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Let Y = (Y(#));>0 be a zero-mean Gaussian stationary process with
covariance function p : R — R satisfying p(0) = 1. Let f : R — R be a
square-integrable function with respect to the standard Gaussian measure,
and suppose the Hermite rank of f is d > 1. If [p lo()|9ds < oo, then
the celebrated Breuer—Major theorem (in its continuous version) asserts that
the finite-dimensional distributions of Z, := /¢ fO/ & f(Y(s))ds converge to
those of oW as ¢ — 0, where W is a standard Brownian motion and o is
some explicit constant. Since its first appearance in 1983, this theorem has
become a crucial probabilistic tool in different areas, for instance in signal
processing or in statistical inference for fractional Gaussian processes.

The goal of this paper is twofold. First, we investigate the tightness in
the Breuer—Major theorem. Surprisingly, this problem did not receive a lot of
attention until now, and the best available condition due to Ben Hariz [J. Mul-
tivariate Anal. 80 (2002) 191-216] is neither arguably very natural, nor easy-
to-check in practice. In contrast, our condition very simple, as it only requires
that | f|” must be integrable with respect to the standard Gaussian measure
for some p strictly bigger than 2. It is obtained by means of the Malliavin
calculus, in particular Meyer inequalities.

Second, and motivated by a problem of geometrical nature, we extend the
continuous Breuer—Major theorem to the notoriously difficult case of self-
similar Gaussian processes which are not necessarily stationary. An appli-
cation to the fluctuations associated with the length process of a regularized
version of the bifractional Brownian motion concludes the paper.

1. Introduction and statement of the main results. Let Y = (Y (¢));>0 be a zero-mean
Gaussian stationary process, with covariance function E[Y (#)Y (s)] = p(|t — s]) such that
p(0) =1. Let y = N(0,1) be the standard Gaussian measure on R. Consider a function
f € L>(R, y) of Hermite rank d > 1, that is, f has a series expansion given by

(1.1) f) =) cgHy(x), ca#0,

q=d

where H, (x) is the gth Hermite polynomial.
It has become a central result in modern stochastic analysis that, under the condition
b, the finite-dimensional distributions (f.d.d.) of the process

a pdfelement e
Z.(t) = \/5/0 f(Y(s))ds, t>0
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converge, as ¢ tends to zero, to those of o W, where W = (W (¢));>¢ is a standard Brownian
motion and

o0
(1.3) o= chq!/Rp(s)q ds.
qg=d

(Observe that |p(s)| = |E[Y (s)Y (0)]] < p(0) =1 by Cauchy-Schwarz, and thus o? is well
defined under our integrability assumption on p and the square-integrability of f). This is a
continuous version of the celebrated Breuer—Major theorem proved in [3], that can be found
stated this way, for example, in the paper by Ben Hariz [1]. We also refer the reader to
[13], Chapter 7, where a modern proof of the original discrete version' of the Breuer—Major
theorem is given, by means of the recent Malliavin—Stein approach.

The condition [ |p(s) | ds < oo turns out to be also necessary for the convergence of Z,
to o W in the sense of f.d.d., because o2 is not properly defined when [ |,0(s)|dds = 00.
What about the functional convergence, that is, convergence in law of Z; to o W in C(Ry)
endowed with the uniform topology on compact sets? First, let us note that Chambers and
Slud ([4], page 328) provide a counterexample of a zero-mean Gaussian stationary process Y
and a square-integrable function f satisfying Z, = o W in the sense of f.d.d., but not in the
functional sense; as a consequence, we see that the mere condition Jj | ,o(s)|d ds < oo does
not imply tightness in general.

Before the present paper, the best sufficient condition ensuring tightness in the continuous
Breuer—-Major theorem was due to Ben Hariz [1]: more precisely, it is shown in [1], Theo-
rem 1, that the functional convergence of Z, to o W holds true whenever either

00 12

(1.4) there exists R > 1 such that Z M(/ lo(s)|? ds) RY < o0,
VAR

or

(1.5) the ¢, are all positive and f € LY(R, y).

The two conditions (1.4)—(1.5) proposed by Ben Hariz [1] were obtained thanks to moment
inequalities a la Rosenthal; they are neither very natural, nor easy-to-check.

In the present paper, our first main objective is to remedy the situation and provide a simple
sufficient condition for the convergence Z, = o W to hold in law in C(R;) endowed with
the uniform topology on compact sets. Surprisingly and compared to [1], our finding is that
only a little more integrability of the function f is enough.

THEOREM 1.1. Let Y = (Y(¢));>0 be a zero-mean Gaussian stationary process with
covariance function E[Y (t)Y (s)] = p(|t — s|) such that p(0) = 1. Consider a function f €
L?(R, y) with expansion (1.1) and Hermite rank d > 1. Suppose that [y |p(s)|dds < 0.
Then, if f € LP(R, y) for some p > 2, the process Z. defined in (1.2) converges in law in
CRy) to o (W(2))s>0, where W is a Brownian motion and o?is defined in (1.3).

1 1.1 is based on the application of the techniques of Malliavin calcu-
.- pdfelement ed by the recent work of Jaramillo and Nualart [9] on the asymptotic
lized self-intersection local time of the fractional Brownian motion.

he mhain ‘idea ightness is to use the representation of the random variable Z, () as

Z:(t)=84(=DL™ N Z, (1),

INote that the proof contained in [13], Chapter 7, can be easily extended (mutatis mutandis) to cover the
continuous framework as well.
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where 8, D and L are the basic operators in Malliavin calculus and then apply Meyer inequal-
ities to upper bound E[| Z (t) — Z:(s)|"] by C|t — s|P/?, where p is the exponent appearing
in Theorem 1.1.

Then, as an application of the previous result we aim to solve the following problem. Let

= (X (t))s>0 be a self-similar continuous Gaussian centered process, and assume moreover
that almost no path of X is rectifiable, that is, the length of X on any compact interval is
infinite: in symbols, L(X; [0, t]) = +oo for all # > 0. Examples of such processes include the
fractional Brownian motion and relatives, such as the bifractional Brownian motion and the
subfractional Brownian motion. Consider the C'-regularization X¢ of X given by

t+e

(1.6) Xs(t):% - Xwau.

Can we compute at which speed the length of X¢ on [0, ] explodes? Stated in a different
way, what is the asymptotic behavior of the family of processes indexed by ¢:

(1.7) L(Xx%; [0, t]):/()t|X8(u)|du, t>0,

when ¢ — 07

Let us first take a look at the simplest case, that is, where X = B is a fractional Brown-
ian motion (fBm) of index H € (0, 1). We recall that the fBm B = (B(¢));>0 is a centered
Gaussian process with covariance

(1.8) E[B(1)B(s)] = %(rw + 52— |r — 52,

Making a change of variable and using the self-similarity of B, we observe that
t/e
L(B*;[0,1]) _1/ |B(u +¢) — B(u)|du _/ |B(s(v + 1)) — B(ev)| dv
0

£ H/ |B(v+1) — B(v)|dv =: eH_TZg(t) (as a process in t),

so that we are left to study the asymptotic behavior of Z, as ¢ — 0. Since the fractional

Gaussian noise (B(t + 1) — B(t));>0 is stationary, to conclude it actually suffices to apply

Theorem 1.1 to the process Y (¢) = B(¢t + 1) — B(¢). Indeed, if we choose for f the function
(1)~

fx)=|x|— \/g of Hermite rank 2 (indeed, f = \/724 1 WHQL], see Section 6.3),
we have f € LP(R, y) for any p > 2. In this way, we obtain the following result:

(i) If H < 3, then

i & — 2
o) s, H( (B®:[0,1]) —te" 1\/;>t20:>oH(W(t)),ZO

inC(R;)ase— 0,

pdfelement d Brownian motion and oH =1 Zq 1 m % arn (h)*4 dh,

The Trial Version b 0,

1
(1.10) aa(h)zi(lh—1|°‘+|h+1|°‘—2|h|°‘), heR.

Furthermore, in the case H > 431’ it is known that (tightness in the case H = % can be
proved by the same techniques as in Theorem 1.1 and follows from Theorem 1.2 below):
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(i) If H = 2, then

i(LBS-[Ot] re~3 3) 3w
(L11) Tioae \LB 0 ) —remiy ) = o= (W)

inC(R;)ase— 0.
(ili) If H > 3, then

2
(L12) gf—1 (E(BE; [0,7]) — tsHl\/;> = “Rosenblatt process”

inC(Ry)ase— 0.

The asymptotic behavior of (1.7) is therefore completely understood when X = B is a fBm
but are the previous convergences (1.9), (1.11) and (1.12) still true for any self-similar con-
tinuous Gaussian centered process? In this paper, our second main objective is to answer this
question, which is particularly difficult because of the lack of stationarity of the increments
of X in such a generality.

To have a better idea of what may happen, let us now consider the case where X = B is
the b1fract10naLBr0wn1an motion with indices H € (0,1) and K € (0, 1], meaning that the
covariance of B is given by

(1.13) E[B(t)B(s)] =27 K ((¢2H + 21K — |t — 527K,
When K =1, B is nothing but a fBm with index H. In general, we can think of B asa

perturbation of a fBm B with index HK. Indeed, set Z(t) = [5 (1 — e—gi)e—# dW (),
t > 0, where W stands for a standard Brownian motion independent of B. As shown by
Lei and Nualart [10], the process Z has absolutely continuous trajectories; moreover, with
Y(1) =z,

(1.14) ( 27FK Y(t) + E(z)) ™ 05 B@1))
' r(—K) =0 =0
Recall definition (1.6). We immediately deduce from (1.14) that, for any ¢ > 0,

1.15 275Ky 1 Be law 51K pe

We can thus write, assuming that Y and B are independent and defined on the same proba-

bility space, and with B := 255 ( rz(lKg) Y + B):

2
L(B [0, 1]) =27 1K~ =

/|B(u+s) Buw)|du —2"7 tetK- 1\/3

B(u+¢)— B(u)
&

T

pdfelement { - et )2 } du

The Trial Version ZFTK B(u+¢)— B(u) 2-KK Yu+e)—Yu)
€ r'a—-K) £

B(u+¢)— B(u) }du
€

1-K

—27

=:a.(t) + be(1).
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When HK < %, we deduce from (1.9) that

(1.16) e 1K G = 2 oW,
whereas

Y(u+e)—Yu)

2-KK [t
|be(1)| < / du
0

I'a—-K

2-KK .
— /ﬁfoW(uﬂdu.

