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Abstract

We consider a d-dimensional branching particle system in a random environment.
Suppose that the initial measures converge weakly to a measure with bounded density.
Under the Mytnik-Sturm branching mechanism, we prove that the corresponding
empirical measure X;' converges weakly in the Skorohod space D([0, T]; Mr(R%))
and the limit has a density u:(z), where Mp(R?) is the space of finite measures on
R?. We also derive a stochastic partial differential equation u¢(z) satisfies. By using
the techniques of Malliavin calculus, we prove that u:(x) is jointly Hoélder continuous
in time with exponent % — € and in space with exponent 1 — ¢ for any € > 0.
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1 Introduction

Consider a d-dimensional branching particle system in a random environment. For
any integer n > 1, the branching events happen at time % k=1,2,.... The dynamics
of each particle, labelled by a multi-index «, is described by the stochastic differential
equation (SDE):

dz®™ = dBY + / h(y — "™ )W (dt, dy), (1.1)
R4

where h is a d x d matrix-valued function on R¢, whose entries h"/ € L?(R%), B* are d-
dimensional independent Brownian motions, and W is a d-dimensional space-time white
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Holder continuity of the solutions to a class of SPDE’s

Gaussian random field on R x R? independent of the family { B*}. The random field W
can be regarded as the random environment for the particle system. The existence and
uniqueness of the Feller process " that solves the SDE (1.1) will be proved in Section
2.

At any branching time each particle dies and it randomly generates offspring. The
new particles are born at the death position of their parents, and inherit the branching-
dynamics mechanism. The branching mechanism we use in this paper follows the one
introduced by Mytnik [23], and studied further by Sturm [30]. Let X™ = {X[*,t > 0}
denote the empirical measure of the particle system. One of the main results of this work
is to prove that the empirical measure-valued processes converge weakly to a process
X = {X;,t > 0}, such that for almost every ¢ > 0, X; has a density u,(z) almost surely.
By using the techniques of Malliavin calculus, we also establish the almost surely joint
Holder continuity of u with exponent % — € in time and 1 — € in space for any € > 0.

To compare our results with the classical ones. Let us recall briefly some existing
work in the literature. The one-dimensional model was initially introduced and studied by
Wang ([32, 33]). In these papers, he proved that under the classical Dawson-Watanabe
branching mechanism, the empirical measure X" converges weakly to a process X =
{X},t > 0}, which is the unique solution to a martingale problem.

For the above one dimensional model Dawson et al. [8] proved that for almost every
t > 0, the limit measure-value process X has a density u;(z) a.s. and u is the weak
solution to the following stochastic partial differential equation (SPDE):

ug(z) =p(x) + /0 —(14 [|h)13)Aus(z ds—/ /V y — x)us(x)|W(ds, dy)
\/7 ds da: (1.2)

where ||h||2 is the L?-norm of h, and V is a space-time white Gaussian random field on
R+ x R independent of W.

Suppose further that 4 is in the Sobolev space H3(R) and the initial measure has a
density u € Hi(R). Then Li et al. [20] proved that u;(x) is almost surely jointly Holder
continuous. By using the techniques of Malliavin calculus, Hu et al. [14] improved their
result to obtain the sharp Holder continuity: they proved that the Holder exponents are
1 — e in time and } — € in space, for any € > 0.

Our paper is concerned with higher dimensions (d > 1). However in this case, the
super Brownian motion (a special case when h = 0) does not have a density (see e.g.
Corollary 2.4 of Dawson and Hochberg [6]). Thus in higher dimensional case we have to
abandon the classical Dawson-Watanabe branching mechanism and adopt the Mytnik-
Sturm one. As a consequence, the difficult term \/us(z) in the SPDE (1.2) becomes u(x)
(see equation (3.1) in Section 3 for the exact form of the equation).

We follow the approach introduced in [14] to study the Holder continuity of the
conditional density of a particle motion using Malliavin calculus. However, because of
the multidimensional setting considered here, new difficulties arise. On one hand, the
integration by parts formulas require higher order Malliavin derivatives which make
computations more complex. To lower the order of Malliavin differentiability in our
framework, we use the combination of Riesz transform and Malliavin calculus, previously
studied in depth by Bally and Caramellino [1] (see Appendix A for the density formula that
sing). Another difficulty is the fact that in the one-dimensional case considered
the Malliavin derivative can be expressed explicitly and this type of formula for

pdfelement liavin derivative is no longer available here. We have to use another approach to
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This paper is organized as follows. In Section 2 we shall briefly describe the branching
mechanism used in this paper. In Section 3 we state the main results obtained in this
paper. These include three theorems. The first one (Theorem 3.3) is about the existence
and uniqueness of a (linear) stochastic partial differential equation (equation (3.1)),
which is proved (Theorem 3.2) to be satisfied by the density of the limiting empirical
measure process X" of the particle system (see (2.12)). The core result of this paper is
Theorem 3.4 which intends to give sharp Hoélder continuity of the solution w;(z) to (3.1).

Section 4 presents the proofs for Theorems 3.2 and 3.3. The proof of Theorem 3.4 is
the objective of the remaining sections. First, in Section 5, we focus on the one-particle
motion with no branching. By using the techniques from Malliavin calculus, we obtain
a Gaussian type estimates for the transition probability density of the particle motion
conditional on W. This estimate plays a crucial role in the proof of Theorem 3.4. In
Section 6, we derive a conditional convolution representation of the weak solution to the
SPDE (3.1), which is used to establish the Holder continuity. In Section 7, we show that
the solution « to (3.1) is Holder continuous.

Lastly, the martingale problem (4.4)—(4.5) is introduced in Section 4 to prove Theo-
rems 3.2 and 3.3. The well-posedness of the martingale problem can be proved under
the assumption that the initial measure has a bounded density. We conjecture that it also
holds for an arbitrary finite initial measure. We will not pursue this in this paper (see
Remark 4.12 (ii)).

2 Branching particle system

We split this section into two parts. In Section 2.1, we consider a finite branching-free
particle system, and prove the existence and uniqueness of this system. In Section 2.2,
we give a brief induction to the Mytnik-Sturm branching mechanism.

2.1 Finite branching-free particle system

In this section, we will show the existence and uniqueness of the finite branching-free
particle system that is determined by (1.1). The one-dimensional analogue is given by
Lemma 1.3 of Wang [32].

Fix a time interval [0, 7). Let W = {W (¢, ), (t,z) € [0,7] x R¢} be a d-dimensional
space-time white Gaussian random field. For any positive integer n, let {Bi}ie{l,...,n}
be a family of independent d-dimensional Brownian motions that is independent of W.
Consider an n-particle system, where the motion of each particle is described by the
following stochastic differential equation in a random environment W:

dat :dB;’+/ h(y — z)W (dt, dy), (2.1)
]Rd
with initial condition z{ € R? for all i = 1,...n. In the case n = 1, we omit all upper
indexes in equation (2.1) without confusion.
The following hypothesis for i will be used throughout this paper:
[HO] h = (h"¥)1<ij<a € H3(R%RY @ RY). That is, the entries A% of h belongs to the
Sobolev space Hj(R%).

For k = 0,1,2,3, denote by | - |2 the Sobolev norm on HY(R% R¢ ® R?), that is

d d )
g ij 3
k2= 32 I91Re = 3 ( / (0 (@) Pde)
=1 ij=1 7R
|| df d k d 8[ ) , %
element N ( / 0 ‘ dx) |
il 22 2 o laam@
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Let p: R? — R? ® RY be given by
plx) = / h(z — z)h*(2)dz, (2.2)
Rd

where h* = (h7%);<; j<q denotes the transpose of h. Then, forany 1 <i,j < d, and z € RY,
by Cauchy-Schwarz’s inequality, we have

d
(@) <Y Ih™ Y21 2.
k=1

We denote by || - |2 the Hilbert Schmidt norm for matrices. Then, by Cauchy-Schwarz’s
inequality again, we have

\/
Nl

lplloe = sup llo(@)llz = sup ( S e

R zeR4 ij=1

<( > ?Zd)Ilh““||2||h’”'||2]2)é

',j*l k=1

1
i 2
<( SIS I3 )7 < InIE < 1A .

i,k=1 7,k=1

Similarly, we can show that the first, second, and third partial derivatives of p are
bounded in R¢. We make use of the following notations:

k

o= (3 [tef)

B,j=141,...,i=1

for k =1,2,3. Now let us study the SDE’s (2.1). These equations are not coupled and we
solve them for each ¢ separately. For this reason in the next theorem, which provides the
existence and uniqueness of the equation (for each fixed i), we suppress the superscript
index 1.

Theorem 2.1. Assume the hypothesis [HO]. Then, there exists a d-dimensional stochas-
tic process x = {x:,0 <t < T} that is the unique strong solution to the SDE (2.1) (for
each fixed i) with initial condition z¢ = x € R®.

Proof. We prove this theorem by Picard iteration. Let

- B, +/Ot /Rd h(y — x)W (ds, dy),

and let
=B, +/ / — M= YW (ds, dy),
]Rd
for all m > 1. Denote by d\™ = z{™ — z{™™Y for all ¢ € [0,T]. Then d\™ satisfies the
aing equation
|| t
pdfelement o = [ [ty =) = niy = o)) s, dy). 2.3
d
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An application of the It6 isometry yields that

t 2
=] [ ] [rtr =) =ty =) wids.ay)|

—IE/ / Hh (m) h(y—xgm_l))szyds

ﬂMwQZ/ a1

7,7=1
—2 Z / (m—1)) pij(O)} ds, (2.4)
4,j=1
since Zf j=127(0) = ||h]|3. Noticing that p” has bounded first partial derivatives, we

have .
|M“ﬁsc/n£“%@a
0

for some constant C independent of m. On the other hand, we can show that

t 2
o ~alp =[[Be+ [ [ty a)wids.dy) -4
0 Rd 2
<t +t||h|j2 + |z|*.

By iteration, we can conclude that

m 1
™13 < (L4 [ 4 e, (2.5)

(m+1)!

which is summable in m. In other words, for any ¢ € [0,7], the sequence :c(m)

convergent in L?(Q). Denote by z; the limit of this sequence.
We claim that z = {z:,0 < ¢ < T} is a strong solution to (2.1) (recall we suppress the
superscript). It suffices to show that as m — oo,

/Ot /}Rd h(y — m§m>)W(ds, dy) — /Ot /Rd h(y — z5)W (ds, dy),

in L2(2) for all ¢ € [0, T]. We can easily check this convergence by arguments similar to
those in (2.3)-(2.5).

Suppose that there are two solutions x and = to the SDE (2.1). Let d = x — z. Again,
by a similar argument as in (2.3)-(2.5), we have the following inequality

t
<€ [ I lgas
Notice that
dell3 < 2llzel3 +2[1T:]3 < 4(t + ¢]|A[]3) < oo
An application of Gronwall’s inequality yields ||d;||2 = 0. O
While equations (2.1) can be solved separately for each fixed i the solutions !, ..., z"

are not independent since all of them depend on the common random environment W.
It is easy to see that (z!,...,2") is an nd-dimensional Feller process governed by the

B pdfelement
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where A is the Laplace operator in R",

n d 3 02f
B(n)f(yla-"7yn) = Z Z plj(ykl *ka)

— —, (2.7)
ki ka=14,j=1 4, Ot (Y- y™)

and yr = (y},...,y) € R? forall k = 1,...,n. This is similar to (1.19) of Wang [32] for
the one-dimensional case.

2.2 The Mytnik-Sturm branching mechanism

In this section, we briefly construct the branching particle system. For further study
of this branching mechanism, we refer the readers to Mytnik’s and Sturm’s papers (see
[23, 30]).

We start this section by introducing some notation. For any integer k > 0, we denote
by CF(RY) the space of k times continuously differentiable functions on R¢ which are
bounded together with their derivatives up to the order k. Also, H5(RR) is the Sobolev
space of square integrable functions on R? which have square integrable derivatives
up to the order k. For any differentiable function ¢ on R¢, we make use of the notation
Ory i (1) = 5oL (),

We write Mr(R?) for the space of finite measures on R¢ equipped with the weak
topology. We denote by D([0,T], Mr(R%)) the Skorokhod space of cadlag functions on
time interval [0, 7], taking values in Mp(R%). For any ¢ € C,(R?) and y € Mp(R%), we
write

(1, 8) = u(9) = " ¢(z)p(dz). (2.8)

LetZ := {a = (ap,1,...,an),a0 €{1,2,3... },; € {1,2}, for 1 <i < N} be a set of
multi-indexes. In our model 7 is the index set of all possible particles. In other words,
initially there are a finite number of particles and each particle generates at most 2
offspring. For any particle o = (ag,a1,...,ay) €Z, leta—1=(ap...,any_1),a —2 =
(gy ... an—2),...,a — N = (ag) be the ancestors of a. Then, |a| = N is the number of
the ancestors of the particle «a. It is easy to see that the ancestors of any particle « are
uniquely determined.

Fix a time interval [0,7]. Let (Q, F, P) be a complete probability space, on which
{Bg,t € [0, T]|}oez are independent d-dimensional standard Brownian motions, and W is
a d-dimensional space-time white Gaussian random field on [0, 7] x R¢ independent of
the family {B“}.

Let xy = x(xg, B*,r,t), where 0 < r <t < T, be the unique solution to the following
SDE:

t
xt = x9 + B — B2 —|—/ / h(y — )W (ds, dy), (2.9)
r JR4

where 2o € R?, r € [0,t) and h is a d x d matrix-valued function. We assume that &
satisfies hypothesis [HO].

For any t € [0,7], let t,, = % be the last branching time before ¢. For any a =
(a0, a1,...,an), ifnt, = [nt] <N, let oy = (ao,...,a[y ) be the ancestor of « at time ¢.
Suppose that each particle, which starts from the death place of its parent, moves in R
following the motion described by the SDE (2.9) during its lifetime. Then, the path of
any particle « and all its ancestors, denoted by z;"", is given by

z (a2, B(),0,t), 0<t<i,
o 6N -1, 1 N+1
B pdfelement pt =gt = qu (@ B 1), St < A
otherwise.
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Here z;, € R is the initial position of particle (ayg), x?t L= = limgyy, 22757, and O

denotes the “cemetery”-state, that can be understood as a pomt at infinity.
Let ¢ = {¢{(z), 2 € R?} be a real-valued random field on R? with covariance

E(¢(x)¢(y)) = r(z,y), (2.10)

for all =,y € RY. Assume that ¢ satisfies the following conditions:

[H1] (i) ¢ is symmetric, that is P(£(x) > 2) = P(£(z) < —2) for all # € R? and 2 € R.

(i) sup E(|¢(2)]?) < oo for some p > 2.
z€R

(iii)  is continuous and bounded on R? x R<.

For any n > 1, the random field ¢ is used to define the offspring distribution after
a scaling ﬁ In order to make the offspring distribution a probability measure, we
introduce the truncation of the random field &, denoted by &7, as follows:

Vv, i €(z) > V/n,
"(x) = —/n, if&(x) < —/n, (2.11)

&(x), otherwise.

The correlation function of the truncated random field is then given by

kn(2,y) = E(E"(2)€"(y)).

