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VARIABLE COEFFICIENT WOLFF-TYPE INEQUALITIES
AND SHARP LOCAL SMOOTHING ESTIMATES

FOR WAVE EQUATIONS ON MANIFOLDS

DAVID BELTRAN, JONATHAN HICKMAN AND CHRISTOPHER D. SOGGE

The sharp Wolff-type decoupling estimates of Bourgain and Demeter are extended to the variable
coefficient setting. These results are applied to obtain new sharp local smoothing estimates for wave
equations on compact Riemannian manifolds, away from the endpoint regularity exponent. More generally,
local smoothing estimates are established for a natural class of Fourier integral operators; at this level
of generality the results are sharp in odd dimensions, both in terms of the regularity exponent and the
Lebesgue exponent.

1. Introduction and statement of results

1A. Local smoothing estimates. Let n�2 and .M; g/ be a smooth,1 compact n-dimensional Riemannian
manifold with associated Laplace–Beltrami operator �g . Given initial data f0; f1WM ! C belonging to
some a priori class, consider the Cauchy problem�

.@2t ��g/uD 0;

u. � ; 0/D f0; @tu. � ; 0/D f1:
(1-1)

It was shown, inter alia, in [Seeger, Sogge, and Stein 1991, Theorem 4.1] that for each fixed time t and
1 < p <1 the solution u satisfies2

ku. � ; t /kLp
s�Nsp

.M/ .M;g kf0kLps .M/Ckf1kLps�1.M/ (1-2)

for all s 2R, where Nsp WD .n� 1/
ˇ̌
1
2
�
1
p

ˇ̌
. Here Lps .M/ denotes the standard Sobolev (or Bessel potential)

space on M with Lebesgue exponent p and s derivatives; the relevant definitions are recalled in Section 3
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1In view of the methods of the present article it is convenient to work in the C1 category, but the forthcoming definitions
and questions certainly make sense at lower levels of regularity.

2Given a (possibly empty) list of objects L, for real numbers As;p ; Bs;p � 0 depending on some Lebesgue exponent p
and/or regularity exponent s the notation As;p .L Bs;p or Bs;p &L As;p signifies that As;p � CBs;p for some constant
C D CL;n;p;s � 0 depending only on the objects in the list, n, p and s. In such cases it will also be useful to sometimes write
As;p DOL.Bs;p/. In addition, As;p �L Bs;p is used to signify that As;p .L Bs;p and As;p &L Bs;p .
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below. Moreover, provided t avoids a discrete set of times, the estimate (1-2) is sharp for all 1 < p <1
in the sense that one cannot replace Nsp with Nsp � � for any � > 0.

The purpose of this article is to prove sharp local smoothing estimates for the solution u for a partial
range of p, which demonstrate a gain in regularity for space-time estimates over the fixed-time case.

Theorem 1.1. If u is the solution to the Cauchy problem (1-1) and Npn � p < 1, where Npn WD
2.nC 1/=.n� 1/, then�Z 2

1

ku. � ; t /k
p

L
p
s�NspC�

.M/
dt
�1=p
.M;g kf0kLps .M/Ckf1kLps�1.M/ (1-3)

holds for all s 2 R and all � < 1
p

.

For the given range of p, this result is sharp up to the endpoint in the sense that the inequality fails if
� > 1

p
.3 It is likely, however, that the range of p is not optimal. For instance, Minicozzi and the third

author [Minicozzi and Sogge 1997] (see also [Sogge, Xi, and Xu 2018]) found specific manifolds for
which (1-3) can hold for all � < 1

p
only if p � 2.3nC 1/=.3n� 3/ for n odd or p � 2.3nC 2/=.3n� 2/

for n even; it is not unreasonable to speculate that these necessary conditions should, for general M, be
sufficient.4 The examples of [Minicozzi and Sogge 1997] rely on Kakeya compression phenomena for
families of geodesics; the (euclidean) Kakeya conjecture, if valid, would preclude such behaviour over Rn.
Indeed, the local smoothing conjecture for the wave equation [Sogge 1991] asserts that in the euclidean
case the estimate (1-3) should hold for all � < 1

p
in the larger range 2n=.n� 1/� p <1. If true, this

would be a remarkable result, not least because the conjecture formally implies many other major open
problems in harmonic analysis (including the Bochner–Riesz, Fourier restriction and Kakeya conjectures);
see [Tao 1999].

It is well known (see, for instance, [Duistermaat 1996, Chapter 5] or [Sogge 2017, Chapter 4]) that the
solution u to the Cauchy problem (1-1) is given by

u.x; t/D F0f0.x; t/CF1f1.x; t/; (1-4)

where, using the language of [Hörmander 1971; Mockenhaupt, Seeger, and Sogge 1993], each Fj 2
I j�1=4.M�R;M I C/ is a Fourier integral operator (FIO) with canonical relation C satisfying the cinematic
curvature condition (the relevant definitions will be recalled below in Section 3; see also [Beltran, Hickman,
and Sogge 2018] for a comprehensive Introduction to FIOs in the context of local smoothing). In local
coordinates, such operators Fj adopt the explicit form (1-5) below with �D j . Theorem 1.1 follows
from a more general result concerning Fourier integral operators.

3Such inequalities are also conjectured to hold at the endpoint
�
that is, the case � D 1

p

�
and endpoint estimates have been

obtained for a further restricted range of p in high-dimensional cases: see [Heo, Nazarov, and Seeger 2011; Lee and Seeger
2013].

4The examples in [Minicozzi and Sogge 1997] concern certain oscillatory integral operators of Carleson–Sjölin type, defined
with respect to the geodesic distance on M. Their results lead to counterexamples for local smoothing estimates via a variant
of the well-known implication “local smoothing) Bochner–Riesz”. Implications of this kind will be discussed in detail in
Section 4.
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Theorem 1.2. Let n� 2 and let Y andZ be precompact manifolds of dimensions n and nC1, respectively.
Suppose that F 2 I��1=4.Z; Y I C/, where the canonical relation C satisfies the cinematic curvature
condition. If Npn � p <1, then

kFf kLploc.Z/
. kf kLpcomp.Y /

holds whenever � < �NspC 1
p

.

An interesting feature of Theorem 1.2 is that both the restriction on � and the restriction on p are
sharp in certain cases.

Proposition 1.3. For all odd dimensions n�3 there exists some operator F2I�.n�1/=2�1=4.RnC1;RnIC/
with C satisfying the cinematic curvature condition such that

k.I ��x/

=2
ıFf kLp.RnC1/ . kf kLp.Rn/ for all 0 < 
 < n

p

fails for p < Npn.

If F 2I�.n�1/=2�1=4.RnC1;RnI C/, then .I��x/
=2ıF 2I��1=4.RnC1;RnI C/ for�D�1
2
.n�1/C


by the composition theorem for Fourier integral operators (see, for instance, [Sogge 2017, Theorem 6.2.2]).
The range 0 < 
 < n

p
corresponds to �1

2
.n� 1/ < � < �NspC

1
p

and thus Proposition 1.3 demonstrates
that Theorem 1.2 is sharp in odd dimensions.

Proposition 1.3 is established by relating local smoothing estimates for Fourier integral operators to
Lp estimates for oscillatory integral operators with nonhomogeneous phase (sometimes referred to as
Hörmander-type operators) and then invoking well-known examples of [Bourgain 1991; 1995b] for the
oscillatory integral problem. The details of the argument are discussed in Section 4.5

At this juncture some historical remarks are in order. Local smoothing estimates for the euclidean
wave equation were introduced by the third author in [Sogge 1991] and then further investigated in
[Mockenhaupt, Seeger, and Sogge 1992]. These early results, however, did not involve a sharp gain in
regularity (that is, a sharp range of � , at least up to the endpoint); the first sharp local smoothing estimates
were established in R2 in the seminal work [Wolff 2000]. For this, Wolff introduced what have since
become known as decoupling inequalities for the light cone. The results of [Wolff 2000] were improved
and extended by a number of authors [Łaba and Wolff 2002; Garrigós and Seeger 2009; 2010; Bourgain
2013] before the remarkable breakthrough of [Bourgain and Demeter 2015] established essentially sharp
decoupling estimates in all dimensions (see also [Bourgain 1995a; Tao and Vargas 2000; Heo, Nazarov,
and Seeger 2011; Lee and Vargas 2012; Lee 2016] for alternative approaches to the local smoothing
problem and [Cladek 2018] for recent work in a related direction). One of the many consequences of the
theorem of [Bourgain and Demeter 2015] is the analogue of Theorem 1.1 for the wave equation in Rn.

Local smoothing estimates were studied in the broader context of Fourier integral operators in parallel
to the developments described above [Mockenhaupt, Seeger, and Sogge 1993; Lee and Seeger 2013] (see
also [Sogge 2017]). Results in this vein typically follow from variable-coefficient extensions of methods

5It is remarked that the F constructed to provide sharp examples for Theorem 1.2 do not arise as solutions to wave equations
of the kind discussed above. Thus, these examples do not show sharpness in Theorem 1.1. Indeed, it is likely that Theorem 1.1
should hold in the range suggested by [Minicozzi and Sogge 1997], as described above (see also the discussion in Section 4).
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used to study wave equations on flat space. Similarly, Theorem 1.2 (and therefore Theorem 1.1) is a
consequence of a natural variable-coefficient extension of the decoupling inequality of [Bourgain and
Demeter 2015]. The variable-coefficient decoupling theorem is the main result of this paper and concerns
certain oscillatory integral operators with homogeneous phase; the setup is described in the following
subsection.

1B. Variable coefficient decoupling. Let a D a1 ˝ a2 2 C
1
c .R

nC1 � Rn/, where a1 2 C1c .R
n/ is

supported in B.0; 1/ and a2 is supported in the domain

�1 WD
˚
� 2 yRn W 1

2
� �n � 2 and j�j j � j�nj for 1� j � n� 1

	
:

Suppose that �WRn�R� yRn! R is smooth away from Rn�R�f0g and that for all .x; t/ 2 Rn�R the
function � 7!�.x; t I �/ is homogeneous of degree 1. Writing supp an0 for the set .supp a/n.Rn�R�f0g/,
assume, in addition, that � satisfies the following geometric conditions:

(H1) rank @2
�z
�.x; t I �/D n for all .x; t I �/ 2 supp a n 0. Here and below z is used to denote a vector in

RnC1 composed of the space-time variables .x; t/.

