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Curved Rickard complexes and link homologies

By Sabin Cautis at Vancouver, Aaron D. Lauda at Los Angeles and
Joshua Sussan at Brooklyn

Abstract. Rickard complexes in the context of categorified quantum groups can be used
to construct braid group actions. We define and study certain natural deformations of these com-
plexes which we call curved Rickard complexes. One application is to obtain deformations of
link homologies which generalize those of Batson—Seed [3] [A link-splitting spectral sequence
in Khovanov homology, Duke Math. J. 164 (2015), no. 5, 801-841] and Gorsky—Hogancamp
[Hilbert schemes and y-ification of Khovanov—Rozansky homology, preprint 2017] to arbi-
trary representations/partitions. Another is to relate the deformed homology defined algebro-
geometrically in [S. Cautis and J. Kamnitzer, Knot homology via derived categories of coherent
sheaves 1V, colored links, Quantum Topol. 8 (2017), no. 2, 381-411] to categorified quantum
groups (this was the original motivation for this paper).

1. Introduction

Knot homologies have had many significant applications in knot theory and low dimen-
sional topology. Rasmussen [34] gave a combinatorial proof of Milnor’s conjecture (originally
proved by Kronheimer and Mrowka [23]) about the slice genus of torus knots by utilizing
a spectral sequence coming from the work of Lee [27,28]. In another direction, Kronheimer
and Mrowka proved that Khovanov homology detects the unknot using a spectral from Kho-
vanov homology to instanton Floer homology [24].

One of the main ideas from [13] is that the braiding necessary to construct a link homol-
ogy can be defined, as a by-product of skew Howe duality, using the theory of Rickard com-
plexes (or Chuang—Rouquier complexes [15]). These are complexes which live in the homotopy
category of categorified quantum groups and give rise to braid group actions.

1.1. Curved Rickard complexes. A typical Rickard complex has the following form:

. d+ } d+ d+ . d+
F 01, L5 gMgGithy, ) L5 L5 gW g Cithy, gy 2,
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(see Section 2.4). Motivated by the construction in [17] we deform such complexes by adding
maps back in the other direction

(A at (A at k) g (hi+k a+t
(1.1) f/i( )HA__d___)gi(l)fi( +1)]1/1( )_d___> _d__>8() i+ )ﬂk(k)—d___) ’

where u is a formal parameter of homological and internal degree [2](—2). The fact that these
are “curved” complexes is a consequence of a detailed computation in the categorified quantum
group (cf. Proposition 4.9). We then adapt some facts in [17] to show that these complexes
braid. The deformed complexes from [17] correspond to two term Rickard complexes of the
form 1, — & F;1,(1).

1.2. Deformed link homologies. Starting with [10] an algebro-geometric construc-
tion of sl,,-link homologies was obtained using certain convolution varieties in the affine
Grassmannian of PGL,,. Subsequent work of [7, 8, 13] related this construction to categori-
fied quantum groups.

A deformation of this construction was obtained in [12] using the geometry of the
Beilinson—Drinfeld Grassmannian. This deformed s[,,,-link homology generalized the deformed
sl,-link homology defined earlier by Batson and Seed [3]. One of the motivations of the cur-
rent paper is to give an interpretation of the construction from [12] in terms of categorified
quantum groups (cf. Section 5.4).

As an application of curved Rickard complexes we obtain the following:

¢ A deformation of (colored) sl,,-link homology (Theorem 5.4).
¢ A deformation of (colored) HOMFLYPT link homology (Theorem 6.3).

* A deformation of clasps in the contexts of sl,, and HOMFLYPT link homologies (Corol-
laries 5.6 and 6.4).

Recall that clasps were used in [8] (resp. [9]) to obtain sl,,-link homologies corresponding
to arbitrary representations (resp. HOMFLYPT homologies of links labeled by arbitrary parti-
tions). Our HOMFLYPT deformation extends that of Gorsky and Hogancamp [17] to arbitrary
partitions.