Let (£');>0 be independent copies of £". Denote by ¢'" and &'~ the positive and
negative part of & respectively. Let N*™ € {0,1,2} be the offspring number of the
particle a at the branching time ‘“Hl Assume that {N®", |a| = i} are conditionally
independent given &' and the p051t10n of « at its branching time, with a distribution
given by

PN =2l Hlf):%f"*( v):
p(xer -z ) - e (4 ).
P<Nan_1|£ Ltl—)—l_TEnl( 1+1*)

For any particle o = (o, ..., an), a is called to be alive at time ¢, denoted by a ~,, ¢,
if the following conditions are satisfied:
(i) There are exactly N branching before or at ¢: [nt| = N
(ii) o has an unbroken ancestors line: ay_;41 < N*~ %", foralli =1,2,...,N.

[Introduction of N*™ allows the particle a produce one more generation, namely, produce
new particle (a, N*™). However, (o, 0) is considered no longer alive and will not produce
offspring any more.] For any n, denote by X" = {X}",t € [0,T]} the empirical measure-
valued process of the particle system. Then, X" is a discrete measure-valued process,
given by

1
== 3 G0, (2.12)
n an~pt ’

where J, is the Dirac measure at = € R?, and the sum is among all alive particles at time
]. Then, for any ¢ € CZ(R?), with the notation (2.8), we have

B pdfelement
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3 Main results

Let (92, F, {Ft}te[O,T]a P) be a complete filtered probability space that satisfies the
usual conditions. Suppose that W is a d-dimensional space-time white Gaussian random
field on [0,7] x RY, and V is a one-dimensional Gaussian random field on [0, 7] x R¢
independent of W, that is time white and spatially colored with correlation « defined in
(2.10):

E(V(t,z)V(s,y)) = (t As)k(x,y),

for all s,¢ € [0,T] and z,y € R%. Assume that {W(¢,z),z € R4}, {V(t,z),z € R?} are
Fi-measurable for all t € [0, 7], and {W (t,x)—W (s, z),x € R}, {V(t,2)—V (s, ),z € R}
are independent of F; forall0 < s <t <T.

Denote by A* the adjoint of A, where A = A() is the generator defined in (2.6).
Consider the following SPDE:

uy(z) =p(x) + /Ot A%uy(z)ds — Zd_:l /ot /Rd

K V(ds,dx)

o [y = ()] W9 ds, )

Definition 3.1. Let u = {w(x),t € [0,T],2 € R?} be a random field. Then,

(i) v is said to be a strong solution to the SPDE (3.1), if u is jointly measurable on
[0,T] x R% x Q, adapted to {F; }+cjo,r) and for any ¢ € CZ(R?), the following equation
holds for every t € [0,T]:

» o(z)ug(z)de = " d(z)p(x)dr + /Ot /]Rd Ap(x)us(z)drds
+/0 /le [ » Vqﬁ(m)*h(y—x)us(x)dx} W (ds,dy)

¢
+ / d(z)us(x)V (ds,dzx), a.s. (3.2)
0 JRre

where the last two stochastic integrals are Walsh’s integral (see e.g. Walsh [31]).

The solution to (3.1) is said to be pathwise unique, if whenever u and u are two
solutions to (3.1), then there exists a set G € F of probability one, such that
u(w) = uy(w) forallt € [0,T) andw € G.

(ii) u is said to be a weak solution to the SPDE (3.1), if there exists a filtered probability
space, on which W and V are independent random fields that satisfy the above
properties, such that u is a strong solution with this probability space.

Let X" = {X[",0 <t < T} be defined by (2.12). In order to show the convergence of
X™in D([0,T]; Mr(R%)), we make use of the following hypotheses on the initial measures
X§:

[H2] () sup|X{™(1)] < .
n>1

i) X7 = X, in Mp(R?) as n — oo.

ii) X, has a bounded density p.

ection 4 we prove the following two theorems.
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Theorem 3.2. Let X" be defined in (2.12). Then, under hypotheses [H1] and [H2], we
have the following results:

(i) X" = X in D([0,T), Mp(R%)) as n — .

(ii) The limit X = {X;,t € [0,7T]} is a continuous M (R%)-valued process. In addition,
for almost all w € ) and every t € [0,T], as a finite measure on R¢, X;(w) has a
density u:(z,w).

(iii) u = {w(z),t € [0,T],z € R} is a weak solution to the SPDE (3.1) in the sense of
Definition 3.1.

Theorem 3.3. Assume the hypotheses [H1] and [H2] (iii). The SPDE (3.1) has a jointly
continuous strong solution, which is pathwise unique in the space of jointly continuous
solutions in the sense of Definition 3.1.

The last main result in this paper is the following theorem concerning the Hoélder
continuity of the solution to the SPDE (3.1).

Theorem 3.4. Let u = {u;(z),t € [0,7],z € R} be the strong solution to the SPDE
(3.1) in the sense of Definition 3.1. Then, for any 81,32 € (0,1) and p > 1, there exists
a constant C that depends on T, d, h, p, 1, and (35, such that for all z,y € R? and
O0<s<t<T

lus(@) = us(9)lla, < Cs72 (Jo = y|™ + [t — 5/272).
Hence by Kolmogorov’s criteria, u:(z) is almost surely jointly Holder continuous on
(0,T] x R¢, with exponent 3, € (0,1) in space and 3, € (0, 3) in time.

4 Proof of Theorems 3.2 and 3.3

We prove Theorems 3.2 and 3.3 in the following steps:

(i) In Section 4.1, we show that {X"},,> is a tight sequence in D([0,T]; Mr(R%)), and
the limit of any convergent subsequence in law solves a martingale problem.

(ii) In Section 4.2, we show that any solution to the martingale problem has a density
almost surely.

(iii) In Section 4.3, we show the equivalence between martingale problem (see e.g.

(4.4)-(4.5) below) and the SPDE (3.1). Finally, we prove Theorems 3.2 and 3.3.

4.1 Tightness and martingale problem

Recall the empirical measure-valued process X" = {X[*,t € [0,T]} given by (2.12).
Let A = A be the generator of one particle motion defined in (2.6). For any ¢ € C,?(]Rd),
similar to equality (49) of Sturm [30], we can decompose X}* as follows:

X7(9) = X[ () + Z1(¢) + M]™ () + By (¢) + Uy (9), (4.1)

- / tXZZ(AQS)du

M} (¢) = Z ST ol ) (N -1,

sn<t Qg Sy

where

a pdfelement (XX / ) dBg + o) dBg ),
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and

e =X ¥/

sp<tp a~vp Sy n

> [ Tl by = at W . dy)).

[ Vo) hly — 4 W du, dy)

ar~pt
Notice that
Snti 2
B [0 [ 9o h ez vt
e ;
< X B[ [ |vetarny - ot v
jal=lsn) sn

<27 N[l 1,0lR]l2 < o0,

where Nj denotes the number of initial particles, that is a finite integer. Therefore, by
the stochastic Fubini theorem (see, e.g., Lemma 4.1 on page 116 of Ikeda and Watanabe
[15]), we can write:

t
vr@) = [ [ ([ Vo) hly - o)X, (do) W(du,dy).
0 Jre “JR4
As in Sturm [30], consider the natural filtration, generated by the process X"
Fir=o ({z®",N*"||a| < [nt]} U{zd", s < t,]al = [nt]}),
and a discrete filtration at branching times

Fro=o(Fr u{z™||o] =ntn}) = F pnr)--

Then, B}'(¢) and U{*(¢) are continuous F;'-martingales, while M}™(¢) is a discrete
F{ -martingale.

Lemma 4.1. Assume hypotheses [HO], [H1], [H2] (i) and (ii). Let p > 2 be given in
hypothesis [H1]. Then, for all ¢ € CZ(RY),

() E( sup |Xt"(¢)|p),]E( sup |va”(¢)|1’) and ]E( sup |U;L(¢)|P) are bounded uni-
0<t<T 0<t<T 0<t<T
formly inn > 1.

(i) E( sup |Bt”(¢)|”) 0, asn — 0.
0<t<T

Proof. (i) By the same argument as that for Lemma 3.1 of Sturm [30], we can show that
T
B sup M (1)) < 0/ E( sup |X7(1)]")dt
0<t<T 0 0<s<t

where the constant C' > 0 does not depend on n. Again similarly as Strum did for (58) of
[30], we can also deduce the following inequality

B( sup [X7()P) <O(1+E( swp (M7 (1)P))

T
a pdfelement §01+02/ ]E( sup |X§(1)|P)dt,

0 0<s<t
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Holder continuity of the solutions to a class of SPDE’s

where (4, Cs are constants independent of n. Notice that
N’I’L
sup [ X7 (1)] < 27T,
0<t<T n
that is bounded for fixed n. Then, it follows from Gronwall’s inequality that the sequence
{]E( sup |Xt”(1)|p> } is uniformly bounded in n.
0<t<T n>1

The uniform boundedness of ]E( sup |Xt”(¢>)|p) and ]E( sup |Mtb"(¢)|p) follows
0<t<T 0<t<T
immediately.

We estimate U*(¢) as follows:

~( /0 /R ( [ Vola)hly - 2) X, (dx) )W (du, dy) )
- i / I3 (i /]R 0u6(x)h¥ (y — )X (d)) dydu

/ / Vo(x) pla — 2)Vo(2) XI(dx) X7 (dz)du
R4 xR

<ol 61 oo / X7 ()2 du. 4.2)

Thus by (4.2), Burkholder-Davis-Gundy’s and Jensen’s inequalities, we have
P P p T
E( swp [U7O)) < B(U"@)F) < ol &0l T8 ([ pxira)
0<t<T 0
<esllol &9l THE( sup X)), (4.3)
0<t<T

that is also uniformly bounded in n.

(ii) Note that { B} are independent Brownian motions. Then, by Burkholder-Davis-
Gundy’s inequality, we have

B(sw 1BOF) < 5[ 3 X (/ " Vo(ag™)du)

$n<Tp ar~nSn

+ 3 (/ V(g™ Pdu)]

ar~pt

T
=25 [ [ 1VewPxde)i) < 2ol TE( swp [XPOP) 0.
0 JR n 0<t<T
because ]E( sup |Xt"(1)|p) is uniformly bounded in n. O
0<t<T

As a consequence of Lemma 4.1, the collection

{ s IXF@)P, suwp |MP"(8), sup [U7(6)]°)
0<t<T <t<T 0<t<T n>1

iformly integrable.

ion 4.2. Let { X} be a collection of real-valued stochastic processes. A family
astic processes {X“} is said to be C-tight, if it is tight, and the limit of any
ence is continuous.

B ndfelement
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Holder continuity of the solutions to a class of SPDE’s

Lemma 4.3. Assume hypotheses [HO], [H1], [H2] (i) and (ii). For all $ € CZ(R%),
MY (¢), Z™(¢), and X" (¢) and U™ (¢) are C-tight sequences in D([0, T], R).

Proof. By an argument that used by Sturm in the proof of Lemma 3.6 in [30], we can
deduce the C-tightness of M®"(¢) and Z"(¢).

We prove the tightness of X;*(¢) by checking Aldous’s conditions (see e.g. Theorem
4.5.4 of Dawson [5]). By Chebyshev’s inequality, for any fixed ¢ € [0,7], and N > 0, we
have

PXIO) > N) < B(IXFOF) < 37 ( s X7 ) 0,

uniformly in n as N — co by Lemma 4.1 (i).

On the other hand, for any n > 1, we extend X" to the time interval [0, T, + %] in such
a way that X" performs the same diffusion/branching mechanism as before on [T, T}, + +].
Denote by X" = {)?”(t),t € [0,T,, + 1]} the extended process. Then, by Theorem 10.13
of Dynkin [10], we know that X" is a strong Markov process on [0, T, + %].

Let {7,,}»>1 be any collection of stopping times bounded by T and let {4, },,>1 be any
positive sequence that decreases to 0, such that 7,, + d,, < T'. Then, due to the uniform

boundedness of E( sup \X{L(¢)|p> and the strong Markov property of X", we have
0<t<T

P(X7 45, (6) = X2.(0)] > &) =P (|X2 15, (6) = X2 (0)] > )
= (|%2.(6) - X5(0)] > ) < SB(|%2.0) - X5 0)])

ya
<2 e ol &9l (e 1XEOF ) +E(1XGOF)]
—0,

as n — 0. Thus both of Aldous’s conditions are satisfied, and then it follows that X;(¢)
is tight in D([0, T], R).
Recall the decomposition formula (4.1):

X7'(9) = X§(9) + 27 (9) + M (9) + Bi'(¢) + UL (9).

Notice that X"(¢), Z"(¢), M">"(¢) are tight sequences as proved just above, X7 (¢)
converges weakly by assumption, and B(¢) converges 0 in L*({) uniformly for all
t € [0,7] by Lemma 4.1 (ii). As a consequence, U"(¢) is tight in D([0,7],R). In addition,
by Proposition VI.3.26 of Jacod and Shiryaev [16], every limit of a tight sequence of
continuous process U™ (¢) is continuous. It follows that U™(¢) and X" (¢) are C-tight
sequences in D([0, T]; R). O

Let . = .7 (RY) be the Schwartz space on R?, and let .7’ be the dual of .. Then, we
have the following lemma.

Lemma 4.4. Assume hypotheses [HO], [H1] and [H2] (i), (ii). Then,
(i) {X"},>1 is a C-tight sequence in D([0,T]; Mp(R)).

(i) {B"}n>1, {M""},>1, and {U"},>, are C-tight in D([0, T); .#").

et R? = R? U {9} be the one point compactification of R?. Then, by Theorem
Dawson [5] and Lemma 4.3, {X"},,>1 is a tight sequence in D([0, T}; Mp(R%)).

.- pdfelement he other hand, by the same argument as in Lemma 3.9 of Sturm [30], we can show
/ limit of a weakly convergent subsequence X"+ in D([0,T]; Mp(R?)) belongs to
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Holder continuity of the solutions to a class of SPDE’s

C([0,T); Mp(RY)), the space of continuous My (RR%)-valued functions on [0, T]. Therefore,
{X"},>1 is a C-tight sequence in D([0, T]; Mr(R%)).

To show property (ii), notice that . C CE(Rd). Then, by Theorem 4.1 of Mitoma [22],
{B"},>1, {M""},>1, and {U"},,>; are C-tight in D([0,77]; ). O

Proposition 4.5. Assume hypotheses [HO], [H1], [H2] (i) and (ii). Let X be the
limit of a weakly convergent subsequence {X"*};>1 in D([0,T]; Mp(R?%)). Then, X
is a solution to the following martingale problem: for any ¢ € CZ(R?), the process
M(¢) = {Mi(¢) : 0 < t < T}, given by

My(¢) :=X¢(o) / X, (Ag)d (4.4)

is a continuous and square integrable F;* -adapted martingale with quadratic variation:

)t :/0 /}RdXRd Voé(z)* plx — y)Vé(y) Xs(dz) Xs(dy)ds
+/0 /}RdXRdn(x,y)¢(x)¢(y)Xs(dx)Xs(dy)ds. (4.5)

Proof. Let {X"*};>1 be a weakly convergent subsequence in D([0,T]; Mz(R%)). By
taking further subsequences, we can assume, in view of Lemma 4.4 (ii), that {B”’C}kzl,
{MP>"})~1, and {U" };>1 are weakly convergent subsequences in D([0,T]; .%").

Therefore, by Skorokhod’s representation theorem, there exists a probability space
(Q,F,P), on which (X", M""s B" ™) has the same _joint distribution as
(X7, Mbme Bre k) for all k > 1, and converge a.s. to (X,M" B,U) in the prod-
uct space D([O,T],MF(IRd)) x D([0,T7],.7")3.