(H2) Defining the generalised Gauss map by G.zI �/ WD G0.zI �/=jG0.zI �/j for all .zI �/ 2 supp a n 0,
where

G0.zI �/ WD

n̂

jD1

@�j @z�.zI �/;

one has
rank @2��h@z�.zI �/;G.zI �/ij�D� D n� 1

for all .zI �/ 2 supp a n 0.

Here the wedge product of n vectors in RnC1 is associated with a vector in RnC1 in the usual manner.
It is remarked that (H1)1 and (H2)2 are the natural homogeneous analogues of the [Carleson and Sjölin
1972] or [Hörmander 1973] conditions for nonhomogeneous phase functions.

The conditions (H1)1 and (H2)2 naturally arise in the study of Fourier integral operators of the
type described in the previous subsection. Indeed, by standard theory (see, for instance, [Sogge 2017,
Proposition 6.1.4]), any operator belonging to the class I��1=4.Z; Y I C/ with C satisfying the cinematic
curvature condition can be written in local coordinates as a finite sum of operators of the form

Ff .x; t/ WD
Z
yRn
ei�.x;t I�/b.x; t I �/.1Cj�j2/�=2 Of .�/ d�; (1-5)

where b is a symbol of order 0 (with compact support in the .x; t/-variables) and � satisfies the properties
(H1)1 and (H2)2 (at least on the support of b).

Rather than directly studying the operators F as in (1-5), a decoupling inequality shall instead be
formulated in terms of a certain closely related class of oscillatory integral operators.

Given �� 1, define the rescaled phase and amplitude

��.x; t I!/ WD ��

�
x

�
;
t

�
I!

�
and a�.x; t I �/ WD a1

�
x

�
;
t

�

�
a2.�/
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�1 �

� 0

�n

�n D
1
2

�n D 2

.!; 1/

Figure 1. The decomposition of the domain �1 into R�1=2-plates. The centre .!; 1/ of
one such plate � is indicated.

and, with this data, let

T �f .x; t/ WD

Z
yRn
ei�

�.x;t I�/a�.x; t I �/f .�/ d�:

The aforementioned variable-coefficient decoupling inequality compares the Lp-norm of T �f with the
Lp-norms of localised pieces T �f� which form a decomposition of the original operator. To describe
this decomposition fix a second spatial parameter 1�R � � and note that the support of a2 intersects
the affine hyperplane �n D 1 on the disc Bn�1.0; 1/� f1g. Fix a maximally R�1=2-separated subset of
Bn�1.0; 1/� f1g and for each ! belonging to this subset define the R�1=2-plate

� WD
˚
.� 0; �n/ 2 yR

n
W
1
2
� �n � 2 and j� 0=�n�!j �R�1=2

	
:

In this case .!; 1/2Bn�1.0; 1/�f1g is referred to as the centre of the R�1=2-plate � . Thus, the collection
of all R�1=2-plates forms a partition of the support of a2 into finitely overlapping subsets (see Figure 1).
For each � , let Q� be a subset of � such that the family of all Q� forms a partition of the support of a2.
Given any function f 2 L1loc.

yRn/ and an R�1=2-plate � , define f� WD � Q�f , and for 1� p <1 and any
measurable set E � RnC1 introduce the decoupled norm

kT �f k
L
p;R
dec .E/

WD

� X
� WR�1=2-plate

kT �f�k
p

Lp.E/

�1=p
:

This definition is extended to the case p D1 and to weighted norms kT �f k
L
p;R
dec .w/

in the obvious
manner.

Finally, let Npn and Nsp be as in the statement of Theorem 1.1 and given 2� p �1 define the exponent

˛.p/ WD

�1
2
Nsp if 2� p � Npn;
Nsp �

1
p

if Npn � p �1.
(1-6)

With these definitions, the decoupling theorem reads as follows.
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Theorem 1.4. Let T � be an operator of the form described above and 2 � p �1. For all " > 0 and
M 2 N one has6

kT �f kLp.RnC1/ .";M;�;a �˛.p/C"kT �f kLp;�dec .R
nC1/
C��Mkf k

L2.yRn/
: (1-7)

Theorem 1.4 is a natural variable-coefficient extension of (the `p variant of) Theorem 1.2 in [Bourgain
and Demeter 2015], which treats the prototypical case �.x; t I �/ D hx; �i C t j�j. More generally, the
translation-invariant case, where � is linear in the variables x; t , can be deduced from the results of
[Bourgain and Demeter 2015; 2017a] via an argument originating in [Pramanik and Seeger 2007; Garrigós
and Seeger 2010]. Interestingly, it transpires that the result for general operators T � follows itself from
the translation-invariant case. This stands in contrast with the Lp-theory of such operators (see, for
instance, [Bourgain and Guth 2011; Guth, Hickman, and Iliopoulou 2019]).

Finally, it is remarked that the argument used to prove Theorem 1.4 is flexible in nature, and could
equally be applied to prove natural variable-coefficient extensions of other known decoupling results,
such as the `2 decoupling theorem for the paraboloid [Bourgain and Demeter 2015] or the decoupling
theorem of [Bourgain, Demeter, and Guth 2016] for the moment curve (in the latter case the relevant
variable-coefficient operators are those appearing in [Bak and Lee 2004; Bak, Oberlin, and Seeger 2009]).

2. A proof of the variable-coefficient decoupling inequality

2A. An overview of the proof. As indicated in the Introduction, Theorem 1.4 will be derived as a
consequence of the (known) translation-invariant case; the latter result is recalled presently. Let a2 be
as in the Introduction and suppose hW yRn! R is smooth away from 0, homogeneous of degree 1 and
satisfies rank @2

��
h.�/D n� 1 for all � 2 supp a2 n f0g. With this data, define the extension operator

Ef .x; t/ WD

Z
yRn
ei.hx;�iCth.�//a2.�/f .�/ d�:

For the exponent ˛ defined in (1-6), the translation-invariant case of the theorem reads thus.

Theorem 2.1 [Bourgain and Demeter 2015; 2017a]. For all 2� p �1 and all " > 0 the estimate

kEf kLp.wB� /
.";N;h;a �˛.p/C"kEf kLp;�dec .wB� /

(2-1)

holds for �� 1.

Here BR denotes a ball of radius R for any R > 0 and wBR is a rapidly decaying weight function,
concentrated on BR. In particular, if . Nx; Nt / 2 Rn �R denotes the centre of BR, then

wBR.x; t/ WD .1CR
�1
jx� NxjCR�1jt � Nt j/�N ; (2-2)

6Strictly speaking, the proof will establish this inequality with the operator appearing on the right-hand side of (1-7) defined
with respect to an amplitude with slightly larger spatial support than that appearing in the operator on the left (but both operators
are defined with respect to the same phase function). This has no bearing on the applications and such slight discrepancies will
be suppressed in the notation.
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where N can be taken to be any sufficiently large integer (depending on n, h and p). It is remarked
that the dependence on h of the implicit constant in the inequality (2-1) involves only the size of the
absolute values of the nonzero eigenvalues of @2

��
h and their reciprocals, as well as upper bounds for a

finite number of higher-order derivatives @ˇ
�
h, jˇj � 3.

As mentioned in the Introduction, Theorem 2.1 does not appear in [Bourgain and Demeter 2015; 2017a]
in the stated generality, but this result may be readily deduced from the prototypical cases considered in
[Bourgain and Demeter 2015; 2017a] via the arguments of [Pramanik and Seeger 2007; Garrigós and
Seeger 2010] (see also [Bourgain and Demeter 2015, §7–8] and [Guo and Oh 2018]), or by using a variant
of the approach developed in the present article.

The passage from Theorem 2.1 to Theorem 1.4 is, in essence, realised in the following manner. The
desired decoupling inequalities have a “self-similar” structure, which is manifested in their almost-
invariance under certain Lorentz rescaling (see Lemma 2.3). An implication of this self-similarity is
that in order to prove the decoupling estimate, it suffices to obtain some nontrivial, but possibly very
small, gain at a single spatial scale; this gain can then be propagated through all the scales via Lorentz
rescaling.7 At spatial scales K below the critical value �1=2 one can effectively approximate T � by an
extension operator E of the form described above; this is the content of Lemma 2.6 below. Combining this
approximation with Theorem 2.1 provides some gain at such scales K, and combining these observations
concludes the argument.

2B. Basic properties of the phase. Before carrying out the programme described above, it is useful to
note some basic properties of homogeneous phases � satisfying the conditions (H1)1 and (H2)2 and to
make some simple reductions.

After a localisation and a translation argument, one may assume that a is supported inside Z �„,
where Z WD X � T for X � B.0; 1/ � Rn and T � .�1; 1/ � R small open neighbourhoods of the
origin and „ � �1 is a small open sector around en WD .0; : : : ; 0; 1/ 2 yRn. By choosing the size of
the neighbourhoods appropriately, one may assume the phase satisfies a number of useful additional
properties, described presently.

By localising, one may ensure that strengthened versions of the conditions (H1)1 and (H2)2 hold. In
particular, without loss of generality one may work with phases satisfying:

(H10) det @2
�x
�.zI �/¤ 0 for all .zI �/ 2Z �„.

(H20) det @�0�0@t�.zI �/¤ 0 for all .zI �/ 2Z �„.