These deformations, apart from (likely) playing a fundamental role in the structure of
knot homologies, also have potential applications. For instance, [17] shows how to use these
deformations to partially resolve some conjectures relating HOMFLYPT homology to the ge-
ometry of the Hilbert scheme of points on C? (cf. [18,31-33]). These results depend upon a
spectral sequence from HOMFLYPT homology converging to the homology of the unlinked
components as well as some earlier results about the HOMFLYPT homology of torus links
[16,19,30].

1.3. Further remarks and directions. There are two ways to view curved Rickard
complexes. The first, which is the focus in this paper, is as deformations of Rickard complexes.
The second is as an action of the braid group on degree two endomorphisms of the identity. We
expect that this latter interpretation will have further applications in the theory of categorified
quantum groups. One such application that comes to mind, but which we do not pursue in this
paper, is proving a categorical analogue of the classical isomorphism between the Kac—Moody
and loop presentations of quantum affine algebras.
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The braid group action mentioned above actually extends to an action on higher degree
endomorphisms of the identity. From the point of view of Rickard complexes this corresponds
to studying what one might call “higher degree homotopies”. In this paper we only consider
the simplest possible (and by many accounts the most natural) homotopy, namely the maps
ud~ from (1.1). We hope that the study of these higher homotopies will also lead to various
applications (particularly in the context of knot homologies).

1.4. Outline of paper. We review foundational material on categorified quantum
groups and the definition of Rickard complexes in Section 2. In Section 3 we prove some
key technical results about so-called bubbles in the categorified quantum group. Some aspects
of the general theory of curved complexes are reviewed in Section 4 followed by a discussion
of curved Rickard complexes. Sections 5 and 6 contain our main applications: deformations of
sl -link homologies and HOMFLYPT homologies, respectively.

Acknowledgement. The authors are grateful to Matt Hogancamp for many illuminating
discussions on y-ification. Sabin Cautis thanks Eugene Gorsky for taking the time to elaborate
on his recent work and Joshua Sussan would like to thank Shotaro Makisumi for explaining his
work related to [17].

2. The categorified quantum group U g

2.1. Conventions. By a graded category we will mean a category equipped with an
auto-equivalence (1). We denote by (/) the auto-equivalence obtained by applying (1) / times.
If A, B are two objects then Hom! (A, B) will be short-hand for Hom(A4, B{l)). A graded
additive k-linear 2-category is a category enriched over graded additive k-linear categories,
that is, a 2-category K such that the Hom categories Homy (A4, B) between objects A and B
are graded additive k-linear categories and the composition maps

Homy (A, B) x Homy (B, C) — Homy (4, C)

form a graded additive k-linear functor.

Given a 1-morphism A in an additive 2-category K, we let @[n] A denote the direct sum
Do Aln — 1 —2k).

Given an additive category €, we let Kom(€) denote the homotopy category of com-
plexes in €. Write Kom™ (€), respectively Kom™(€) for the corresponding subcategory of
bounded below, respectively above, complexes. By convention, we work with cochain com-
plexes, so an object (X, d) of Kom(€) is a collection of objects X in € together with maps

o die xi-1 di-1 ; di

. d 1
xi yi+1 i+

such that d; y1d; = 0 and only finitely many of the objects X’ are non-zero. A morphism
f:1(X.d) — (Y,d’) in Kom(€) consists of a collection of morphisms f;: X’ — Y in € such
that

fiv1di =d} f;

modulo null-homotopic maps. Recall that morphisms f, g: (X,d) — (Y, d’) in Kom(€) are
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called homotopic if there exist morphisms /': X — Y~1 such that
fi—gi=hta +dl_ 1

for all i. A morphism of complexes is said to be null-homotopic if it is homotopic to the zero
map. We let X [n] denote the complex obtained from X by shifted each object X? down by n.
Given an additive 2-category X, define Kom™ (K) to be the additive 2-category with the
same objects as K and additive hom categories Homy,. .+ (5c) (4, B) := Kom™ (Homy (4, B)).
The horizontal composition in Kom(K') is given using the horizontal composition from KX
together with the tensor product of complexes. The 2-category Kom™ (K') can be defined anal-
ogously. When no confusion is likely to arise, we often write Kom(.X) in place of Kom® (X).