Then, for any ¢ € .77, (X" (¢), M i (¢), B (¢), U™ (¢)) converges a.s. in
D([0,T],R)*. Since { swp |X7(9)°, sup_ M ()2, sup |Ut”(¢)|2} is uniformly

0<t<T n>1

integrable, the convergence is also in LQ([O T] x Q).
For any t € [0,7], let

t
SIH(0) 1= X4 0) = Xg(0) = [ R2n(A0)ds = NP (9) + By (0) + T+ (0)
Then, it converges to a continuous and square integrable martingale M (o) = M (o) +
U(¢) in L2(Q) with respect to its natural filtration. .

The next step is to compute the quadratic variation of M(¢). Notice that W and
{B“} are independent, then U” and B™ are orthogonal. As a consequence, U™ and
B™ are also orthogonal. On the other hand, M®"(¢) is a pure jump martingale, while
U™ (¢) and B (¢) are continuous martingales. Due to Theorem 43 on page 353 of
Dellacherie and Meyer [9], M®™(¢), B (¢) and Uns (¢) are mutually orthogonal. By the
same argument as in Lemma 4.1, we can show that (MO (@) + BO () + U™ (¢))y =
(Mb7% (§))y 4 (B (¢))y + (U™ (¢)), are uniformly integrable. Then, by Theorem I1.4.5
of Perkins [26], we have

(MO () + B (¢) + U™ (6))e = (MP™ (8))e + (BY"™ ()¢ + (U™ (¢
— (M*())¢ + (U(¢)) = (M())e

as k — oo in D(]0,T],R) in probability.
he other hand, by the same argument of Lemma 3.8 of Sturm [30], we have

m pdfelement IRy XH / /R o W00 X () Ko (dy)ds, 0.5
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For (U(¢))s, by (4.2), since X™ (¢) — X (¢) in L2([0,T] x ), it follows that

Jim (07 (¢)), = lim / /R L, Vo) ol = V() K (dr) K ()
-/ ol 2)V6(2) Kuldlr) Ko d2)d.
]Rd><]Rd

As a consequence, M = {M,,t € [0,T]}, where

N (9) = Xi(9) — Ko(d) — /0 X (Ag)ds = DIX(6) + Bu(6) + Ti(6),

is a continuously square integrable martingale with the quadratic variation given by the
expression (4.5).

Fin,avlly, by the same argument as in Theorem II in Section 4.2 of Perkins [26], we can
show M(¢) is an FX-adapted martingale. O

4.2 Absolute continuity

Assume hypotheses [HO] and [H1]. Let X; be a solution to the martingale problem
(4.4)-(4.5). In this section, we show that for almost every ¢ € [0,7], as an Mz (R%)-valued
random variable, X; has a density almost surely.

For anyn > 1, f € CZ(R"), and 1 € Mp(R?), we define

) :/]Rd"' o f@e, .. azn)p(dey) - - - p(dey,).

We derive the moment formula E(X{°"(f)) of the process X. In the one-dimensional
Dawson-Watanabe branching case, Skoulakis and Adler [27] obtained the formula by
computing the limit of particle approximations. An alternative approach by Xiong [34]
consists in differentiating a conditional stochastic log-Laplace equation. In the present
paper we use the techniques of moment duality to derive the moment formula. It can be
also formulated by computing the limit of particle approximations.

For any integers n > 2 and k < n we make use of the notation xj, = (z},...,2¢) € R¢
and z = (21,...,2,) € R™. Let <I> : C2(R™) — CZ(R™), and F™, G . CZ(R™) x
Mp(RY) — R be given by

(@E;)f)(xl,...,mn) =k, ;) f(@1,...,2n), 4,7 €{1,2,...,n},
FOI(f,p) == u®™(f),

and

7 1 n
GOUfo) =AY+ 5 30 W @),
1<i,j<n
i F g

where x € C?(R??) is the correlation of the random field ¢ given by (2.10), and A™ is
the generator of n-particle motion defined in (2.6).

Lemma 4.6. Let X; be a solution to the martingale problem (4.4)-(4.5). Then, for any
n > 2 and f € CZ(R"), the following process

FM(f,X,) — / t G (f, Xs)ds
0

EJP 24 (2019), paper 105. http://www.imstat.org/ejp/
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Holder continuity of the solutions to a class of SPDE’s

Proof. See Lemma 1.3.2 of Xiong [35]. O

Let {T\™},>0 be the semigroup generated by A, that is, T\ : C2(R"%) — CZ(R"),
given by

Tt(n)f(xl,...,mn) = /R dp(t, (T1yesn), Wiy Un)) F(Y1y ey Yn)dyn - - dyn,

where p is the transition density of n-particle-motion.

Let {S,in)} k>1 be i.i.d. uniformly distributed random variables taking values in the set
{®;5,1 <4,j <n,i#j}. Let {7x}r>1 be i.i.d exponential random variables independent
of {S,(C")}kzl, with rate A, = n(n—1). Let gy =0, and ; = 23:1 7; for all j > 1. For any
f € C2(R"), we define a C2(R")-valued random process Y™ = {V,™ 0 < ¢ < T} as
follows: for any j > 0 and ¢ € [1;,7;41),

Y =) ST s s £, (4.6)

Then, Y™ is a Markov process with Yo(n) = f. It involves countable many i.i.d. jumps
S,i"), controlled by i.i.d. exponential clocks 7. In between jumps, the process evolves

)

deterministically by the continuous semigroup Tt(" . Notice that the exponential clock

is memoryless, and the semigroup Tt(") is generated by a time homogeneous Markov
process. Therefore, Y (™ is also time homogeneous.

Lemma 4.7. For anyn > 2 and f € CZ(R"?), let Yt(") be defined in (4.6). Then

B sw [V (@)]) < 1Floo exp (IxllaoAnt) 4.7)
zeR"4

Proof. Since Tt(”) is the semigroup generated by a Markov process, for any ¢ > 0 and
f € iR,
see that ||SJ(4n)f||C>o < |I&]lso || flloo- Thus we have

T flloe < ||f|lc. By definition of jump operators {SJ(") }i>1, it is easy to

oo

E( sup [v,"(@)]) < I/l D [IslLP(; < ). (4.8)
zeRnd

=0

Notice that 7; is the sum of i.i.d. exponential random variables. Then, we have

j—1 k i
Ant Ant)?
P(n; <t) =1—exp(—Ayt) ( kz') = exp(An(t' — t))( ,') , (4.9)
prs ! 4!
for some t' € (0,t). Therefore, (4.7) follows from (4.8) and (4.9). O

Let H™ : C2(R"?) x Mp(R?) — R be given by

Lemma 4.8. Let n > 2 and ;1 € M (R?). Then, the process

t
FOY 0~ [ HOE, s (4.10)
0

a pdfelement
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Holder continuity of the solutions to a class of SPDE’s

Proof. Let u(”) be any finite measure on R"™%. Then, we have

E(u™ (V™)) = (" (V")) + B V") cicmy) +olt). (411)

For the first term, we have
E(u™ (), 50) =uO T P > 1) = (T fexp(=Ant)).  (4.12)

For the second term, since 7, ™2 are independent, then for any 0 < s < ¢, we have
S oo
P(ri+ 7 >t,7 <s)= / / A2 exp(—An (51 + 52))dsods; = Apse Mt (4.13)
0 t—Sl

Note that by Lemma 4.7, |Y.(")| is integrable on [0, 7] x R™? x Q with respect to the
product measure dt x (™ (dz) x P(dw). Then, by (4.13), Fubini’s theorem, and the mean
value theorem, we have

E (1™ (V") 1 <tmy)

L ' (m) (M) () -
D) Z /O/RM (Tt—sq)ij T f) (z) exp (—Ant) pt™ (dz)ds

1<i,j<n

P F ]
t n n n n
—sep (=Mt Y / ("), @0 TV £) (2) ™ (d), (4.14)
1<i,j<n Rnd
D)

for some t' € (0,¢). Combining (4.11), (4.12), and (4.14), we have

B ™) — u™ ()
1m
t10 t

1 n
=uMAN 5 Y am(@ - ).
1<i,j<n
i F#J
By Proposition 4.1.7 of Ethier and Kurtz [11], the following process:
n n ‘ n n n 1 n n n n
M (r ™y _ /O [u( J(AMY) 4 ; S @y ))}ds’ (4.15)

1<i,j<n

is a martingale. Then, the lemma follows by choosing (") = p®™. O

By Lemma 4.6, 4.8 and Corollary 3.2 of Dawson and Kurtz [7], we have the following
moment equality:

E(XE(f)) = E[X?”(YJ”’) exp /0 t Ands)} = exp (%n(n - DOB(XEY™). (4.16)

Lemma 4.9. Let n > 2, and let f € C2(R"?).
(i) The following PDE
1
vy (z) = AWy, () + 3 Z Kz, xj)v(t, ), (4.17)
1<i,j<n
i

with initial value vo(z) = f(x), has a unique solution.

t X = {X,,t €[0,T]} be a solution to the martingale problem (4.4)-(4.5). Then,

E(XZ"(f)) = X5 (ve). (4.18)

" pdfelement
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Proof. Firstly, we claim that the operator A(™ = %(A + B(")) is uniformly parabolic in
the sense of Friedman (see Section 1.1 of [12]). Because A is uniformly parabolic, then
it suffices to analyse the properties of B(™. Forany k=1,...,n,i=1,...,d, and 5}; eR,
let & = (&}, ...,€%). Then, we have

n d y . ]
S S P, — a6, = /

k1,ka=14,j=1 R

n 2
‘ Z h*(z — xk)fk‘ dz > 0.
¢ =1
Thus B(™ is parabolic. On the other hand, by Jensen’s inequality, we have

n d N ) ,
S ST g, — wr)lL 6L, = /

d
k1,ka=14,j=1 R

S0 - e dz < mllole D leP
k=1 k=1

It follows that A™ = (A + B(™) is uniformly parabolic.

Since h € Hi(R*; RY®@RY), p(x —y) = [ga h(z—2)h*(z—y)dz has bounded derivatives
up to order three, then by Theorem 1.12 and 1.16 of Friedman [12], the PDE (4.17) has
a unique solution.

In order to show (ii), let

(@) = B(Y," (2)),

where Y (" is defined by (4.6). By the same argument as we did in the proof of Lemma
4.7, we can show that for any ¢ € [0,7] and x € R

]E( sup |A(")Yt(n)(m)D < 0.
z€R?

Then, by the dominated convergence theorem, we have
E(A(n)yt(") (1‘)) _ A(")E(Yt(n)(x)).

Let /,L(”) be any finite measure on R, Recall that the process defined by (4.15) is a
martingale, then the following equality follows from Fubini’s theorem:

) =B () = )+ [, BV s

In other words,

t 1
(n) 5 _ f_ my _ L Y 1)E _
<u T — f /O[A = 3 1<§,,< (k(-4-5) 1)vs}ds> 0,
SIS n

i FJ

for all (™ € Mp(R"). It follows that 7 = {v;(z),t € [0, 7],z € R?} solves the following

PDE
1
85.’1} :A(n)quj—f—* K(Ti, T; _1;1‘)’1.7 (419)
.- pdfelement k() +() 9 <Z [( J) [0 (z)
1<i,57<n
i#
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with the initial value vo(x) = f(z). This solution is unique by the same argument as in
part (i). Observe that

ve(x) := Uy (x) exp (%n(n - 1)t) (4.20)

solves equation (4.17). Therefore, (4.18) follows from (4.20) and the moment duality
(4.16). O

In Lemma 4.9, we derived the moment formula for ]E( xm (f )) in the case when n > 2.
If n = 1, the dual process only involves a deterministic evolutlon driven by the semigroup
of one particle motion, which makes things much simpler. We write the formula below
and skip the proof. Let p(t, x, y) be the transition density of the one particle motion, then
for any ¢ € CZ(R%),

E(X,(6)) = Xo(T "o /R d /R plt, 5, )0{y)dyXo (d).

The existence of the density of X; will be derived following Wang’s idea (see Theorem
2.1 of [32]). For any € > 0, 2 € R?, let p. be the heat kernel on R¢, that is

pe(x) = (27r6)_g exp ( - %)

Lemma 4.10. Let X = {X,,t € [0,T]} be a solution to the martingale problem (4.4)-(4.5).
Assume that the initial measure X, € Mp(R?) has a bounded density ji. Then,

T
//E(‘Xt(pe(w—~))‘2)da:dt<oo, (4.21)
0 R4

and

€1,6200

lim / / (| X (pe, (2 — Xi(pey (x — ))[*)dadt = 0. (4.22)
Rd

Proof. Let I'(t, (y1,y2); 7, (21, 22)) be the fundamental solution to the PDE (4.17) when
n = 2 (see Chapter 1 of Friedman [12] for a detailed account on existence and properties

of fundamental solutions to parabolic PDEs). We write y = (y1,y2) and z = (21, 22) € R?%.
Then, for f € CZ(R?),

o) = [ T(ts0.2) 1)z,

is the unique solution to the PDE (4.17) with initial condition vy = f. Thus by Lemma
4.9, we have

E[X:(pe, (x — ) Xt (pea (v — )]

/ / T(t,y;0, 2)pe, (T — 21)pe, (x — zg)degw(dy). (4.23)
R2d JR2d

By inequality (6.12) of Friedman [12] on page 24, we know that there exists Cr, A > 0,
such that forany 0 <r <t < T,

ID(t,y;752)] < Crpece (Y1 = 21)pesr (Y2 — 22)- (4.24)

Therefore, by the semigroup property of heat kernels and Fubini’s theorem, we have
[ [ Bl ) Xate s
R
|
pdfelement = / / / Dt 950, 2)Pe, ey (21 — 22)d2X§? (dy)dt. (4.25)
R2d JR2d
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From (4.24), (4.25) and the fact that X, € Mz(R%) has a bounded density , it follows
that (4.21) is true.
Let M be the function on R?¢, given by

T
=[] res02 Xy
0 RQd

By (6.13) of Friedman [12] on page 24, we know that I'(¢, y; r, «) is uniformly continuous
in the spatial argument for any fixed r and ¢ such that 0 < r < ¢t < T. As a consequence
M is continuous. Therefore, by (4.24) and the continuity of M, the function N on R4
given by
N(z):= M(z1,21 — x)dz,
R4
is integrable and continuous everywhere. It follows that

i [ B (0 = )Xo~ )

61,62—>0 0

= lim M(Z>pe1+ez (zl - zQ)dZ

€1,e2—0 Jp2d

= lim N( )Per e, (Y)dy

€1,e2—0
/ / / L(t,y;0, (z,2)) X$?(dy)dzdt. (4.26)
R4 JR2d

Therefore, (4.22) is a consequence of (4.26). O

Proposition 4.11. Let X = {X;,t € [0,T]} be a solution to the martingale problem
(4.4)-(4.5). Assume that the initial measure X, € MF(]Rd) has a bounded density p. Then,
for almost every t € (0,T], X; is absolutely continuous with respect to the Lebesgue
measure almost surely.

Proof. As proved in Lemma 4.10, for any z € R? and ¢,, | 0, the sequence {X; (PL,)In>1
is Cauchy in L2(Q x R? x [0,T]). Then, it converges to some square integrable random
field. By the same argument as in Theorem 2.1 of Wang [32], we can show that the limit
random field is the density of X; almost surely. O

Remark 4.12.

(i) The assumption in Proposition 4.11, that the initial measure has a bounded density,
cannot be removed. Actually, if we choose Xo = Jp, the Dirac delta mass at 0, then
fo Jga T(t,0;0, (2, z))dxdt behaves like fo t~%dt, which is finite only if d = 1. This
is another difference from the one dimensional situation, in which case X((1) < oo
is enough to imply the existence of the density (see Theorem 2.1 Wang [32] for the
Dawson-Watanabe branching model).

