 tD
1—4ICn 20N
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is finite, since 0 < 4I';Cy < 1.
To show the integrability of ¢, ; — 1, it remains to check that

/ E[Bs.(2)]dz < o0, (3.8)
Rd

which follows from (3.1). Therefore,

4 oo (2m)HCNT? tD
/d(ass,t(z)—l)dzétnnmlmmw 1]l () HC Lexp (557 < oc.
R

1 -4 Cyn 2CN
As a consequence, we proved that, for any s,t € R4,
) E[A:(R)As(R
RLHJ?OO w =%t =wy /Rd (¢s,(2) — 1)dz € (0,00).

3.2 Convergence of the finite-dimensional distributions in Theorem 1.6
Fix0<t; <---<t, <ooand put

9q.r(t) = R™/?2 fra.qdz .
Br

Then Ag := R~4/?(4,(R),..., A, (R)) falls into the framework of the following Propo-

sition 3.2, the multivariate chaotic central limit theorem borrowed from [3, Theorem
2.1].

Proposition 3.2. Fix an integern > 1 and consider a family { Ar, R > 0} of random vec-
tors in R™ such that each component of Ap = (Agr1,...,Ar.n) belongs to L*(Q, o {W},P)
and has the following chaos expansion

Apj = Z 1" (9q,5,8) With g4 j r symmetric kernels.
g>1

Suppose the following conditions (a)-(d) hold:
(@) Yi,j € {1,....,n} and¥q > 1, B[I) (905.8) 1 (90.0.7)] > 0i jq-

(b) Vi€ {l,...,n}, > 01i4 < 0.

g1
R—+
(c) Forany1 <r <q—1,|ggs,r ®r gqﬂ%RH%@@q—w Rl Ny
(d) Vie{l,...,n}, lim sup IEIW(g74,R)2 —=0.
{ } NH+OOR>0q>N+1 [ t ]

Then Ap converges in law to N(0,¥) as R — +oco, where & = (Ui’j)?jzl is given by
Tij = D g>1 Tijsg-

EJP 0 (2020), paper O. http://www.imstat.org/ejp/

Page 35/64

a pdfelement

The Trial Version



http://dx.doi.org/vVOL-PID
http://www.imstat.org/ejp/

Averaging Gaussian functionals

Proof of conditions (a), (b) and (d): It suffices to prove that for any ¢, s € R and for
any p > 1, p!l(gp,r(t), gp,r(S)) we» is convergent to some limit, denoted by o, (¢, s) and for
eacht >0,

> _op(t ) < +oo (3.9)
p>1
and
' =
yim sup > pllgyr(®)ler = 0. (3.10)
g>N+1

It is well-known in the literature that the pth moment of ,,(0) coincides with the
variance of the pth chaotic component of the solution v, ,; see for instance [12]. Then, it
is natural to expect that our verification of condition (a) in Proposition 3.2 will resemble
the computations we have done for [Bt,s(z)l’]. Moreover, we will see that condition (3.9)
is a consequence of the finiteness of the integral fRd (qﬁt,s(z) — l)dz proved in Section
3.1. The verification of condition (3.10) will be straightforward, as a by-product of the
computations in Section 3.1.

Let us start with the case p = 1. By an easy computation,

(91,r(t), 91,R(8))r = B¢ i (G(t— o,z —0),G(s — 0,y — o)) pdrdy

t s .
= G [ [ dudorau—) [ de tn@pr(@eH N @)
0o Jo R4
where /() is the approximation of the identity introduced in Point (3) of Lemma 2.1.

Since 7, is integrable on R?, ¢; is uniformly continuous and uniformly bounded. Then,
taking the limit as R — 400 in (3.11), yields

t s
(91.(0), g1.2(8)) e T2F25 (21) g1 (0) / / dudvyo(u — v) = o1 (1, 5).
o Jo
Notice that o1 (t, s) = wg [ B[Bs,t(2)]dz, in view of (3.1) and (27)%p1(0) = 71 (R).
Now let us consider higher-order chaos. For a fixed p > 2, we write

|
B (1 (p )1 (0.09)] = B [ dody (o o) o

The kernel f, ., is a nonnegative function on R: x RF%, 50 (fi 4 p, fs,y.p)eer > 0. We
first write, by using the Fourier transform in space,

<ft z,p>s fs,y p>%®p

= [ o H’Vo =5) [ @) P hialop ) Ly —bp): (G12)
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Note that for sy € A,(t), by the change of variables y; = 2 — 1z, y; = 7 —x7_, for j > 2,
we can write, with X! standard Brownian motion on R as before,

p—1
La,w(p) | dege &Gt —sf .z —of) ][] O] = sfhraf —af)
i=1

[ p
= 1a,(sp)e =T | T exp (i} - XL) - ¢7)
j=1

[ p
= 1Ap(t)(3;)eﬂm-7'(£p)IE H exp (—i(th — Xélj) §]> , (3.13)
_j:1
so that

1 —ix-T ‘ .
F funlopbp) = e @B T exp (<X - X1)-6) |

j=1
for s, € [0,t]? and
7t (x L | T (X! — x1 3 P
F oG &) = V7B | [ exp (i(x2 = x2) &) | ford, € [0,5"
j=1
Keeping in mind the above expressions and making the time changes in (3.12) (from s;
tot —s; and from 5; to s — 55, for j =1,...,p) yields
1 L .
o Frvn)spon = 753 || dsyidry [[0lt =55 = 5-475) [ jnlgp)e e en)
< p Yy P>3f® (p!)g [0,5]7 X [0,4]7 y4 le;[l J J Rpd P
p p
x B |[] exp (-inj fj) B |[J exp (—inlj -gj) : (3.14)
Jj=1 j=1

since {X} — X} ,,u € [0,4]} and {X! — X! u € [0, s]} have the same law as {X],u €
[0,¢]} and {X],u € [0,s]} respectively. So the expression (3.12) is indeed a function
that depends only on the difference z — y. Furthermore, a quick comparison between
(3.2) and (3.14) reveals that the only difference is that the variables inside the temporal
covariance kernel are y,(s; — ;) in (3.2) and vo(t — s; — s + ;) in (3.14). Going through

the same arguments that lead to (3.6) and (3.7), we get (with s < t)

_ tDy
p!/ (feizps fo0p) seondz < (2m) @1 [l T E(ACN )P~ exp (f)
R4 N
and
w w p!
]E|:Ip (gp,R(t))Ip (gp,R(s))] = ﬁ/y dxdy <ft»mvpafs,y7p>3go®p
R
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vol(Br N Br(—2))
— p!wd /]Rd dZ<ft,0,p7 fs,Z,P>jf®p wde

R
o, p'wd/d dz<ft70,pv f372,17>(9f®p = op(t, s),
R

with

Zli%E[I (9p.R (01 (9p.R(5))] < 0p(t, 5). (3.15)

This completes the verification of condition (a). Notice that

op(t,t) = wd/ E[B,:(2)F]dz

p'

so condition (b) follows from (3.8) and (3.7). To see condition (d), it is enough to use
(3.15) and condition (b).

Proof of condition (c): Givent > 0and 1 <r < p— 1, we need to prove that

R1—1>I-E ||gp R ) Qr gZhR(t)ij@(?P*?T) =0.