2.2. Categorified quantum group. For this article we restrict our attention to simply-
laced Kac—Moody algebras. These algebras are associated to a symmetric Cartan data consist-
ing of

* afree Z-module X (the weight lattice),

e for i € I (I is an indexing set) there are elements o; € X (simple roots) and A; € X
(fundamental weights),

e fori € I anelement h; € XV = Homgy(X, Z) (simple coroots),
* abilinear form (-,-) on X.
Write (-,-): XV x X — Z for the canonical pairing. This data should satisfy:
* (j,aj) =2foranyi €I,
e (aj,aj) €{0,—1}fori, j € I withi # j,
o (i,A) :=(hi,A) = (aj,A) fori e I and X € X,
e (hj,A;) =6;j foralli,j €.
Hence (a;j )i, jer is a symmetrizable generalized Cartan matrix, where
aij = (hi.oj) = (i, 0tj).

We will sometimes denote the bilinear pairing (c;, ;) by i - j and abbreviate (i, A) to A;. We
denote by X T C X the dominant weights which are of the form ) _; A; A; where A; > 0.

We write W = Wy for the Weyl group of type g and Brg for the corresponding braid
group. The Weyl group W acts on the weight lattice X via

si) =A—ay (DA =A—(i.A)A

for each simple transposition s; € W.

Definition 2.1. Associated to a symmetric Cartan datum, define a choice of scalars Q
consisting of:

e {tjj |foralli,j €I}
such that
e tjj =0foralli € [ andt;; € k* fori # j,

° lij =1 whenaij =0.
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The choice of scalars Q controls the form of the KLR algebra Rg that governs the up-
ward oriented strands. The 2-category U g (g) is controlled by the products v;; = tl-;ltj i taken
over all pairs i, j € I. When the underlying graph of the simply-laced Kac—Moody algebra g
is a tree, in particular a Dynkin diagram, all choices of Q lead to isomorphic KLR-algebras
and these isomorphisms extend to isomorphisms of categorified quantum groups

Up(g) — Up(g)

for scalars Q and Q’, see [26].

Let Up(g) denote the non-cyclic form of the categorified quantum group from [14].
Though a cyclic form of the categorified quantum group has been defined [4], for our purposes
the non-cyclic variant is the most natural version. By [4, Theorem 2.1] the cyclic and non-cyclic
variant are isomorphic as 2-categories.

Definition 2.2. The 2-category U g := U (g) is the graded linear 2-category consist-
ing of:

e Objects A for A € X.

* 1-morphisms are formal direct sums of (shifts of) compositions of
L, g€ =116l and 1 o, Fi =134, Fily

fori € I and A € X. We denote the grading shift by (1), so that for each 1-morphism x
inUg and ¢ € Z we a 1-morphism x (7).

* 2-morphisms are k-vector spaces spanned by compositions of colored, decorated tangle-
like diagrams illustrated below:

At { A8l — &1y (i i), ><A 1881, — &€ 1 (—i-j),
' i J

U= F&L(+4), ' - &Fl(l - L),
A

A

A

N (Fi6ily — 1 (1 + Ai), A:Siﬂh%h(l—/\i)-

In this 2-category (and those throughout the paper) we read diagrams from bottom to top and
right to left. That is, in a diagram representing a 1-morphism from A to u, the region on the
right will be labeled A and the region on the left will be labeled p. The identity 2-morphism of
the 1-morphism &;1 is represented by an upward oriented line labeled by i and the identity
2-morphism of ;1 is represented by a downward such line.

The 2-morphisms satisfy the following relations:

(1) The 1-morphisms &;1, and ¥;1, are biadjoint (up to a specified degree shift).