Indeed, by precomposing the phase with a rotation in the z D .x; t/-variables, one may assume that
G.0I en/D enC1 and therefore @�@t�.0I en/D0. Hence, by (H1)1, it follows that det @2

�x
�.0I en/¤0. On

the other hand, by the homogeneity of �, every .n�1/�.n�1/minor of the matrix featured in the (H2)2 con-
dition is a multiple of det @�0�0h@z�.zI �/;G.zI �/ij�D� . Thus, in order for the rank condition (H2)2 to hold,
this determinant must be nonzero. In particular, asG.0I en/D enC1, it follows that det @�0�0@t�.0I en/¤ 0.
Choosing the neighbourhoods Z and „ sufficiently small now ensures both (H10)10 and (H20)20 hold.

7Further details and discussion of this perspective on decoupling theory can be found in the recorded lecture series given by
Guth as part of the MSRI harmonic analysis programme during January 2017 [Guth 2017a; 2017b; 2017c].
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By Euler’s homogeneity relations,

@x�.x; t I �/D

nX
jD1

�j � @�j @x�.x; t I �/:

Thus it follows that for each t 2 .�1; 1/ and � 2 yRn the Jacobian determinant of the map x 7!
..@�0�/.x; t I �/; �.x; t I �// is given by �n � det @2

�x
�.x; t I �/, which is nonzero by (H10)10. Thus, there

exists a smooth local inverse mapping ‡. � ; t I �/ which satisfies

.@�0�/.‡.y; t I �/; t I �/D y
0 and �.‡.y; t I �/; t I �/D yn: (2-3)

Similarly, there exists a smooth mapping ‰.x; t I � / such that

.@x�/.x; t I‰.x; t I �//D �: (2-4)

Given � � 1, let ‡� and ‰� denote the natural rescaled versions of these maps, so that ‡�.zI �/ D
�‡.y=�I �/ and‰�.zI �/ WD‰.z=�I �/. One may assume that Z and„ are such that the above mappings
are everywhere defined.

2C. Quantitative conditions. Fix ">0, M 2N, and 2�p<1 (the pD1 case of Theorem 1.4 is trivial
but nevertheless must be treated separately: see (2-7)). To facilitate certain induction arguments, it is useful
to work with quantitative versions of the conditions (H10)10 and (H20)20 on the phase function. In particular,
let cpar be a small fixed constant and assume that for some 0��C�n�1 andAD .A1; A2; A3/2 Œ1;1/3

the phase satisfies, in addition to (H10)10 and (H20)20, the following:

(H1A) j@2
�x
�.zI �/� Inj � cparA1 for all .zI �/ 2Z �„.

(H2A) j@2
�0�0
@t�.zI �/� .1=�n/In�1;�C j � cparA2 for all .zI �/ 2Z �„, where

In�1;�C WD diag.1; : : : ; 1„ ƒ‚ …
�C

;�1; : : : ;�1„ ƒ‚ …
n�1��C

/

is an .n�1/� .n�1/ diagonal matrix.

Some additional control on the size of various derivatives, which is of a rather technical nature, is assumed:

(D1A) k@ˇ� @xk�kL1.Z�„/ � cparA1 for all 1� k � n and ˇ 2 Nn0 with 2� jˇj � 3 satisfying jˇ0j � 2;
k@ˇ

0

�0
@t�kL1.Z�„/ � .cpar=.2n//A1 for all ˇ0 2 Nn�10 with jˇ0j D 3.

(D2A) For some large integer N DN";M;p 2N, depending only on the dimension n and the fixed choice
of ", M and p, one has

k@
ˇ

�
@˛z�kL1.Z�„/ �

cpar

2n
A3

for all .˛; ˇ/ 2 NnC10 �Nn0 with 2� j˛j � 4N and 1� jˇj � 4N C 2 satisfying 1� jˇj � 4N or
jˇ0j � 2.

Finally, it is useful to assume a margin condition on the spatial support of the amplitude a:

(MA) dist.supp a1;RnC1 nZ/� 1
4
A3.
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Datum .�; a/ satisfying (H1A)1A, (H2A)2A, (D1A)1A, (D2A)2A and (MA)A (in addition to (H10)10

and (H20)20) is said to be of type A. One may easily verify that any phase function satisfying (H10)10 and
(H20)20 is of type A for some A D .A1; A2; A3/ 2 Œ1;1/3. The conditions (H1A)1A and (H2A)2A are
quantitative substitutes for (H10)10 and (H20)20 if, say, A1; A2 � 1; for A1 and A2 large, however, the
conditions (H1A)1A and (H2A)2A are vacuous and do not imply (H10)10 or (H20)20. By various rescaling
arguments, it is possible to reduce to the case where A D 1 WD .1; 1; 1/, as shown in Section 2E.

2D. Setting up the induction for (1-7) and reduction to �1�"=n-balls. Continuing with the fixed ", M
and p from the previous subsection, let AD .A1; A2; A3/ 2 Œ1;1/3 and N 2N be as in the definition of
the condition (D2A)2A. For 1 � R � � letA".�IR/ denote the infimum over all C � 0 for which the
inequality

kT �f kLp.BR/ � CR
˛.p/C"

kT �f k
L
p;R
dec .wBR /

CR2n
�
�

R

��"N=.8n/
kf k

L2.yRn/
(2-5)

holds for all type-A data .�; a/8 and balls BR of radius R contained in B.0; �/. Here the weight function
is understood to be defined with respect to the fixed choice of N above, as in (2-2). It is remarked that
the quantityA".�IR/ is always finite. To see this, note that for any 1 � � � R and ��1=2-plate � one
may write

T �f� D
X

�\Q�¤∅
� WR�1=2-plate

T �f� I

recall that Q� is the subset of � upon which f� is supported. By the triangle and Hölder’s inequalities, for
any weight w one has

kT �f kLp;�dec .w/
�

�
R

�

�.n�1/=.2p0/
kT �f k

L
p;R
dec .w/

: (2-6)

Taking � = 1, one thereby deduces the trivial bound

D"A.�IR/.R
.n�1/=.2p0/�˛.p/; (2-7)

which, in particular, shows that D"
A
.�IR/ is finite. This trivial observation also proves Theorem 1.4 in

the p D1 case.
To prove Theorem 1.4 for the fixed parameters 2", M, and 2� p <1 it is claimed that it suffices to

show that
A".�I�1�"=n/.A;" 1: (2-8)

The “."=n/-gain” realised by this reduction will be useful for various technical reasons. To see the above
claim, observe that the support conditions on the amplitude a imply that the support of T �f is always
contained in B.0; �/. Take a cover of B.0; �/ by finitely overlapping �1�"=n-balls and apply (2-8) to
the relevant Lp-norm defined over each of these balls. Summing over all the contributions from the

8As in the statement of Theorem 1.4, a discrepancy between the amplitude functions is allowed here: the right-hand operator is
understood to be defined with respect to some amplitude with possibly slightly larger spatial support than the original amplitude a.
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collection via Minkowski’s inequality, one deduces that

kT �f kLp.B.0;�// .A;" �
˛.p/C"

kT �f k
L
p;�1�"=n

dec .wB.0;�//
C�2n�"N=.8n/kf k

L2.yRn/
:

Here the weight wB.0;�/ is as defined in (2-2) (with RD � and Nx D 0, Nt D 0). Provided N is sufficiently
large, the desired estimate (1-7) now follows from (2-6).

After reducing to the case A D 1, it will be shown in Section 2G, using induction on R, that
D"1.�IR/." 1 for all 1�R � �1�"=n, thus establishing (2-8). The trivial inequality (2-7) will serve as
the base case for this induction.

2E. Lorentz rescaling. The first ingredient required in the proof of Theorem 1.4 is a standard Lorentz
rescaling lemma. Before stating this result, it is useful to observe the following trivial consequence of
rescaling.

Lemma 2.2. Let A D .A1; A2; A3/ and zA D .A1; A2; 1/. Then

D"A.�IR/.A3 D
"
zA

�
�

A3
I
R

A3

�
:

Proof. Let .�; a/ be a type-A datum. Observe that T �f D zT �=A3f , where zT is defined with respect
to the phase Q�.zI �/ WD A3�.z=A3I �/ and amplitude Qa.zI �/ WD a.z=A3I �/. Clearly the datum . Q�; Qa/

satisfies (H1 zA), (H2 zA), (D1 zA/ and (D2 zA/. The margin of the new amplitude Qa (with respect to the rescaled
open set A3Z) has been increased to size 1

4
and so (M zA) holds. There is a slight issue here in that the

support of the rescaled amplitude may now lie outside the unit ball, but one may decompose the amplitude
via a partition of unity and translate each piece to write the operator as a sum of O.AnC13 / operators
each associated to type- zA data. Finally, covering B.0;R/ with a union of .R=A3/-balls and applying
the definition of D"

zA
.�=A3IR=A3/ to each of the contributions arising from these balls, the result then

follows from the trivial decoupling inequality (2-6). �

Lemma 2.3 (Lorentz rescaling). Let 1 � � � R � � and suppose that T � is defined with respect to a
type-AD .A1; A2; A3/ datum. If g is supported on a ��1-plate and � is sufficiently large depending on �,
then there exists a constant C D C � � 1 such that

kT �gkLp.wBR /
.";�;N D"1

�
�

C�2
I
R

C�2

��
R

�2

�̨ .p/C"

kT �gk
L
p;R
dec .wBR /

CR2n
�
�

R

��"N=.8n/
kgk

L2.yRn/
: (2-9)

Remark 2.4. The proof of the lemma will show, more precisely, that the lower bound for � and the
implicit constant in (2-9) may be chosen so as to depend only on ", A and the following quantities:

� inf.x;t I�/2suppajdet @2
x�
�.x; t I �/j.

� The infimum and supremum of the magnitudes of the eigenvalues of

@2�0�0@t�.x; t I �/ (2-10)
over all .x; t I �/ 2 supp a.
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Note that the quantities appearing in the above bullet points are nonzero by the conditions (H10)10 and
(H20)20.

Lemma 2.3 will be applied in two different ways:

(i) An initial application of the lemma reduces the proof of Theorem 1.4 to operators defined with respect
to type-1 data. This is achieved by introducing a partition of unity of the frequency domain �1 into
��1-plates for some sufficiently large �, depending on �. Each of these frequency-localised pieces can
be rescaled via Lemma 2.3 and then summed together to yield the desired reduction. Observe that, by the
preceding remark, Lemma 2.3 is uniform for type-1 data.