We follow the same routine that leads to (2.17). We put

f(8p,Yp) = [1,0,0(8p,Yp),

and in this way, we have f; , , = f*, with §* being the spatially shifted version of f. Now
we write (notice that we have the extra temporal variables now)

27) 72 gp.r () @1 9. (|| picarsn

- /[ ’ A8y A3 dVy ATy dtp—y dby— - dtp—r diTp—y (H% i — %) (v @))
0,t]4»
p—r " _
H Yo(tj = t)v0(w; — w;) | Tk,

with Jr = Jr (sra Sp, Ur, Ur, tp—ratp—ra'wp—rawp—r) given by

Tr= [ (o) s (@ sy (pr)

X (FF)(8r,tprstlp—r+ &) (F D) Br Wper, Thpr, & l|a + b =20 + a| =/
X (FF) (W Epmr, Tlp—r &) (FF) @, Dp—r, Tp—r. & )|a + b =2 @ + 0]~/
% Jay2(Rlla+bll) Jayz2 (RIIb + all) Ja2 (Rl@ + bl) Jaj2 (Rl + bl)),

where 7§ stands for the Fourier transform with respect to the spatial variables and we
have used the short-hand notation a = 7(&.),b = 7(fp—r),a = ’7’(6,-) and b = T(Np—r)-
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Recall from previous steps that, with X' standard Brownian motion on R4,

(F1)(8p:&p) = (F fr0.0)(8p,&p) = %E exp ( —i) (X - X;j) '5]‘) J (3.16)

1

p
Jj=

which is a positive, bounded and uniformly continuous function in &,. As in the proof of

Theorem 2.11 (Step 4), we decompose the integral in the spatial variable into two parts,
that is, we write for any given § > 0,

Tr = TJ1.n+ Jo.r ;:/ L{jja+b)>5} +/ L{jja+b|j<6}-
]R2pd Rde

Similar to the arguments in Step 4 of the proof of Theorem 2.11, by using Cauchy-
Schwarz inequality several times, we can write

1/2
T < o / Cr(r(&))| Fi (sr tpr. &)1 (dby)
{ll7(€p)>0}
9 1/2
« ( /R a(r())| 7] (5r,ﬁp_r,§p)ul(d§p)>
1/2
X <AM ER(T(EP)HjﬂZ(gﬁ'lUp—f,Ep),LLl(cl{p)>

.. 1/2
( (r(r (&) 7] <vr,tp-nfp>u1<dsp>) |
Rpd

Therefore, by Cauchy-Schwarz inequality again applied to the integration in time, we get
/ ) dsrdgrdvrdﬁrdtp_rdﬂ_rdwp_rdﬁp_r (H Yo (81 — :SV,L)’YO (’Ui — F’i);))
(0,¢]*7 i=1
p—r . N
< | T r0(t; = E)v0(w; —@;) | Jir (3.17)
j=1
< wg{ /[ e Bty Bty (H o1 — 5)70 (vi — m)

0,t]4p

< | Tt~ Bty = @) | ([ n(r) | F1 G e i (d6p)

1/2
x / fR(T(Ep))|9f|2(sr,tp—r,€p)u1(d§p)}
{lim(¢p)=6}

< { / 3 0B o By ity lEy s iy <H Yo(si — 50)v0(vi — @))
[0,¢]4P i=1
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H70 _wJ) ( v ER(T(‘EP))|yf|2(§r7wp—r7§p)ﬂl(d§p)>

1/2
x / ew@p»\ﬂff(vr,?p_r,sp)mdsp)}
Rpd
= W2V V2

We will prove that V; — 0 as R — +oo and V5 is uniformly bounded. For the term V7, we
have the estimate

i < Ffp l/[o e dtp /]de gR(T(gp))|yﬂ2(tpa§p)ﬂl(d§p>]

2
<[ sy [ ()| P oy ()
[0,¢]» {lim(¢p) 20}
= T7"Vi1Via.

We claim that V7 is uniformly bounded and Vi, vanishes asymptotically as R — 400. In
view of (3.16), making the change of variables t; =t — s; and n; = & + --- + &; for each
j=1,...,p, with no = 0, we obtain, using (3.4)

2

1 ) P

p

1
== ds/ p1(d€p )R ) exp —sip)llé 4+ + &1
PR SCCATEERE (O SURERI i
1
= d / dnn_ dw w;|In]I? _
ol 1l R (1p) /]deid Mo 1/51 N PH P1(nj —1j-1)
-1 .
t b p— I\t .
< '|<p1||ooz< . >|D3\/C§/ 1 < .
p! =\ J /i

In the same way, we have

Vig < (/ drilr(T >t||g01|002( ) JC'p - j7
{lIm11=6}

which converges to zero as R tends to infinity. By the same arguments, we can get
the uniform boundedness of V5 as R tends to infinity. Thus, the term (3.17) does not

contribute to the limit of ||g, z(t) ® gp,R(t)Him(zp,zr) as R — +oo0.

Now let us look at the second term and we need to prove that

xR ;:/ A8y A8y vy A0y dtp— dbp—pdwp_ dilp—y (H Yo(si — 3i)v0(v @))
[0,t]4
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7 R [eS)
H'YO w; — W;) JQR—MJF 0.

We can first rewrite wfjg, r as we did for f]dex pe in the proof of Theorem 2.11. In fact,
8
using Cauchy-Schwarz multiple times, we obtain

w(ngQ,R < /{I <5} /u'l(dgr)tu'l(dnp—r) ER(O, + b) yf(sr;tp—ranp—n&r)
~ - ~\1/2 -
< ([ (s @)@+ DT G Toer Ty ) { |t
Rrd
1/2
X 1 (dﬁP—T)ER(a + b)ER(a +g)|yf|2(vr7z;—r,ﬁp—ra£r) |gf|2(§rva—ranp—rva)}
< [ ([ 11(is @p-r) @+ D g pr )
1/2
X (/ Ml(dgr)ul(dnp—r)gl%(a + b)’§f|2(3r7tp-ra"7p—r7§r)> ‘|
{lla+bll<d}
X l / P (dée) 11 (citp—r ) g1 ()11 ()
{lla+bl| <5} xRPe

1/2
X ’yff(;ﬁwp—rynp—rvgr)‘yff(vra:t;—rzﬁp—raér)gR(a“"b)gR(a'i_g)

‘/1/2‘,1/2

Therefore,

—2
wy " Xr < \/X1,rX2 R,

where

%1)R = [ ’ dS,-dg,-d’l),-dgrdtp_rd‘t;_rdwp_rdﬁ)'p_r (H ’)/0 — Sl ’Y() — ?}'1)>
0,t

p—r
1ot = t)ro(w; — @;) | Vi
j=1

is uniformly bounded over R > 0, as one can verify by the same arguments as before,
and

Xop = / A8y A8y dvy AV dtp—pdbp—pdwy_p diGy—y (H Yo(si — 3i)v0(vi — @»))
[0,¢]#P
p—r N -
TT ot~ Bt~ ) | [ 1 () (e ) (0B 01 (s
j=1 {lla+b]|<d} xRPd
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X |=§Zﬂ2(§rawp—rv"7p—ra§r)’yﬂz('Uraz;)—raﬁp—rvfr)gl%(zi+b)gR(a""’g)
< F?p/ dg;'di;—rdvrdwp—r/ Hl(dgr)#l(dﬂp—r)ﬂl(dgr)ﬂl(dﬁp—r)
[0,¢]2P {lla+b]| <8} xRPd
% | Z5|° B Wpr s Thpmrs &) | FH| (0r, Fprs Tlpr &) € (@ + D) € (a + D)
=1 /]Rzpd i (g (o) Ly sy, 12t &<y R (T60) R (7))

X (/[O’t]p dsp‘ﬁfP(Sp’ng </[O7t]p dt,,‘yﬁ(t,,,&,,)) .