(2) The dot 2-morphisms are cyclic with respect to this biadjoint structure:

A i i i + o
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The Q-cyclic relations for crossings are given by

(3) The 1-morphisms & (respectively the 1-morphisms ¥°) carry an action of the KLR algebra
for a fixed choice of parameters Q. The KLR algebra R associated to a fixed set of pa-
rameters Q is defined by finite k-linear combinations of braid-like diagrams in the plane,
where each strand is labeled by a vertex i € . Strands can intersect and can carry dots,
but triple intersections are not allowed. Diagrams are considered up to planar isotopy that
do not change the combinatorial type of the diagram. We recall the local relations.

(i) The quadratic KLR relations are

A
tij [ if (o, ;) =0or (o, a5) = 2,

(i) The dot sliding relations are

N I AR T

(ii1)) The cubic KLR relations are

% % (al | aj) 81 k tlj |
i J i

(4) Wheni # j, one has the mixed relations relating &; ¥; and ¥; &;

= lj = i
i J i J i J i
(5) Negative degree bubbles are zero. That is for all m € Z~¢ one has

A A

iO =0 ifm<i;—1, i@ =0 ifm<-X —1.



Cautis, Lauda and Sussan, Curved Rickard complexes and link homologies 7

Furthermore, dotted bubbles of degree zero are scalar multiples of the identity 2-mor-
phisms

A A

i@ =1Idq, for A; > 1, i@ = Idq, if A; < —1.
Ap—1 —A; —1

We introduce formal symbols called fake bubbles. These are positive degree endomor-
phisms of 1 that carry a formal label by a negative number of dots.

* Degree zero fake bubbles are normalized by

A A

iO =1Idg, forid; <1, iO =1Idg, ifA; >—1.
A —1 —A;—1

 Higher degree fake bubbles for A; < 0 are defined inductively as

, A Q G if0<j <—A +1,
O |
Ai—1+4+J

y>1
0 if j <O.

 Higher degree fake bubbles for A; > 0 are defined inductively by

‘ A OO if0<j <A +1,
Q. | 500,
Ai—14 7

x>1

0 if j <O.
The above relations are sometimes referred to as the infinite Grassmannian relations.

(6) The sl relations (which we also refer to as the &% and ¥ & decompositions) are

) N4,
SR B Ve
= +/3 ! )
. . Ry e
. . ; ; 12t ie
1
i\,

A A
+ - X Ot

. . A+ /2t /3 i /|
i i i i ——Ai-1 V&

It is sometimes convenient to use a shorthand notation for the bubbles that emphasizes
their degrees:

*+r Ai—1+r *+r —Ai—1+r
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Definition 2.3. A 2-representation of Up(g) is a graded additive k-linear 2-functor
Up(g) — K for some graded, additive 2-category K.

2.3. Thick calculus. The idempotent completion, or Karoubi envelope €, of an addi-
tive category € can be viewed as a minimal enlargement of the category € so that idempo-
tents split. The idempotent completion X of a 2-category K is the 2-category with the same
objects as KX, but with Hom categories given by the usual Karoubi envelope of Hom g (A, B).
Any additive 2-functor X — K’ that has splitting of idempotent 2-morphisms in K’ extends
uniquely to an additive 2-functor K — X’; see [21, Section 3.4] for more details.

In order to define the Rickard complexes lifting the braid group action on integrable
modules, we must first introduce the augmented graphical calculus for ‘uQ. This so-called
‘thick calculus’ describes 2-morphisms in the Karoubi envelope of the 2-category Ug. For
more details in the s[5 case see [22]. For the simply laced case see [36,37], although care must
be taken because all of the formulas in these references are for the unsigned version of the
KLR-algebra where all 7;; = 1. Those formulas can be transferred to our conventions using the
rescaling functors from [26, Section 3.3].