(ii) The second application of Lemma 2.3 will be to facilitate an induction argument which constitutes
the proof of Theorem 1.4 proper. The uniformity afforded by the reduction to type-1 phases is useful in
order to ensure that this induction closes.

Proof of Lemma 2.3. The argument used in what follows is a generalisation of the Lorentz rescaling used
to study decoupling for the light cone [Wolff 2000]; see Figure 2. Let ! 2Bn�1.0; 1/ be such that .!; 1/
is the centre of the ��1-plate upon which g is supported, so that

suppg �
˚
.� 0; �n/ 2 yR

n
W
1
2
� �n � 2 and j� 0=�n�!j � ��1

	
:

Performing the change of variables .� 0; �n/D .�n!C ��1�0; �n/, it follows that

T �g.z/D

Z
yRn
ei�

�.zI�n!C�
�1�0;�n/a�.zI �n!C �

�1�0; �n/ Qg.�/ d�;

where Qg.�/ WD ��.n�1/g.�n!C ��1�0; �n/ and supp Qg �„.
By applying a Taylor series expansion and using the homogeneity, the phase function in the above

oscillatory integral may be expressed as

�.zI!; 1/�nC �
�1
h@�0�.zI!; 1/; �

0
iC ��2

Z 1

0

.1� r/h@2�0�0�.zI �n!C r�
�1�0; �n/�

0; �0i dr:

Let ‡!.y; t/ WD .‡.y; t I!; 1/; t/ and ‡�!.y; t/ WD�‡!.y=�; t=�/ and introduce the anisotropic dilations
D�.y

0; yn; t / WD .�y0; yn; �
2t / and D0

��1
.y0; yn/ WD .��1y0; ��2yn/ on RnC1 and Rn, respectively.

Recalling (2-3), it follows that

T �g ı‡�! ıD� D
zT �=�

2

Qg;

where

zT �=�
2

Qg.y; t/ WD

Z
yRn
ei
Q��=�

2
.y;t I�/

Qa�.zI �/ Qg.�/ d�

for the phase Q�.y; t I �/ given by

hy; �iC

Z 1

0

.1� r/h@2�0�0�.‡!.D
0

��1
y; t/I �n!C r�

�1�0; �n/�
0; �0i dr (2-11)
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and the amplitude Qa.y; t I �/ WD a.‡!.D0��1yI t /I �n!C �
�1�0; �n/. In particular, by a change of spatial

variables, it follows that

kT �gkLp.BR/ .� �
.nC1/=p

k zT �=�
2

QgkLp..‡�!ıD�/�1.BR//
:

Fix a collection BR=�2 of finitely overlapping .R=�2/-balls which cover .‡�! ıD�/
�1.BR/ and observe

that

kT �gkLp.BR/ .� �
.nC1/=p

� X
B
R=�2

2B
R=�2

k zT �=�
2

Qgk
p

Lp.B
R=�2

/

�1=p
:

It will be shown below that

k zT �=�
2

QgkLp.B
R=�2

/ .";� D"1

�
�

C�2
I
R

C�2

��
R

�2

�̨ .p/C"

k zT �=�
2

Qgk
L
p;R=�2

dec .wB
R=�2

/

C

�
R

�2

�2n� �
R

��"N=.8n/
kgk

L2.yRn/
(2-12)

holds for each BR=�2 2 BR=�2 and a suitable constant C � 1, depending on �. Momentarily assuming
this (which would follow immediately from the definitions if . Q�; Qa/ were a type-1 datum), the proof of
Lemma 2.3 may be completed as follows.

Since ‡! is a diffeomorphism, it follows that[
B
R=�2

2B
R=�2

BR=�2 � .‡
�
! ıD�/

�1.BC�R/;

where BC�R is the ball concentric to BR but with radius C�R for some suitable choice of constant C� � 1
depending on �. Thus, one may sum the p-th power of both sides of (2-12) over all the balls in BR=�2
and reverse the changes of variables (both in spatial and frequency) to conclude that9

kT �gkLp.BR/ .";�;N D"1

�
�

C�2
I
R

C�2

��
R

�2

�̨ .p/C"� X
Q� W.R=�2/�1=2-plate

kT �g�k
p

Lp.wBR /

�1=p
CR2n

�
�

R

��"N=.8n/
kgk

L2.yRn/
;

where � is the image of Q� under the map .�0; �n/ 7! .�.�0� �n!/; �n/. In particular, if ! Q� denotes the
centre of the .R=�2/�1=2-plate Q� , then

� D
˚
.� 0; �n/ 2 yR

n
W
1
2
� �n � 2 and j!C ��1! Q� � �

0=�nj<R
�1=2

	
;

and so the � form a cover of the support of g by R�1=2-plates. This establishes the desired inequality
(2-9) with a sharp cut-off appearing in the left-hand norm, rather than the weight function wBR . The

9Here one picks up O.�nC1/ copies of the error term .R=�2/2n.�=R/�N=8kgk
L2.yRn/

from (2-12), that is, one for each
ball in the collection BR=�2 . This is compensated for by the factor ��4n appearing in each of these errors; it is for this reason
that the R2n factor is included in the definition ofA".�IR/ in (2-5).
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�

C

�1

�2

�3

Figure 2. The simplest case of the Lorentz rescaling lemma, corresponding to the phase
�.x; t I �/ WD x1�1C x2�2C t�

2
1=�2. Here each plate is associated with a subset of the

conic surface C defined by �3 D �21=�2 for 1
2
� �2 � 2. The key observation is that there

exists an affine transformation of the ambient space which essentially maps � to the
whole of C.

strengthened result, with the weight, easily follows by pointwise dominating wBR by a suitable rapidly
decreasing sum of characteristic functions of R-balls.

It remains to show the validity of the inequality (2-12) for each BR=�2 2 BR=�2 . Let L 2 GL.n;R/ be
such that Len D en and

@2�0�0@t
Q�L.0; 0I en/D In�1;�C (2-13)

for some 0� �C � n� 1, where

Q�L.y; t I �/ WD Q�.L�1y; t IL�/:

Observe that L is a composition of a rotation and an anisotropic dilation given by the matrix diag.
p
j�1j;

: : : ;
p
j�n�1j; 1/, where the �j are the eigenvalues of (2-10) evaluated at .0; 0I en/. By a linear change

of both the y- and �-variables, it suffices to show that (2-12) holds with zT �=�
2

Qg replaced with zT �=�
2

L QgL,
where zT �=�

2

L is defined with respect to the datum . Q�L; QaL/ for Q�L as above, QaL.y; t I �/ WD Qa.L�1y; t IL�/,
and QgL WD jdet Lj � Qg ıL. This would follow from the definition of D"1.�IR/ and Lemma 2.2 provided that
the new datum . Q�L; QaL/ is of type .1; 1; C / for some suitable choice of constant C � 1. Note that the
amplitude QaL may not satisfy the required support conditions described at the beginning of Section 2B;
however, by decomposing the operator, as in the proof of Lemma 2.2, this issue may easily be resolved.
On the other hand, if C is suitably chosen, it is clear that QaL satisfies the required margin condition.

To verify the remaining hypotheses in the definition of type-.1; 1; C / data, first note that, by retracing
the steps of the argument prior to (2-11), one deduces that

Q�L.y; t I �/D �
2�.‡!.D

0

��1
ıL�1y; t/; t I �n!C ��1L0�0; �n/: (2-14)

Alternatively, using (2-11) directly, Q�L.y; t I �/ can be expressed as

hy; �iC

Z 1

0

.1� r/h@2�0�0�.‡!.D
0

��1
ıL�1y; t/I �n!C r��1L0�0; �n/L0�0;L0�0i dr; (2-15)
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where L0 is the top-left .n�1/� .n�1/ submatrix of L. These two formulae are used in conjunction to
yield bounds on various derivatives of Q�L. To this end, it is also useful to note that, by the definition of ‡
and the inverse function theorem,

@y‡.y; t I!; 1/D @
2
�x�.‡!.y; t/I!; 1//

�1;

so each entry @yj‡
i .y; t I!; 1/ of the above matrix may be written as the product of

Œdet.@2�x�.‡!.y; t/I!; 1//�
�1

and a polynomial expression in .@�l@xk�/.‡!.y; t/I!; 1/.
First consider the technical conditions on the derivatives. Differentiating the formula (2-14) and

assuming � is sufficiently large, depending on �, immediately implies that . Q�L; QaL/ satisfies conditions
(D11) and (D21) for jˇ0j � 2. The remaining cases of (D11) and (D21) can then be readily deduced by
differentiating (2-15).

Concerning (H11), by differentiating (2-15) and using the conditions (D1A)1A and (D2A)2A of .�; a/,
one deduces that

@2�y
Q�L.y; t I �/D InCO�.�

�1/:

Thus, (H11) holds for . Q�L; QaL/ provided � is sufficiently large depending on �. Note that the conditions
(D1A)1A and (D2A)2A are used here so as to ensure the dependence on � is as described in Remark 2.4.

Concerning (H21/, the homogeneity of � and (2-13) imply

@2�0�0@t
Q�L.zI �/�

1

�n
In�1;�C D

1

�n

�
@2�0�0@t

Q�L

�
zI
�0

�n
; 1

�
� @2�0�0@t

Q�L.0I en/

�
:

In particular, for 1� i; j � n� 1, the .i; j /-entry of the above matrix equalsZ 1

0

�
@�0@

2
�i�j

@t Q�L

�
rzI

r�0

�n
; 1

�
;
�0

�n

�
C

�
@z@

2
�i�j

@t Q�L

�
rzI

r�0

�n
; 1

�
; z

�
dr:

Since it has been shown above that the datum . Q�L; QaL/ satisfies (D11) and (D21/, the integrand in the
above expression may now be bounded above in absolute value by cpar. Thus, . Q�L; QaL/ also satisfies
(H21) and therefore is of type .1; 1; C /, as required. �

2F. Approximation by extension operators. This subsection deals with an approximation lemma which
allows one to use Theorem 2.1 to bound variable-coefficient operators at small spatial scales.