By combining (1.16) and (1.17) together, we eventually obtain that

1.17)

(1.18) gz~ HK (c(ES; [0,1]) —2' 2 1K1 %) = (27 ok W),

t>0 -
which is analogous to (1.9). The situation where HK > % looks more complicated at first
glance because to conclude we not only need an upper bound as the one given by (1.17), but
we have to understand the exact behavior of b, when ¢ — 0. For all ¢+ > 0, one has almost
surely that e~ (Y (t +¢&) — Y (1)) = Y (t) = 2H?H -1 X (12H), whereas ¢ "' |B(t + &) — B(1)|
diverges to 4+-00. Hence, at a heuristic level, one has that

21sz<B(t—|—£)—B(t)_ | 27KK Y(@t+e)—Y(®)
£ I'l—-K) £

B(t +¢) — B(t)
&

a.s. 2_KK Y I ) B B 4
“ rao ! © x imsign(B( +e) — B() = A®).

Although the previous reasoning is only heuristic (because lim,_,qsign(B(¢t + ¢) — B(t))
does not exist), it seems to indicate that b, may converge almost surely as ¢ — 0 without
further renormalization, to a random variable of the form fot A(u) du. If such a claim were
true, we would deduce from it that

1-K
2

-2

2

(,C(Eg; [0,7]) —2' 7 reH K- —)
T/ t>0

1

1.19 x :
(1.19) 212"61/2W+/ Awduinlawif HK =,
0

/ A(u)du as.iff HK > —,
0 2

with W a Brownian motion independent of B, a statement which would be very different
| (1.11) and (1.12).
pt to study the asymptotic behavior of (1.6) in the case where X = B is
wnian motion was to check whether the reasoning leading to (1.19) can
The Trial Version We failed to then realize that the claim (1.19) is actually wrong. What
onvergences (1.9), (1.11) and (1.12) continue to be valid for a wide class
of self-similar centered Gaussian processes, containing not only the bifractional Brownian
motion, but other perturbations of the fractional Brownian motion.

With this application in mind, the second goal of our paper is to generalize Theorem 1.1
to self-similar Gaussian processes which are not necessarily stationary. We will also consider

a pdfelement
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the case where the integral [p | ,o(s)ld ds is infinite but the limit is still Gaussian (in such a
critical case, a logarithmic factor is required), or when a non-Gaussian limit appears.

Let us first present the class of processes under consideration. Assume that X = (X (¢));>0
is a centered Gaussian process that is self-similar of order 8 € (0, 1). We define ¢ : [1, c0) —
R by ¢(x) =E[X (1) X (x)], so that, for 0 < s < t, we have

(1.20) E[X ()X (1)] = szf’E[X(l)X(é)] :szﬁq&(é).

Therefore, ¢ characterizes the covariance function of X. Moreover, let us also assume the
following two hypotheses on ¢, which were first introduced and considered in [7]:

(H.1) There exists o € (0, 28] such that ¢ has the form
¢ (x) =—Alx — D" + ¥ (x),

where A > 0 and 1 (x) is twice-differentiable on an open set containing [1, co) and there
exists a constant C > 0 such that, for any x € (1, 00):

@ [¢¥'(x)] <Cx 1,
() [¥"(x)] < Cxlx— 1)L,
(c) ¥/'(1) =By (1) when o > 1.

(H.2) There are constants C > 0, ¢ > 1 and 1 < v < 2 such that, for all x > c:
Cx™' ifa<l,

Cx*? ifa>1.

Cx V7' ifa<l,

Cx*3  ifa>1.

) |¢'(0)] = {

@ |¢"(x0)] = {

We refer to [7], Section 4, for explicit examples of processes X satisfying (H.1) and (H.2),
among them the bifractional Brownian motion ([7], Section 4.1) and the subfractional Brow-
nian motion ([7], Section 4.2).

Now, for € > 0 and ¢ > 0, let us define

AX (1)
1AX D2

Finally, define the family of stochastic processes F, = (ﬁg(t)),zo by

(1.21) AXO)=X(t+e)—X@t) and Ye(r) =

~ 1 t
1.22 F.(t)=— / Y du.
(1.22) (0 === | S (Vetw) du
By the self-similarity property of X, the process F, has the same law as F,, where

t/e
(1.23) Fg(z)zﬁfo F(Y1(w) du.

on of this paper is the following theorem, which is an extension of
[ | pdfelement se) and the main results of Taqqu’s seminal paper [18] (noncentral

e the underlying Gaussian process X does not need to have stationary
The Trial Version stationarity is actually the main difficulty we will have to cope with.

THEOREM 1.2. In the above setting, assume that (H.1) and (H.2) are in order for a
centered Gaussian process X = (X (t));>0, self-similar of order B € (0, 1) and whose covari-
ance function is given by (1.20). Let f € L*(R, y) a function with Hermite rank d > 1 and
expansion (1.1) and let F be defined in (1.23). Then the following is true as € — 0:
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1. Ifa <2 — %, then the finite-dimensional distributions of the family {F, : ¢ > 0} con-
verges in law to those of a Brownian motion with variance given by (1.3) with p(h) = ay (h)
defined in (1.10).

2. lIf a =2 — %, then the finite-dimensional distributions of the family {F¢/+/|loge] :
& > 0} converges in law to those of a Brownian motion with variance

d d
(1.24) o2 ;= c},d!<1 + <ﬂ - %)d) (1 - %) (1 - é) .
d

Moreover, if f € LP(R, y) for some p > 2, then the convergences in (1) and (2) hold in law
in C(Ry).

Let us finally consider the case o > 2 — % and d > 2. We will show that, for all ¢+ >

0, the random variable s%_d(l_%)ﬁe (t) converges in L2(2) to a random variable ¢y Hoo (7)

belonging to the dth Wiener chaos. The process Hoo = (Hoo(?))s>0 1S a generalization of the
Hermite process (see [6, 12, 18]) and it has a covariance given by

Ka(s, 1) =E[Hoo(s) Hoo (1)]

(1.25) dl 5 1 EX ()X (0)]\¢
:(2x)d/<) /0( (uv)P~e/2 ) dudv.

This then leads to the following noncentral limit theorem in the case o > 2 — é.

THEOREM 1.3. Under the assumptions of Theorem 1.2, if a > 2 — dl, then the process
{8%_‘1(1_%)& :& > 0} converges in law in C(RL) to Foo = cgHoo.

We note that a discrete counterpart of point 1 in Theorem 1.2 was already obtained by
Harnett and Nualart in [7], in exactly the same setting. However, we would like to offer the
following comments to help the reader comparing our results with those contained in [7].
First, neither point 2 of Theorem 1.2 nor the tightness property and Theorem 1.3 have been
considered in [7]. Second, and a little bit against common intuition, it turns out that it was
more difficult to deal with the continuous setting; indeed, in the continuous case we have to
handle the situation where |t — s| < 1, which does not appear in the discrete setting. Third,
our original motivation of proving Theorems 1.1, 1.2 and 1.3 is of geometrical nature; in our
mind, this work actually represents a first step toward a better understanding of the asymptotic
behavior of functionals of the kind (1.7) (or more complicated ones) that arise very often in
differential geometry.

To conclude this Introduction, let us go back to the case of the bifractional Brownian
motion X = B, and let us see what the conclusions of Theorems 1.2 and 1.3 become in
this case, when for f we choose the function f(x) = |x| — \/g Since, on one hand, the
bifractional Brownian motion defined by (1.13) satisfies (H.1) and (H.2) withae =28 =2HK
hand, one has ||A£§(t)||Lz(Q) ~ 2%81-11( as ¢ — 0 for any ¢ > 0, we
heorems 1.2 and 1.3 that:

1

en the family {g2 =X (L(B%; [0, t]) —E[L(B?; [0, t])]) : € > 0} converges
) to a Brownian motion with variance

2R & (29)! o 2
Z 22q—1q|2(2q _ 1)2 /_OO azuk (h)™ dh,
g=1 '

a pdfelement

The Trial Version

T

see also (1.18) and compare with claim (1.19);
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o if HK = E[E(Bg [0,¢])]) : € > O} converges
in law in C (R+) to a Brownian motlon with variance 27K x %;

e if HK > 3/4, then the family {¢/ K1 (L(B%;[0,t]) —E[L(B%; [0,1])]) : & > 0} converges
in law in C (R ) toward a stochastic process F, which lies in the second Wiener chaos.

The rest of the paper is organized as follows. Section 2 contains some preliminaries on
Maliavin calculus and a basic multivariate chaotic central limit theorem. The proof of Theo-
rem 1.1 is given in Section 3. Section 4 provides some useful properties satisfied by self-
similar processes X under assumptions (H.1) and (H.2) and contains the proof of Theo-
rem 1.2. The proof of Theorem 1.3 is then given in Section 5. Finally, Section 6 contains
some technical lemmas that are used along the paper.

Throughout the paper, C denotes a generic positive constant whose value may change from
line to line.

2. Preliminaries. In this section, we gather several preliminary results that will be used
for proving the main results of this paper.

2.1. Elements of Malliavin calculus. We assume that the reader is already familiar with
the classical concepts of Malliavin calculus as outlined, for example, in the three books [13—
15].