Using (3.16) and a change of variable in time, we can rewrite the last expression as
follows

> -
@/Rzpd 111 (0p) 11 ()L, s 4, vkt <y 1 (T60)) Er (7(65))

P p
></ dspty o [exp (— i3 XL &) | B exp (—i) X7 )
[0,¢]27 j=1 j=1

For s, € A,(t), we write

Xor <

p p
. = 80’ 1) =~

E|exp (—1)_ X1 -&) | =exp | =D LG ) o+ & 1P
j=1

Jj=1

Then

p ~
/[O,t]P dsplt |exp ( -1 X 'Ej)

Jj=1

p
Z/S diip exp | =D @jlléoy + -+ &
7j=1

cce, J SIMy(t/2)
and in the same way,

p

Jj=1

p
SOl R B S S
S, SIM,, (t/2) 1

By a further change of variables ;1) + - + {r(;) = n; and 50(1) + e+ go-(j) = 7); for
given o, 7, we can write

L ert et Eora ot boll<6) = HILmpiip)ll <6}
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where L(ny,7,) stands for linear combinations of 71, ...,7,,7,. . .7, that depend on o, 7.
With this notation, we have

2p

I - ~
Xor < )2 Z /]RM dnpdanR(Wp)ER(np)/S

e, IM, (t/2)2

dwp d’l’EP / d’l’)p_l d’ﬁp_l
R2pd72d

p—1
% [ TLwr(ns = my-2)e 11 oo Gy — iy e
j=1

—w 2w, |17, ]2
x p1(1p = Np—1)1(np — 1pp—r)e” W= L s <sy
F2p ~ ~ o, ~
= t 3 Z / dnpdnplr(1p) LR (Mp)E5" (Mps Tip)
(ph) R2d
o,meES,
where £J'" is defined in an obvious way. By the arguments leading to (3.4), it is clear
that £;" is uniformly bounded. It follows that

lim sup d77pd77p€1%(7719)612(7717)5377Tr (77;07 ﬁp)
R—+oc0 JR2d

= lim sup / dnpdiiplr(1p) LR (T1p)ES™ (Mps Tp) L jn, 1 <6, 17, | <6} -
R—+oo JR2d

For fixed 0,7 € 6,, we have the decomposition L(np,7p) = L1(1p, 7p) + L2(Mp—1,Mp—-1).
where L1 (n,,7,) stands for a linear combination of 1, and 7,, while Ly (1p—1,7p—1) stands
for linear combinations of #1,...,m,—1,71,...,7p—1. Notice that L; and L, also depend
on o, m. If ||n, ], ||7,]| < J, then there exists some constant K = K (o, 7) such that

| L1 (mp, 1p) | < K,

thus 1)L, mp)l1<6} < 1{|ILo(mpo1.iip—1)l<(K+1)5}- AS @ cOnsequence,

/}R y dnpdiplr (M) LR (M) ES ™ (Mps 1) L, || <5117, | <5}

<Pl [ dnitan,)inti) |

S dwp—1 dwp—1 / dnp—1dip—1

R2pd—2d

p—1
—aw.iln. 2 ~ ~ 17112
<\ [T ermi —nj—e™ 1oy (5 = 5j)e™ ) 11y o)< (1))
j=1
:t2||(¢01”§o/ dwp-ldﬁp-l/ dnp—1dnp—1
SIM,,_1(¢)2 R2pd—2d

p—1
— . . 2 ~ o~ — W, . 2
< | [T exmi = ni—0)e™ Wy (i — 75 0)e ™ W0 1) Lo mps g < (K16}
j=1

= |13 Ts (0, m).
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By previous arguments,

/ dwp—1 dWp—1 / dnp—1d7p—1
SIM,, 1 (¢)2 R2pd—2d
p—1
2 ~ ~ 12
% [ TT o1(ns — mj—1)e= 1m0 oo (i — 7y—1)e =i | < oo,
Jj=1

Therefore, taking into account that La(9p—1,7p—1) 7 0 for almost every n,—1 and 7,1,
we obtain T5(o,7) — 0, as § |, 0 and

limsupr,pLSﬁH@ngo Z Ts5(o, ),
R—+o00 o,meES,

which converges to zero, as ¢ | 0. This concludes the proof of condition (c).

Combing the above steps, we conclude that if ¢, ¢5,...,t, € R4, then

R ¥%(A,,(R),..., A, (R)) —=— N(O, (Ztoty); )

Ao i.j=1

where %, ;. is defined in (1.13).

3.3 Proof of tightness in Theorem 1.6

In this section, we are going to prove the tightness of {%Sf?,

condition (1.14). Under this condition, one can see easily that

t > 0} under the extra

t ot
o= / / Yo(r —v)r v %drdv < 400 (3.18)
o Jo

for any ¢t > 0.
Recall that « € (0,1/2) is fixed. For any T' > 0, we will show forany 0 < s <t < T
and any integer k € [2,0)

R2(|Ay(R) = Ay(R)|| .y < CTE— 5|, (3.19)

where C' = Cr . is a constant that depends on 7', k and «. If we pick a large k such that
ka > 2, we get the desired tightness by Kolmogorov’s criterion. To show (3.19), we first
derive the Wiener chaos expansion of A;(R) — As(R) and apply the hypercontractivity
property of the Ornstein-Uhlenbeck semigroup (see e.g. [21]) that allows us to estimate
the L¥(Q)-norm by the L?(2)-norm on a fixed Wiener chaos.

We know that

Ut p = 1+ / G(t — 81, — y1)1[07t)(51)u51,y1 W(dsl,dyl)
R+XRd
and if we put

d(S,t,{E; 51, yl) = G(t —S1,T — yl)l[O,t) (81) - G(S — 51,7 — yl)l[O,s)(Sl>
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for s < t, we can write
Ut,x — Us,x = / d(S,t,I; Slayl)ush@ﬁw(dsla dyl)
]R+ ><]Rd

We can write d(s,t,z;s1,y1) = di(s,t,x; $1,y1) + da(s, t, x; 51, y1) with
di(s,t,m;s1,y1) = 1,6y (51) [G(t — s1,2 — y1) — G(s — 51,2 — y1)] (3.20)
and
do(s,t,2551,y1) = Lis4)(51)G(t — 51,2 — y1). (3.21)
According to [5, Lemma 3.1], there exists some constant C, that depends on « such that
|di(s,t,z581,y1)| < Calt — 8)¥(s — s1) " *G(4t — 4s1,2 — y1)1(g 4 (s1). (3.22)

Now we can express A:(R) — As;(R) as a sum of two chaos expansions that correspond
to d; and ds:

At (R) - As (R)

Z/ gl,p, dI + Z/ g2,q :vdx)

p>1 qg>1
=1§ Jl,p,R+§ J2,4,R;
p>1 q=>1

where J; , r = [ 1" (8ip,«)dz fori € {1,2} and

p—1
O1.p.a sp’yp Z 1AP(S dl(s t,x; sl,yl) H Gf(Sfj7 - 5;‘7+1a y}’ - y;’j—i-l)
066 Jj=1
p—1
92 pa spayp Z Ay (s, t) )G(t — 57,2 —y7) H G(S;f - S;'I-H’yjq o y?“'l)’
Ueb j=1

with A, (s,t) = {t > s1 > - > s, > s}.