Let T � be an operator associated to a type-1 datum .�; a/. For each Nz 2 RnC1 with Nz=� 2Z the map
� 7! .@z�

�/. NzI‰�. NzI �// is a graph parametrisation of a hypersurface † Nz with precisely one vanishing
principal curvature at each point. In particular, recalling (2-4), one has

hz; .@z�
�/. NzI‰�. NzI �//i D hx; �iC th Nz.�/ for all z D .x; t/ 2 RnC1;

where h Nz.�/ WD .@t��/. NzI‰�. NzI �//. Let E Nz denote the extension operator associated to † Nz , given by

E Nzg.x; t/ WD

Z
yRn
ei.hx;�iCthNz.�//a Nz.�/g.�/ d� for all .x; t/ 2 RnC1;
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where a Nz.�/ WD a2 ı ‰
�. NzI �/jdet @�‰�. NzI �/j. The operator T � is effectively approximated by E Nz

at small spatial scales. Furthermore, the conditions on the translation-invariant decoupling inequality,
Theorem 2.1, are satisfied by each of the functions h Nz . In particular, the type-1 condition implies the
following uniform bound.

Lemma 2.5. Let .�; a/ be a type-1 datum. Each eigenvalue � of @�0�0h Nz satisfies j�j � 1 on supp a Nz .

The proof of this lemma is an elementary calculus exercise, the details of which are omitted.
Concerning the approximation of T � byE Nz , suppose that 1�K ��1=2 and z 2B. Nz;K/�B.0; 3�=4/;

this containment property may be assumed in view of the margin condition (M1). By applying the change
of variables � D‰�. NzI �/ and a Taylor expansion of �� around the point Nz,

T �f .z/D

Z
yRn
ei.hz�Nz;.@z�

�/. NzI‰�. NzI�//iCE�
Nz
.z�NzI�//a�1 .z/a Nz.�/f Nz.�/ d�; (2-16)

where f Nz WD ei�
�. NzI‰�. NzI � //f ı‰�. NzI � /, and, by Taylor’s theorem,

E�Nz .vI �/D
1

�

Z 1

0

.1� r/

�
.@2zz�/

�
NzC rv

�
I‰�. NzI �/

�
v; v

�
dr: (2-17)

Since K � �1=2 and .�; a/ is type-1, so that property (D21) holds, it follows that

sup
.vI�/2B.0;K/�suppaNz

j@
ˇ

�
E�Nz .vI �/j.N 1

for all ˇ 2 Nn0 with 1 � jˇj � 4N. Consequently, E�
Nz .z � NzI �/ does not contribute significantly to the

oscillation induced by the exponential in (2-16) and it can therefore be safely removed from the phase, at
the expense of some negligible error terms.

Lemma 2.6. Let T � be an operator associated to a type-1 datum .�; a/. Let 0 < ı � 1
2

, 1�K � �1=2�ı ,
and Nz=� 2Z so that B. Nz;K/� B.0; 3�=4/. Then

(i) kT �f kLp.wB.Nz;K// .N kE Nzf NzkLp.wB.0;K//C�
�ıN=2kf k

L2.yRn/
(2-18)

holds provided N is sufficiently large depending on n, ı and p.

(ii) Suppose that j Nzj � �1�ı
0

. There exists a family of operators T � all with phase function � and
associated to type-.1; 1; C / data such that

kE Nzf NzkLp.wB.0;K// .N kT
�
� f kLp.wB.Nz;K//C�

�minfı;ı 0gN=2
kf k

L2.yRn/
(2-19)

holds for some T �� 2 T
� provided N is sufficiently large depending on n, ı and p. Moreover, the

family T � has cardinality ON .1/ and is independent of the choice of ball B. Nz;K/.

Remark 2.7. (i) The weights appearing in Lemma 2.6 are defined with respect to the same N 2 N as
that appearing in the � exponent. This is also understood to be the same N as that appearing in the
definition of the (D2A)2A condition.
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(ii) If one replaces wB. Nz;K/ with the characteristic function �B. Nz;K/ on the left-hand side of (2-18), then
the proof of Lemma 2.6 shows that the inequality holds without the additional ��ıN=2kf k

L2.yRn/

term.

Several variants of this kind of approximation (or stability) lemma have previously appeared in the
literature; see, for instance, [Stein 1993, Chapter VI, §2] or [Christ 1988; Tao 1999]. In the context of
decoupling, Lemma 2.6 is closely related to certain approximation arguments used to extend decoupling
estimates to wider classes of surfaces in [Pramanik and Seeger 2007; Garrigós and Seeger 2010; Guo and
Oh 2018] and [Bourgain and Demeter 2015, §7–8]. A variant of Lemma 2.6 (which is somewhat cleaner
than the above statement) can also be applied to slightly simplify the original proof of the decoupling
theorem in [Bourgain and Demeter 2015; 2017b] and, in particular, obviate the need to reformulate
the problem in terms of functions with certain Fourier support conditions (the details of the original
“reformulation” approach are given in [Bourgain and Demeter 2017b, §5]).

Proof of Lemma 2.6. Note that f in (2-16) may be replaced by f  , where  is a smooth function that
equals 1 on supp a Nz and vanishes outside its double. Moreover, recalling the definition of a Nz and that
.�; a/ is a type-1 datum, one may assume that the function  is supported in Œ0; 2��n. In view of the
expression (2-16), by performing a Fourier series decomposition of eiE

�
Nz
.v;�/ .�/ in the �-variable, one

may write
eiE

�
Nz
.vI�/ .�/D

X
`2Zn

b`.v/e
ih`;�i; (2-20)

where
b`.v/D

Z
Œ0;2��n

e�ih`;�ieiE
�
Nz
.vI�/ .�/ d�:

The formula (2-17) and property (D21) of the phase together imply

sup
�2Œ0;2��n

j@ˇ� E
�
Nz .vI �/j.N

jvj2

�

for all multi-indices ˇ 2 N with 1� jˇj �N. Therefore, by repeated application of integration-by-parts,
one deduces that

jb`.v/j.N .1Cj`j/�N whenever jvj � 2�1=2:

This, (2-20) and (2-16) lead to the useful pointwise estimate

jT �f . NzC v/j.N
X
`2Zn

.1Cj`j/�N jE Nz.f Nze
ih`;� i/.v/j; (2-21)

valid for jvj � 2�1=2. Writing

kT �f kLp.wB.Nz;K// � k.T
�f /�B. Nz;2�1=2/kLp.wB.Nz;K//Ck.T

�f /�RnnB. Nz;2�1=2/kLp.wB.Nz;K//;

it follows from (2-21) that

k.T �f /�B. Nz;2�1=2/kLp.wB.Nz;K// .N
X
`2Zn

.1Cj`j/�N kE Nz.f Nze
ih`;� i/kLp.wB.0;K//: (2-22)
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On the other hand, it is claimed that

k.T �f /�RnnB. Nz;2�1=2/kLp.wB.Nz;K// . �
n=.2p/�ı.N�nC2/

kf k
L2.yRn/

(2-23)

and therefore this term can be treated as an error. Indeed, if jvj> 2�1=2 and K � �1=2�ı , then

.1CK�1jvj/�.N�nC2/ � .1C 2�1=2K�1/�.N�nC2/ � ��ı.N�nC2/:

Combining this observation with the trivial estimate

kT �f kLp. QwB.Nz;K// .K
n=p
kf k

L2.yRn/
;

where QwB.0;K/ WD .1CK�1j � j/�.nC2/, one readily deduces (2-23).
Observe that the operator E Nz enjoys the translation-invariance property

E NzŒe
ih`;� ig�.x; t/DE Nzg.xC `; t/ for all .x; t/ 2 RnC1 and all ` 2 Rn; (2-24)

it is for this reason that the graph parametrisation was introduced at the outset of the argument. The
identity (2-24) together with (2-22) and (2-23) imply

kT �f kLp.wB.Nz;K// .N
X
`2Zn

.1Cj`j/�N kE Nzf NzkLp.wB..`;0/;K//C�
�ıN=2

kf k
L2.yRn/

; (2-25)

provided N is chosen to be suitably large. One may readily verify thatX
`2Zn

.1Cj`j/�NwB..`;0/;K/ . wB.0;K/ (2-26)

and combining this with (2-25) immediately yields the desired estimate (2-18).
The proof of (2-19) is similar to that of (2-18), although a slight complication arises since, in contrast

with E Nz , the variable-coefficient operator T � does not necessarily satisfy the translation-invariance
property described in (2-24).