To be in a position to use Malliavin calculus to prove the results of our paper, we shall
adopt the following classical Hilbert space notation. Let £ be a real and separable Hilbert
space. Let X be an isonormal Gaussian process indexed by $ and defined on a probability
space (€2, F,P), thatis, X = {X (h), h € HH} is a family of jointly centered Gaussian random
variables satisfying E[X (h) X (g)] = (h, g)s for all h, g € §. We will also assume that F is
the o-field generated by X.

For integers g > 1, let $H%®4 denote the gth tensor product of $), and let %4 denote the
subspace of symmetric tensors of 9. Let {e,},>1 be a complete orthonormal system in £).
For functions f, g € $°9 and r € {1, ..., g} we define the rth-order contraction of f and g
as the element of $H®4=2") given by

[T ir=1

where f ® g = f ® g by definition and, if f, g € 9%, f ®, g = (/. g) %4

The gth Wiener chaos is the closed linear subspace of L?() that is generated by the
random variables {H, (X (h)),h € $, ||h|s; = 1}, where H, stands for the gth Hermite poly-
nomial. For g > 1, it is known that the map I, (h®7) = H, (X (h)) (h € f, k|l =1) provides
a linear isometry between $®9 (equipped with the modified norm +/q!|| - || #eq¢) and the gth
Wiener chaos. By convention, Ip(x) = x for all x € R.

It is well known that any F € L?(Q2) can be decomposed into Wiener chaos as follows:

F=E[F]+ ) I,(fy.
B pdfelement 7=t

©4¢ are uniquely determined by F.
For &' smoott lindrical random variable F = f(X(h1), ..., X (hy)), with h; € §
#Ad all of its partial derivatives are bounded) we define its Malliavin
derlvatlve as the $-valued random variable given by

n af
DF=)" ?(X(hl), ey X (h))h

i=1 !
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By iteration, one can define the kth derivative DX F as an element of L2($2; H®%). For any
natural number k and any real number p > 1, we define the Sobolev space D7 as the closure
of the space of smooth and cylindrical random variables with respect to the norm || - ||, ,
defined by

k
IFIE , =E(FIP) + > E(|D'Fge)-

i=1

The divergence operator ¢ is defined as the adjoint of the derivative operator D. An element
ueL?*Q:;9) belongs to the domain of §, denoted by Dom 4, if there is a constant c¢,, depend-
ing on u such that

[E(DF,u)5)| < cul Fll 2

for any F € D2, If u € Dom$§, then the random variable 8(u) is defined by the duality
relationship

(2.2) E(F8(u)) =E((DF,u)g),

which holds for any F € D2, In a similar way, we can introduce the iterated divergence
operator X for each integer k > 2, defined by the duality relationship

(2.3) E(F8*(u)) = E((D*F, U)gek):

for any F € DK2, where u € Dom 8K ¢ L2(2; $H%5).
The Ornstein—Uhlenbeck semigroup (7});=¢ is the semigroup of operators on L2(£2) de-
fined by

TF=Y e 1,(f,

q=0

if F admits the Wiener chaos expansion (2.1). Denote by L the infinitesimal generator of
(T)i=0 in L>(Q). Let L™ F = — Zf;ozl élq(fq) if F is given by (2.1).

The operators D, § and L satisfy the relationship L = —3§ D, which leads to the represen-
tation

(2.4) F=—-8DL7'F,

for any centered random variable F € L3().

Consider the isonormal Gaussian process X (h) = h indexed by $ = R, defined in the
probability space (R, B(R), y). We denote the corresponding Sobolev spaces of functions
by D%P(R, y). In this context, for any function g, we have Dg = g/, 8¢ = xg — g’ and
Lg=g" —xg' (see [13]). Let f € L*>(R, y) be a function of Hermite rank d, with expansion
(1.1). Let us introduce the function f; defined by a shift of d units in the coefficients, that is,

a pdfelement fa@) = cqHy—a().
q=d

The Trial Version

belongs to the Sobolev space D??(R, y). In fact, using that Hé (x) =
qH,1(x), we can write

190 =3 cqlg—d)g—d—1)--- (g —2d + 1)Hy—24(x)
q=2d
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and

o0

1A,y = Y Ela—d g —d— 1D (g —2d + 1)*(g — 2d)!
q=2d

o0

2.1
< Z 9! < oo.
q=2d

The function f; has the following representation in terms of the Malliavin operators:
2.6) fa=(=DL7)"f.
Indeed, using that H(; (x) =qHy_1(x), we have

—DL7'f= Z qH(x)_Zcq —1(x),

qd

and iterating d times this formula, we get (2.6). Formula (2.6) implies thatif f € L? (R, y) for
some p > 1, then f; € D®P(R, y), that is, fy is d-times weakly differentiable with deriva-
tives in L (R, ). In fact, by Meyer inequalities (see [14]), the operators D and (—L)!/? are
equivalent in L? (R, y) and we obtain, forany k=1, ...,d,

(k —1\d
1 £ 1oy = 1D I=DL™Y £l 1o sy
_ —1\d—1
=||Dk+1(—L 1)[(—DL 1) f]”LI’(]R,y)
fCp||(_L)(k_])/z(_DL_])d_lf”LP(R,)/)

_ _yd—1
5C;||Dk '[(=pL™) v @)

Iterating this inequality and taking into account that the operator —DL~! is bounded in
LP (R, y), we obtain

2.7 “f o ”LP(R y) = = 0(2) ”( DL_I)d_kf”LP(R,y) = Cg)”f”L”(R,y)-

2.2. Multivariate chaotic central limit theorem. Points 1 and 2 in Theorem 1.2 will be
obtained by checking that the assumptions of the following theorem are satisfied. We as-
sume that X is an isonormal Gaussian process indexed by §) defined on a probability space
(2, F,P), with F is the o-field generated by X.

THEOREM 2.1. Fix an integer p > 1, and let {G? : ¢ > 0} be a family of p-dimensional

vectors with components in L%(2) and centered. According to (2.1), we can write each com-
ponent G; of G° in the form

0
Z (8ig)-

ollowing conditions hold:

B pdfelement
The Trial Version .
,....plandeachq>1,0; j, = llmgﬁoq!(gf’q, gi’q);,)@q exists.
(b) Foreachiell,..., p}, 22021 Ojig < 0.
(c) For each i € {1,...,p}, each q > 2 and each r =1,...,q — 1, lim._,9 ||giq R,
gquf)@zq—zr =0.

(d) Foreachi€{l,..., p}, limy_ oo SUp.c(o 1 ZS’;NH q!llgiq ||%®2q =0.
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Then G° = (G§, ..., G;) converges in distribution to N,(0, X) as ¢ tends to zero, where
Y = (0i,j)1<i,j<p is defined by o; j = 22021 Oijq-

PROOF. This theorem is a multivariate counterpart of the chaotic central limit theorem
proved by Hu and Nualart in [8]. First, notice that, by the results of Nualart and Peccati
[16] and Peccati and Tudor [17], conditions (a) and (c) imply that, for any N > 1, the
family of random vectors (1,(g; ¢))1=<q<N.1<i<p converges in law to a centered Gaussian
vector (Z; ¢)1<q<N,1<i<p With covariance E[Z; ;Z; /] = 0i j 404 4. This implies that, for
each N > 1, the family of p-dimensional random vectors (Z;V:l I, (gi q))l <i<p converges
in law to the Gaussian distribution N, (0, xV), where =V = (Ui],\;)lsi, j<p 1s defined by

=N q=10i,j.q- Finally, conditions (b) and (d) and a simple triangular inequality allows
us to conclude the proof. [J

3. Proof of Theorem 1.1. Since the convergence in the sense of f.d.d. follows from the
classical Breuer—Major theorem (see, e.g., [1]), it remains to show that the family {Z, : ¢ > 0}
is tight. For this we need to show that for any 0 < s < ¢ and ¢ > 0 and for some p > 2, there
exists a constant C;, > 0 such that

”Zs(t) Zg (s)”LP(Q) <Cplt —S|1/2

To show this inequality, we will use an approach based on stochastic integral representations
and Meyer’s inequalities.

Let $ be the Hilbert space defined as the closure of the set of step functions with respect to
the scalar product (10,11, 1j0.s1) 5 = E[Y (s)Y (¢)], s, ¢ > 0. By identifying Y () with Y (1j0,11),
we can thus suppose that Y is an isonormal Gaussian process indexed by $) defined on a
probability space (€2, F, P). We will assume that F is generated by Y

The function f; introduced in (2.5) leads to the following representation of f (Y (u#)) as an
iterated divergence:

FY @) =8"(fa(¥ )15,
Indeed,

o0

F(Yw)= Z (Y () = Zcq 1‘[??“]

o o
d ®q—d\1Qd d ®d
= Z cq8* (14— (I[Oqu] o) =38 (Z cqHg—a (Y )1}’ u])
g=d
Then, using the continuity of 8¢, we obtain

t/e

”Ze(f) - Zs(s)”Lp(Q) = . f(Y(M)) du

LP(Q2)

B pdfelement

t/e
«/_ /;/ (fd(Y(u)) [0, u])

The Trial Version d

LP(Q)

t/e
/ Dy @) du

LP(Q;H®k+d)
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Using Minkowski and Holder inequalities, we can write, forany k =0, 1, ...,d,

Ry =\/¢

1/2

Loy HOO @) D0 @) 1010, 100005 ded
s/e,t]/e

k t/e pt/e dk 1/2
= ”fd( )”LP(R,V)(SfS/S /s/e lp(u —v)|** dudv) .

Using the assumptions of Theorem 1.1 as well as (2.7), we deduce that || f;k) lLr(w,y) is finite.
Finally, the change of variable (u, v) — (u, u + h) leads to

LP/2(Q)

t/e pt/e
ef Lo — )| dudv <@ - s)f o) dh < Ct —s),
s/e Js/e R

which provides the desired estimate.