Let us first estimate the L?(Q2)-norm of J; , x in several familiar steps. As in (3.12),
(3.13) and (3.14), we write for p > 1, with X', X? independent standard Brownian
motions on R,

1 - —i(z—y)T
<g2,p,x,92,p,y>%®p = (p!)2 /[0 N dspdrp H ’YO(S]' — 7"]-) -/]de Nl(dép)e i(z—y)-7(€p)

Jj=1

P
x IE |exp —iij-X;j E |exp —IZ§J rJ )

Jj=1
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which is a nonnegative function in z, y that only depends on the difference z —y. Observe
that this inner product coincides with (p E E[B—s1—s(x — y)?] for every p > 1, see (3.2).
Therefore, for p > 2, we can write by using (3.6)

HJ2,p,RH2Lz(Q) = p' /BIQ? dxdy<92,p,z> g2,p,y>%®p S p!wde /]Rd dz<92’p’07 gQ,p,z>%®p

Wd Rd

— ol /}Rd dZE[ﬂt—s,t—s(Z)p]

t—s)D
< a1 oo (2m) T (1 = ) (4w exp (L5 2PN

TD
< (t = )R (2m) wallor e exp (G5 ) JIHACN)

Hence, as a consequence of the hypercontractivity property (see e.g. [20, Corollary
2.8.141]), we have for k > 2

1 1 1
T2 > Japr < T D 2 rll ey < i D (k=12 Japrll 20
p>2 Lk(ﬂ) p>2 p>2
TD 1/2 %
< Vi=s{@m) wallerllow exp (S 20 )k} [atk - yrecy|
p21
TDy\\ /2 (k- D)y
t— 59 (2m)%w o €X , (3.23)
{entaleeer (5550} T e

provided 0 < 4(k — 1)I'rCn < 1, which is always valid for some N > 0. For p = 1, we
have, in view of (3.1),
1/2
R_d/2||J2,1,RHLk(Q) = CkR_d/QHJQ,l,RHLZ(Q) < cg (/d E[ﬁts,ts(z)]d2>
R
< eVt —sTrlnlms)?,

where ¢, = (E[|Z|F])!/*, with Z ~ N(0,1).

Now let us estimate the L?({2)-norm of J; ,, g. Put

~

di(s,t,x551,y1) = (s — 81) "G (4t — 4s1, 2 — y1)1(0,5)(51)

and
p—1
01, (5p: Up) Z 1a,(s)(8 dl(s t,T; Sl,yl)HG(S?—s;-f+1,y;-’—y;-7+1).
! aeep j=1

From (3.22) we deduce that

‘<91,p,z7 gl,P7y>3f®p < ng(t —5)** <§1,p,wv§1m7y>3{f®p'
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Similarly as before, we can write

(ﬁal ) sp,fp Z 1Ap(s) *lw-r(ﬁp)(s _ sf)fa
' oeS,

x E

)

[—12 (X Xig-i-XlU X1 ,)-€2

from which we see that (g1 ,5.2,81,p.y) e, iS @ Nonnegative function that depends only
on the difference x — y and is given by

<§1,p,xval,p7y>%®p

p
:/[0 " dspdrpH% j — j)/de 11 (dp) (F G1.p,2) (3p,&p) (F G1pyy) (Tp, —Ep)

Hlll Yo(sj —15) ,
dsC dr™ —1= —i(z—y) 7(ép)
TS / e P (s — i) [ e

0'7r€6

< E {e“zj—l(xit‘xis‘f*Xif‘xi;’)‘f? } E [e‘iEﬁ—l(xit‘xir?*Xif‘xiﬁ'ff" (3.24)
Then, we can write for p > 2,
HJl,p,RHiz(Q) =p! /132 dmdy<91,p,ma91,p,y>ﬂ®p
R
< Ci(t - S)QQP!/ dmdy@l,p,maﬁl,p’ybf@p
B}
< C2(t — 52O plug R /]R (800,815 o (3.25)

By the same trick of inserting exp ( — £[z[|?), we have

112 T

—1lim7T,.,  (3.26)

—3ll=

dz{g g =lim dz{g g e 2
/]Rd <91,p,0’91,p,Z>%®p 210 Jia <gl,p,0791,p, >3f®

where fp@ is equal to

p
[ dsstre TL0(ss =) [ e ) (7 8100) 5. 89) (7 812) 1 6o)

j=1

27.r Z /A dsgdry Hj:1 Yo(sj —75) /}de 1 (d€p)Gl(e, T(&p))

S oy (s — 57)2(s — )"

—i Z;’:l(Xit*Xisf +X51T Xslg.)'f}’:| E [ei Zﬁzl(xitfxirﬂf +Xif *Xi;r)f}’

x IE {e (3.27)

Note that for s§ € A, (s), 2t — 257 > 25 — 257 > 3(s — s) so that

_iyP 1 _ 31 1yl g0 - _
E[e 125 (Xae = Xag +-Xog ngm] — o225 7)1 p— 3 ] (57 — 551 ) IETs ++E5 |12
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e~ 3 (s=sDITEI o= 521 (57 = sy DIET o+ €7 |12

E [e—i2?=1<X3—X;;>~f;'] =g [ 6]

IN

= exp f%VarZ(X;fX},).gj : (3.28)

/[0 o dspdr,,( i—170(sj —15) /de w1 (dép)G(e, T(&p))

5 —s1)%(s —711)*
T {e_iZﬁ’:l(X;—X;j)fj} E {e—iz;e:l(xg_xgj).gj]

1{81>sz\/~~\/s,,}1{7"1 >raVeVr,}

(2m)°Te! Yo(s1—71)
N (pT [0,s]P+1 dridsy - dsp (s —r1)*(s —s1)* Lisissavevsy)

1 p
< [ mldg)Ge () exp | —5Var (X! - X1) -6,

j=1
By the usual time change (71, s;) — (s — 1,5 — s;), we have
~ (27T)d].—‘15)71 / ")/0(51 — 7’1)
<5 dridsy -+ - dsy———1¢, As
pe X (p!)2 0.sJr riasy D 7“?8? {s1<s2A---Asp}

1 p L
X /]de w1 (dép)G (e, 7(&p)) exp _§VarZij "3

j=1
Note that for s; < sy A--- A5y

1 1 1 1 1
e VA X Xl o dsillm(e)lI® o~ 3 Var M (X, =X )