(ii) The method of duality is conventionally used to prove the well-posedness of mar-
tingale problems arisen from branching mechanisms. In the one-dimensional
Dawson-Watanabe model, Wang proved the well-posedness by solving a moment
problem (see Section 4 of [33]). This requires a moment bound of the form
Sooo  r"E(| X (1)")/n! < oo for some positive ». However, this method does not

ork in our model and here is the explanation. In the next section, we will prove

ht the density v is a solution to equation (3.1) and when h = 0, we have that

- pdfelement (u¢, 1)) behaves like c¢;e2" * for some € > 0 (see e.g. Theorem 4.4 of Chen et

[3] and Theorem 4.3 of Hu et al. [13] for some sharp bounds of similar SPDE’s).
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Holder continuity of the solutions to a class of SPDE’s

Therefore, the condition > > | r™E(|(u¢, 1)|")/n! < oo for some positive r cannot
be satisfied in our model. In the next section, we prove the well-posedness of the
martingale problem (4.4)-(4.5) by the Yamada-Watanabe argument assuming the
existence of the density. Without the existence of the density, we are currently
not able to use the moment duality to show the well-posedness of the martingale
problem. We are not pursue this in the current paper.

4.3 Proof of Theorems 3.2 and 3.3

The proof of Theorems 3.2 and 3.3 is based on the equivalence of the martingale
problem (4.4)-(4.5) and the SPDE (3.1).

The equivalence between martingale problems and SDE'’s in finite dimensions was
observed in the 1970s (see Stroock and Varachan [29]). An alternative proof given by
Kurtz [19] consists of the “Markov mapping theorem”. In a recent paper [2] Biswas et al.
generalized this result to the infinite dimensional cases with one noise following Kurtz’s
idea. Here in the present paper, we establish a similar result with two noises by using
the martingale representation theorem.

Proposition 4.13. Let ;1 € C,(R?Y) N L'(R?) be a nonnegative function on R?. Then,
u = {us,t € [0,T]} is the density of a solution of the martingale problem (4.4)-(4.5) with
initial density p, if and only if u is a weak solution to the SPDE (3.1).

Proof. If u is a weak solution to (3.1), then, as a consequence of It6’s formula, u is the
density of a measure-valued process that solves the martingale problem (4.4)-(4.5). It
suffices to show the converse statement.

Let X = {X;,t € [0,T]} be a solution to the martingale problem (4.4)-(4.5) with initial
density p. Then, by Proposition 4.11, for almost every t € [0,7], X; has a density almost
surely. We denote by u; the density of X;.

Consider M = {M;,t € [0,T]} defined by (4.4) as an .¥’-martingale (see Definition
2.1.2 of Kallianpur and Xiong [17]). Then, by Theorem 3.1.4 of [17], there exists a Hilbert
space H* D L?(R%), such that M is an H*-valued martingale. Denote by H the dual
space of H*.

Let $§; = L?(R%; R%), and let $, be the completion of . with the inner product

(D, 0)5, == /}R%dn(ﬂc,yw(w)w(y)dwdy.

Consider the product space $H = ;1 x H2. Then, § is a Hilbert space equipped with the
inner product

((¢1,92), (<P1,<,02)>56 = (01, P1) 9, + (D2, 02) 0,
For any ¢ € [0,T], let ¥; : H — $) be given by ¥,(¢)(z,y) = (¥{(¢)(z), \Ilf(¢)(y)) where

U (g)(x) := . Vé(y)* h(z — y)u(y)dy,

and

Then, for any ¢, ¢ € ‘H, we have

(M(6), M(p)), = / V()" p(x — v)Ve(y) X.(dz) X, (dy)ds

[ ] raota)on) X)X (dy)ds

B pdfelement _ / (@4(6), () sy ds.
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Holder continuity of the solutions to a class of SPDE’s

Therefore, by the martingale representation theorem (see e.g. Theorem 3.3.5 of Kallian-
pur and Xiong [17]), there exists a $-cylindrical Brownian motion 8 = {5;,0 <t < T},
such that

Let B! = {B}(¢),t € [0,7],¢ € H:} and B? = {B7(¢),t € [0,T], ¢ € H:} be given by
B, (¢) = By(¢,0) and B () = B:(0, ).

Then, B! and B2 are HH'- and $H2-cylindrical Brownian motion respectively, and they are
independent. As a consequence, we have

My(¢) /Ot</R v¢(z)*h(.Z)Xs(dz),d%;>+/0t ($us, dB2). (4.27)

Let {e;};>1 be a complete orthonormal basis of §)s. Then, by Theorem 3.2.5 of [17],
V ={V,,t € [0,T]}, defined by

o0
- 200 Ve
Vi= § B (ej)e;,
j=1
is a .¥’-valued Wiener process with covariance

E[V.(6)Vi(p)] = s At / (e, 4)$(@)p(y)ddy,

R xR

for any ¢, € .. Therefore, by (4.27) and the equivalence of stochastic integrals
with respect to Hilbert space valued Brownian motion and Walsh’s integrals (see e.g.
Proposition 2.6 of Dalang and Quer-Sardanyons [4] for spatial homogeneous noises), u is
a weak solution to the SPDE (3.1). O

Proof of Theorems 3.2 and 3.3. By Propositions 4.5 and 4.13, the SPDE (3.1) has a weak
solution, that can be obtained by the branching particle approximation. We do not prove
the continuity here, because later in Section 7, we will show that the solution is not only
continuous, but also Holder continuous. The continuity of u yields an improved version
of Proposition 4.11. Namely, if X; is a continuous measure-valued process (e.g. the limit
of the particle approximation), then it has a density for all ¢ € [0, 7] almost surely.

In the next step, we prove the pathwise uniqueness of equation (3.1). Assume that «
and u are two continuous strong solutions to (3.1) with initial condition p. Let d = u — u.
Then, d = {d;(z),t € [0,T],z € R%} is a solution to (3.1), with initial condition y = 0, that
is continuous in two parameters. Thus d is also the density of a solution to the martingale
problem (4.4)—(4.5), with initial measure X, = 0.! By the moment duality (4.16), for any
¢ € CZ(RY), we have

E(d, ¢)? = exp(t)E(Xo(Y,?)) = 0,

where Y ® is the dual process defined by (4.6) in the case n = 2. Since d is continuous in
t, it follows that v = u almost surely. Therefore, by the Yamada-Watanabe argument (see
Yamada and Watanabe [36] and Kurtz [18]), we obtain the strong existence and weak
igueness of equation (3.1). This proves Theorem 3.3. Recall Propositions 4.5 and 4.13.
ak uniqueness of equation (3.1) also implies that every limit of the convergent

" pdfelement

may be negative for some (¢, ) € [0, 7] x R®. In this case d is considered as the density of a signed

v, where |v|(1) < |u¢(1)] + |ut(1)| < oo a.s.. The moment duality still holds.
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Holder continuity of the solutions to a class of SPDE’s

subsequence of {X"},>1 constructed in Section 4.1 is continuous (see Lemma 4.4) and
unique in law. In other words, {X"},,>1 is convergent in D([0,T]; M) to a continuous
Mp(R%)-valued process in law. The limit has a density almost surely, that is a weak
solution the SPDE (3.1). O

The following corollary is a direct consequence of Theorem 3.3 and Proposition 4.13.

Corollary 4.14. Assume Hypotheses [HO], [H1], and assume that X, € Mp(R?) has a
bounded density. Then, the martingale problem (4.4)-(4.5) is well-posed.

5 Moment estimates for one-particle motion

In this section, we focus on the one-particle motion without branching. By using the
techniques of Malliavin calculus, we will obtain moment estimates for the transition
probability density of the particle motion conditional on the environment W. A brief
introduction and several theorems on Malliavin calculus are stated in Appendix A. For a
detailed account on this topic, we refer the readers to the book of Nualart [24].

Fix a time interval [0,7]. Let B = {B;,0 < ¢t < T} be a standard d-dimensional
Brownian motion and let W be a d-dimensional space-time white Gaussian random field
on [0,7] x R? that is independent of B. Assume that h € H3(R% R? ® R?). For any
0 <r <t <T, wedenote by & = &", the path of one-particle motion, with initial
position &, = x. It satisfies the SDE

t
& =x+ By fBTJr/ / h(y — &)W (du, dy). (5.1)
r JRA

We will apply the Malliavin calculus on &; with respect to the Brownian motion
B. Let H = L?([0,T]; R%) be the associated Hilbert space. By the Picard iteration
scheme (see e.g. Theorem 2.2.1 of Nualart [24]), we can prove that for any ¢ € (r, T,
& € Np>1D3P(RY). Particularly, D¢, satisfies the following system of SDE’s

d t
DPel =60~ > /9 /}R 0;, b2 (y — £)DM W (ds, dy), 1<ik<d, (5.2)
J1,J2=1

for any 0 € [r,#], and D{"¢i = 0 for all 6 > t.

In order to simplify the expressions, we rewrite the stochastic integrals in (5.2) as
integrals with respect to martingales. To this end, let M = {M;,r <t < T} be the d x d
matrix-valued process given by

d t
My = Z/ /}Rd gk (s, y)W"(ds, dy),
k=1""

where g;, : Q x [r,T] x R? = R? ® R? is given by
g (ty) =i (y— &), 1<ijk<d

Notice that M; is the sum of stochastic integrals, so it is a matrix-valued martingale. The
quadratic covariations of {M% }f j=1 are bounded and deterministic:

d
(MAI M9z = / t / i, WF (y — £9)0, W72 (y — &) dyds (5.3)
p—17r JR4
d
a pdfelement =(t-rY" /R ) B3, 7R ()3, W92* (y)dy = QU101 (t — 1) < ||hl32(t — 7).
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Holder continuity of the solutions to a class of SPDE’s

Now equation (5.2) can be rewritten as follows:
D¢l = 5y, — Z/ DPeIdMI, 1<k <d. (5.4)
=70 Jre

Lemma 5.1. Forany 0 < r < t < T, z € RY, let 4 = ¢, be the Malliavin matrix of
& = &", then vy, is nondegenerate almost surely.

Proof. We prove the lemma following Stroock’s idea (see Chapter 8 of Stroock [28]). Let
Ao (t) be the d x d symmetric random matrix given by

d
7 k) #i k i
2t =Y DPepel.
k=1

Then, the Malliavin matrix of ¢; is the integral of A\y(¢):

t
vy = / No()d0.

By (5.2), (5.3) and It6’s formula, we have

d ¢ d t
DM D] =0indn; — Y /9 DD ek amld -y /9 Dy 6Dy M
ki1=1 ko=1

d t
j k
+ 3 Qi [ pPen s

k1,ka=1

Therefore,
t t
Ao(t) =1 —/ Ao(s)dM —/ dM; - Xg(s)
0 0
d t
+Z/ /dgZ(S,y)Ae(S)gk(S,y)dde- (5.5)
k=170 JR

For any 0 € [r,t], we claim that Ay(t) is invertible almost surely, and its inverse [y(t)
satisfies the following SDE:

ﬂg(t) :I+/0 ﬁg(S)dMs* +A dM, - ﬂg(s) (5.6)
d t
#30 [ (o0 005) 0005005 5:9) + 861 5)°) dus.

Indeed, by Ito’s formula, we have
d[Xo(t)Bo(t)] = — dM; - [Xa(t)Bo(t)] + [No(t)Be(t)]dM (5.7)

d
3 /R (Do) B (g ()2 = g1 ()05 (DN (1)) dy )t
k=1

ol < Lo L {EIEYTSTR T« )\, ()3 (1) = I solves the SDE (5.7) with initial value \g(8)3(6) = I. Therefore,
ng uniqueness of the linear SDE (5.7) implies that A\, () = f¢(t) almost surely.
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Holder continuity of the solutions to a class of SPDE’s

Denote by || - |2 the Hilbert-Schmidt norm of matrices. By Jensen’s inequality (see
Lemma 8.14 of Stroock [28]), the following inequality holds almost surely

el = H(/t Mo(t)d0) < (t_lT)QH/t Bot)dt| (5.8)

It is easy to show that sup ||[|8s (t)||2H2p < oo for all p > 1. Therefore, the right-hand
0€[r,t]

side of (5.8) is finite a.s., and thus ~; is nondegenerate almost surely. O

We denote by oy = v, ! the inverse of the Malliavin matrix of &. In the following
lemma, we obtain some moment estimates for the derivatives of & and o;. Before
estimates, we introduce the following generalized Cauchy-Schwarz’s inequality.

Lemma 5.2. Let n1,ny be nonnegative integers, let u; € L?P(Q; (H®™)), and let us €
L?(Q, (H®"2)). Then, u; ® uy € LP(Q; (H®(+72))), and

(5.9)

HHUI ®U2HH®(“1+"2>HP < H||u1||H®"1 |2pH”u2”H®"z ‘Qp-

Proof. The lemma can be obtained by the classical Cauchy-Schwarz inequality. O

Lemma 5.3. Foranyp > 1 and 0 < r < t < T, there exists a constant C' > 0, that
depends on T, d, ||h||s,2, p, such that

max [[|D€} 1], <C(t )%, (5.10)
1£3§d}|a§j||2p <C(t-r)"", (5.11)

(max (1D [lu]l,, <C, (5.12)
max 1D (e, <C(t - )3, (5.13)
1g%§dy|||p%§j|\,{®z||2p <C(t—r)2, (5.14)
max [[1D° s |, <C(t —1)*. (5.15)

Proof of (5.10). By (5.3), (5.4), Jensen’s, Burkholder-Davis-Gundy’s, and Minkowski’s
inequalities, we have

d d d ¢ 2
(k) ¢i |2 (k) ¢ 00
1065, < 3 (w20 [ [ picanez], )
ik=1 i k=1 j=1 70 JR P
d d t *) 2
<(d+1) <5ik+ H/ / DY ¢lamit )
i,kZ:1 ];1 o Jra " P

t
[ 1D as
6 p

d
<d(d+1)+(d+1)e, Y QF
i,5,k=1

d t
<d(d+ 1) + 2¢,d(d + 1)|| k|3, Z/e ||D§k)§g“§pds. (5.16)
j,k=1

Thus by Gronwall’s lemma, we have

d
k) 7112
m pdfelement S D2 < did+ 1) exp (2e,d(d + DAI3,T) = C. (5.17)
i,j=1
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Holder continuity of the solutions to a class of SPDE’s

Therefore, by (5.17) and Minkowski’s inequality, we have

t
DM el2do

D& ul;, =

d t
(k) ¢i]|2
< Z/ D57 €|[,d0 < C(t = 7).
p k=1"T
This completes the proof of (5.10). O

Proof of (5.11). In order to prove (5.11), we rewrite the SDE (5.6) in the following way:

5”_|_ Z/ /B'Lkl Mjk1+ Z/ ﬁkzj Mzkz

k=1 ko=1
z N kg_] 1 N3 k1k2
+ Z k1 k2 / 6 ] ko / B
kl,kz 1 kl,kg 1
k2 k1 zk1
+ § Qkzh / Bi (5.18)
k1,ka= 1

Similarly as we did in step (i), by Burkholder-Davis-Gundy’s, and Minkowski’s inequali-
ties, we can show that the martingale terms satisfies the following inequality

2
Zkl Mjk‘l
| = .

For the drift terms, by Minkowski’s and Jensen’s inequality, we have

H/ﬂm dSH (-0 /Hﬂ'“'” (5)|[5,,s- (5.20)