4. Proof of Theorem 1.2. In this section, X will be a self-similar Gaussian process with
covariance (1.20). The proof of Theorem 1.2 is quite technical and is divided into two parts:
(i) the proof of convergence of the finite-dimensional distributions (see Sections 4.2 and 4.3,
corresponding to the two cases @« <2 — 1/¢q and ¢ =2 — 1/¢) and (ii) the proof of tightness
of the sequence (see Section 4.4). In order to prove convergence of finite-dimensional dis-
tributions, we will need three technical lemmas which provide information on the variance
and covariance of X under Hypotheses (H.1) and (H.2). They are stated next in Section 4.1.
Further technical lemmas, used in Sections 4.1, 4.2 and 4.3 are proved in Section 6.

4.1. A few useful properties satisfied by X. The first lemma give the structure of the
variance of an increment of length one, assuming Hypothesis (H.1).

LEMMA 4.1. Assuming (H.1), there exists a continuous function u : (0, 00) = R such
that for s > 0

E[(X (s + 1) — X (s))*] = 2452 (1 + u) (5)).
Furthermore, given n > 0, there exists a positive constant Cy, such that for all s > n one has

l—a ifa<l,

=
4.1) lui(s)] < Cps™! wher651={2_a —

PROOF. If s > 1, the assertion follows from [7], Lemma 3.1. Let us now assume that
0 < s < 1. Proceeding as in the proof of [7], Lemma 3.1, we get that

E[(X(s + 1) — X(5))’]

26— 28 28 2B 1+‘% /
=202 Ly (1D)((s + 1) —52P) — 25 /1 vi(y)dy

T pdfelement  CadiERRON
The Trial Version
141
ui(s) = QA Y (D) ((s + D —s2P) — 2715 f1 v'(y)dy.

Then the bound (4.1) for n < s < 1 follows immediately from the fact that u(s) is bounded
forn<s<1. O
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In the next two lemmas, we will show formulas and estimates for the covariance E[(X (r +
1) — X(@)(X(s + 1) — X(s))] in two different situations. First, we will assume Hypothesis
(H.1) and consider the case where |t — s| < M (s At) + M, for some constants M and M>,
and the second lemma will handle the case |t — s| > (¢ — 1)(s A t) + ¢ under Hypotheses
(H.1) and (H.2), where c is the constant appearing in (H.2).

LEMMA 4.2. Assume (H.1) and let n > 0. Then, for all s,t > n satisfying n <|s —t| <
Mi(s A t) + M> for some positive constants My, M», it holds that

E[(X(t+1) = X)) (X(s+1) = X(5))] =A(s A1)P7%(2ay (s — 1) + ua(s, 1)),

where ay (h) is the function defined in (1.10) and u, : [0, 00)? — R is a continuous function
satisfying the bounds

(4.2) lua(s, )| < C(sAD s =11 T+ s A2 ifls—t]> 1
and
(4.3) lua(s, )| < C((s AD* Mpgery + (S AD* P igz1y) i ls — 1] < L.

PROOF. Assume without loss of generality that r > s, so that t = s + & for some 2 > 0.
Then the assertion becomes

E[(X(s+h+1)—X(s+h))(X(s+1)—X())]
= 5P\ 2aq (h) + uz(s, s +h)),
where u, (s, s + h) satisfies the bounds
(4.4) luzr(s,s +h)| < C(s™ h* 1 +5972)
for all s, h suchthats > nand 1 <h < Ms + M, and
(4.5) lua(s,s +h)| < C(s* Mygary + 5% 1ia=1y)

for all s, h suchthats >npandn <h < 1.
Let us first show the claim (4.5). In this case,

E[(X(s+h+1D)—X(s+n)(X(s+1)—X()]

1 1
— (s + 1)2%(%) ~ s+ h)z%(%)

_s2ﬂ¢<s+iz+1)+s25¢(s+h)

N

IS (TSSO, 1) — (s ) (= ) — 2 D 5

The Trial Version 28 s+h+ 1) 28 <S + 1)
1 SELLEELS By ) S
) W( s+1 (s =)™y s+h

(o2

N

=527 (2hay (h) + uz(s, s + h)),
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where

ur(s,s + h)

R O (S L (B e
(2 (o)) 15
() (o)

S R () (1) e et

For the first part on the right-hand side, we have, using the mean value theorem,

(R (3 A T

<C(s '+ s/~ —h)*) < Cs7!

and we obtain the desired inequality.

For v(s, h), we first treat the case o < 1. In this case, it follows straightforwardly from
the mean value theorem that |v(s, k)| < Cs~!, which yields s%|v(s, h)] < Cs*~!. In the case
o > 1, a Taylor expansion in s ! around 0 yields that

v(s, h)
(oo )05
Sw(1 ) (1)
(rrntro{B)(porevin - of)
~(1e287 4 0() ) (pw v o)

—wn—waﬂii—O()

+1//(1)+1//’(1);+0<s—2)
I h o, 1—h h
=y 28— +y (- -y (H)—— — ¥ (12—
S S S S
h+1 h 1
- il i
pdfelement [k +1/’(1)S+0(s2>

The Trial Version , 1 1
m(BY (1) — ¢ (D); + O(s_2)

-of)

where we have used that B (1) = ¥'(1) to derive the last equality. This yields (4.5).
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Let us now show the claim (4.4). In this case, we have
E[(X(s+h+1D)—X(s+h)(X(s+1)—X()]

= (s + 1)2ﬂ(¢<s;rj:71+1> —d’(zi}f))
_S25¢<S+h—+1) 2ﬂ¢<s+h>
N

—A((s + P70 — (h — D%) — s7((h 4+ DY — h%))

s (v(57) - (55))
—szﬂ(lﬁ(s+h+1> <S+h>)
N

= g2« (2rag (h) + ua(s, s + h)),

ur(s, s +h) = (1 - (1 + %)Zﬂa)(h“ —(h—1)%)
+s“(<1+l>2ﬁ<¢<l+sf_l) —w<1+%))
—w(1+hsil) +1//(1+?>)

(1o Yo

By the mean value theorem, we have that

(1 _ (1 + %)Zﬂ_“)(h“ —(h—1))

which gives the desired estimate. Furthermore,

w(s, h) = (1+§)2ﬁ(w(1+%) ‘W(H ?:))
_¢(1+$)+w(1+§)

1N\ s e
=(1+4) [ w/(1+y>dy—/& WL+ y)dy

s+1

- ((1 + %)zﬁ - 1) s v (14 y)dy

s+1

where

< CS_lha_l,

||
pdfelement + / W1+ y)dy — f 4 dy
s+1

1 2p s+1
:((14—;) —1) v'(1+y)dy

s+1

The Trial Version

+/ (+?+y>dy /1;¢/<1+?+y>dy
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h

1\?# =)
=<(1+—> —1) ., V(A +y)dy
N

s+1
1

+/Om<1/f (1+h+—:+y> zp/(1+g+y>)dy

1

s, h
X/1 W 1+;+y dy.

s+1

Therefore, using the bounds on the derivatives of ¢ given by (H.1) and the fact that & <
Mis + M,, we get that

lw(s, h)| < C(s™2 s~ 17@peh,
This completes the proof. []

If X is fBm with Hurst parameter H € (0, 1), we have that
E[((Xt+1)—X®)(Xs+1) —X(s))]=au(s —1).

Therefore, heuristically speaking, Lemma 4.2 expresses that a process X satisfying (H.1) is
a “perturbed” fBm with Hurst parameter 8 = /2.

For later reference, let us record here that the function a, defined in (1.10) has the asymp-
totics

1
(4.6) o () = Ser(et = DIA1*72 +o(1h]*7?)
as |h| — oo. In particular, if |h| > n, there exists a constant C), such that
(4.7) lae ()| < Cylh|*~2.

Hypothesis (H.2) implies the following bound for the covariance.

LEMMA 4.3. Lets,t > 0suchthats ANt >n>0and|s —t|> (c—1)(s At) +c, where
c is the constant appearing in hypothesis (H.2). Then, assuming (H.2), there exists a constant
C, > 0 (not depending on s or t), such that

E[(X(s + 1) — X(©)(X(t+1) = X(©®))]|

(4.8) s SADPT 2 — 17 ifa <,
(s ADP s — 1172 ifa>1,

and the exponent v is defined in hypothesis (H.2).

PROOF. Without loss of generality, we assume that s > ¢ so that |t —s| > (c— 1)s At +c
translates into s > c¢(¢ + 1). As s > ¢, we have by self-similarity that

— X)X+ —X®)]

RO () ()~ (s(=1)) ()
= (1 + 1)2 — 2 ((Hl) <fi1>)
P (o) o) () ()

B pdfelement

=
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As s > c(t + 1), we have that s /(¢ + 1) > ¢ and, therefore, by (H.2), for each x € [ =2~ ”1]

t+1° t+1
(4.9) g’ <C -0 o<1,
' TP -0 ifax1,
and, for each x € [, st
s = ifa<1
4.10 "wl=<cC ’
(4.10) ")) = {t3‘°‘(s—t)°‘_3 ifa > 1.

This yields the assertion, as by the mean value theorem,

o(557) () = o

and
¢<s+ 1) ¢( s ) ¢<s—|— 1) +¢<s>
t+1 t+1 t t
= t—l——ld) (x2) — —¢ (x3)
= (@) )+ (L ~ o)
t + r+1 t
=T 1(xz —x3)¢" (xa) —
where the x; are some appropriate values in the correct intervals for (4.9) and (4.10) to hold.

O

We can now proceed to the proof of Theorem 1.2. In this section, $) will denote the Hilbert
space defined as the closure of the set of step functions with respect to the scalar product
(11011, L10.s1) 5 = E[X (s)X (¢)], s, t > 0 and, as before, we can consider that X as an isonor-
mal Gaussian process indexed by §), and defined on a probability space (€2, F, P). We will
assume that JF is generated by X.

First, we will prove the convergence of the finite dimensional distributions of F;, sepa-
rately in the two cases o <2 — % andoa =2 — é and later we will show tightness.