» In the Karoubi envelope ‘llQ we can define divided power 1-morphisms 81-(0)]1 2 and
F1, by

l
I~

a(a _ 1)> ) Atac; || A
- T4 7ea =

€91,(1) := (8,-“11,1 <z .

and

-1 A—aa; || A
ASNOR (37,-“11 <t + a(a—2)>,€é) =: ,

v
where the idempotent e, is defined as follows:

a—1¥a—2$ ... $ T
= D,

| | ’

where all strands are labeled i. Here D, is the longest braid on a-strands. The idempotents e,
are obtained from e, by a 180° rotation. We have

&1, = P e,

Cq = 8aDa

[a]!
and
721, = @ 71
(o]
Here we use the standard notation
a —a a
la) = L= =g gt e g )t = [0

9—9

1=
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and
a [a]!

b~ Bla— B

We define here some additional 2-morphisms in ﬂQ, whose degrees can be read from the shift
on the right-hand side. In this section we will assume that all strings are colored by the Dynkin
node i that we omit for simplicity unless explicitly indicated in the diagrams:

a b
e e
= &4V, 56D e 1, (—ab),
; A
a+b b ra

a
/
:‘(Fi(a-‘rb)]l)»_)?}(a)?’i(b)]l)x (—ab),

a a
= €a| 1,556, (a>+ad),
A

where we use the short hand notation of thin strands labeled a corresponds to a thin strands
labeled by i € I. For example,

a b -7 1.1 a+b TTTT

€a €p

a+b >%é< b a

€a+b

Al
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The thick cap and cups satisfy zig-zag equations so that diagrams in ‘llQ related by
isotopy define identical 2-morphisms in U . Furthermore, the splitters and mergers defined
above satisfy associativity and coassociativity relations [22, Proposition 2.4] making it possible
to define

= Da N = €a
I |||| | |||
unambiguously.
The center of the nilHecke algebra NH, is isomorphic to the ring of symmetric func-
tions Z[xy,.. xa]Sa Hence, any x € Sym, defines an endomorphism of & @1, (respec-

tively F F @1 A) in ‘L(Q since multiplication by symmetric functions x € Sym, commutes with
the idempotent e, :
a a a a

TT11

= €q , x forx € Sym,, = Y,

BN g

a a a a

where the product xy is well defined since xe,ye, = xye,.
For any composition & = (i1,..., ity) write x* := x’f1 gz ... xE". We depict these
diagrammatically as

EM . RigH2l Hn—1 Mn [ D j

T

For any Schur polynomial s, corresponding to the partition &t = (i1, ..., (k) one can

show that
k k
A7 N\
NV

where p + & is the partition (1 +k — 1, w2 +k —2,..., ug + 0). We denote by A, = 5(m)
and &y, = s(1m) the complete and elementary symmetric function, respectively.

We now present some important identities holding in the thick calculus. Note that by
[22, Corollary 4.7 and Proposition 4.8]

A A
. . Ex
@.1) [} = > (=¥ [} &y
i * 4 j x+yﬂ-z * 4z l
a = a
A A
Dy
Ol =X mO
* 4 1 x+y+z I * 4z
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ERT
ﬂ

x+y+z *+z

A
ORI {j

11

v+y+z * 4z
This implies
A
- =3
' 2 + 1 +1
a \ a
- 3 O O
B 2
i =¥ 41 )
Fori - j = —1, one can calculate in a 31m11ar way that the mixed bubble slides have the form
. A’ A’ .
—k
@ O | =Zee O
* +m i i «+m—a+«
a a

a
A A
m
Jj _ _ Ny
G - Beror G |
1 * +m §=0 *+s !
a
. A
hy
- Tew QO
s+t=m * 45 1
a
Equation (2.3) implies
. A A A
J €1 J
(2.4) O = 115} + O
w41 i i I «+1
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Lemma 2.4 ([22, Lemma 4.16]). There is an equality of diagrams

A
h 4
DY NG A
: 1
ERAAAUPTI B

a

Lemma 2.5. Foranya,b, B > 0 the following identities hold.:

A A
h I §h [ &y h
SO - O
ptatr Lf =47 ! gty+z=p *+z i /
=B a
A
hy €q A
= Y (=D C}
qg+y+z=p i e
a

Proof. The first identity is proved using (2.1) as follows:

)& L A
] '
Z hp Q Z Z ( 1)x+y C} Ex hq
ptatr 1| w47 ptatrxtyte * 4z i I
= a b - a b
A
8 hy
= Z (=1)¥8p—g—y—z.0 C}sy _
qg+y+z=0 w4z l 1