1 1
—3s1llTEp)lI? g3 Var e Xo oy 6

Then, by another time change (s; — s;1 — s;) for j > 2, we can write

~ 2m)dre=t o ¢ -
T,.< (”)75/ / drldslw/ dsy -~ ds,
’ (ph)? o Jo sy [0,5—s1]P—1

8 / 1 (dép)Gi(e, T(fp))efésl|‘T(£")|‘26_%var TR
Rpd

27rd1"p1<//drd8701 ))
?a

—1var P,2X51_~j
/ dsy -+~ dsy / 11 (dep) Gle, 7(&p))e 2V =2 Xey 6
[0,s]P—1 Rpd

(2m)dre—1 ( / / Yo(s1 — )> /
=+ 5 drids —1)! dws - - - dw
(p!)2 o TSy (v ) SIM,_1(s) 2 P
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p
<[ G e | <5 ule gl (329
pd =2

Now making the change of variables n; = & + --- +¢; yields
1< )
dwy - dwy | (dg)Gle T exp | 5 D wyler -+
SIMp—1(s) Red j=2

= / dwy - dw, / di,G(e, ) / -1 (p1(m)e™ duelne=ml”)
SIM,,_1(s) R Rpd—d
2 2
x (010 = m)er (15 — ma)e 2l (o (g — g sl
X e X (@1(7717 - Wpfl)e_%wpfl""@*1_"1”2) .

Moreover, we can apply (4.3) and (4.2) to the integral with respect to the variables
dna,dns, ... ,dn,—1,dn in order to get

1 2 2
/ diap1 (s — 1)1 (5 — mp)e— 22 m=m® < / p1(€)2e 32 l€I” gg
R4 R4

/ d773%01(774—173)6_%“’3”’73_"1H2 </ 901(5)6_%1”3”5”2(15
R4 - R

/d dnp—11(np — Np—1)e” 3 0r-1lm—a=ml® < /d o1 (€)eBwn-1liEl® ge
R R

/dnm(nl)e—%%“%—mfg/ o1 (€)e~ BunliEl® ge.
R4 Rd

Thus, with I’ o = [ [ dridsiyo(s1 — r1)r; *s;®, we have

7o < ZOTE (o1l / dwg.--dwp/ [ o160 bustisn?
p:p SIMp_1(s) Rpd—d ol

2m)dre—1 ool's,ax = -1\ s j
< )T p!|p¢1” ) Z <p . >j"DgV(QCN)p1J by (3.4)
. j:l .

(2m) ¢ oL exp (sDn /(2Cn))
plp

(40NT )P L.

Therefore, for p > 2,
HJl,nRH;(Q)

< (t — 51" R (2m) C2uall ]l exp (D / (20x)) HACKT )P
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For p = 1, it is easier to get the desired bound. Indeed, from (3.27), it follows that
Tio= o [ [ dsidrig(sn = m)(s =) (s - )™ [ dgpr(6(.)
o Jo R
<« T {e—uxit—xi”)-s} E {e—uxit—xirl)-s}

< (2m)%)lprllocT s,

so that )
111,805 < (¢ = )22 BRI 2 Callpr T }-
Hence,
LS < S k-1
R/2 Z 1,p,R = Rd/2 Z( - ) || 17P7RHL2(Q)
p>1 Lk(Q) p>1
o d 2 -1 1/2 p/2
< (t = 5)*{ @) Cudllprloe [1 + exp(TDNCRH)|Taa ) 3[40k = 1)T7C |
p=>0
der2 -1 /2
{emiCiualerllo 1 + exp(TDNCRN] T |
= (t—s)° , (3.30)
1-2y/(k—1I'rCy
provided 0 < 4(k — 1)I'tCy < 1, which is always valid for some N > 0.
Combing (3.23) and (3.30), we get (3.19) and hence the desired tightness. (]

3.4 Proof of Theorem 1.7

We are going to show that, under the hypotheses of Theorem 1.7, the first chaos
dominates and, as a consequence, the proof of the central limit theorem reduces to the
computation of the limit variance of the first chaos. The proof will be done in several
steps.

Step 1. We have shown in the proof of Theorem 1.6 that, if v is locally integrable, v; is
integrable and Dalang’s condition (1.10) is satisfied, then for any integer p > 2,
Var(HpAt(R)) ~oy(t,t)R? as R — tooand Y o,(t,t) < oo. (3.31)
p=>2

The above results also hold true, provided -, is locally integrable and the modified
version of Dalang’s condition (1.15) is satisfied. To see the latter point, it is enough to
proceed with the same arguments but replacing the estimate (3.3) by

/ ©1(m)e1(n2 — n1)ha (n1)dm S/ ©1(m)*ha (n1)dny,
R4 Rd

obtained by applying (4.2). Then, we can use the same arguments as in the proof of [9,
Lemma 3.3], with Cy, Dy replaced by

Cly = PO +ei©? L -
" /{nanzN} EE ¢ and Dy /{IHSN}(%(fH%(f))&
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In this way, instead of the inequality (3.4), we can get
Elp-1\#¢ : :
Qp(mp) <t ( i )j,(Dﬁv)](Qcﬁv)p‘l‘” (3.32)
=0 ’

and by choosing large N such that 0 < 4I';C; < 1, we can get instead of (3.6)

/

/ E[Bs,:(2)"]dz < (2m) TYplt(4CK )P exp (tDJ/V) < o0 (3.33)
R ’ 2CY,

and as a result,

1
Z o /]Rd E[Bt,t(z)p] dz < 400,

p>2

which is equivalent to (3.31).

Step 2. For the first chaotic component, if v; ¢ L'(R¢), then
R’dVar(HlAt(RD oo as R — +oo.

This observation, together with Step 1, justifies part (1) of Theorem 1.7.

Step 3. When v, (z) = ||z|| = for some 3 € (0,2 A d), let us first compute the variance of
IT; A¢(R). We have

Var (I A¢(R)) = /Ot /Ot dudvyo(u — v)

X / d¢ drdye 1@V e, 4 ||§\|ﬂ—de—%(U+v)l\€l\2 ,
R? /B2

for some constant ¢4 3. Then by making change of variables (z,y, &) — (Rz, Ry,&/R), we
get

Var(IT; Ay (R)) R™2%+F (3.34)

t ot
z/ / dudv%(u—v)/ dg [ dzdye 1@—v)€
0 Jo R4 B2

This expression is increasing in R and it converges, as R — 400, to

KHB—de—ﬁ(u%)llin .