4.2. Convergence of finite-dimensional distributions: The case o < 2 — é. Fix an in-
teger p > 2, choose times 0 < #; < --- <, < 00, and consider the random vector G* =
(Fe(t1), ..., Fe(tp)), where F; has been defined in (1.23). We will make use of the notation

=X+ 1D —=XO] 12
and
®(s,) =E[N1(s)V1()] =& '& 'E[A 1 X () A1 X (1))
. pdfelement sion of Fy(t) is given by

The Trial Version

Fe(t)=")_ I4(gf )

g=d

where, for each ¢t > 0,

t/e
gf’q = cqﬁ/() £790% du,
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and 09, = 1y ,+17- We will denote by F, (1) = I, (gf’q) the projection of F¢(¢) on the gth
Wiener chaos. Using the relation between multiple stochastic integrals and Hermite polyno-
mials, we can write

E(Hy (Y1) Hy (Y1(0))) = E(I4 (37714 (857))
= (0,7, 9°7) = (3, 8)7
=(E(Y1(w)Y1(v)))? = d9(u, v),
so that

t 8
E[F,e()Fy ()] =c 8/ / Hy(Y1(u))Hy (Y1(v))]dudv
(4.13)

t/e
_cqq's/ ®7(u, v)dudv.
0 0

We are now going to check that assumptions (a), (b), (c) and (d) of Theorem 2.1 are
satisfied by the family of p-dimensional vectors G?.

Proof of condition (a). Lemma 6.3 implies that, for every q > d and for every i, j €
{1,..., p}, q! (gtl q,gt q>ﬁ®q — aaq(t, Atj) as € — 0, where o 1s given by (6.18).

Proof of condition (b). This is straightforward.

Proof of condition (c). We have to show thatforr =1,2,...,g — 1 and forall T > 0,

(4.14) lim g% 4 ®: 874 [5020- = 0.

Using the notation (4.11), we see that
T/e T/e
87,4 ®r 8i, =, ef / (3. 85989 @ 82 ds dr

T/e pT/e o B
=cge / fo £ UTET T (5,09 @07 ds dr.

Therefore,

”g?,q ®r g;",q ||,%’_)®2(q—r>
(4.15)

=g [ @ )T (s DT () dsdrdldm.
0.T/e)

We claim that

T/e pT/e
(4.16) supe/ / |®4 (s, 1)|dsdt <C,
0 0

e>0

where C is some constant not depending on ¢ or €. Taking into account that | D (s, 7)| <1, it

T/e rT]/e
pdfelement supsf f |®9 (s, )| ds dt < oc.
o Jo

e>0

The Trial Version

it suffices to show that
T/e pTJe
sups/ / lad(s —1)|dsdt < o0,
e>0 JO 0

which is an immediate consequence of (4.7) and the fact that o« <2 — 3
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Let us write the integration domain (0, 7'/¢)* in the form U?Zl D;, where
Dy ={(s,t,[,m) € (0, T/e)*:|s —t| > (c — (s A1) +c},
Dy ={(s,t,1,m) € (0, T/e)* |l —m| > (c— 1)1 Am) +c},
Dy={(s,t,1,m) € (0, T/e)*:|s — 1| > (c — (s Al) +c},

Dy={(s,t,1,m) € (0, T/e)*: |t —m| > (c — 1)(t Am) +c).

We claim that the integral over any of the sets D; converges to zero. By Holder’s inequality,
we have for nonnegative functions f1, f2, f3, f4 and real numbers x; < y; fori =1, 2, 3,4
that

& fy / y / y / y Fils. 0) folom) f3(s. 1) fale. m) ds dr dldm

Yo r/q Y3 [fy4 r/q
< (8/ fi (s,t)"/’) (8/ / fz(l,m)q/’)
X1 X2 X3 JX4

yIo[ry3 (g—r)/q Y2 [ Y4 (g—r)/q
% <8/ f3(s,t)q/(q_r)> (8/ f4(s,t)q/(q_r)) )
X X

1 X3 2 X4
The above inequality, together with (4.16) and Lemmas 6.1 and 6.3, implies that the integral
over |Jj_; D; converges to zero. It therefore suffices to consider the integral over (_, D¢.
Using the decompositions,
q)r(sa t) = ROl,r(Sa t) + (l(;(s, t)
and
D1 (s, 1) = Raq—r (s, 1) +al ™" (s, 1)

provided by Lemma 6.2, and applying the above Holder inequality and Lemma 6.2 with
M| =c—1and My = c, yields

. & & 2 1 4.2 r — r —
gh_I)%HgT,q Qr gT,q”jﬁ@z(q*V)—gl_r)%cqg /ﬂ?=1 l_ca“(t $)ag(m —1)

xal™"(l —s)al™" (m —t)dsdtdldm.
It thus suffices to show that

lim &2 /(0’2)4|a;(t —s)al,(m —Dad ™" (I — s)al™" (m —1)| dsdt dl dm = 0.

e—>0

As ay is the covariance function of a fractional Brownian motion with Hurst parameter «/2,
this follows from the results in Breton—Nourdin [2] or Darses—Nourdin—Nualart [5].
Proof of condition (d). We have to show that, for each T > 0,

o
lim sup 3 gl g5 |30

N—o00

8>0q=N+1
i T/e pT/e
:Nlim sup Z céq!e/ @9 (s,t)dsdt =0.
— 00 0 0 0
B pdfelement Tha=NA
> g =1f1%, < 00, this follows from (4.16).
The Trial Version q q L*(R,y)
a)—(d) are verified, it follows that the random vector (G*(t1), ..., G*(tp))

fibution, as ¢ tends to zero, to N,(0, X), where ¥ = (0; j)1<i,j<p is the

matrix given by

0i,j = O‘z(li A l‘j).
Here, o2 is given by (1.3) with p(h) = ay(h) defined in (1.10). This completes the proof.
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4.3. Convergence of finite-dimensional distributions: The case a« = 2 — 5. Fix an in-
teger p > 2, choose times 0 < | < --- <1, < 00, and consider the random vector G® =
(Fe(t1)/+/1logel, ..., Fe(tp)/+/Ilogel), where F; has been defined in (1.23). As before, we
need to show that assumptions (a), (b), (c) and (d) of Theorem 2.1 are satisfied by the family
of p-dimensional vectors G°.

Condition (a) follows from Lemma 6.3, with o; j 4 = 012_2 Jd (ti Atj) and o j 4 = 0 for
g > d. Condition (b) is obvious. In order to show conditions (c) and (d), let us first remark
that (4.16) is replaced here by

e T/e pT/e
(4.17) sup / / |4 (s, 1)|ds dt < C,
e>0 |logel Jo 0

which follows from Lemmas 6.1 and 6.2, and the fact that

T/e pT/e C T/e (T/e
£ / / lad(s —1)|dsdt < ° / / It —s| ™ dsdt < oo.
[loge| Jo 0 |loge| Jo 0

By the same arguments as in the case o <2 — %, condition (c) reduces to show that for any
r=1,...,qg —1,
2

gli_% (loge)? /(O’T/g)4 a,,(t —s)ay,(m —Dal™" (I —s)al™" (m —t)dsdtdldm =0,

and again this follows from the analogous result for the fractional Brownian motion. Finally,
condition (d) is a consequence of (4.17).

4.4. Proof of tightness. Suppose first that o < 2 — %. It suffices to show that for any
0 <s <t and ¢ > 0, there exists a constant C, > 0 such that

| Fe () = Fe()]| oy < Cplt — 51"/

To show this inequality, we will follow the methodology developed in the proof of Theo-
rem 1.1. The starting point of the proof is the following representation of f(Y1(u#)) as an
iterated divergence:

F(ri@) =84 (fa(viw)&; “02?).

Then using Meyer’s inequalities, we obtain

t/e
10 = Foo)l Loy = VE| [ )

LP(S)

t/e
/ SN @) o) du

=./¢
LP(Q)
d ek —d®d
<cp Y e / D*(fa(Y1 ())&, “0%) du
=0 s/e LP (2:9%)
d
=:cp Z Ry.
a pdfelement k=0
\ ‘ older inequalities, we can write for any k =0, 1,...,d,
The Trial Version
d+k 172
(k) (k) (0w, 0v) &
70 ) A0 ) (P2 ) dudo
[s/et/e? " ( Ma( ) Euéy LP/2(Q)

k t/e rt/e 1/2
= “fd( )HLP(R’V)<8fs/e /S/E |¢d+k(u,v)|dudv> ,
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where ® (u, v) has been defined in (4.11). From the assumptions of Theorem 1.1 and (2.7), it
follows that the quantity || fd(d) lLr(R,y) is finite. Then it suffices to show that forall 0 <s <t

t/e pt/e
(4.18) A, :=sf (& (u, v)|dudv <t —s.
s/e Js/e

In order to show (4.18), notice first that on the region where u < M, v <M or |[u —v| <M,
we obtain the bound C M (t — s). Therefore, it suffices to consider the integral over the region

Doy = {(u,v) €[s/e,t/e]* N[M,00)?: |u —v| > M}.

We denote the corresponding term by

As 228/ (&9 (u, v)| dudv.
Ds,M

We are going to use two different estimates for |<I>d (u, v)|. First, on the region {(u,v) €
Dep:lu—v| <(c—1)(s At)+c}, using Lemmas 4.1 and 4.2, we have for large M,

1
24(1 4+ w1 ()4 (1 +uy(u+ h))4

uNv (ﬂ_%)d
x < > (ag (Ju — v]) + ua(u, v))*
UV

% (u,v) =

< Clu —v|@™21,
Second, on the region {(u, v) € De pr: lu — v| > (¢ — 1)(s A t) + ¢}, using this time Lemmas
4.1 and 4.3, we can write, again for large M,
Cu
(I 4+ w1 ()d +uy(u + h))4
X (A v)OT =Dy — ™1y 4 Ju — 0|9 P )

v|(a—2)d'

D9 (u, v)| < 5d

<Clu—

These estimates and the change of variable (1, v) — (u,u + h) lead to
~ o
A, <C( —s)/ h@=24d gp,
M

Under the condition o < 2 — %, the integral [y, h(@=22d gj is finite and we obtain the desired
estimate.