= ) (—1)y

q+y+z=p *+z

where we used the fundamental relation between complete and elementary symmetric func-
tions. The second identity is proven similarly by pushing the interior bubble to the right. O
Lemma 2.6. We have
A A A
€1 €1 1
| Y = i) d Q

i 1 ! l l s 41 x4+ 1 1
a b a

Proof.  Using (2.4) the result follows. m)
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2.4. Braid group actions. We now recall how a categorical U gives rise to a braid
group action in the homotopy category (cf. [11]). To do this we consider the following com-
plexes (usually called Rickard complexes):

_y d+
. B AU [PV
2.5) 1l = N N +

d d . d
|:.~(A )]1)L . Sl(k)‘(f:}(kl—i_k)]lx(k) £ ] ifA; >0,

where the left most term is in cohomological degree zero and with
A

dt =dr

_ Ai+1
(a,b) * = (=D . .0

i i
a b

where b — a = A;. Similarly we define

d— d
[ L e g R gy L —>1N(—M>] ifA; <0,
i = d- d- d-
[ SngttPE® i L L nks(ki)} if A; > 0,

where the right most term is in cohomological degree zero and with
A

d_=d(71,b) - N

wherea — b = A;.

Remark 2.7. 1In [8] a slightly different form of the complex ;1 is used when A; > 0,
namely

a+ da+ ) a+ ~
|:r~(/l )]1A — %(Al—'—k)gl(k)ﬂ/\(k) — } , d+ —

However, this version of the complex is isomorphic to the complex in (2.5) by [22, Lemma 5.3
and Proposition 5.10] with the isomorphism in homological degree k given by

(_l)k()»i +/\')><
(Ait+k) o (k)
Fritogwy,

¢ (hi+k) (k) (k) = (A; +k)
S 81- ﬂx—)gi ?; 1,
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Definition 2.8. Let X be a graded k-linear 2-category. A 2-representation F': U g — K
is said to be integrable if it satisfied the following additional properties:

(1) The objects A := F(A) of K are zero for all but finitely many A,

(2) The hom categories Homy (A, A’) are idempotent complete with finite dimensional hom
spaces in each degree, in other words, hom categories have the Krull-Schmidt property,

(3) For any weight A, Hom(1,,1,(€)) = 0 if £ < 0 and is one-dimensional if £ = 0 and
1, # 0, where 1) denotes the identity morphism on F(A).

Note that since K is 1demp0tent complete, a 2-representation F: Ug — K extends
uniquely to a 2-representations F: ‘L{Q — K. Furthermore, passing to homotopy categories
of complexes, this induces a 2-functor F: Kom(‘uQ) — Kom(X).

Proposition 2.9 ([11, Theorem 6.3]). Let F: Ugp — K be an integrable 2-representa-
tion. Then the complexes t;, rl-/ satisfy the following braid group relations in Kom(K):

Tifi/]l/l ~ 1, = ‘E{‘L’iﬂk,
771 =1l ifi,j) =
57Tl =Tl if(i,j)=—1.
Remark 2.10. The results in [11, Section 6] actually require something much weaker

than a full action of the 2-category U o. However, results of [7] together with [5], see also [14],
give the full action of Ug.

3. Bubbles and homotopies

3.1. Notation. For j € I we write

«F1

Note that any degree two 2-morphism in End%(Q( g)(]1 ) can be written uniquely as a linear
combination of such b;(A), cf. [21,39].

Definition 3.1. For any A € X, define a bilinear pairing (-,-) o between Endu ( g)(]l 2)
and by by
(bj,@i)o = (=D vji (), o),
where v;; = tj_l.ltij.

It is an easy exercise to check that the Weyl group W acts on P, End%tQ (@) (1) via
5i (A) s

g e g

*+ 1 41 1

5i(bj () :=bj(si(A)) — (bj,ai) obi(si(A)).

or
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Note that we can simplify this equation by omitting the domains to obtain
si(bj) :=bj — (bj, i) obi.

Observe that for all choices of Q, we have s;(b;) := —b;.