Cd.p

t ot
/ / dudvyy(u — v)/ dg dzdye @V €0 (€) = kg € (0, 00).
0o Jo Rr¢  JpB2

Then, it suffices to show that

ZVar(HpAt(R)) = o(R¥-F),

p>2
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which implies the central limit theorem (1.16) immediately. For p > 2, we read from
(3.12), (3.13) and (3.14) that

CP p p
Var (L, A (7)) =42 [ dody | dsgiry [T ouls; =) [ dey | TL 11
b JB2 [0,¢]2P Rrd =1

j=1

« e—i@—y) (&)~ Var Tf_y &5 X, —gVarXf, &-X7,

Note that

drdye @~V 7E) = (20 R) wilr (r(&)) 2 0.
B}

Then by similar arguments as before, we obtain

b p p
Var (I, A () < 4 [ dudy [ dsgiry [ Touls; <) [ dey | TL 17
P JBy [0,¢]2p Rpd j=1

Jj=1

. 1 p
% e—l(I—y)'T(gp) exp —§Valrz é-] : XSIJ
j=1

P
= CZ’[}F?/ dxdy/ dw,,/ dép H 1€;]1P~2 | emile—v)T(&)
B% SIM,, () Rpd e

1 p
xexp (=5 D wyllén 4o+ P
j=1

By the usual change of variables n; = & + --- +§;, with ny = 0, and (z,y,7m,) —
(Rz, Ry, n,/R), we obtain

p—1
Var( () < TR [ g [ e | [T I =yt e
IM, (t) Rpd—d

s i1

x/ dannprlfnp_luﬁfd/ dxdyefi(r*y)-npeprllanQ/(QRQ)_ (3.35)
R4 B2

1

Let us first analyze the part in the display (3.35), which can be rewritten as
R / dnllny — Rp1 [P~ / dadye— A=) 1 = wp |12/ (2F2)
R4 B?
<R[ dady [ dnylln — Ry e e
B? R4

= g7 / dadye I Rz — g7 = RTPUR(,-1). (3.36)
Bl

EJP 0 (2020), paper O. http://www.imstat.org/ejp/
Page 52/64

a pdfelement

The Trial Version



http://dx.doi.org/vVOL-PID
http://www.imstat.org/ejp/

Averaging Gaussian functionals

The function Ur defined above is uniformly bounded by 05}3 [ dzdy||z — y||7# and
’ 1

for n,—1 # 0, by the Riemann-Lebesgue’s Lemma, 0 < Ug(7,—1) converges to zero as
R — +00. As a result,

—2d+5
R > Var(I,A¢(R)) < > #I¥eh / N dwp_1 /}R L

p>2 p>2 S
p—1
_ D 12
< | TT iy = my—a 1P~ demz sl ) Ug(ny, 1)
j=1
<t [ dedyle—y) ") 007 [ dupes
B2 = s

p—1

S DI

></ dnp-1 Il@l(ﬂj*ﬂj—l)e 23l
de—d j:1

By using (4.3) for the integration with respect to dn,_1, ..., dns, dn, inductively, we get

p—1
E Lo i (12
Ff/ dwp—l/ d?’]p_l H(pl(nj —njil)e_in”mH
SIM,_1(£) Rpd—d i

P22
p—1
1,0 .12
= er/ dwp—l/ dipp—1 | [ er(nj)e2wsIm]
e JSM, @) Rrd—d i

which is a convergent series by previous discussion. Then by dominated convergence
and the Riemann-Lebesgue’s lemma, we have

> Var(I, A(R)) = o(R**~7).

p>2

This tells us that the first chaos is indeed dominant and we have the desired Gaussian
fluctuation (1.16). This concludes the proof of Theorem 1.7. O

3.5 Proof of Theorem 1.9

Part (1): The proof of the functional CLT for ﬁt(R) can be done exactly by the same
arguments from Sections 3.1, 3.2 and 3.3 except for using (3.32) and (3.33) instead of
(3.4) and (3.6). So we leave the details for interested readers and refer to the forthcoming
work [24] for similar situation when dealing with parabolic Anderson model driven by
rough noise.

Part (2): By results in part (2) of Theorem 1.7, R‘d+gﬁt(R) converges to the zero
process in finite-dimensional distributions. So our proof consists in two parts:

() We prove { R-+5T1; (4,(R)) : t € Ry } 22 G,

law
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(ii) We prove {R—‘”g&(}%) :t > 0} converges in law (hence in probability) to the zero
process, as R — oo. This will follow from the tightness of {R*‘”g/T.(R) :R>0}.

Proof of (i): It is clear that R~ 211, (A;(R)) = R~ [ 1., Gt (2 —2)W(dr,dz), t € Ry
is a centered Gaussian process with

RTTPE[I (A:(R))M (As(R))]

:/Ot/osdudv'yo(u—v)/ﬁddf

by the same change of variables as in (3.34). By monotone convergence, we have

dzdye =i @) s] capll€l|P~de= TR SN

BZ

RPE[IL (A (R) T (A (R))] 7= //dudeu—v/ dadyllz - y|| =7,

This implies easily the convergence in finite-dimensional distributions. As in section 3.3,
we let s < ¢t and write

I (A¢(R)) — 1 (As(R)) = Ji1,r + J2 1.

with Jy1g == [ [ga (fBR d1(8,t,33;817y1)d$) W(ds1,dy:) and

¢
J2.1,R 22/ / (/ dz(s»t7$;81,y1)d$> W (ds1,dyr),
o Jre \JBg

where d;, ds are introduced in (3.20), (3.21) and
’dl(s,t,:c; si,y1)| S C(t—s)%(s — s1) G4t — sy, 2 — y1) 1) ¢ (s1).

As before, we can write

2 5o _
1,15 2 = d81d8270(31 ) dyrdyz ||y — 2| ~° dryidzy
L (Q) R2d BZ

R

X di(s,t,x1; 81, y1)d1(8, t, T2; 82, Y2)
C(t—s) / / dsidsavyo(s1 — s2)(s —s1)"%(s — s2)~ "/ dyrdys||lyr — y2|| 77
RQd

X / dx1droG(4t — 4sy, 1 — y1)G (4t — 45, 29 — Ya)

Ct—s) / / ds1dsayo(s1 — s2)(s — 81) 7% (s — 82)~ “/ dfcd,5||§||5_d
Rd

% dxldx2e—1(x1—xz){e—(2t—2sl+2t—2sQ)H§H2
B

' S S
Ct— 3)20‘/ / dsidsayo(s1 — s2)sy “s3 / dfcd,5||§||5_d
o Jo R4
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X / daydrge 1(#1772) €,
B

Making the change of variables (z1, z2,¢) — (Rx1, Rx2,&/R) yields

2 a — ° ° —a ,—« —
[anlyaey < O =R [ [ dsidsann(or = sapsiosy [ deeslie)~

X </ dxldxzei(““)f) =C(t - S)QQRQCI*BFs,a/ dadyllz — y|| =7,
B2 H

Bl
where I, , is given as in (3.18). Now let us estimate ||']2717R|‘i2(9)‘
9 t t
HJ2,1,RHL2(Q) = / / ds1dsayo(s1 — 82)/ dyrdya|lyr — y2||76/ dxidrs
R24 B2
X G(t —s1,21 —y1)G(t — 52,22 — Y2)

. (2t—s1 —s9)
/ / ds1dsay 31—52)/ dfcdﬁHﬁHﬁ*d/ dxldxgef‘(“*“)'ge*im =22 ¢
R4 B2

R

< RQd_B/ / dsydsayo(s1 —82)/dd50d,ﬂ||§\|ﬁ_d/2dmldxze_i(xl_“)'f
s s R B3

< R*(t — s) (/B% dxdy||lx — y||_6> (/tt 70(81)6581) :

Hence given T € (0, 00), we have for any 0 < s < ¢ < T and for any k € [2,00)

(102 (A0C)) — T (A () e ) = I (o)) — Iy (A0 (B) g < €U 9)°

where ¢;, is the L*(Q2)-norm of Z ~ N(0,1) and the constant C does not depend on R,

s or t. This gives us the desired tightness and hence leads to the functional CLT for

{Hl (At(R)) 1t e R+}

Proof of (ii): Given T' € (0, c0), we consider any 0 < s < t < T and as before, we write
11, (A¢(R)) — 11, (As(R))

Then following the arguments that led to (3.35), we have

=Jipr+ J2pR

2 d a, ]nuJH
analioy <R[y [ s Hnm ni-1 P~

X/ dnp”npR—l_npil”ﬂ—d/ dzdye—i==V) s g=vwplnp|I*/(2R?)
R4 B?