Suppose now that o =2 — 5. We claim that for any 0 <s < ¢ and ¢ € (0, 1), there exists a
constant C;, > 0 such that

|Fe(t) = Fo($)]| 1oy < Cplt — 5172

1
\/|10g8||

gous to the case o <2 — 1 and can be completed using the estimate

a pdfelement 1 e\
sup ———— < Q.
The Trial Version 56(01,)1) «/|loge| <fM )

5. Proof of Theorem 1.3. Recall the definition of fg given by (1.22). Denote E =
gl/2=d(—e/D F and let ﬁq,g be the projection of F, on the gth Wiener chaos. Note that by
assumption, the exponent 1/2 — d(1 — «/2) is positive. As in the proof of Theorem 1.2, we
are again first proving convergence of finite-dimensional distributions and then tightness.
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5.1. Convergence of finite-dimensional distributions. We will show for s, ¢ > 0 that

ciKy(s,t) ifqg=d,

S.D hm IE[ q, S(S)Fq s@)]= 0 itg>d

where K, (s, t) has been defined in (1.25), and also that

(5.2) hm lim sup Z qvg(t)z] =

N—oo .0 g=N

Then (5.1) for g = d implies that for every sequence &, — 0, and for each 7 > 0, the sequence
of random variables Fq ¢, (1) 1s a Cauchy sequence in L%(Q). Therefore, Fd ¢ (t) converges in
L2(2) as ¢ tends to zero to ¢g Hoo(t), where Hoo (1) is the generalized Hermite process with
covariance given by (1.25). Also, for g > d, Fq e converges to zero in L2(), as ¢ tends to
zero. Together with (5.2), this implies that for any ¢ > 0, F (t) converges in L3(),as e tends
to zero, to ¢y Hxo (t). As a consequence, the finite-dimensional distributions of the process F,
converge in law to those of the process ¢y Hso. This is also true for the finite-dimensional
distributions of the process gl/2—d(—a/) p pecause this process has the same law as fg.
We now proceed to the proof of (5.1) and (5.2). Taking into account that (see (4.12))

Fye(t)=cpe 1—->/ [2eX )| 5 )1 G0 o) du,
we can write
E[Fy.«(5)Fy 5 ()] = c2q1(e8) 101~ 2>[ / 7 s (u, v) dudv,

where
E[(X(u+¢&) — X)) (X (v+8) — X)(v)]
VE[(X (1 + &) — X@)?E[(X (v + 8) — X (v))?]

Assuming ¢ > ¢, consider the decomposition

- t ot
E[Fq,s(t)2]=cgq!8d(a_2)/o /0 o7 (u,v)dudv

(5.3) D, 5(u, v) =

:céq!sd("‘_z)/ @ (u,v)dudv

[0,£12N{unv<e}
t t
2 d(a—2
+cogqle™ >/€ /g @4, (u,v)dudv.

Then, using the bound (6.23) and the fact that |®, (u, v)| < 1, we can write for any g >
q* >dsuchthato > 2 — =,

o~

L] < clqlte! T 4 Cclgle@ D

m pdfelement x / t / (v 0E 2wy P dudv.

The Trial Version

ppearing in the right-hand side of the above equation is finite because
5 and (@ — 2)g* > —1. As a consequence, if ¢ > d we can

choose ¢* > d witha > 2 — ql* and we obtain

hrn E[ qg(t) ]
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Furthermore, the estimate (5.4) also implies

(5.5) sup supE[ g.6(1) A < Ccsq!,
e€(0,1)g>d

which allows us to establish (5.2) because the series ) 02 q=d qq' 1s convergent.
It remains to show (5.1) for ¢ =d. For any ¢ > 0, we define

=) ®
Fy () =cae™ 2)/ lAe X(”)”L2(sz) (l[uqu—l—g])d
and 1/7\‘528) (t)= fd,g(t) — 1"7\513 (). It is easy to show that
: (1) N2
lim E|F =
SE;% [ d,s(t) ]
Therefore,
: 2 i BT 72 T2
Jim E[Fy.o(9)Fas] = lim E[F7) O F50].
We can write
(5.6) E[Fy2(s) 4 ()] _cdd'f / ((e8) 7 @y 5 (u, )" du dv.

By Lemma 6.5, we have that

Ky t
lim / /((88)“/2_1¢8,5(u,v))ddudv
)

8,8—)0 &

S t
_ / / ((1im ()%, 5. v)) dudv
0 JO

£,6—0

S (10 vE[X(“)X(v)]
= / / : dudv,
o Jo 21 (uv)f-o/2
where the interchange of integration and limit is justified by the bound (6.23), which yields

an integrable bound since we have d(a¢ — 2) > —1. This completes the proof of (5.1) and
(5.2).

5.2. Tightness. To show tightness, it suffices to estimate the moment of order two of an
increment. We can write, for s <t,

E[}fg(s) F(t)| gdla— Z)Zc q! / / DY (u,v)dudv

t t
< (Z céq!)ed(“_z)/s '/s‘ ¢, (u, v)| dudv.

If we mtegrate on the set where at least one of the variables is less than &, using Holder’s
Ae gaabtain the bound

_ d(@—2)+-- 1+-L
B pdfclement G fR 151 )1j0,e1 ) du < Ce™ ¥ (1 — 5)! ¥ 2
The Trial Version 2 = 1. Choosing p; =1/(d(2 — «)) > 1, we obtain a bound of the form
Notice that 2 —d(2 —a) > 1.
On the other hand, if both variables are larger than ¢, we can use the estimate (6.23) and
we obtain the bound

t t
a—2 —B+%\d
Cfs L((MVU) (uv) 2)%dudv.
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Making the change of variables (u,v) — (s + x(t —s),s + y(t — s), the above integral can
be bounded by

1,1 o
C(t — 5)2HdCa—p-2) / / (v 2000 P ) dxdy
0 Jo
and again we obtain the desired estimate because

24+dRa—B—-2)>24+dQRa—-3)>d=>1.
6. Technical lemmas.

6.1. Lemmas for the case « <2 — 1/q. Define

£ fa<2—-1/q,
(6.1) Gug(e) = | /a
e/|loge|l ifa=2-1/q.
LEMMA 6.1. Assume (H.1) and (H.2). Ifa« <2 —1/q, then for any T > 0,
T/e pT/e
(6.2) lin}) (pa,q(s)/ / 1p,(s, )| @9 (s, 1)|dsdt =0
E—> 0 0
and
T/e pT]/e
(6.3) lirr(l)(pa,q(s)/ / 1p,(s,0)|ed(s —t)|dsdt =0,
E—> 0 0

where ® and a,, are defined by (4.11) and (1.10), respectively, the set D> contains all tuples
(s,t) € Ri such that |s —t| > (c — 1)(s At) + ¢, and c is the constant appearing in (H.2).

PROOF. The second statement (6.3) is a special case of (6.2) as ®(s,1) = a,(s — 1)
when X is a fractional Brownian motion. Indeed, as in this case E((A; X (£))?) = 1 (recall
that A1 X(t) =X+ 1) — X(¢)), we have A1Y = A1 X and, therefore,

®(s, 1) =E(A Y () A Y (1) = E(A1X () A1 X (1)) = ag(s —1).

Consequently, it suffices to show (6.2).
Note that for all € € (0, 1),

T/e rpT/e
/ f 14,(s,t)dsdt < Crde™!,
0 0

where A; contains all tuples (s, ¢) such that at least one of the variables s and ¢ is bounded
by &. Together with the fact that |® (s, 7)| < 1, we get that

T/e pT/e
(pa,q(s)/ f 14,(s, 1)|®9 (s, 1)|dsdt < Cré
0 0

suffices to show that
a pdfelement

T/e pT/e
The Trial Version ’q(S)/O /O lDzﬂAg(S’t)‘ch(s’t)‘det:O‘

By symmetry, 1t suifices to consider the integral over the set {# < s}, meaning that we are
eventually left to show that

T/e pT/e
lirr%)goa,q(e)/ / 1p, (s, )| @9 (s, 1)|dsdt =0,
E—> 0 0 ’
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where D, 5 = Dy N A§ N {t < s} contains all tuples (s, t) which are elements of D; and such
that s > ¢ > §. Then we can apply Lemma 4.3 and obtain that

E[(X(s+1)—X®))(Xe+1D—X@)]|
PG -7V ifa <,
=Cs P45 — 2 ifa>1,

where C;s is a positive constant depending on §.
Moreover, we claim that

(6.4) inf (14ui(s))=bs>0.

§<s<00

In fact, for any s > 0 we have E[(X(s + 1) — X (5))?] > O (this is a consequence of the
self-similarity property) and the map s — E[(X(s +1) — X (s))?] is continuous. Then (6.4)
follows from the fact that that 1 4+ u(s) is a strictly positive continuous function on [§, 00),
which is bounded by 1 + K| 55791 with §; > 0, for s large enough, and for some constant K,
by Lemma 4.1. Notice that u(s) may blow up at zero if « < 2. Therefore, we obtain

s -7 ifa <,

d(s,1)| < Csb; !
@65, 0] = Csbs {(s—t)"“2 ifa>1.

If o <2 —1/q, we then get that
T/e pTJ/e
/ / 1p,,(s,0)|®%(s, 1)|ds dt < Csby 'e~@=2472
0 0 '
and the assertion follows as

g% 8_(a_2)q_2§0a,q () =0.