Then, by (5.18)-(5.20), and Gronwall’s lemma, we have

< 26,113, / 163t )13, ds. (5.19)

Z 15 ()], <

i,j=1

Thus by Minkowski’s and Jensen’s inequalities, we have

t d t ..
I [ sl <> [ sl m< oo G5.21)
i,j=

Therefore, (5.11) follows from (5.8), (5.21), Minkowski’s and Jensen’s inequalities. O

Proof of (5.12). By integrating equation (5.5) on both sides with respect to 4, and ap-
plying the stochastic Fubini theorem (see e.g. Lemma 4.1 on page 116 of Ikeda and
Watanabe [15]), we have

t
Y = / Ao(t)dO =I(t —r) — / YsdMg — / dM - s (5.22)
. pdfelement + Z / / 9o (Y, 8)Ysgm (y, s)dyds.
m=1
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Holder continuity of the solutions to a class of SPDE’s

Taking the Malliavin derivative on both sides of (5.22), we have the following SDE:

0 ’775 - Z/ Dk) zk1de1] Z/ lkld D(k Mku)

k=1
Z/ D(k) kﬂdezﬂ Z/ kzjd D(k)Mkzz)
ko=1
+ Z ( 'Zi’]/ D(k)vf”“zds), (5.23)
Ky ka=1
where
Dy MY = Z / / Drinh?™ (y — &) DPE2WH (dr,dy).  (5.24)
’Ll ’LQ 1

For the first and the third term, by similar arguments as in (5.16), we can show that

H / Dy aaed|

To estimate the second and the fourth term, notice that by (5.10), we have

<cd,p||h||32/ |Dg* vé’“Hzpds. (5.25)

1255 I’ Hzp— 2 || D¢}, Dg] HHzp

< max H||D§75

max, ey, max 11D€] ||, < C(¢ = 7). (5.26)

Therefore, by (5.17), (5.24), (5.26), Jensen’s, Burkholder-Davis-Gundy’s, Minkowski’s,
and Cauchy-Schwarz’s inequalities, we have

t ) ) 2
| / (D) <eaplhlBs Y / [l 13,15 ek | ds

ko=1
<Clt— ). (5.27)

For the last term, by Minkowski’s and Jensen’s inequalities, we have

t t t
| [ pfostsieas| <o) [[pgn s <7 [0 s o289

Combining (5.23)-(5.28), we obtain the following inequality

P

S 0 Pl < / S o I|l3pds + ealt = 1), (5.29)
3,j=1 4,j=1
where ¢4, and p. Thus by Gronwall’s lemma, we have
Z 1D§PAE|)5, < C(t 7). (5.30)
1,7=1
It follows that
D7 Nla]l,, < C(E—1)*. (5.31)
Notice that v;0¢ = I, a.s., as a consequence, D (y;0;) = DI = 0. That implies
Doy =— > o/"Dy*o1. (5.32)
B pdfelement 2=l
' ‘ b.12) follows from (5.9), (5.11), (5.31) and (5.32). O
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Holder continuity of the solutions to a class of SPDE’s

Proofof (5.13). Fix 0 < r < t < T. For any 61,05 € [r,t], let § = 6; V 05. Taking the
Malliavin derivative on both sides of (5.4), we have the following SDE:

== 3 [ ol o

J11

+ Z // ;s jsh 7 (y — §)D('“ EJQD’“Z)?sWJl(ds dy).  (5.33)

J1,j2,j3=1

Similarly as in (5. 16) we can show the following inequalities

(k1,ks) 2
D k) eh qppini
61,02 2p

< capllfs [ 105 3 (5.30

and
t ..
H / / 055,17 (y — €) DY €2 DY el W (ds, dy)H
2
<cpl|l|3 2/ |D§e el |5 || Dge el |7 ds < C(t — ). (5.35)
Thus combining (5.33)-(5.35), we have
d ki,ka) 0i](2 o ki,k2) 0112
S e, <a Y [0 e s+ eate =)
i=1 i=1
Then, it follows from Gronwall’s lemma that
d
k1,k il12
> HDf,le;)gtHzp <C(t—r). (5.36)

Inequality (5.13) is a consequence of (5.36), Jensen’s and Minkowski’s inequalities. O

Proof of (5.14). For any 61,0, € [r,t] and 6 = 0; V 6, by taking the Malliavin derivative
on both sides of (5.23), we have

t
k1,k2) i ki,k2) _ii i1 k1) _ii k 017
Dé1,1922) J / Déhl@zz)fys 1dMslj +/0 Dézl)’ys ld(Délz)Mslj)>

’Ll 1

d t t
S ([ pi i)+ [ ami )

’Ll:l 0
d . t . .
_ Z (/ Dé’flé’zw ;2]dM;22+/ Dékl)fy;”d(D(k?)M;”))
ia=1 0 0
d t
Z (/ D(kz) ZQ]d( kl)M121)+/ zQJd(D(’fléiw)MzQz))
10=1 6
d
+ 3 (@i / D5y ds), (5.37)
i1,ia=1
where
k1,k 7 k 1 k i i
P = Y / [ Busnss = &) D2 D W ar )
Ji,j2,43=1
a pdfelement + Z / / 0552 h71 (y — &) DYFED ez W (dr, dy).
Ji1,J2=1
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Holder continuity of the solutions to a class of SPDE’s

By (5.17), (5.26), (5.30), (5.36), Burkholder-Davis-Gundy’s, Minkowski’s and Holder’s
inequalities, we have the following inequalities

H/ DélfléSQ mlszlj

2
o <t [ 1D s ©39)

t y T y ,
| [/ psisa(oo )|} seanlilts 3 [ 1D D

i2=1
k 1 2
<carlhle S [ [0 I D4 s
io=1
<C(t —r)4, (5.39)
nld D(klakZ)Mll] 2
H »\LP
Jj1 kl) J2 (k2 J3 1A/ J1 2
<cq H i oo (4 = &) DYy € DLW (ds. dy)|

J1,J2,93=1

i . . 2
+ Z H / /]Rd Mlaild'zh”l (y - fs) Dé]fjéfz)fg2wjl(d8, dy)HQp) =cCq (Il + 12) .

J1,J2=1

We estimate I, I5 as follows:

I <d||hf3 Z / ||’Y”1H6p (k1)5j2’|6pHD(k2)§J3||6 ds < C(t —7)3,

J2,33=1

and

Bl S [ I, 1R s < e 1) < 0T

jo2=1
Thus we have
Zid(pik | < o 3 4
H 01,02 s ) 2 (t - T) . (5.40)
Therefore, combine (5.37)-(5.40), we have

d
S D, <t — v en Y [ D

1,7=1 7,7=1

By Gronwall’s lemma, we have

Z g |5, < Ot =), (5.41)

1,j=1

which implies

’ )
10297 | o2, < Ot — )%,

H2p
By taking the second Malliavin derivative of v,0; = I, we have

d
D20 =~ Y o (D*{20y” + DY @ Doy’ + Doy’ @ Dyp'™). (5.42)
B pdfelement iniael
: ‘ 5.14) can be deduced by (5.9), (5.11), (5.12), (5.31) and (5.42). O
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Proof of (5.15). Forany 6,,0s,03 € [r,t], let § = 0;V0;V05. Taking the Malliavin derivative
on both sides of (5.33), we have

k1, kok i ( k1k2) w0 1 (Fa) cds 1ari
é1’192,2933)@ Z / / a]zdshj Y= fs)Déllej ffDéSS)ffWJl(ds,dy)

J1,J2,J3=1

Z / / 0, hT (y — €Dy el (ds, dy)

J1,J2=1
- Z // aj2,]3d4h211 Y= 55) k1)§]2D(k2 €g3Dé:3)§g4le(dsvdy>
SJa=1
+ Z / / Djogs W7 (y — £) DY 5 €l DR €2 W (ds, dy)
J1,J2,J3=1

+ Z / / 0y, (y — £5) DY ghpe’fe? EBWI (ds, dy). (5.43)

J1,J2,33=1

By (5.17), (5.36), Burkholder-Davis-Gundy’s, Minkowski’s, and Holder’s inequalities, we
have the following inequalities:

¢ g , 2
| [ dnntit o= €onfyi e D o w s,y |
6 JRI 2p

t
gcp|\h||§,2/9 | D15+ §J2H4PHD(’“3)§J3H4 ds < C(t —r)?, (5.44)

. Fr k2 k) miorrri 2 t Ka k2 ks) mio (12
| [ [ own-opscwotas.an] < el [ D856 3 a0

(5.45)
and
' j (k2) s 1y (ks) gy 2
| / / Ojo o ish ™ (v — € DR DY) 6 DY €W (ds. dy)|
/] Rd 2p
k k k
<cllhll3 / D562 16, |67 €2 [, | D662 [y ds < Ot =v). - (546)
Thus combining (5.43)-(5.46), by Jensen’s inequality, we have
d 2
Dk1,k2,ks) Dk1,k2ks) i
Z H 91719272933 é.t||2p =a Z/ H 917192,2933 §t||2pds + CQ(t - T)'
i=1
Then, the following inequality follows from Gronwall’s lemma
: ( ) i ||2
K1 ,k2,ks) oi
Z ”D91,19272933 €Z’HZ;D < C(t - T)' (5.47)
i=1
bacafore, (5.15) is a consequence of (5.47). O
pdfelement e next lemma, we derive estimates for the moments of increments of the deriva-
d o;.
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Holder continuity of the solutions to a class of SPDE’s

Lemma 5.4. Foranyp > 1,0<r <s<t<7T,and1 <1,j <d, there exists a constant
C > 0 depends onT, d, p, and ||h||3,2, such that

i 1
1r£1axd|||\D§t D§S||H||2p <C(t—s)?, (5.48)
iy _ij < B —1 o 1y 1
éril%)éd’ o) — o ’ <C(t—r)"2(s=—r)" " (t—s)2, (5.49)
max H||Da?’ —Da;'juHH <C(t—r) % (t— )k, (5.50)
1<i,5<d 2p
; 1
max, |I1Dg; — D?EL| proe ng <Ot —r)(t —s)2. (5.51)

Proof of (5.48). By (5.4), we have
k) oi k) oi d ¢ k) g i
D - Dgi = butie(®) =Y [ DPgiany
j=1 Vs

Thus by (5.17), Burkholder-Davis-Gundy’s, Jensen’s, and Minkowski’s inequalities, we
have

|05 i — DVl

<C[zk19t](9) (t—S)]
Thus we can show (5.48) by Minkowski’s inequality:

d t
I1Dg; = Deilally, <3 [ [ID§€ — D o
k=1v"

d t t
gkz_jlc*(/ 5¢kd9+/r (tfs)dﬂ) < C(t— ). O

S

Proof of (5.49). Note that o1—os = 01 (s — 7t) 0s. Then, by (5.11) and Hélder’s inequality,
it suffices to estimate the moment of v, — 5. By (5.22), we have

W am = Y [antts = Y [ i
S S

kl 1 kz 1
i,k k1ko
" Z o / du.

Then, by (5.26), Minkowski’s, Jensen’s, and Burkholder-Davis-Gundy’s inequalities, for
all 1 <14,5 <d, we have

g i
v =721l SC((t =8> + (t =r)*(t = ) + (t = 1)*(t = 5)°)
<C(A+T)*(t —r)(t —s). (5.52)
Then, (5.49) is a consequence of (5.11) and (5.52). O
Proof of (5.50). By (5.23), we have the following equation:

Z / Sk g (DU prked)

DY)y — Dy = — / D)k g —
ki1=1 ki1=1

- Z t Dék),y]7j2de52i_ Z/t 7ijjd(Dék)]wfﬂ')
k=1 OVs

AYE]

a pdfelement + Z (@ / Dk du).

k1,k2=1
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Holder continuity of the solutions to a class of SPDE’s

Then, by (5.17), (5.26), and (5.30), Burkholder-Davis-Gundy’s, Jensen’s, Minkowski’s,
and Cauchy-Schwarz’s inequalities, we have

S [ g

HD(k) iy Gk)fy;j H2p < Cd,p”hHB 2 [

k=1
t
O S N Ll AL PRI (i P 8
ko=1 AYE]
<C(t—r)2(t —s).
This implies
[1D7 = DAl ), < Ct—r)3(t—s)%. (5.53)
By (5.32), we have
DUZJ . DO'zj _ Z (O’i“ D’yzlzzdzw _ Jiil D,y;dizo-izj)
il,igzl
d d
= 3 ol (Dot - Doty ol 3 (dit — i) Darizgod
i1,i2=1 i1,i2=1
d . .
+ Z Ué“D'y;-”'2 (0223 — UiZj).
i1,i2=1
Thus (5.50) follows from (5.9), (5.11), (5.31), (5.49) and (5.53). O

Proof of (5.51). Let 6 = 0, V 05, by (5.33), we have the following equation:

k1,k k1,k 1 ki,k 1 ]
«(91 622)515 él 022) = Z /0 » Oj, h My —&,)D él,gj)fffWh (du, dy)
Vs

J1,J2=1

/9 / ) js 7 (y — £,) DY €22 DI els Wit (du, dy).
Vs

J1,J2,J3=1

As a consequence, by (5.17), (5.36), Burkholder-Davis-Gundy’s, Minkowski’s, and Cauchy-
Schwarz’s inequalities, we have

d t
D5 = DY, <eo| 3 MniRs [ DA€

ji=1
: (4)
2 J
+ 3 MEs [ IDED DY e o
J1,32
<C(t—s). (5.54)
Therefore, we obtain (5.51) by integrating (5.54) and Minkowski’s inequality. O

We define the following functionals of &;

d
B pdfelement Hey(61) = =Y 6(o'DE]), 1<i<d, (5.55)

=1
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and
d .
H (1) == o(He (& 1)ot? DEF), 1<i,j<d. (5.56)
k=1
A more detailed description of these functionals can be seen in Appendix A. In the next

lemma, we establish moment estimates for the functionals H ;) (&, 1) and H; ;) (&, 1).
Lemma 5.5. Suppose that h € H3(R%;RY ® RY), then the following inequalities are

satisfied:
max [|Hiy (€, D)l,, < Ot =)~ 5 (5.57)
 max [Higy (& Dl,, < CE—r)7" (5.58)

Proof. Due to Meyer’s inequality (see e.g. Proposition 1.5.4 and 2.1.4 of Nualart [24]), it
suffices to estimate

et D] 1|, 11D (o7 D)oz |, and [[I1D? (o7 DE) e .,

By (5.10) and Lemma 5.2-5.3, we have

1

o Ded ]|, < llo? L, 1D e, < CE = 1)72,

1D (7" DY) ez ||y, <|IDo?* @ DE]||s2]|,, + |[llof D ||z,
<D e[|, N1 D& WLy, + Nl (L, | 1D?EE ez |,

<O(t—r)3,
and
102 (o7 DE]) s |, <[ D%07" © DE o2,
+ (1067 © D€l sro2, + |ll07 D€ o2,
<C(t—r).
The above inequalities hold for all 1 <4, j < d. Then, (5.57) and (5.58) follows. O

The next lemma provides the moment estimate for the increment of H;)(&;,1).
Lemma 5.6. Suppose that h € H3(R?;R? ® R?). Then,

max || Hy (&, 1) = H (6, V||, S Cls =) 72 (t =) 2 (t—9)2.  (5.59)

1<i<d
Proof. Notice that, by definition, we have

d d

Hiy (6, 1) — Hpy(€6,1) Zé I'Del) +> 6(ol'DEY)

j=1
- Z (o' D€ — o' DEY).
j=1

Meyer’s inequality again, it suffices to estimate

I = ||lo?' D€} = 01 DEl ||, and I == ||| D(07' DE] = o' DEL) || s |,
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For I;, we have

L < |l[(of" = o2) DE o, + Nof" (DE = DEY ],
Notice that by Lemmas 5.2-5.4, we can write
(ot = o) DEl ., <l = o3l 1 D&,
<C(t—r)"5(s—1)"2(t— )"
and
llo?" (D& = DEY I rll,, < llo?" I3, M1 D& = DELl 1,
<Ct—r)""t—s)2 <Ct—r)"2(s—r) 2(t—s)2.