1

;112
SCPRM/ dwp / dilp-1 HHnﬁm P43 | | see (3.36)
SIM,, (t—s) Rpd—d
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< CPR¥P(t — s) /

p_1 wlin 12

R T

dwps [ dpea [[ Iy = a0
SIM,, 1 (t—s) Rrd—d j=1

By using (4.3) under the Dalang’s condition, we have

p—1 2 p—1 2
wjllnjll willngll
_q —wilngl= _gq —ilngl”
/ dnp-1 I | In; —nj—allP e "= < | | / dnjln;||P~4e” ==
Rpd—d iy j=1/Re

so that by the same application of Lemma 3.3 in [9] as in (3.4), we deduce
2 —_— —
HJ271‘77RHL2(Q) < CR*P(t — s)(4CN)P 1.

where C > 0 can be chosen aeritrarily small for large enough N, see (3.5).
Now let us estimate }|J17p7R||L2(Q): Following the arguments around (3.25), (3.26),
(3.24), (3.28) and (3.29), we can write

[15=120(s; — 7))
o T J=
2 Lo 593 i

1
[ palliay < € =525 [

—i(z—y) T 1 -
% /]R dﬂl(dgp)e (z—y) (fp)exp —§Var E (Xsl —Xslj) &l
P Jj=1

since f32 dxdye*i(zfy)'T(gp) is nonnegative;
R

C(t —s)?°T, 21
S ( S) 5 S / dl’dy/ de PN dwp
p B% SIM,,_1(s)
—i(e—y)7(&p) 1y 2
X dﬂl(dfp)e riexp | =5 E wjl[&e + -+ &l
RP X
Jj=2

Then by the usual change of variables ; = & + - - +&; and (z,y,7,) — (Rx, Ry, %), we
have

. 1<
/ dmdy/ ’ul(dép)e—l(:c—y)-r(ép) exp | —= ij”& 4+ §j||2
B2 ]de 2 N
R Jj=2
p—1
. 1 P 2
= / dxdy/ dnplln, — mp_1||P e i@V ez iz willng—m| H In; —mj—1 |4
B2 Rpd j=1

p—1
_ R2d-B —3 X523 wyllng—m|? f—d
- / difp—ye” = =2 il =l lIn; —mj-1ll
de—d j:1

x (/ dwdy/ dnp ||y —Rnp1||B‘de‘i<”—y>'"ve—?”"pR1—%1”2>
B2 R4
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_ Sy dudyllz — y| 7

Cd,p

p—1
< CR%-P H/ dnje—%wj\lnj||2||njuﬁ—d
R4

R2d7ﬁ/ dnp—1e =3 252 willng—m|® H”n] nj_1]?¢
defd j 1

where the last inequality is a consequence of (4.3). So an application of Lemma 3.3 from
[9] yields ,
1,32y < Clt = )2 (ACNT, )P~

Therefore, for large enough N, we deduce from the hypercontractivity property that for
any k € [2,00)

||/Tt(R) HLk(Q) < Z p/z( |J17P7RHL2 + ||J2,p,RHL2(Q))
p>2
< C(t—s)"R* Y ( — 1)ONTP? + [4(k — 1)Cy }”/2) < Ot — 5)°R¥5.
p>2
This proves (ii), and hence concludes our proof. O

4 Proof of technical results

Proof of Proposition 2.7. Recall the definition of ¥,, which is defined a.e. by the follow-
ing change of variables:

/ IIT(fp)||’de/z(RIIT(Ep)H)zlﬁprQ(Ep)u(d{p):/ dlz)| = Jas2(Rx])* W, ()
Rpd Rd

with ¥, (z) almost everywhere equal to

p—1
| P8P Era =)o = rlEpa)) ] ol
pd—d ]:1
We write
oiRR_d =wap!(2m)t [ lr(2)V,(x)dr > wdp!(27r)d/ Ry (Rx)V,(x)dx
R4 {llzll<rR-'}

and for y = Rx € By, we have
. 2 2
(2m)%wat (y) = </ e‘y'“du) = </ cos(y - u)du> € [cos(1)?w3, wj] . 4.1)
Bl Bl
As a consequence,

Uz,RR_d > plw? cos(1)2Rd/ U, (z)dx
lel|<R-T
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— peos(1 R | £y 2 (€ ) = plo? cos(1)2 BT, (R),
{lIT(p) ISR}
This gives us

cninfo?  ped s 2 im inf R (R~ ‘
gr_rgrgap’RR > wqcos(1)*p gr_r}}rrgR U,(R7")>0

For the upper bound, we proceed as follows:

UfLRR*d = wdp!(27r)d/ lr(x)¥,(z)dx
R4

= wdp!(27r)d/ Ry (Rx) W, (x)dx + wdp!(27r)d/ lr(x)¥y(z)dx .
lzl<R-! llzl|>R~1
It follows from (4.1) that
(2m)? / R, (R2)V,(z)dz < wgR* / U, (z)dz = wgR*W,(R7Y).
llzll<rR-* lzl<R-?

By Lemma 2.1, there exists some absolute constant C' such that ¢g(z) < C(R/n)%n~! for
n < R|z|| <n + 1. Therefore,

[ tew@i=Y [ (@)W (2)da
lz||[>R~* nR=1<||z||<(n+1)R-1

n=1
o0
<cy / (R/n)tn~"W, (z)de
= Jnr-r << r

N g1 (e o mt1 =~ n
= CR! Y (T ()~ ()

= CR? i (I\/p(n/R) [(n—1)~*"!—p~41] <CR? i \/I\lp(n/R)nfl(n — 1)1

n=2 n=2
=CR" Y T,m/Rntn-1)"""+CRY Y T,(n/RnH(n—1)"",
2<n<R°+1 n>Ré4+1

where § = d/(d + 1). This implies

\T/p(h) n!
/u”m/f%(x)‘l’p(@dxfc< o ) D T

h<r-14Rrs-1 N

2<n<RS+1
~ n-1R4
+CWp(00) Y e
n>RS+1

<C ( sup \flp(h)hd> +C.

h<R-14RS-1

Therefore,
lim sup Ui’RR_d < C+ Climsup ¥, (h)h™ < 0o
R—+oco R—+o00
This finishes our proof. O
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Proof of Lemma 2.8. Notice that the condition f, € L!'(RP?) implies that .Z f, is uni-
formly continuous and bounded. We fix a generic z € R¢, and we write

[Wp(r) — ¥p(2)] < / |ffp|2(§p_1,x - T(gp—l))QO(x - T(Ep—l))