Inthe case« =2 — 1/g > 1, we obtain

T/e T/e
/ / 1p,,(s,0)|®% (s, 1)|dsdt < Cshy 'e™",
0 0 ’
and again

lim &~ =0.
sg%g (pa,q(g) O

LEMMA 6.2. Leta <2 —1/q, assume (H.1) and (H.2) and, forr =1,2, ..., q, define

(65) Rot,r(s,t):q)r(sst)_a(;(s_t)’
where ® and a,, are defined by (4.11) and (1.10), respectively. Then, for all M1, M> > 0, it
holds that

T/e pT/e a/r
1 0ug(® [ [ Loy 60| Ra s 0)[* ds i =0

a pdfelement o
.M, 1s given by
The Trial Version

Dy, = {(s,1) eR?: |s —t] < My(s A1) + Ma).

PROOF. From (6.5), we see that

(6.8) sup | Rar (5. 0)| < Cug

(s,)€Dm;, M,
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Indeed, by the Cauchy—Schwarz inequality |® (s, ¢)| < 1 and, by (4.6), |aq(s — )| < Cy. Also
note that for § > 0,

T/e pT/e
(6.9) f / 1p,(s,t)dsdt < Crné,
0 0

where Ds consists of all tuples (s, t) € R%r such that at least one of the quantities s, ¢, |s — |
is less than &, and Cr is some positive constant. The bounds (6.8) and (6.9) now yield that

T/E T/E /r
§0a,q(8)/0 /(; ngﬂDMI,MZ(S,t)|Ra,r(S,t)|q dsdt < Cé

for all § > 0. Also, by symmetry it suffices to consider the integral over the set {(s,?) €
Dy, s < t}. It therefore suffices to prove that

T/e rpT]/e
(6.10) 1m0 ©) [ [ Vg s 0| Rer 5, 0]/ s i =0,
e—>0 0 0 M2 ’
where
Dy mys ={(s,0):8<s<t,8§<t—s5<Mis+ M}.
For (s,t) € Dy, m,,5, Lemmas 4.1 and 4.2 apply and yield that

s)(ﬂ—ot/Z)r -

0= (? (14 u1 () 2(1 4+ ur (1))"72

(2aq(t — s) +ua(s, 1))"

(B—a/2)r
_ (;) (14 u1()) (1 +ur )™

x <aa(t )+ Y (:,) ot — )" 27 us (s, t)”).
r'=1

Therefore, we have that

3
Rtx,r(s’t) = CDr(s,t) _a:;(s —t) = ZRtx,r,l(s’t),
=1

where

(B—a/2)r
s) (14 u1)) (1 +ua (1)) > = 1)

Ra,r,l(sv t) = (;

X (ag(t —s) + 27 Uy (s, ),

g\ (B—a/Dr
Ra,r,Z(S, t)= ((;) — 1>Cla(f —s),

B—a/2)r T / ’ ’
=(3) T X () et =2 Gy

! r'=1

a pdfelement

' ‘ T/e prt
The Trial Version (8)/0 /0 IDMI,MZ,S(S’IMR%VJ(S’t)|q/rdsdt:0

for [ =1, 2, 3. This then implies (6.10) as

3
‘Ra,r(sa t)‘q/r = 312327(3|Ra,r,1(sa t)|Q/r <3 Z’Ra,r,l(s» t)‘q/r‘
e =1
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If not otherwise specified, all formulas proved throughout the rest of this section are only
claimed to be valid for (s, t) € Dy, m,,5. Furthermore, C in the following denotes a generic
positive constant which may change from line to line and might depend on é. Dependence on
variables is indicated as parameters. Notice that on the set Dy, u,,5 one has

oM 1 M
L 2 s> 22,

t—s s M

(6.12)

Let us begin by treating Ry, 1. By Lemma 4.1, we know that for some positive constant
Cs only depending on 4, it holds that

(6.13) |ui(s)] < Ces™1 and  |uy(1)] < Cot ™

withd)=1—aifa <1,6i =2 —«a if « > 1. The bound (6.13) and the mean value theorem
imply that

(6.14) (14 u1 () 21+ ur )77 =1 < C(Jur(s)| + [ur(0)]) < Cs 7.

Furthermore, taking into account the bounds (4.7), (4.2) and (4.3), we can write
lag(t —s) + 27 un(s, 1)
(6.15) <C((t =)@ 4 (5@ 57t — ) @Iy
+ (s any + 54T oz 1) Ly <1y)-
The bounds (6.14) and (6.15), together with (6.12), thus yield
|Rer1 (5, D)7 < C((t — 5)@ D=7
+ (s(a—Z)q—%él + S—q—%tsl (t — S)(Ol—l)q—%& | PP
-4 —g—4

(s gy s ) gy

and therefore, after a straightforward calculation,

" (5. )| Ryt (5, 1)| " ds dt < Ce~@~Da+701-2
0 0 DMI*MZ’B ’ C{,r,] ’ —_ .

Notice that (¢ —2)g — £8; + 2 < 1 — 48, with equality only if & =2 — 1/4. Therefore,
taking into account that 0 < §; < 1, we obtain for ¢ < 1,
<erh ifao<2-1/q,

—(@-2)g+18,-2
g)e r 1
Yaq () eP ifa=2—1/q.

" [loge]
This shows (6.11) for/ =1.
Let us turn to Ry 2. We can write, using (4.7),

N (5, )| Rora(s, 0)|*" ds di
() 0 DMI'MZ"S ’ (x,r,2 ’

T/e pt g\ B—a/Dr\q/r (@2
" pdfelement /()IDM1=M2v5(S’t)(1_<;> ) (t — )@ P dsar.

e of variables s = x/e and t = y/¢, the integral in the right-hand side of
ty can be written as

T pry x\ B—a/Dr\q/r
8_(Ol—2)q—2/ / 1 8~ s~ <M My (1 - (_) )
o Jo (E=x<y.gsy—x=Mix+-=} y

x (y —x) ™29 dx dy.

The Trial Version
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T py (B—a/2)r\q/r
/ / (1 — (f) ) (y —x) 2 dxdy < co.
0 JO y

Indeed, with the change of variables x = zy, we obtain

T ry B—a/2)r\q/r
LG v
o Jo y

T 1
:/ f (1 — 7 B=a/Dryalr (| _ y@=Day @24+, gy < o0,
o Jo

We claim that

Finally, this shows (6.11) for/ =2 as s_(“_l)q_zgoa,q(e) converges to zero as € — 0.
It remains to study Ry g4 3. In this case, using (4.7) and the bounds (4.2) and (4.3) for u5,
we get that

laa (s — 1) " ua(s, 1) |4"
<C(t— s)(a—Z)q(r—r/)/r

(s g g ) @Dy

+ (@D gy + 5@ ) L <y).

Therefore, |Ry.,3(s, t)|7/” is also bounded by the above quantity, after a tedious but straight-
forward calculation, leads to

/T/s/t1 (5, )| Rap3(s. )[4/ ds dt
0 0 DMlyMz’g ’ Ol,}",3 ’

< C({logale G- /r=1 y sC-0a-2)
Noting that (¢ — 2)gr'/r +1 <1 —17r'/r <1, we obtain (6.11) for / = 3, completing the
proof. [

LEMMA 6.3. In the setting introduced above, let s, t > 0 and let q be a positive integer.
Recall that F¢(t) has been introduced in (4.12) and that we denote by F (t) the projection

of F¢(t) on the qth Wiener chaos for any q > d. Assume (H.1) and (H.2). Then, for« <2 — é,
it holds that

(6.16) lim E[Fy.e(s)Fqe(t)] =0q (s AD),

and, fora =2 — é, it holds that

(6.17)

2
gg% |10g8|E[Fq’8(S)Fq’8(t)] = 02_1/q(s AN t),

B pdfelement 0p, =Clq! /R ag (h) dh

The Trial Version 1.24), ifa =2—1/q.

PROOF. Recall the definition (6.1) of the helper function ¢y 4. From (4.13), we know
that

s/e rt/e

E[Fy,e(s)Fy.6(1)] =c§q!8/0 A ®9(u, v)dudv.
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By Lemmas 6.1 and 6.2, we get that
s/e pt/e s/e pt/e
lim goa,q(e)/ / @7 (u, v)dudv = lim goa,q(e)/ / ag(w —v)! dudv,
e—0 0 0 e—0 0 0
where a,, is defined in (1.10). Then the convergences follow from the proof of the classical

Breuer—Major theorem; see, for example, [11], Theorem 7.2, for the details (the proof given
in [11] can be extended mutatis mutandis to cover continuous framework as well). [

6.2. Lemmas for the case a > 2 —1/d.

LEMMA 6.4. Assume o > 2 — 1/d and (H.2). Then one has for s,t > 0 that

(6.19) |85 E[X ()X (0)]| < C(s AP (s vi)* 2,
where C is a positive constant only depending on « and B. In particular, for u, v > 0 it holds
that
1
(6.20) lgm0 EE[(X(S +6)— X)) X1+ —X(1)]=05,E[X ()X ()]
£,6—

PROOF. For 0 < s <t, we have by self-similarity that

E[X(s)X (1)] = s2ﬂ¢<£>

with ¢ (x) = E[X (1) X (x)]. A routine calculation yields that

t

I E[X ()X ()] =B — 1)s2'3_2¢/<§> — s2ﬂ—3r¢”<s>.