Thus combining the above inequalities, we have the following estimate for /;:

N
to\»—-

L<Ct—r)"3(s—r) 2(t—s)2. (5.60)

By Lemmas 5.2-5.4, we have the following estimate for I5:
L <||Dol' ® DEl — Doj' @ DEl|,, yen + |07 D€L = o' D€L, oo
<[1Dof" lall, 11(DEE = DEN Il + 1 (Dt = Do) | L4, M DE N L,

+ o\, I1D2€] — D€L Nz, + [lof" — ol 11D N ez,
<C(t—s)2. (5.61)
Therefore, (5.59) follows from (5.60), (5.61) and Meyer’s inequality. O

The next lemma shows that ¢ is a d-dimensional Gaussian process in the whole
probability space. Notice that, however, conditionally on W, the process £ is no longer
Gaussian, because it is the solution to a nonlinear SDE.

Lemma 5.7. The process £ given by equation (5.1) is a d-dimensional Gaussian process,
with mean x and covariance matrix

Ysr=({Ns—r)I+ p(0)), (5.62)

where p(0) is defined in (2.2). Moreover, the probability density of {;, denoted by pe, (y),
is bounded by a Gaussian density:

2
M) (5.63)

pe,(y) < (2m(t =)~ exp (- 5

where
k= [2(d|h]35+ 1] (5.64)
Proof. Since B is a d-dimensional Brownian motion and W is a d-dimensional space-time

white Gaussian random field independent of B, then £ = {§,r <t < T} is a square
integrable d-dimensional martingale. The quadratic covariation of £ is given by

LTy =6 (t — hlk h]k dyd
(€ Ehebyle =)+ //]R (6 — v)duds

B pdfelement
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Note that p(0) is a symmetric nonnegative definite matrix. As a consequence, I +
p(0) is strictly positive definite, and thus nondegenerate. Therefore, we can find a
nondegenerate matrix M, such that M*(I + p(0))M = I. Let n = Mg, thenn = {n;,t €
[0,T1} is a martingale with quadratic covariation

d

('o)e=(E—r) Y MPMIF (R ), =6t — ).
k‘th:l

By Levy’s martingale characterization, 7 is a d-dimensional Brownian motion. Then,
&= M*177 is a Gaussian process, with covariance matrix (5.62).

Since forany t > r, ¥, := %, = (t — r)({ + p(0)) is symmetric and positive definite,
the probability density of the Gaussian random vector &; is given by

1 1 *y—1
pe, (y) = W exp ( - i(y —x)*3, (y — x)) (5.66)

Recall that p(0) is symmetric and nonnegative definite. Then it has eigenvalues \; >
Ao > -+ > Az > 0. Let X\ be the diagonal matrix with diagonal elements \q,..., \s. There
is an orthogonal matrix U, such that p(0) = U*AU. Let k be defined in (5.64). It follows

that
d

ij 1
M1 p70)+1 < [lplloe + 1 < AR5+ 1 = %

i,7=1

Thus for any nonzero x € R?, we have

1 k 1 2k
D O (Zt_l - I)x
2 t—r 2 t—r

1

2(t —r)

U (T +N)"" =2kl Uz >0,

because (I + \)~! — 2k[ is a nonnegative diagonal matrix. Thus for any =,y € R%, ¢t > r,
we have

exp (- %(yfx)*Et‘l(yfr)) <exp (- %}W) (5.67)

On the other hand, we have
IS = U (T+NU(t—r)| > (t—r) (5.68)
Therefore, we obtain (5.63) by plugging (5.67)—(5.68) into (5.66). O

Denote by P, E", and || - ||}V the probability, expectation and L”-norm conditional
on W. The following two propositions are estimates for the conditional distribution of &.

Proposition 5.8. Fix 0 < r < t < T and recall that ¢, = ¢* = x. Let ¢ > 0, choose
p € (0,c\/t —r]. Then, for any pi,pz > 1 and y € R?, there exists C > 0, depending on p,
p2, ¢, ||h||2, and d, such that

L kle — yl?
[P (g — vl < )7, < Cexp (- M) (5.69)

where k is defined in (5.64) and p = p1 V po.

et p = p1 V p2. Then, by Jensen’s inequality, we have

1™ (e —ul < )75 [, = NILiec-sizorllp L, < Iesizol,
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We consider two different cases.
(i) Suppose that 2p < |z — y|. If |& — y| < p < ¢/t — 1, then

r—y
6= ol 2o~y ~ &3l 2 e~y - p2 22,

and equivalently {|&, — y| < p} C {|& — z| > @} Then, by Lemma 5.7, we have

1
1B (e =yl < 007, =11, sis sty |, < C[Var” 5w pe(2)]”

o=y
|z—z|> 5%

SC[Vdcd(Zﬂ')*% exp (— M%_ryp)}%, (5.70)

T2
r(+%)
(ii) On the other hand, suppose that 2p > |z — y|. Then |z — y| < 2p < 2¢+/t —r. Thus
by Lemma 5.7 again, we have

where V; = is the volume of the unit sphere in R¢.

[P (e~ 91 < p)77 ], <C(Vap' (e~ r))~#)?
1 (4]{702 _ 4]{;02)

p p
Sy b ake? klz —yl®
<C(Vycl(2m)~8) P e™s - 5.71
( et (2m) ) e exp( p(t—r)) ( )
Therefore, (5.69) follows from (5.70)-(5.71). O

Denote by p" (r, x;t,y) the transition probability density of ¢ conditional on W. In
other words, p" (r, z; t,y) is the conditional probability density of & = £;’*. The existence
of p (r,z;t,y) is guaranteed by Theorem A.3. By applying Theorem A.4, we can further
obtain the following estimate:

Proposition 5.9. Forany0 <r <t < T, p > 1, and y € RY, there exist C > 0, depending
onT,d, ||h|32, p, and g, such that

a2 ,
Flo —y| ))(t—T)—f, (5.72)

HpW(r,x;ty)Hzp < Cexp ( T Gpd(t—1)

where k is defined in (5.64).

Proof. Choose p; € (d,3pd], let po = 2p;, and p3 = % = po. Then, by (A.12) and
Holder’s inequality, we have

2 W), < © masx {[BY (& vl < 20)% |, | (1H o (& DIED) ",

1
< [+ M (& DI, ] - (5.73)

By Jensen’s inequality, we have forany 1 <i <d

d—1 d—1

W \d—1 -

IH e & DI, ) e, < 1Ho G Dy, < 1Hw E D6 - (5.74)
and
w

[ He € DI, ey < I1Ha 6 D60 (5.75)
.- pdfelement \/?. (5.72) is a consequence of (5.73)-(5.75), Lemma 5.5, and Proposition
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6 A conditional convolution representation

In this section, we follow the idea of Li et al. (see Section 3 of [20]) to obtain a
conditional convolution formulation of the SPDE (3.1). Consider the following SPDE:

t
ut(ac)z/ u(z)pW(O,z;t,x)dz—l—/ / PV (r, 2z t, x)u, (2)V (dr, dz), (6.1)
R 0 JRe

where W and V are the same random fields as in (3.1), p"V is the transition density of &,
given by (5.1) conditional on W.

In order to define the stochastic integral on the right-hand side of (6.1), we introduce
the following filtrations. First, for any ¢ € [0, 7], we set

Fi = o{W(s,x),(s,2) € [0,T] x R¥} v o{V(s,x),(s,x) € [0,¢] x R}. (6.2)

The stochastic integral in (6.1) is defined for all F;-adapted processes. But later we
will see that the solution u, as a limit of Picard iteration, is in fact adapted to a smaller
filtration defined as follows: for any ¢ € [0, 7],

G = c{W(s,x),(s,z) € [0,1] x R}V o{V(s,z), (s,2) € [0,1] x R%}. (6.3)

Definition 6.1. A random field u = {u;(z),t € [0,T],z € R¢} is said to be a strong
solution to the SPDE (6.1), if the following properties are satisfied:

(i) v is G;-adapted.

(ii) w is square integrable in the following sense:

T
IE)(/ / |ut(:v)|2dxdt) < 00. (6.4)
0o Jre

(iii) The stochastic integral in (6.1) is defined as Walsh’s integral and the equality holds
almost surely for all t € [0, T] and almost every x € R?.

Lemma 6.2. Assume that xk and u are bounded. Then the SPDE (6.1) has a unique strong
solution (in the sense of Definition 6.1). Denote the solution by u = {u:(z),0 <t < T,z €
R?}. Then, for any p > 1, the following inequality holds:

sup sup |Jug(x)]|2p < oo. (6.5)
0<t<T zeRd

Proof. We prove the lemma by the Picard iteration. Let uo(¢,2) = u(z) and let

t
wite) = [ w@p"Ostad+ [V estauaeavand). 66

foralln > 1and 0 <t < T. Since W and V are independent, then V is a martingale
with respect to the filtration {F;},c[0,r7. Notice that for any r € [0,T], F; includes all
the information of W, and p" depends only on W. Then, p" (r, z; ¢, z) is F,-measurable,
and by induction u,_(r, z) is F,-measurable for all [r,#] C [0,7] and 2,z € R. Thus the
stochastic integral is well-defined, and u,, is an F;-adapted random field. In addition, we
know that p" (r, z;t, ) is G;-measurable, and by induction we can assume that u,,_;(t) is
G;-measurable as well. Thus the stochastic integral in (6.6) is G;-measurable. Therefore,
the limit of u, (¢, z) in L?(Q), if exists, is also G;-measurable.

A (t, ) := tny1(t, ) — un(t,x). Then

B pdfelement d (t.) = /0 ' /}R PVt ) (r, )V (dr, d)
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For any p > 1, let

dr(t) == / lda(t,2)]12, dz. 6.7)

R4

We aim to prove the existence and convergence of {u"},>; in L?(; L?(R%)) by showing
that \/d (t) is summable in n. Then, we will show that the limit is a solution to (6.1).

By the definition of u,(¢), Burkholder-Davis-Gundy, Minkowski’'s and Cauchy-Schwarz’s
inequalities, we have

t 2
d; (t) Scp||l<:||oo/ / (/ ||pW(r7z;t,x)dn_l(r,z)Hdez) drdz. (6.8)
riJo \JRd

By the Markov property, p" (r, z; ¢, ) depends only on {W (s, z2)—W(r,2), s € (r,t], z € R%}.
On the other hand, d,,_1(r,2) depends on V and {W(s,2),s € [0,7],z € R¢}. Thus,
p"(r,z;t,x) and d,,_(r, 2) are independent. That implies

E(|pW(r, zyt, x)dp—1(r, z)\Qp) = E(|pw(r, z;t,x)|2p)E(|dn_1(r, z)\Qp). (6.9)

Then, by (6.8), (6.9), Young’s convolution inequality, Fubini’s theorem and Proposition
5.9, we have

t
Gty <l [ Y it o) el (221 0)
0 JRIxR? JRY
s, 20)lap a1, 20) i diadr

¢ d ]4}|21—22|2
< —r)"2 At S A _ _
_c/o (t—r) exp( 12pd(t_r))||dn L7, 20) l2pldn—1 (r, 22) | 2pdz1dzadr

t
§C/ dy 1 (r)dr, (6.10)
0

where C > 0 depends on p, T, d, h, and ||£/|oc-
Thus by iteration, we have

t Tn T2
) gC"/ / / 4 (r)dry -« - . 6.11)
0 0 0

To estimate djj, we observe that

a0 = [ |

/ (1(z) — (@) p" (0, 2, 2)d
Rd

t 2
+/ / PV (r, 2 t,2)u(2)V(dr,dz)|| dx
0 JRd 2p
2 2
S3/ / M(Z)pW(O,Z;t,x)dz dw—|—3/ / M(x)pW(O,Z;t,x)dz dx
R R4 2p R4 R4 2p
t 2
Jr3/ / / PV (r, z;t, ) u(2)V (dr,dz)||  d. (6.12)
Re Jo JR4 2p

By an argument similar to the proof of (6.10), we can show that dj;(t) < C. Therefore,

we have
t Tn T tn
d; (¢) gC/ / / 1dr1...drn:C—'. (6.13)
o Jo 0 n:

.- pdfelement hat \/d"(t) is summable in n and the corresponding series is bounded on [0, T].
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by u:(z) the limit of this sequence. We claim that u = {u;(z),t € [0,7],2 € R¢} is a
strong solution to (6.1). Clearly u satisfies (6.4) and is G;-adapted. Therefore, it suffices
to show that as n — oo,

t t
/ / pW(r,z;t,~)un(r,z)V(dr,dz)—>/ / pW(r,z;t,~)u(r,z)V(dr,dz), (6.14)
0 JRra 0 JRrda

in L?P(Q) for all ¢ € [0, T]. Actually, by Burkholder-Davis-Gundy’s, Minkowski’s, Young’s
convolution inequalities, and the fact that {p"(r,z;t,2),2,2 € RY} and {u,(r,z) —
u(r, ), 2 € R4} are independent, we can write

| /Ot /R W (r, 251, 7) (un(r, 2) — u(r, 2)) V(dr, dz)H; < C/ot /R lttn (1, 2) — u(r, 2) |3, dzdr.

This implies that (6.14) is true. As we discussed before, the limit u(t, z) is G;-measurable,
it follows that u(t, x) is a strong solution to (6.1).

In order to show the uniqueness, we assume that v = {v;(z),t € [0,7],z € R?} is
another strong solution to (6.1). Let d;(z) = u¢(x) — v¢(x) for any ¢t € [0,7] and = € R?.
Then,

= t W’I"Z' T)ar(Z r,az).
dt(x)_/O/de (7 vtv )d7( )V(dvd)

By the Ito isometry, Minkowski’s and Young’s convolution inequalities and the fact that
the families {d,.(z), 2z € R?} and {p" (r, 2;t,2), 2,2 € R¢} are independent, we have

t 2
[ @l < [ sup jar@B( [0 ety dz) ar
R4 R4

0 zeR?

t
<c [ [ la.@)|Bdsdr. 615
0 JR4

Notice that by definition,

/ ||dt(x)||§dx§/ E|ut(x)|2da:+/ Efve(2)|?dz < oo,
R4 R4 R

for almost every ¢ € [0,7]. As a consequence of Gronwall’s lemma and the fact that
do = 0, inequality (6.15) implies d(t,z) = 0, a.s for almost every (¢,z) € [0,T] x R?. It
follows that the solution to (6.1) in the sense of Definition 6.1 is unique.