One may write

E Nzf Nz.v/D

Z
yRn
ei�

�. NzCvI‰�. Nz;�//e�iE
�
Nz
.vI�/a Nz.�/f ı‰

�. NzI �/ d�

and, by forming the Fourier series expansion of e�iE
�
Nz
.vI�/ .�/ in � and undoing the change of variables

� D‰�. NzI �/, thereby deduce that

jE Nzf Nz.v/j.N
X
`2Zn

.1Cj`j/�4N jT �Œeih`;.@z�
�/. Nz � /if �. NzC v/j

whenever jvj � 2�1=2. This pointwise bound is understood to hold modulo the choice of spatial cut-off a1
appearing in the definition of T �. Taking Lp.wB. Nz;K//-norms in z and reasoning as in the proof of (2-18),
one obtains

kE Nzf NzkLp.wB.0;K// .N
X
`2Zn

.1Cj`j/�4N k.T � Qf`/�B. Nz;2�1=2/kLp.wB.Nz;K//C�
�ıN=2

kf k
L2.yRn/

;
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where Qf` WD eih`;.@z�
�/. NzI � /if . Note that the cut-off function �B. Nz;2�1=2/ can be dominated by a smooth

amplitude Qa�1 , where Qa1 is equal to 1 on supp a1 and has half the margin. The above sum is split into a
sum over ` satisfying j`j> CN and a sum over the remaining ` where CN is a constant depending on N,
chosen large enough for the present purpose. To control sum over large `, apply (2-18) and argue as in
(2-26) to conclude thatX

`2Zn

j`j>CN

.1Cj`j/�4N kT � Qf`kLp.wB.Nz;K// .N
X
`2Zn

j`j>CN

.1Cj`j/�2N kE Nzf NzkLp.wB..`;0/;K//

. C�NN kE Nzf NzkLp.wB.0;K//:

Therefore, if CN is chosen to be sufficiently large depending on N, the above term can be absorbed into
the left-hand side of the inequality and one obtains

kE Nzf NzkLp.wB.0;K// .N
X
`2Zn

j`j�CN

kT � Qf`kLp.wB.Nz;K//C�
�ıN=2

kf k
L2.yRn/

:

Each T � Qf` can be thought of as an operator T �
`

where the latter has phase � and amplitude function

Qa`.zI �/ WD Qa1.zI �/e
ih`;.@z�

�/. NzI�/i:

Unfortunately, these amplitudes depend on the choice of ball B. Nz;K/ and therefore are unsuitable for the
present purpose. To remove this undesirable dependence, one may take a Taylor series expansion to write

eih`;.@z�
�/. NzI�/i

D

X
j˛j�N�1

u˛.!/

�
Nz

�

�̨
CO..j Nzj=�/N /; (2-27)

where each u˛ 2 C1.Rn/ satisfies j@ˇ
�
u˛.�/j.N 1 for all jˇj �N. Note that the u˛ do not depend on

the choice of Nz. Furthermore, since j Nzj � �1�ı
0

, it follows that the error in (2-27) is O.��ı
0N / and the

part of the operator arising from such terms can be bounded by ��minfı;ı 0gN=2kf k
L2.yRn/

. The family of
operators T � is now given by the family of amplitudes

u˛.!/ Qa`.zI �/; j`j � Cn; j˛j �N � 1:

Since j Nzj=�� 1, one concludes that

kE Nzf NzkLp.wB.0;K// .N
X

T �� 2T �

kT ��
Qf`kLp.wB.Nz;K//C�

�minfı;ı 0gN=2
kf k

L2.yRn/

and the desired inequality now holds for some choice of T �� 2 T
� by pigeonholing. �

2G. Proof of the variable-coefficient decoupling estimates. By the discussion in Sections 2B–2E, to
prove Theorem 1.4 for the fixed parameters 2", M, and p it suffices to show

D"1.�IR/." 1 for all 1�R � �1�"=n.
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The trivial estimate (2-7) implies the above inequality if R is small (that is, R ." 1), and the proof
proceeds by induction on R, using this observation as the base case. In particular, one may assume by
way of induction hypothesis that the following holds.

Radial Hypothesis. There is a constant C " � 1, depending only on the admissible parameters n, ", M,
and p, such that

D"1.�
0
IR0/� C "

holds for all 1�R0 �R=2 and all �0 satisfying R0 � .�0/1�"=n.

Let BK be a finitely overlapping cover of BR by balls of radius K for some 2 � K � �1=4. One
may assume that any centre Nz of a ball in this cover satisfies j Nzj � �1�"=n. The estimate (2-18) from
Lemma 2.6 with ı D 1

4
implies

kT �f kLp.BR/ .
� X
B. Nz;K/2BK

kE Nzf Nzk
p

Lp.wB.0;K//

�1=p
CRnC1

�
�

R

��N=8
kf k

L2.yRn/
:

Applying the theorem of [Bourgain and Demeter 2015; 2017a] (that is, Theorem 2.1) with exponent "=2
(and recalling Lemma 2.5), one deduces that the inequality

kE Nzf NzkLp.wB.0;K// ." K
˛.p/C"=2

kE Nzf NzkLp;Kdec .wB.0;K//

holds for each of the extension operators in the previous display. Combining these observations with an
application of (2-19) from Lemma 2.6 with ı0 D "=n, and summing over BK ,

kT �f kLp.BR/ ." K
˛.p/C"=2

� X
� WK�1=2-plate

kT �f�k
p

Lp.wBR /

�1=p
CRnC1

�
�

R

��"N=8n
kf k

L2.yRn/
:

The operator on the right involves a slightly different amplitude function compared with that on the left
but, as in the statement of Theorem 1.4, this is suppressed in the notation.

Note that, sinceK � 2, C � 1, and R��1�"=n, trivially R=.CK/� .�=.CK//1�"=n and R=.CK/�
R=2. Consequently, the assumptions of the radial induction hypothesis are valid for the parameters
R0 WDR=.CK/ and �0 WD �=.CK/. Thus, by combining the radial induction hypothesis with (2-9) from
the Lorentz rescaling lemma, one concludes that

kT �f kLp.BR/ � C"C "K
�"=2R˛.p/C"kT �f k

L
p;R
dec .wBR /

CR2n
�
�

R

��"N=.8n/
kf k

L2.yRn/
:

Choosing K sufficiently large (depending only on ", n, M and p) so that C"K�"=2 � 1, the induction
closes and the desired result follows.

3. Proof of the local smoothing estimate

In this section the relationships between the theorems stated in the Introduction are established and, in
particular, it is shown that

Theorem 1.4 D) Theorem 1.2 D) Theorem 1.1.
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Given the formula for the solution u from (1-4), the latter implication is almost immediate. The former
implication follows from a straightforward adaption of an argument due to [Wolff 2000], which treats an
analogous problem for the euclidean wave equation. Nevertheless, proofs of both of the implications are
included for completeness.

To begin, the definition of the cinematic curvature condition, as introduced in [Mockenhaupt, Seeger,
and Sogge 1993], is recalled. As in the statement of Theorem 1.2, let Y and Z be precompact smooth
manifolds of dimensions n and nC 1, respectively. Let C � T �Z n 0�T �Y n 0 be a choice of canonical
relation; here T �M n0 denotes the tangent bundle of a C1 manifoldM with the 0 section removed. Thus,

C D f.x; t; �; �; y; �/ W .x; t; �; �; y;��/ 2ƒg

for some conic Lagrangian submanifold ƒ� T �Z n 0�T �Y n 0; see [Hörmander 1971] or [Duistermaat
1996; Sogge 2017] for further details. Certain conditions are imposed on C, defined in terms of the
projections

C

T �Y n 0 Z T �z0Z n 0

…T�Y
…Z

…
T�z0

Z

First there is the basic nondegeneracy hypothesis that the projections …T �Y and …Z are submersions:

rank d…T �Y � 2n and rank d…Z � nC 1: (3-1)

This condition implies that for each z0 2Z the image �z0 WD…T �z0Z.C/ of C under the projection onto
the fibre T �z0Z is a C1 immersed hypersurface. Note that �z0 is conic and therefore has everywhere
vanishing Gaussian curvature. In addition to the nondegeneracy hypothesis (3-1), the following curvature
condition is also assumed:

For all z0 2Z, the cone �z0 has n� 1 nonvanishing principal curvatures at every point. (3-2)

If both (3-1) and (3-2) hold, then C is said to satisfy the cinematic curvature condition [Mockenhaupt,
Seeger, and Sogge 1993].

Remark 3.1. Using local coordinates, (3-1) and (3-2) may be expressed in terms of the conditions (H1)1
and (H2)2 introduced in Section 1B. Indeed, near any point

.x0; t0; �0; �0; y0; �0/ 2 C;

the condition (3-1) implies that there exists a phase function �.zI �/ satisfying (H1)1 such that C is given
locally by

f.z; @z�.zI �/; @��.zI �/; �/ W � 2 Rnnf0g in a conic neighbourhood of �0g:

Furthermore, (3-2) implies that the function � satisfies (H2)2. Further details may be found in [Sogge
2017, Chapter 8].
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Recall from the Introduction that the solution to the Cauchy problem (1-1) can be written as uDF0f0C
F1f1, where each Fj 2 I j�1=4.M �R;M I C/ for some canonical relation C satisfying the cinematic
curvature condition. Fix a choice of coordinate atlas f.�� ; ��/g� on M and a partition of unity f �g�
subordinate to the cover f��g� of M. A choice of Bessel potential norm k � kLps .M/ is then defined by

kf kLps .M/ WD

X
�

kf�kLps .Rn/;

where f� WD . �f /ı��1 andLps .Rn/ denotes the standard Bessel potential space in Rn. Thus, expressing
everything in local coordinates and applying the composition theorem for Fourier integral operators (see,
for instance, [Sogge 2017, Theorem 6.2.2]), it is clear that Theorem 1.1 is an immediate consequence
of Theorem 1.2.

It remains to show that Theorem 1.2 follows from the decoupling inequality established in Theorem 1.4.
Working in local coordinates (and recalling Remark 3.1 and the discussion in Section 1B), it suffices to
prove an estimate for operators of the form

Ff .x; t/ WD
Z
yRn
ei�.x;t I�/b.x; t I �/.1Cj�j2/�=2 Of .�/ d�; (3-3)

where b is a symbol of order 0 with compact support in the .x; t/-variables and � is a smooth homogeneous
phase function satisfying (H1)1 and (H2)2 (at least on the support of b). Recall that b is a symbol of
order 0 if b 2 C1.RnC1 �Rn/ and satisfies

j@�z@



�
b.zI �/j.
;� .1Cj�j/�j
 j for all multi-indices .
; �/ 2 NnC10 �Nn0 .

In particular, Theorem 1.2 is a direct consequence of the following proposition.

Proposition 3.2. If Npn � p <1 and F is defined as in (3-3) with � < �˛.p/D�NspC 1
p

, then

kFf kLp.RnC1/ . kf kLp.Rn/:

Proof. By applying a rotation and a suitable partition of unity, one may assume that b is supported in
Bn.0; "0/�B

1.1; "0/�� for a suitably small constant 0 < "0 � 1, where

� WD f� 2 yRn W j�j j � j�nj for 1� j � n� 1g:

Further, as the symbol b has compact .x; t/-support of diameter O.1/, one may assume without loss
of generality that it is of product type; that is, b.x; t I �/D b1.x; t/b2.�/. The latter reduction follows
by taking Fourier transforms in a similar manner to that used in the proof of Lemma 2.6; the argument,
which is standard, is postponed until the end of the proof.