]defd

p—1

H ©(&i)d€p—1

i=1

—|Z fo? (p-1,2 — T(€p—1)) (2 — T(€p-1))

< Ai(z) + Az(),

where
Ai(z) == /]deid |\ Z fol? (€p=1.7 — T(€p=1)) — |- Z fo|* (€p=1. 2 — T(.fp_l))|
p—1
X oz —71(&p-1)) H (&) dép—1
i=1
and

Ag(x) = /]deid |=ngp‘2(£p—la Z = T(ﬁp—l)) ‘P($ - T(&p—l)) - 90(2 - T(Ep—l))|

p—1

X H ©(&)dép-1.

i=1

Estimation of A;: We write

Ai(z) < sup
Np—1 ERPI—d

\Z fol? (Mp—1,2 — T(Mp=1)) — |-Z [o]* (hp—1, 2 — T("]p—l))‘

p—1

. /]de—d <,0(x B T(gp‘l)) H @(&i)d€p—1-

=1

The first factor tends to zero as z — 0, due to the uniform continuity of .% f,,. We rewrite
the second factor as the p-convolution ¢*?(z) and we deduce from (2.5) that

HSD*pHoo S ||<p||iq(ﬂ{d)~

Thus, we obtain that A;(z) — 0, as © — 0. Moreover, the previous computations also
lead to

Ai(z) < H|yfp|2Hoo||90”1£4(le) <00

Estimation of As: Using the boundedness of .# f,, we write

]defd

o = 7(6p-1) — o (=~ 7(-0) | [T &) dpr
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= C/ dyleo(z — (z—y)] </]de2d oy — 7(6p-2)) H @(&)%—z)
:C/Rd lo(z —y) — oz —y)

1/q
<[ lot-n == l'ty)  le o

where we made the change of variables §,_1 — (§p—2,y — 7(§p—2)) in the first equality.
We know from the proof of (2.5) that ||o*? || »(ga) < HQDHI;(lmd)' SO

e P (y) dy

1/q
42(0) < Cllelfen ([ lote =0 oc—l'ar) =50,

The above bound also indicates that A, is uniformly bounded.

Hence we conclude our proof by combining the above two estimates. O

Proof of Lemma 2.10. Let us first prove the boundedness. Since f, € L'(RFY), Zf, is
uniformly bounded, so that

(W5 (2,y)| < Co™ (@)@ (y) < Cllel o gay

where the last inequality follows from (2.5). Now let us show the continuity. To ease the
presentation, we define

M,,=M,, (fmgr—lanp—mﬁp—r—l)
= |ﬁfp|2(77p—n§r—1,$ - T(Er—l) - T(np—r))|</fp| ( Mp—r—1,Y — (ér) - 7’( NMp—r—1 ) 6,-)

Suppose z,,y, € R? converge to = and y respectively, as n — +00. Then

|\II;S;T’5) (z,y) — \I';S;r’(s) (Tn, Yn) |
r—1

< /Rzpdfzd Ay dEr_1dnp_r Ap—r—11{||7(60) 47 (mp—r) | <5} (ng &)y &)) (&) e(mp—r)

i=1
p—r—1

| IL e | Meye(y = 760) = 7p-r-1)) 0 (@ = 7€) = 7(1p—r))

- Mzn,ynw(yn —71(&) — T(ﬁp—r—l))@(fn - T(gr—l) - T(np—r)) <Ain+ A2,

where
r—1

A :/Rz' drdEr—1dMlp—rdTlp—r—11 (| (£0) 17 (mp_r)l| <5} <H @(fi)@(é)) ©(&r)e(np—r)
pd—2d =1
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X ( ﬁ @(’7;‘)%’(77]‘)) (P(y - T(é‘r) - T(ﬁp—r—l))(ﬁ(x - T(gr‘—l) - T(np—r))

x Mgy — Mg, .|

and

r—1

Agp = /Rszd dfrdgr—ldnp—rdﬁp—r—l1{|\T(§,.)+T(np_,-)||<6} (H @(fi)@(é)) (&) e(mp—r)

i=1

90(2/ —7(&) — T(ﬁp—r—l))‘ﬁ(x - T(gr—l) - T("lp—r))

. ( H w(nj)w(%)) M,

- ‘P(Z/n —7(&) — T(ﬁp—r—l))QO(xn - T(gr—l) - T("?p—r))

It follows immediately from the first part of our proof that
n—-+o0o

Ay < CHQOH%Z:I(]R@) sup {|Mxmyn — M,y :fnfr—lv’?p—r’ﬁp—r—l} —0,

due to the uniform continuity of .% f,. Now, using ||.% f, |l < o0, we write

r—1
Ay <C /}R  dEpdEydip—y dTp—r 1 (H so(&)so(é)) P (&) (mp—r)
pd—2d i1

SD(Z/ - 7(&) — T(ﬁp—r—l))@(iﬂ - T('gr—l) - T(’?p—r))

x ( 1I <p(nj)s0(ﬁj))
j=1

- @(yn —7(&r) — T(ﬁp—r—l))@(xn - T(Er—l) - T("Ip—r)) < C(A21,n + A227n)a

‘P(ZJ —7(&) — T(ﬁp—r—l)) — @(yn —7(&) — T(ﬁp—r—l))

x ( I @(Uj)@(ﬁj))
x (& = 7(E-1) = T(1p—r))
= ¢ () dép—1 (H w(&)) ‘w(y —7(€p-1)) — @ (Yn — T(ﬁp—l))‘

Rpd—d

and smilarly,

Aoy = ©*P(yn) /]deid dép—1 (H <P(€z)> ‘cp(a: - T(fp—l)) - 80(3771 - T(fp—l))’ :
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Put ¢, (z) = ¢(z — y), so we can rewrite

s o1 <H @(&)) ‘w(w —7(p-1)) — (a0 — T(fp—l))‘

as (¢*P7! % [p_y — ¢_4,|)(0), which is bounded by

||90*p71||Lp(]Rd)H(p7I - Sofrn”LEI(]Rd) < ||‘P|’Z£Z(1]Rd)”§0fx - Pz, ||L4(Rd) m 0,

that is, Az, — 0, as n — +o0o0. The same arguments also imply that Ay, — 0, as
n — +o0. This concludes our proof. O

Lemma 4.1. Let ¢, be given as in Theorem 1.6. Then for any z,y € R? and s > 0, we

have
2 2
/ eI w1 (n — )1 (y — n)dn g/ eI 2 (n)dn (4.2)
Rd R4
and
/ 6_5“"“2801(77—x)d77 S/ e_s‘|m|2801(77)d77- (4.3)
R4 R4

Proof. It suffices to prove it for x = y, as the general case follows from the Cauchy-
Schwarz inequality and symmetry of ¢;.
2
Put h(n) = e~*I"I", then its Fourier transform .#h is a nonnegative function. Then,
we write, using Plancherel’s identity and the fact p? = Wﬁ (y1%*m)

/’mem—xﬂmz W+ 5) (1 1) ()l
R4 R4 (QW)

iax 1 . .
= /}Rd(,?h)(a)e e (71 #*v1)(a)da (v is also nonnegative)

1
< [ (F0@ Gz s w@da = [ e,
R4 (2m) R4
which proves (4.2). The same argument also leads easily to (4.3). O
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