In order to obtain the uniform boundedness (6.5), we need to estimate the following
expression when applying the Picard iteration:

dyy(t) := sup [|dn(t, 2)|3,,
z€R4

instead of d} (t) defined in (6.7). By a similar argument as we did before, the following

inequality can be proved:

~ T
di(t) < O—.

where C' > 0 is independent of n. Then, inequality (6.5) follows immediately. O

ition 6.3. Assume that k and y are bounded. Let u = {u;(z),0 <t < T,z € R%}
.- pdfelement nique strong solution to (6.1) in the sense of Definition 6.1. Then, u is the strong
) to (3.1) in the sense of Definition 3.1.
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Proof. Let u = {u;(z),t € [0,T],z € R?} be the unique solution to the SPDE (6.1), and
write Z(dt,dx) = us(x)V (dt,dx) for all t € [0,T] and = € R?. Then, it suffices to show
that u satisfies the following equation:

(w1 6) (1. 6) + /t<us,A¢ s [ [ w0y~ s,

/ b(2)Z(ds, dz), (6.16)
Rd

for any ¢ € CZ (R).
Denote by

EY (6(&)) = E(o(&)[ W, = ) = / ()" (5,251, 2)d.
]Rd

As u is the strong solution to (6.1), the following equations are satisfied

(us, 8) = (1, g (¢ / / )Z(ds, dz),
/0t<us,A¢>ds/0t <u,1EEY(A¢(£s))>ds+/O /0 /Rd E)Y. (Ap(&)) Z(dr, dz)ds,

/ / (102, V&*h(y — ) W (ds, dy) = / / (i Y (V) hly — £2))) W (ds, dy)
0 R4

//]Rd// ((Vo(&) Ry — &) Z(dr, dz)WV (ds, dy).

Notice that ¢ € CZ2(R?), h € H3(R%; R¢ @ R?), and ||us()||3 is integrable on [0, 7] x R<.
These properties allow us to write

T
E(/O /}R |V¢(€s)*h(y—§s)|2dyds) < T ¢ll1,00llB]13 < o0,

T T
Ap(&s , . §
IE/0 /o /]RdXRd| P(&s) |k (21, 22)ur (21)up (22)[dz1 dzodsdr

T
<l éllz.c0lI%lIs0 / / () |2ddr < oo,
0 R4

and

]E(/OT/OT/Rd /}RdXRd|v¢(€s)*h(y_55)|2|H(Zl’ZQ)UT(Zl)uT(ZQ)|dydzld22d8dr>

T
<1l Bll2lKlloc / / lur () |2 < oo.
0 R4

Thus by the stochastic Fubini theorem (see e.g. Lemma 4.1 on page 116 of Ikeda and
Watanabe [15]), we have

(ur, 6) — (1, 6) — / (s, Ad)ds — / / (0 V" hy — )W (ds. dy) 6.17)

B (060 ot — [ Avtets— [ [ Vole) by~ owias.an) )

| ¢
pdfelement : . " < do).
/R CEY.(0(6) / Ag(&)d / | V(&) hly — &)W (dr,dy)) 2(ds, dz)
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Holder continuity of the solutions to a class of SPDE’s

The last stochastic integral in (6.17) is well-defined, because the integrand is an F;-
adapted process, where F; is defined in (6.2). Notice that by It6’s formula, we have

t r
H(E") =¢(z) + / AG(E")dr + / Vo(EsT) dB

t
+ / V(€ ) Ry — €)W (dr, dy). (6.18)
s R4

Then, (6.16) follows from (6.17) and (6.18). O

7 Proof of Theorem 3.4

In this section, we prove Theorem 3.4 by showing the the Holder continuity of u;(z)
in spatial and time variables separately:

Proposition 7.1. Suppose that h € H3 (R?), < oo, and p € L' (RY) is bounded.
Then, forany 0 < s <t < T, z,y € R 8 € (0,1) and p > 1, there exists a constant C

tlloo, ||K|lco, p, @and B, such that the following inequalities are
satisfied:

luey) = wa(@)ll,, <Ct2(y - 2)°, (7.1)

ue() = us(@)lly, <Cs™%(t —5)3°. (7.2)

Then, Theorem 3.4 is simply a corollary of Proposition 7.1. In order to prove Proposi-
tion 7.1, we need the following Holder continuity results for the conditional transition
density p"V (r, z; t, z):

Lemma 7.2. Suppose that h € H}(R?), 0 <r <s <t < T, z,y € R% and 5 € (0,1).
p and (3, such that the following

inequalities are satisfied:
/d ||pW(T7 Z5 tvy) _pW(Ta Z;tvz)ng dz Sc(t - T)iéﬁ |y - x|6 ) (7.3)
R
/d HpW(r,z;t,:r) —pW(r z;s,x H2p dz <C(s— r)féﬁ(t — 5)%ﬁ. (7.4)
R

Before showing the proof, let us firstly derive a variant of the density formula (A.11).
It will be used in the proof of (7.4). Choose ¢ € C7 (R"), such that 10,1 < ¢ < 1p(04),
and its first and second partial derivatives are all bounded by 1. For any = € R? and
p >0, we set ¢ := qS(%). Assume that F satisfies all the properties in Theorem A.3.
Let @,, be the n-dimensional Poisson kernel (see (A.10)). Then, the density of F' can be
represented as follows:

Z E [0;,Qn(F — z) (DF", DF?) 07" H;)(F, ¢%(F))]

1,1,J2=1

RDQn —). 2 HipFg(F)o DF ]>H}

’J21
> E[0.(
K2

=1
m
=1

+ = & ° be defined in (5.1).

— ) Za Ho(F, 65 (F))o™ DF*] |

Jj2=1

Qn(F
E[Qn(F — 2)H 5 (F, ¢5(F))]. (7.5)
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Holder continuity of the solutions to a class of SPDE’s

Proof of (7.3). Choose p; € (d,3pd], let po = 2py, and p3 = % = py. Then, by (A.13)

and Holder’s inequality, for any fixed z, 2,y € R¢ and p > 0, we can show that

I(2) :=[p" (r, 2z t,2) — p" (r, 2, 9) |l 2p
<Cly—al||P" (g — 7 < 4p)7

max { (1 (6 D)

6p 1<i<d 6p
1 2 w w
x (o2 + 5 IH eI o, + 11H € DI, ) -
where 7 = cz + (1 — ¢)y, for some ¢ € (0,1) that depends on z, z,y.
Letp= —V’;’”. Similarly as proved in Proposition 5.9, we can show that
_ds1 k|t — z|?
I(z) <Cly —z|(t—r)" 2 exp(——)

() =Cly=altt=n) GV p2) (= 1)

<Cly—al(t ) ep (- HT 21 76)
— - Xp| — ——— .

vy P 6pd(t —r)/’

where k is defined in (5.64) and C' > 0 depends on T, d, p, and ||h||3 2.

Notice that even if we fix =,y € R, 7 is still a function of z that does not have an
explicit formulation. Thus it is not easy to calculate the integral of I directly. Without
losing generality, assume that x = 0, and y = (y1,0,...,0), where y; > 0. Then 7 =

((1 = ¢)y1,0,...,0), where ¢ = ¢(z) € (0,1). Let k = ooq- Forany z = (z1,...,24) € R, we
consider the following cases.
(a) If z1 <0, then
k|T — 2|? %|z|2
- < - —). 7.7
exp( 6pd(t—r)>*eXp< t—r) (7.7)
(b) If 21 > y1, then
k|lT — z|? @|y—z|2
- < e 7.8
exp( 6pd(t—r))*6Xp( t—r ) (7.8)
(c) If 0 < 21 < w1, then
k| — 2|2 E|mo — 2|2
- )< - 7.9
exp( 6pd(t—r)>*eXp( t—r )’ (7.9)
where 79 = (21,0, ...,0).
Therefore, combining (7.6)-(7.9), we have
/ I(2)de < Cly —al(t — )5 (I, + L + L), (7.10)
Rd

where

— 00
oo kly — 2
I :/ dzl/ eXp( v — 2| )dzd dza,
wl  JRa- ¢
| lyl Tl — 2|2
B pdfelement I— / dxy / exp ( - M)dz e de,
0 RA-1 t—r
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Holder continuity of the solutions to a class of SPDE’s

By a changing of variables, it is easy to show that

k|22 ~
11+12:/ exp<—ﬂ) =k E(t—r)8. (7.11)
R t

-Tr

For I3, we compute the integral as follows:

lyl 2
I3 = / dz / eXp ( + Zd) )dzd ...dzo
Rd 1

=(2rk") -yl (7.12)

Thus combining (7.10)-(7.12), we have

| 11z <Cle=r)~Hal + (=)~ bl
:C[(t—r)_%|y—a¢|+(t—r)_1\y—x|2]. (7.13)

It is easy to see that inequality (7.13) holds for all =,y € R<.
On the other hand, by Proposition 5.9, we have

[ @iz [ Y sl + 0V st old<C 010
R R

Therefore by (7.13) and (7.14), for any 1, 52 € (0,1), we have

/ I(z)dz < C[(t — )72 [y —a|” + (t = r) P2 |y — a[*P2].
R4
Then, (7.3) follows by choosing 3 = 31 = 203s. 0

Proof of (7.4). Let p;1 = v/t —r and ps = /s — r. By density formula (7.5), we have

‘pW(,},,7 2 t,.’E) - pW(T,Z; s,x)|

d
< Z |EY {[Qa(& — 2) — Qa(&s — x)] Higy(és, 0%, (€6)) } |
d
+ Z |EW {Qa(& — =) [Hpi i (& G5, (§0)) — Hiiy (€5 05, EN]Y
L4 (7.15)

Estimation for I,: Note that by the local property of § (see Proposition 1.3.15 of
Nulart [24]), H(; (&5, ¢5,(€s)) vanishes except if {; € B(wx,4p2). Choose p; € (d, 2pd]. Let

po = 3p1 and ps = 3;’11’12. Then, p% + p%. = 1. Thus, by Hoélder’s inequality, we have
1ll3p, <dl[1L5Ga2) (€)1 |6, Q& = 2) = Qal&s — 2)lIps |
1ll2p B(z,4p2)\Ss 6p d\St d\Ss psllep
o 1 e 02, I .16

By Proposmon 5.8, and the fact that po = 3p; < 6pd, the first factor satisfies the following

B pdfelement w w E k|z -z
P witp) (€I Nl = TP (16 = 2l < 4p2)72 |, < Cexp (= (s~ T)). (7.17)
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Holder continuity of the solutions to a class of SPDE’s

By Lemmas 5.5 and A.2, for all 1 < i < d, the last factor can be estimated as follows:
- w 1 2
1 .3y (55 05, (6 s [l <zt EHIIH(@(ES, M llep + 1H,0 s Dlipa s,
<C(s—r)"t (7.18)

We estimate the second factor by the mean value theorem. Let n; = |§ — z| and
N2 = | — «|. Then, we can write

A1 (logm — log ), ifd =2,
Quler =) = Qules x)_{ AT @D @A) s g

Thus, by the mean value theorem, it follows that

)| = calm — 2|
[Cm + (1= Oma|*=

where ¢, is a constant coming from the Poisson kernel, and ¢ € (0,1) is a random number
that depends on 7; and 7. Notice that f(z) = 2~ (=1 is a convex function on (0, c0), and
P(n1 > 0) = P(n2 > 0) = 1, then we have

1Qa(& — ) — Qa(§s — =

G+ (1= Oma| ™™D < [6m |~ Y (1= Qe 7Y, aus.

Letgq= pf’il, ps . As a consequence of Holder’s inequality, we have
1 — n2| w
) — s < 7.19
Qutei =) = Qutee =l < o i = Gt 71
< Cllln = ma I3 gyl + @ = Omal =V 3,
< Cllm = mellazpa[1<m ™V oy, + 1= O V1 )

—(d— w —(d— w
< Ol = &llgpalllllles = v1= g i, + 16 = w175 1o, )-

The negative moments of {; — y can be estimated by (5.57), Jensen’s inequality, and
Lemma A.6:

g = 21~ @[], <C max |[(1H:(& DI,

1<i<d
d—1
<Clr£1?<deH( ) (&1 ||12 d = <Ct—r) = (7.20)
Then, by (7.19)-(7.20), we have
1Qa(& — 2) = Qal&a — D)1} |5, < Clt— )3 (s =)~ (7.21)

Thus combining (7.16), (7.17), (7.18) and (7.21), we have

klz — x| _di1 1
Bl < Coxp (- ZE22LY (22— o)
1Ty < Coxp (= =y ) 6 =) H (=)
mplies
| 1 1
pdfelement / (11 ]l2pdz < C(s —7)"2(t — 5)2. (7.22)
d
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Holder continuity of the solutions to a class of SPDE’s

Estimates for I: Recall that v, = ((D&, D&Y )¢ 1= = 0;'. By computation analogue
to (7.5) going backward, we can show that

W [Qd(ft - $) (H(i,i)(§t7 ¢,€1 (ft)) - H(i,i) (fsa zQ (fs)))]

d

== 3 EV(0.Qul¢ — 2)(DEE . DE e (6, (€) of

j17j2_1

+ Z W10;,Qa(& — x)(DER, DEF ) Hyy (&5, 62, (€07)) 0]

J1,J2=1
EY [0;Qa(& — =) (Hpy (&, 0%, (&) — Hey (& 6%,(45)))
+ Z W10;,Qa(& — x)(DE — DEP, DEF Y Hiyy (8sr 02, (65)) 2]

J1,J2=1

=T+ . (7.23)
By Lemma A.2, we have

|[Heiy (&0, 05, (80)) = Heay (8267, (€0))| < 10:07, (&) — 9167, (&) (7.24)
+|¢P2 Es ||H(1) ft’ ) H(1 53’ |_|_|I{(Z gt’ ||¢zl(§t)_ §2(§3)|

By the mean value theorem, for some random numbers ¢, cs € (0,1), we have

|05, (&) = 67, (&) =1 .ap) (&) V ]-B(w,4p2)(£s)|’¢(£tp: m) - ¢(§sp; x)‘
=[15w.4p1) (&) V 1B(2,4p5) (&)
‘ng(clgt 1 (1*01)557&7)*'(ftix—587x>’

P2 1 P2
§t— §s—x
<[1B(ap1) (€) V L, (&) 2— — ( (7.25)
P1 P2
and
€T — 5 — SS -
|ai¢p1 (ft) z¢ ’P1 1az¢( t ) 1az¢( D2 )‘
g—]va@(@& +(1—02)§S_x) .<5t—f”_5s—x)‘
P1 P1 P2 P1 P2
1 1
+ |sas, (€| - -
| ¢p2(£ )} P1 P2
1 ft —Z gs -z
SE (1B(ac,4p1)(ft) \ 1B(x,4p2)(fs)) o - 7‘
1 1
+ 1B(a.ap2) (§5) | — Pt (7.26)
bhogse g € (d, 3pd], let p; = q%' p2 = 2q, p3 = 4q. Then,
B pdfelement L2 1 1 9
_ [ - Z =1
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Holder continuity of the solutions to a class of SPDE’s

Then, by (7.24)-(7.26), and Holder’s inequality, we have

2o i 19:Qa(6 = ) gy | L3401 (60) ¥ Liaton) (€0

6p
g[St W
p2 l16p
+||H61'Qd ||p1||6p ||13(cc4pz (&) || HHP 7p2_1||p2”6p
+||H61Qd( ||P1||6p ||]-B(x,4p2)(£s)||p2 6pH||H(z) gtal)fH(i)(g‘Bv ||P2||6p
w
+ ||10:Qa(& — ||p1||6p ||]-B(I,4p1)(§t)\/]-B(w,4p2)(€s)||p2 o
G—x &—xW
H‘ : s ‘12 H”H (&1 ||P3H12p
Z=L1 + L2 + Lg + L4. (727)

In order to estimate the moments of &p—_l”’ — fsp ;”” we rewrite this random vector in the
following way:

gt—xiﬁsfl’:ftfgs+(§s—z)<i*i)+(zfx)<ifi>-

P1 P2 P1 1 P2 P1 P2
It follows that
§e—x Es—w H
— (t —
‘ o 12pr3 = r) H‘Et §s Hupd
(t—r) —(s—1)? (t—r)2 —(s—1)*

s — 2 +|z—x

(t—r)2(s—r)3 &= #llizpa + 12 == (t—r)3(s—r)3
According to Lemma 5.7, & — £ and £ — z are Gaussian random vectors with mean 0,
and covariance matrix (¢t — s)({ + p(0)) and (s — 7)(I + p(0)) respectively. Therefore, we
have

&—x §s—$H 1 1 (t—r)8 —(s—7)3
2= - <cpalt —7)72(t—8)2 +cpa
H p2 l2pa =7 (t=r)72(t =) Pt —r)i(s—1r)2

e et
<C(|z—al(s—r) "2 +1)(t —r)"2(t — s)%. (7.28)

Therefore, by (7.28), Proposition 5.8 and Lemma A.6, we have

Ly + Ly Sc(t—r)_% [exp(— k|z—_x:)) + exp ( _ M)]

6pd(t 6pd(s — 1)
X (1+|z—m|(s—74)_%)(t—s)%, (7.29)
and
_a klz —a|? 1 1
Lo+ Ly <C(t—r) 2exp(—m)(s—r) Z(t—s)2. (7.30)

g (7.29) and (7.30) into (7.27), we have

- pdfelement /}Rd [ J1]],, dz < C(s — Pt — s)

Nl=

(7.31)
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Holder continuity of the solutions to a class of SPDE’s

For Js, notice that, by definition,

. . . d s . . .
(Dgl - D Dl =3 [ (Dl - D) Difes .
k=1""
By (5.2), we have
d

- . t . ..
DPE — DY =1, 1005 — 3 11y (0) / D e drrive,
i=1 s

By an argument similar to the one used in the proof of Lemma 5.3, we can show that

[14r.4(0) (D§7€f? — D e) |5 < C1pp g (O)(t = 5).