Fix ˇ 2 C1c .R/ with suppˇ 2
�
1
2
; 2

�
and such that

P
� dyadic ˇ.r=�/ D 1 for r ¤ 0. Let F� WD

F ıˇ.
p
��x=�/, so that F�f is given by introducing a ˇ.j�j=�/ factor into the symbol in (3-3),10 and

10In general, m.i�1@x/ denotes the Fourier multiplier operator (defined for f belonging to a suitable a priori class)
m.i�1@x/f .x/ WD

R
yRn
eihx;�im.�/ Of .�/ d� for any m 2 L1.yRn/. The operator m.

p
��x/ is then defined in the natural

manner via the identity ��x D i�1@x � i�1@x .
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decompose Ff as

Ff DW F .1f C
X

�2NW dyadic

F�f:

It follows that F .1 is a pseudodifferential operator of order 0 and therefore bounded on Lp for all
1 < p <1. Thus, letting " WD �.�C˛.p//=2 > 0, the problem is further reduced to showing that

kF�f kLp.RnC1/ . �˛.p/C�C"kf kLp.Rn/
for all �� 1.

By various rescaling arguments and Theorem 1.4, it follows that

kF�f kLp.RnC1/ .s;p �˛.p/C"
� X
� W��1=2-plate

kF�� f k
p

Lp.RnC1/

�1=p
;

where F�
�
WDF� ıa� .i�1@x/ for a� a choice of smooth angular cut-off to � . Thus, to conclude the proof

of Proposition 3.2 (and therefore that of Theorems 1.2 and 1.1), it suffices to establish the following
lemma.

Lemma 3.3. For F�
�

as defined above and 2� p �1 one has� X
� W��1=2-plate

kF�� f k
p

Lp.RnC1/

�1=p
. ��kf kLp.Rn/:

This inequality essentially appears in [Seeger, Sogge, and Stein 1991] (see also [Stein 1993, Chap-
ter IX]); a sketch of the proof is included for completeness.

Proof of Lemma 3.3. By interpolation (via Hölder’s inequality) it suffices to establish the cases p D 2 and
p D1.

To prove the pD2 bound, one may use Hörmander’s theorem (see, for instance, [Stein 1993, Chapter IX
§1.1]) for fixed t , followed by Plancherel’s theorem and the almost orthogonality of the plates � .

To prove the p D1 bound, it suffices to show that

sup
.x;t/2RnC1

kK�� .x; t I � /kL1.Rn/ . �
�;

where K�
�

is the kernel of the operator F�
�

. This follows from a standard stationary phase argument,
which exploits heavily the homogeneity of the phase and the angular localisation; see, for instance, [Stein
1993, Chapter IX, §4.5–4.6] for further details. �

It remains to justify the initial reduction to symbols of product type. As mentioned earlier, the argument
is standard and appears, for instance, in the proof of the L2 boundedness for pseudodifferential operators
of order 0 (see [Stein 1993, Chapter VI, §2]).

As b is a symbol of order 0 with compact .x; t/-support, .nC2/-fold integration-by-parts shows that

j@



�
Ob.�I �/j.
 .1Cj�j/�.nC2/.1Cj�j/�j
 j for all multi-indices 
 2 Nn0 , (3-4)
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where Ob denotes the Fourier transform of b in the z D .x; t/-variable. By means of the Fourier transform
one may write

Ff .x; t/D
Z
yRnC1

eihz;�i.1Cj�j/�.nC2/
Z
yRn
ei�.x;t I�/

b� .x; t I �/

.1Cj�j2/��=2
Of .�/ d� d�;

where b� .x; t I �/ WD  .x; t/ Ob.�I �/.1Cj�j/nC2 for  a smooth cut-off equal to 1 in the z-support of b
and vanishing outside its double. The functions b� are all of product type and, by (3-4), are symbols of
order 0 uniformly in �. Taking Lp-norms and applying Minkowski’s integral inequality, it now suffices
to show the Lp boundedness of F under the product hypothesis. �

4. Counterexamples for local smoothing estimates for certain Fourier integral operators

To conclude the paper, the proof of Proposition 1.3 is presented. As originally observed by the third
author in [Sogge 1991] and elaborated further in, for instance, [Mattila 2015; Mockenhaupt, Seeger, and
Sogge 1993; Sogge 2017; Tao 1999], it is known that local smoothing estimates for Fourier integral
operators imply favourable Lp estimates for a natural class of oscillatory integral operators. Indeed, this
is the basis of the well-known formal implication that the local smoothing conjecture for the (euclidean)
wave equation implies the Bochner–Riesz conjecture (see [Sogge 1991; 2017]). In this section a general
form of this implication is combined with a counterexample of [Bourgain 1991; 1995b] to show that
Theorem 1.2 is sharp when n� 3 is odd.

4A. Local smoothing for Fourier integrals and nonhomogeneous oscillatory integrals. Let � � Rn

be open and suppose that ˆW���! R is smooth and satisfies

@yˆ.x; y/¤ 0 for all .x; y/ 2��� (4-1)

and, moreover, that the Monge–Ampère matrix associated to ˆ is everywhere nonsingular:

det
�

0 @yˆ.x; y/

@xˆ.x; y/ @
2
xyˆ.x; y/

�
¤ 0 for all .x; y/ 2���. (4-2)

By (4-1), for each .x; t/ 2�� .�1; 1/ the level set

Sx;t WD fy 2� Wˆ.x; y/D tg (4-3)

is a smooth hypersurface. The condition (4-2) implies that the smooth family of surfaces in (4-3) satisfies
the rotational curvature condition of [Phong and Stein 1986] (see also [Stein 1993, Chapter XI]).

The above phase function can be used to construct two natural oscillatory integral operators. To
describe these objects, first fix a pair of smooth cut-off functions a 2 C1c .���/ and � 2 C1c ..�1; 1//.

(i) For each fixed t 2 R the distribution

K.x; t Iy/ WD �.t/ a.x; y/ ı0.t �ˆ.x; y// (4-4)
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is the kernel of a conormal Fourier integral operator on Rn�Rn of order �1
2
.n� 1/. In particular, K can

be written as

K.x; t Iy/D

Z
yR

ei�.t�ˆ.x;y//�.t/a.x; y/ d�;

where the right-hand side expression is understood to converge in the sense of oscillatory integrals. From
this formula, one can easily deduce (using, for instance, [Sogge 2017, Theorem 0.5.1]) that the canonical
relation is given by

C D f.x; t;��@xˆ.x; y/; �; y; �@yˆ.x; y// W ˆ.x; y/D t /g: (4-5)

Note that the condition (4-2) ensures that each of these Fourier integrals is nondegenerate in the sense
that the canonical relation is a canonical graph.

It will be useful to consider the operator

Ff .x; t/ WD
Z

Rn
K.x; t Iy/f .y/ dy; (4-6)

which is understood to map functions on Rn to functions on RnC1 by taking averages over the variable
hypersurfaces Sx;t .

(ii) One may also consider the nonhomogeneous oscillatory integral operator

S�ˆf .x/ WD

Z
Rn
ei�ˆ.x;y/a.x; y/f .y/ dy; (4-7)

where the amplitude a 2 C1c .���/ is as in (4-4) and �� 1.

Assume, in addition to the condition (4-2), that

�.t/ı0.t �ˆ.x; y//D ı0.t �ˆ.x; y// for all .x; y/ 2 supp a and t 2 R. (4-8)

Note that this holds if, for instance, ˆ.0; 0/D 0 and �.t/D 1 for all t in a neighbourhood of 0 provided
that a vanishes outside of a small neighbourhood of the origin in Rn � Rn. Under these conditions
Lp bounds for the operator (4-7) can be related to Sobolev estimates for (4-6).

Proposition 4.1. Under the conditions (4-2) and (4-8), if 
 > 0 is fixed and �� 1, then

kS�ˆkLp.Rn/!Lp.Rn/ . �
�

k.I ��x/


=2
ıFkLp.Rn/!Lp.RnC1/: (4-9)

Proof. Let ˇ 2 C1c .R/ satisfy ˇ.r/D 1 for jr j � 1 and ˇ.r/D 0 for jr j � 2. The condition (4-2) implies
that @xˆ.x; y/¤ 0 for all .x; y/ 2 supp a and a simple integration-by-parts argument therefore shows
that for some small constant c0 > 0 the estimate



ˇ�p��xc0�

�
ıS�ˆ






Lp.Rn/!Lp.Rn/

DON .�
�N /

holds for all N 2 N. Furthermore, since 
 > 0, it also follows that



�1�ˇ�p��xc0�

��
ı .I ��x/

�
=2






Lp.Rn/!Lp.Rn/

DO.��
 /:
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Combining these observations,

kS�ˆkLp.Rn/!Lp.Rn/ . �
�

k.I ��x/


=2
ıS�ˆkLp.Rn/!Lp.Rn/CON .�

�N /: (4-10)

On the other hand, the definition of K and the condition (4-8) implyZ
ei�t K.x; t Iy/ dt D ei�ˆ.x;y/a.x; y/:

One may therefore write the operator S�ˆ in terms of K and apply Hölder’s inequality together with the
estimate (4-10) to deduce the desired result. �

4B. Sharpness of the range of exponents p � Npn for optimal local smoothing bounds for odd n. To
show that the bounds obtained in Theorem 1.2 are sharp in odd dimensions, in this section certain phase
functions ˆ are investigated which, in addition to (4-2), satisfy a variant of the Carleson–Sjölin condition
[1972].