Using (H.2) if 7/s > c and the fact that ¢'(/s) is bounded and |¢” (¢/s)| < C(t/s — 1)*~2 if
t/s <c, we obtain

(6.21) 95 E[X ()X (1)]| < Cs?P~*72,

which proves the asserted bound. As by assumption « — 2 > —1/d > —1 and by definition
28 — a > 0, the derivative is therefore integrable on any interval [0, a] x [0, b] and we get
that

t+6 ps+e
E[(X(s + &) — X () (X (1 +8) — X(1)] = f / 80 oE[X () X (v)] du dv,
t Ky
so that (6.20) follows. [

Assume o > 2 — 1/d and (H.2) and recall that ®; 5(s, t) has been intro-
en it holds that

a pdfelement
Oy, E[X ()X (1)]

2 (st)B—/2

The Trial Version 81(%20(85)“/2_1 D, s5(s,1) =

Furthermore, there exists a positive constant Ct such that for any s, t € [0, T] such that s > ¢
and t > §, it holds that

(6.23) | @ 55, 1)| < Cr(e8)' (s v)*2(st) PP
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PROOF. By self-similarity and Lemma 4.1, we have that
E[(X (s +¢&) — X(s))*] = e¥PE[(X (s /e + 1) — X (5/£))*]
=20%52P 7 (1 + u1(s/¢)),

where u(s/g) < C(s/e)*~2 converges to zero as ¢ — 0. Therefore, also using Lemma 6.4,
we have that

E[(X (s +¢&) — X(s))(X (@ +68) — X(1)]
/2—1 1
81511 (£8)% D, s5(s, 1) = 11m (88) 3 (s1)P—al2
_ 0 E[X ()X ()]
T 2A(st)B—e/2
In order to establish the bound (6.23), using Lemma 4.1 and the condition s /¢ > 1 and ¢/§ >
1, we obtain

o o t+8 ps+e
| D 5(s,1)] < C(eé)_f(st)_ﬁJrf/ / A E[X W)X (v)]dudv.
t s
Finally, in view of the estimate (6.19), we can write
|®e5(s,1)| < C(£8) ™2 (st)PH2(s vi)* 2.

This completes the proof of the lemma. [

6.3. Chaos expansion of the absolute value. The next statement has been used in the end

of the introductory section, when we applied Theorems 1.2 and 1.3 in the case where X = B

is a bifractional Brownian motion, and when for f we choose the function f(x) = |x| — 2

T
The proof is well known and standard, we include it here for completeness.

PROPOSITION 6.1 (Chaos expansion of the absolute value). It holds that

CR O
x| = quq'(z 5 Hoa (). xeR.

PROOF. The absolute mean of a standard Gaussian is \/g . By symmetry and the fact that

Hy(x) = (=1)¢(x) "¢ (x),

with ¢ (x) = ﬁe‘xz/z the Gaussian density, we get [ |u|Hag+1 ()¢ (1) du =0 and

[R || Hag () (u) du = 2[000 uHoy () (u) du = 2/000 ud®? () du

=-2 f 904D () du = 26242 (0)
0

pdfelement 2 JEEDI g —2)!
=\ a2 O =" T

The Trial Version

ollows. [J

Acknowledgments. We thank two anonymous referees for their careful reading, their

constructive remarks and their useful suggestions
The third author was supported by the NSF Grant DMS-1811181.



(1]
(2]

(3]

(4]

(5]

(6]

(71

(8]
(9]

(10]
(11]

[12]

[13]

[14]

(15]

(16]

(17]

(18]

CONTINUOUS BREUER-MAJOR THEOREM 177

REFERENCES

BEN HARIZ, S. (2002). Limit theorems for the non-linear functional of stationary Gaussian processes.
J. Multivariate Anal. 80 191-216. MR1889773 https://doi.org/10.1006/jmva.2001.1986

BRETON, J.-C. and NOURDIN, I. (2008). Error bounds on the non-normal approximation of Hermite
power variations of fractional Brownian motion. Electron. Commun. Probab. 13 482-493. MR2447835
https://doi.org/10.1214/ECP.v13-1415

BREUER, P. and MAJOR, P. (1983). Central limit theorems for nonlinear functionals of Gaussian fields.
J. Multivariate Anal. 13 425-441. MR0716933 https://doi.org/10.1016/0047-259X(83)90019-2

CHAMBERS, D. and SLUD, E. (1989). Central limit theorems for nonlinear functionals of stationary
Gaussian processes. Probab. Theory Related Fields 80 323-346. MR0976529 https://doi.org/10.1007/
BF01794427

DARSES, S., NOURDIN, I. and NUALART, D. (2010). Limit theorems for nonlinear functionals of Volterra
processes via white noise analysis. Bernoulli 16 1262-1293. MR2759179 https://doi.org/10.3150/
10-BEJ258

DOBRUSHIN, R. L. and MAJOR, P. (1979). Non-central limit theorems for nonlinear functionals of Gaus-
sian fields. Z. Wahrsch. Verw. Gebiete 50 27-52. MR0550122 https://doi.org/10.1007/BF00535673

HARNETT, D. and NUALART, D. (2018). Central limit theorem for functionals of a generalized self-similar
Gaussian process. Stochastic Process. Appl. 128 404-425. MR3739502 https://doi.org/10.1016/j.spa.
2017.04.014

Hu, Y. and NUALART, D. (2005). Renormalized self-intersection local time for fractional Brownian motion.
Ann. Probab. 33 948-983. MR2135309 https://doi.org/10.1214/009117905000000017

JARAMILLO, A. and NUALART, D. (2019). Functional limit theorem for the self-intersection local time
of the fractional Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 55 480-527. MR3901653
https://doi.org/10.1214/18-aihp889

LEI, P. and NUALART, D. (2009). A decomposition of the bifractional Brownian motion and some applica-
tions. Statist. Probab. Lett. 79 619—-624. MR2499385 https://doi.org/10.1016/j.spl.2008.10.009

NOURDIN, I. (2012). Selected Aspects of Fractional Brownian Motion. Bocconi & Springer Series 4.
Springer, Milan. MR3076266 https://doi.org/10.1007/978-88-470-2823-4

NOURDIN, I., NUALART, D. and TUDOR, C. A. (2010). Central and non-central limit theorems for
weighted power variations of fractional Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat.
46 1055-1079. MR2744886 https://doi.org/10.1214/09- AIHP342

NOURDIN, I. and PECCATI, G. (2012). Normal Approximations with Malliavin Calculus: From Stein’s
Method to Universality. Cambridge Tracts in Mathematics 192. Cambridge Univ. Press, Cambridge.
MR2962301 https://doi.org/10.1017/CB09781139084659

NUALART, D. (2006). The Malliavin Calculus and Related Topics, 2nd ed. Probability and Its Applications
(New York). Springer, Berlin. MR2200233

NUALART, D. and NUALART, E. (2018). Introduction to Malliavin Calculus. Institute of Mathemati-
cal Statistics Textbooks 9. Cambridge Univ. Press, Cambridge. MR3838464 https://doi.org/10.1017/
9781139856485

NUALART, D. and PECCATI, G. (2005). Central limit theorems for sequences of multiple stochastic inte-
grals. Ann. Probab. 33 177-193. MR2118863 https://doi.org/10.1214/009117904000000621

PECCATI, G. and TUDOR, C. A. (2005). Gaussian limits for vector-valued multiple stochastic integrals.
In Séminaire de Probabilités XXXVIII. Lecture Notes in Math. 1857 247-262. Springer, Berlin.
MR2126978 https://doi.org/10.1007/978-3-540-31449-3_17

TAQQU, M. S. (1979). Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw.
Gebiete 50 53-83. MR0550123 https://doi.org/10.1007/BF00535674

a pdfelement

The Trial Version



http://www.ams.org/mathscinet-getitem?mr=1889773
https://doi.org/10.1006/jmva.2001.1986
http://www.ams.org/mathscinet-getitem?mr=2447835
https://doi.org/10.1214/ECP.v13-1415
http://www.ams.org/mathscinet-getitem?mr=0716933
https://doi.org/10.1016/0047-259X(83)90019-2
http://www.ams.org/mathscinet-getitem?mr=0976529
https://doi.org/10.1007/BF01794427
http://www.ams.org/mathscinet-getitem?mr=2759179
https://doi.org/10.3150/10-BEJ258
http://www.ams.org/mathscinet-getitem?mr=0550122
https://doi.org/10.1007/BF00535673
http://www.ams.org/mathscinet-getitem?mr=3739502
https://doi.org/10.1016/j.spa.2017.04.014
http://www.ams.org/mathscinet-getitem?mr=2135309
https://doi.org/10.1214/009117905000000017
http://www.ams.org/mathscinet-getitem?mr=3901653
https://doi.org/10.1214/18-aihp889
http://www.ams.org/mathscinet-getitem?mr=2499385
https://doi.org/10.1016/j.spl.2008.10.009
http://www.ams.org/mathscinet-getitem?mr=3076266
https://doi.org/10.1007/978-88-470-2823-4
http://www.ams.org/mathscinet-getitem?mr=2744886
https://doi.org/10.1214/09-AIHP342
http://www.ams.org/mathscinet-getitem?mr=2962301
https://doi.org/10.1017/CBO9781139084659
http://www.ams.org/mathscinet-getitem?mr=2200233
http://www.ams.org/mathscinet-getitem?mr=3838464
https://doi.org/10.1017/9781139856485
http://www.ams.org/mathscinet-getitem?mr=2118863
https://doi.org/10.1214/009117904000000621
http://www.ams.org/mathscinet-getitem?mr=2126978
https://doi.org/10.1007/978-3-540-31449-3_17
http://www.ams.org/mathscinet-getitem?mr=0550123
https://doi.org/10.1007/BF00535674
https://doi.org/10.1007/BF01794427
https://doi.org/10.3150/10-BEJ258
https://doi.org/10.1016/j.spa.2017.04.014
https://doi.org/10.1017/9781139856485

	Introduction and statement of the main results
	Preliminaries
	Elements of Malliavin calculus
	Multivariate chaotic central limit theorem

	Proof of Theorem 1.1
	Proof of Theorem 1.2
	A few useful properties satisﬁed by X
	Convergence of ﬁnite-dimensional distributions: The case alpha< 2 - 1/d
	Convergence of ﬁnite-dimensional distributions: The case alpha= 2 - 1/d
	Proof of tightness

	Proof of Theorem 1.3
	Convergence of ﬁnite-dimensional distributions
	Tightness

	Technical lemmas
	Lemmas for the case alpha<=2 - 1/q
	Lemmas for the case alpha> 2 - 1/d
	Chaos expansion of the absolute value

	Acknowledgments
	References