Therefore, by Holder’s and Minkowski’s inequalities, we have

d s . . .
(D& D&, DEr )l <37 [ 110 @ (D6 = DPe) |, D52 0
k=1""

<C(s—r1)(t—s)2. (7.32)
Choose g € (d,3pd]. Let p; = q%l, po = 2q and p3 = 6g. Then —1 + 55 + = = 1. Thus, by
(7.32), Holder’s inequality, Lemmas 5.3, 5.5, A.6, and Proposition 5 8, we have
d
12l < D7 (1 5ap €I 1o, 1105, Qat& — )X,
J1,J2=1
% [1(Det> = De, DER) 15|, 1o €6 8 EDIE g, N2 i,

k|lz — x|?

<Cexp ( - W)(t - r)fd%(t —8)2 (s — 7‘)7%.

As a consequence, we have

/ | Jally, dz < C(t — 5). (7.33)
]Rd
Finally, combining (7.22), (7.31) and (7.33), we have
/ o™ (r, 2, ) — p"V(r, 2 s7x)||2p dz < C(s— r)_%(t —5)3. (7.34)
]Rd
On the other hand, by (5.72), we have
/ [22][2pdz < / 1P (r, 25t y) |2 + ID" (7, 25 5,9)[|2p < C. (7.35)
R R
Thus (7.4) follows from (7.34) and (7.35). O

Proof of Proposition 7.1. By the convolution representation (6.1), Burkholder-Davis-
Gundy’s, and Minkowski’s inequalities, we have

[ue(y) — ue(2)ly, < H/ W0, z;t,y) — (O,z;t,x)) dz

2p

+ H/o /]Rd up(2) (pW(r,z;t,y) —pW(r,z;t,x)) V(dz,dr)H
< IIMIIOO/W 1P (0, 2 t,y) = " (0, 25, 2)] |, d=
* ||“||§°(/ot (/R () (¥ (7, 258,9) = 0 (231, 2) |, =) ")

2p

N

B pdfelement
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Holder continuity of the solutions to a class of SPDE’s

Note that I; can be estimated by Lemma 7.2. For I, recall that u(r, z) is independent of
p"W (r, z;t,y)%. Then, by Lemma 6.2 and 7.2, we have

t 2
L g(/ sup [Jup(2)]1, (/ ||pw(r,z;t,y)—pW(r,z;t,m>||2pdz) dr)
0 z€R4 d

t
§C|y—x|6(/0 (t—r)" ﬁdr) \/7|y—ac|'@. (7.37)

Therefore (7.1) follows from (7.3), (7.36) and (7.37).
The proof of (7.2) is quite similar. As in (7.36), we can show that

D=

Jue () — us(2)lly, < ll1lloo /Rd HpW(O,z;t,x) —p"(0, 2 s,x)Hzp dz

: K 2 w 2%
+C||/<LH§O[/ suEI{)d llur(2) Iz, </1Rd |p (r,z;t,x)||2pdz) dr}
zeR®

S

+C||/1H% [/3 sup ||u.(2)]|3 (/ H(pw(r zit,x) —pVi(r 28 z))| dz)er}
oo o seRd I 2p R s <y by y <y 9y 2p

[N

Then, the estimate (7.2) follows from (7.4), Proposition 5.9 and Lemma 6.2. O

A Basic introduction on Malliavin calculus

In this section, we present some preliminaries on the Malliavin calculus. We refer
the readers to book of Nualart [24] for a detailed account on this topic.
Fix a time interval [0, 7). Let B = {B},..., Bf,0 <t < T} be a standard d-dimensional
Brownian motion on [0, 7. Denote by S the class of smooth random variables of the form
G=g(By,....B,)=g(B},....,B}.....B}

tm "

..Bi ), (A.1)

where m is any positive integer, 0 < t; < --- < t,, < T, and g : R™? — R is a smooth
function that has all partial derivatives with at most polynomial growth. We make use
of the notation = = (mf)1<¢<m,1<k<d for any element z € R™?. The basic Hilbert space
associated with B is H = L? ([0, T]; R%).

Definition A.1. For any G € S given by (A.1), the Malliavin derivative, is the H-valued
random variable DG given by

" dg
DG =3 2T (By,...,Bi,) 1o (0), 1<k<d, 0€[0,T).

i=1 T

In the same way, for any n > 1, the iterated derivative D"G of a random variable
of the form (A.1) is a random variable with values in H®" = L2 ([0, 7]";R?"). For each
p > 1, the iterated derivative D" is a closable and unbounded operator on LP(2) taking
values in LP(2; H®™). For any n > 1, p > 1 and any Hilbert space V, we can introduce
the Sobolev space D™?(V') of V-valued random variables as the closure of S with respect
to the norm

np,V :”GH%P(Q;V) + Z HDkG”%P(Q;H‘X”“@\/)
k=1
2 n

=[E(IGI%)]* Z (ID*Glrorgy)] -

IGII%

B pdfelement
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Holder continuity of the solutions to a class of SPDE’s

By definition, the divergence operator ¢ is the adjoint operator of D in L?(Q2). More

precisely, § is an unbounded operator on L? (Q; H), taking values in L?({2). We denote by

Dom(d) the domain of §. Then, for any u = (u!,...,u?) € Dom(é), §(u) is characterized

by the duality relationship: for all for all G € D*? = D2(R).
E (5(u)G) = E (DG, u) ;). (A.2)

Let F be an n-dimensional random vector, with components F* € D11 < 4 < n.
We associate to F' an n x n random symmetric nonnegative definite matrix, called the
Malliavin matrix of F, denoted by vr. The entries of v are defined by

d T
vid = (DF',DF7), = Z/ DS F DM Fiag. (A.3)
— Jo

Suppose that I’ € N,>1D*?(R™), and its Malliavin matrix v is invertible. Denote by
op the inverse of yp. Assume that o3 € N,>1D? forall 1 <4,j < n. Let G € N> D2
Then Go? DF* € Dom(6) for all 1 < 4,4,k < n. For such F and G, we define

Hy(F,G) = — Zd(GaJ;‘DFJ‘), 1<i<n. (A.4)
j=1
If furthermore H ;) (F,G) e ﬂpzllDl’p for all 1 < i < n, then we define
H j)(F,G) = Hg) (F,Hu)(F,G)), 1<4,j<n. (A.5)

The following lemma is a Wiener functional version of Lemma 9 of Bally and Caramell-
ino [1].

Lemma A.2. Suppose that F € N,>D*?(R"), (vz')¥ = 0} € Np>1D?P forall1 <i,j <
n, and ¢ € C}(R™). Then, for any 1 < i < n, we have

Hy (F, ¢(F)) =0;¢(F) + ¢(F)H ;) (F,1). (A.6)
Suppose that F' € N,>1D3P(R") and ¢ € CZ(R™). Then, for any 1 < i,j < n, we have

H gy (F, ¢(F)) =0i;¢(F) + 0i¢(F) H ;) (F, 1)
+ 0;¢(F)H ) (F,1) + ¢(F)H; 5 (F, 1). (A.7)
Proof. For any F € N,>D*?(R") and ¢ € C}(R"), it is easy to check that ¢(F) €

Np>1D'P. Then, H;(F, ¢(F)) is well defined. For any G € D%, by the duality of D and
0, we have

E(3(¢(F)oi DFY)G)

NE

E(Hu (F,¢(F))G) = —

<.
Il

[
NE

E(¢(F)ol(DF, DG) ). (A.8)
1

<.
Il

On the other hand, by the product rule for the operator D, we have

m

E (¢(F)H(F,1)G) = — Z E({(cp DFI, D(¢(F)G)),,)
j=1
il O LEENER - - > E(6(F)o (DFI,DG) ) — Y E(Go,¢(F)op'(DF, DF72) ).
j=1 j1,j2=1
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Holder continuity of the solutions to a class of SPDE’s
Note that o is the inverse of v = ((DF", DFj>H)?j:1, then

f: E(Gdj,¢(F)o'(DF#, DF#2) ) = E(Gd;¢(F)). (A.9)

J1,j2=1

Then, (A.6) follows from (A.8)-(A.9). Equality (A.7) can be proved similarly. O

The next theorem is a density formula using the Riesz transformation. The formula
was first introduced by Malliavin and Thalmaier (see Theorem Section 4.23 of [21]), then
further studied by Bally and Caramenillo [1].

For any integer n > 2, let ),, be the n-dimensional Poisson kernel. That is,

1 o
Qnl) = {A2 loglz|, n=1, (A.10)

—A Nz n> 2,

where A, is the area of the unit sphere in R". Then, 9;Q,(z) = c,x;|z|”", where
co=A;'and ¢, = (2 —1)A, ! forn > 2.

The theorem below is the density formula for a class of differentiable random vari-
ables.

Theorem A.3. (Proposition 10 of Bally and Caramenillo [1]) Let F' € Op>1]1)2’p(]R")
Assume that (y;')7 = 0% € N> DY forall 1 < i,j < n. Then, the law of F has a
density pr.

More precisely, for any x € R™ and r > 0, let B(x,r) be the sphere on R" centered at
x with radius r. Suppose that ¢ € C{(R?), such that 10,1 < ¢ <12, and |[Vé| < 1.
Define ¢3, := qb( L) for any p > 0 and « € R". Then,

= Z E(1p,, ,, (F)0iQu(F — 2)Hg) (F,¢%(F))). (A.11)

The next theorem provides the estimates for the density and its increment.

Theorem A.4. Suppose that F satisfies the conditions in Theorem A.3. Then, for any
p2 > p1 >n, let ps = ””’2 , there exists a constant C' that depends on pi, p2 and n, such
that

1 n— 1
pr(z) <CP(|F — 2| < 2p)73 1r£iagxn{”H( )" 1(;+y|H(i)(F,1)Hp2)] (A.12)

If furthermore, F' € ﬂpzllD?”p(IR”), there exists a constant C that depends on p1, p>, and
m, such that for all 1,z € R",

pr(x1) — pr(@2)| < Claoy — 2o P(F — y| < 4p)7s (A.13)

n— 1 2
x max [ [HoE DI (54 1H E D], + [ Hop B D], )]

B pdfelement

' ‘ = cz1 + (1 — ¢)zg for some ¢ € (0,1) which may depend on z; and z3.
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Remark A.5. Inequalities stated in Theorem A.4 are an improved version of those
estimates by Bally and Caramillino (see Theorem 8 of [1]). We refer to Nualart and
Nualart (see Lemma 7.3.2 of [25]) for a related statement. For the sake of completeness,
we present below a proof of Theorem A.4. The proof follows the same idea as in Theorem
8 of [1]. The only difference occurs when choosing the radius of the ball in the estimate
for the Poisson kernel. If we optimize the radius, then the exponent of ||H; (F,1)]|, is

n— 1, instead of LU= > n — 1in [1].

In order to prove Theorem A.4, we first give the estimate for the Poisson kernel:
Lemma A.6. Suppose that F' satisfy the conditions in Theorem A.3. For any p > n, let
q= ﬁ. Then, there exists a constant C > 0 depends on m and p, such that

n—1

sup [19:Qu(F = @)ll, < swp [[IF -]V, < € max [|He) (£, 1)] (A.14)
zeR™

2€R™ 1<i<n p

Proof. Assume that

lpFlloo :== sup pr(z) < oco.
r€RY

Denote by M = sup |H;(F,1)|,. Then by Holder’s inequality, for all z € R?, we have
1<i<n

pr(@) = E(0iQn(F = 2)H) (F,1)) < 3 _110:Qn(F = )llolHe (F, 1)1

<n sup
zeR™

|F = a|~0|
q
which implies

lpFpllee <n sup
xER™

\for(”*l)” M. (A.15)
q

In order to estimate |||F' — x|~("~V)|,, choose any p > 0. Then for all = € R",

E(F —af~0%) = [y =l ey

=/| § ly — 2|~ Vpp(y)dy + / ly — 2|~ Vpp(y)dy
y—=z|<p

ly—z[>p

P
S||pFHoo/ T_(n_l)qrn_ldr+p—(n—1)q

0
=knqllpF|lacp’ ™" 4 pm (171, (A.16)

where k,, , = [Ll—(n—1)(¢—1)]~'. The last equality is due to the fact that 1—(n—1)(¢g—1) >
0.
Combining (A.15) and (A.16), we have

1-(n—1)(g—1)
q

1 1
IpFllos < [nki qllpr|l&p +p~ ("] M. (A.17)

By optimizing the right-hand side of (A.17), we choose

. n—1)q1% _1
p=p = [7( ) } Ipr (o™ -
n

g p* into (A.17), we obtain

a pdfelement

n—1
n
oo .

)Mipr|

1 1 lf(n*;)(trl) “1DaM _Q(nnfl)
Iprlloe < (nkdg [ L2 ¢ [ el
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Then, it follows that

< n — . n
IpFllec < CM Clrg%xn | H ey (F, DI, (A.18)

where C' is a constant that depends on p and n. Thus (A.14) follows from (A.17) and
(A.18).

The result can be generalized to the case without the assumption ||pg||cc < oo by the
same argument as in Theorem 5 of [1]. O

liroofof Theorem A.4. Choose ps > p; > n, let p3 = % and ¢ = plpil. Then é + p% +

5 = L Thus by density formula (A.11) and Holder’s inequality, we have

pr() < 118, ) (F)llps 10:Qn (F = 2) ||| Hs) (F, ¢%(F)) - (A.19)
i=1
Then, (A.12) is a consequence of (A.19), Lemma A.2 and A.6. Inequality (A.13) can be
proved similarly. O
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