Note that (4-2) ensures that at each point the rank of the mixed Hessian of ˆ is at least n� 1. Assume
that

rank @2xyˆ.x; y/D n� 1 for all .x; y/ 2 supp a. (4-11)

It then follows that, provided � is sufficiently small, for any fixed x0 in the x-support of a the map

y! @xˆ.x0; y/; y 2�;

parametrises a hypersurface†x0�Rn. Suppose, in addition to (4-11), the phase also satisfies the following
curvature condition:

For each x0 2� the surface †x0 has n� 1 nonvanishing principal curvatures at every point. (4-12)

In this case, the phase function ˆ is said to satisfy the n�n Carleson–Sjölin condition (see [Sogge 2017]).
This definition should be compared with the similar conditions (H1)1 and (H2)2 for the homogeneous
oscillatory integrals described in Section 1B (note, for instance, that (4-12) is equivalent to the condition
that, for a suitably defined Gauss map Gˆ, the y-Hessian of h@xˆ.x0; y/; Gˆ.x0; y0/i has rank n� 1 at
y D y0 for every .x0; y0/ 2�).

If (4-11) and (4-12) are valid, then it is claimed that the Fourier integral operators F in (4-6) satisfy the
cinematic curvature condition appearing in the hypotheses of Theorem 1.2. If C�T �Rn n 0�T �RnC1 n 0

is the canonical relation for F , then recall that the nondegeneracy condition (3-1) is that rank d…T �Rn�2n

and rank d…RnC1 � nC 1. This holds as an immediate consequence of (4-2) since, as was observed
earlier, (4-2) implies that C is a local canonical graph. It remains to verify the cone condition (3-2). It
immediately follows from the expression (4-5) that for the Fourier integral operators in (4-6) the cones
�x0;t0 are given by

�x0;t0 D f�.�@xˆ.x0; y/; 1/ W y 2�; � 2 Rg:

Consequently, the cone condition holds if (4-11) and (4-12) are satisfied. This verifies the claim.
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Recall from the discussion following Proposition 1.3 that for each fixed t the composition

.I ��x/

=2
ı .Fh/. � ; t /

is a Fourier integral operator of order �1
2
.n�1/C
 . Thus, a special case of the local smoothing problem

is to show that for a given exponent 2n=.n� 1/� p <1 one has

k.I ��x/

=2
ıFkLp.Rn/!Lp.RnC1/ DO.1/ for all 0 < 
 < n

p
: (4-13)

Note that, unlike the operators in (4-6), the Fourier integrals in (4-13) do not have kernels with compact
x-support; however, they are bounded and rapidly decreasing outside of any neighbourhood of the
x-support of a.

Adapting a counterexample of [Bourgain 1991; 1995b], one may construct a phase ˆ so that (4-13)
cannot hold for p< Npn if n�3 is odd. This establishes Proposition 1.3 and thereby shows that Theorem 1.2
is optimal in the odd-dimensional case. The details are given presently. Note that, strictly speaking, here
a slight simplification of Bourgain’s construction is used, which is due to [Stein 1993, Chapter IX, §6.5]
(see also [Sogge 2017, pp. 67–69] for further details).

Proof of Proposition 1.3. Consider the matrix-valued function AWR!Mat.2;R/ defined by

A.s/ WD

�
1 s

s s2

�
for all s 2 R.

Let n� 3 be odd and AWR!Mat.n� 1;R/ be given by

A.s/ WD A.s/˚ � � �˚A.s/„ ƒ‚ …
.n�1/=2-fold

so that A.s/ is an .n�1/� .n�1/ block-diagonal matrix. Using these matrices, define a phase function �
on Rn �Rn�1 by

�.x; y0/ WD hx0; y0iC 1
2
hA.xn/y

0; y0i (4-14)

for all .x; y0/D .x0; xn; y0/ 2 Rn �Rn�1. Given an amplitude function b 2 C1c .R
n �Rn�1/ define the

oscillatory integral operator

S�� f .x/ WD

Z
Rn�1

ei��.x;y
0/ b.x; y0/f .y0/ dy0:

A stationary phase argument (see, for instance, [Sogge 2017, pp. 68–69]) then yields

��.n�1/=4�.n�1/=.2p/ . kS�� kLp.Rn�1/!Lp.Rn/ if �� 1 and p � 2; (4-15)

provided that b.0; 0/¤ 0.
If � is as in (4-14) and

ˆ.x; y/ WD �.x; y0/C xnCyn; (4-16)
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then clearly (4-2) is valid when x D y D 0. Since

y! @xˆ.0; y/D

�
y0;

.n�3/=2X
jD0

y2jC1y2jC2

�
C en

parametrises a hyperbolic paraboloid with 1
2
.n� 1/ positive principal curvatures and 1

2
.n� 1/ negative

principal curvatures, one concludes that for small x the Carleson–Sjölin conditions (4-11) and (4-12)
must hold, provided the support of b lies in a suitably small ball about the origin.

Suppose ˇ is as in the proof of Proposition 4.1, so that ˇ 2C1c .R/ satisfies ˇ.r/D 1 whenever jr j � 1
and ˇ.r/D 0 whenever jr j � 2. Assume b 2 C1c .R

n �Rn�1/ satisfies b.0; 0/¤ 0 and is supported in a
small neighbourhood of the origin. Take a in (4-7) to be equal to

a.x; y/D b.x; y0/ˇ

�
yn

c0

�
for some suitable choice of small constant 0 < c0 < 1

2
. Provided the size of the support of b and the

constant c0 are suitably chosen, (4-8) holds. Furthermore, taking F.y/ WD ˇ.yn/e�i�ynf .y0/ in (4-7),
one readily observes that

jS�� f .x/j � jS
�
ˆF.x/j and kF kLp.Rn/ � kf kLp.Rn�1/

and, consequently,

kS�� kLp.Rn�1/!Lp.Rn/ . kS
�
ˆkLp.Rn/!Lp.Rn/:

Combining this with (4-15) and (4-9), for 
 > 0 and �� 1 one concludes that

�
�.n�1/=4�.n�1/=.2p/ . k.I ��x/
=2 ıFkLp.Rn/!Lp.RnC1/;

where F is as in (4-6). Since
n

p
�
n�1

4
�
n�1

2p
> 0 if p < Npn;

it follows that (4-13) cannot hold for any Lebesgue exponent satisfying p < Npn. �

For even dimensions n� 4 one may modify the argument given in the proof of Proposition 1.3 to give
a necessary condition for the local smoothing problem for the general class of Fourier integral operators
under consideration. Indeed, in the even-dimensional case one simply defines

A.s/ WD A.s/˚ � � �˚A.s/„ ƒ‚ …
.n�2/=2-fold

˚.1C s/;

where .1Cs/ is a 1�1matrix with entry 1Cs, so that once againA.s/ is an .n�1/�.n�1/ block-diagonal
matrix. Taking the phase function � as in (4-14), it follows that the resulting oscillatory integral operators
satisfy

��n=4�.n�2/=.2p/ . kS�� kL1.Rn�1/!Lp.Rn/:
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n odd n even

n�1 nonvanishing 2.nC1/

n�1

2.nC2/

ncurvatures

n�1 positive 2.3nC1/

3n�3

2.3nC2/

3n�2curvatures

Table 1. Conjectured endpoint values for the exponent p for the sharp local smoothing
estimates in Theorem 1.2 under various hypothesis on F 2 I��1=4. Theorem 1.2 estab-
lishes the odd-dimensional case under the hypothesis of n� 1 nonvanishing principal
curvatures.

See, for instance, [Sogge 2017, p. 69] for further details. Arguing mutatis mutandis, for even n� 4 and F
defined as in the proof of Proposition 1.3 (with respect to the new choice of phase �) the estimate (4-13)
fails for p < 2.nC 2/=n.

4C. Some open problems. The cones�x0;t0�T
�
x0;t0

RnC1 associated to the phase in (4-16) have principal
curvatures of opposite sign (in fact, in the examples considered above the difference between the number
of positive and the number of negative principal curvatures is minimal). It would be interesting to see if
any improvement is possible in the range of p for which there is optimal local smoothing if the �x0;t0
always have n� 1 positive principal curvatures. The model case for this is the class of Fourier integrals
arising in the context of Theorem 1.1, that is, from solutions of wave equations given by a Laplace–
Beltrami operator on some Riemannian manifold .M; g/. In this case ˆ.x; y/ is given by the associated
Riemannian distance function dg.x; y/ minus a constant. By Proposition 4.1 and the counterexamples of
[Minicozzi and Sogge 1997] (see also [Sogge, Xi, and Xu 2018]), there exist metrics for which optimal
local smoothing is not possible when p < Npn;C where

Npn;C WD

�
2.3nC 1/=.3n� 3/ if n is odd;
2.3nC 2/=.3n� 2/ if n is even.

On the other hand, if ˆ.x; y/ WD dg.x; y/, then recent results of Guth, Iliopoulou and the second
author [Guth, Hickman, and Iliopoulou 2019] yield the optimal bounds for p � Npn;C for the oscillatory
operators in (4-7); this suggests that one should be able to obtain optimal local smoothing bounds for
p � Npn;C under the above convexity assumptions. In Table 1 the conjectured numerology for sharp local
smoothing estimates for Fourier integral operators is tabulated, according to the parity of the dimension
and various curvature assumptions. As mentioned in the Introduction, for the euclidean wave equation
sharp local smoothing estimates are conjectured to hold for the wider range 2n=.n� 1/� p <1.

Finally, note that the conjectured numerology in Table 1 coincides with the sharp bounds to a problem
posed in [Hörmander 1973] for oscillatory integral operators of the type T � under nonhomogeneous
versions of the conditions (H1)1 and (H2)2 (and a corresponding positive-definite version of (H2)2); see
[Guth, Hickman, and Iliopoulou 2019] for the details of this problem and a full historical account. In
particular, the argument presented earlier in this section shows that Theorem 1.1 implies a theorem of
[Stein 1986] in this context. For the remaining cases, the results of [Bourgain 1991; 1995b; Wisewell
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2005; Bourgain and Guth 2011; Guth, Hickman, and Iliopoulou 2019] suggest the p � 2.nC 2/=n
numerology in the general even-dimensional case and reinforce the conjectured p � Npn;C numerology in
the convex case.
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