Remark 3.2. Consider the choice of coefficients for U o (g), where
N —1 ifi-j=—-landi — J,
Y otherwise.

This choice of parameters Q corresponds is the natural choice of KLR algebra R that
describes Ext-algebras between perverse sheaves on the quiver variety [38]. In this case we
have v;; = tl.;ltj,- = —1 whenever («;,«;) = —1 and subsequently (b;,a;)p = (o;,«;) for
alli,j el.

Subsequently, the Weyl group action above gives an action on € End%lQ (@) (1,) via

si(by) := bj(si) — o (@))bi.

In this case, the natural map §H* — End%lQ (@) (I,) given by «; > b; intertwines the Weyl
group actions.

3.2. The homotopies. The following is the main result of this section. It is an immedi-
ate corollary of the subsequent three propositions.

Theorem 3.3. Foralli € [ andb € End%iQ(g)(]l,\) we have
3.1) (h,ai)old=dT +dtd™] = si(b) - 1dy1, —Idgq, - b.

Proposition 3.4. Forall A andi € I there is a homotopy equivalence
A o osi(A)

Id,, 1, - ZO ~ — ’Q 1dg1,

* 41 *+ 1

given by 2d ™.

Proof. Lemmas 2.4 and 2.5 with b —a = A; imply

i _ - +
(3.2) 2d g1 p-1)%ap) T 24@r1.041)%ap)
A
&y he
=2(-DNT DT T (= C} .
qg+y+z=1 *+z i \fl
a b
)\, A. AN A
&1 &1
* 41 i ! 1 ! l :




16

Cautis, Lauda and Sussan, Curved Rickard complexes and link homologies

(with (—=1)**! coming from the differential and (—1)~* coming from (the square flop)
Lemma 2.4). The result then follows using (2.2) since

A A A A
N 1 G- 0
1 B I A O -0 il
l 4 * 41 x4 1
a A a a a
so that (3.2) is equal to (s; (bi))Idg_(a)j,,‘(mh — Idg.(a)‘?‘(h)ﬂ)b b;. D
Proposition 3.5. Forall A andi, j € I suchthati - j = —1 there is a homotopy equiv-
alence
A si(A) si(A)

J / -1 i
Idg; 1, - Q ~ J@ - tijtjil Q -Idg; 1,
* 4+ 1 * 41

* 41
given by

-1 — —
Zji t,'jd =Uj,'d .

Proof. By Lemmas 2.4 and 2.5,

B - - +
Vjidg g b1y @) T Vid@ar1 p+1)% 0

A
Ey hy
=-vi ), D .
q+y+z=1 *+z i \rl
a o
A T A A
&1 €1
= —Vji . — Vji
* 41 l \’l l 1 i 1
a p a a
IN A
Lemma 2.6
* 41 1 !
a b
A A
J
RN I - O
1 L s+ w+1 1 l
a b a b

= (si (bj))ldglgwfi(b)h - Id@f“)ff(b)hb/’

where we used that v;;v;; = 1 in the second to last equality.
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Proposition 3.6. Forall A andi,k € I suchthati - k = 0 the following maps are equal
(and in particular homotopic)

L A . si(A)
Idt,-]l;h' ( } =~ 'Idtiﬂ)\.
* 4+ 1 *-}Q

Proof. This is immediate from the bubble slide rules

A A A A
k k k k
(3.3) = , =
Ol =10 U= 0
* 41 1 1 *+ 1 * 41 * 41
a a
so that no homotopy is required. |

3.3. Some remarks. There is a natural internal braid group action on the quantum
group that interacts with the braid group action on integrable modules that is categorified
by Rickard complexes and which generalizes the action on bubbles discussed above. In [1]
2-functors J; categorifying the internal braid group action were defined from U ¢ to its homo-
topy category of complexes Kom(U ). It was shown in [2] that these 2-functors interact with
Rickard complexes giving 2-natural isomorphisms

gy () = Ti(—)tl,,

where (—) denotes an input from Ug. This amounts to defining for each one morphism
Iy x1, € Kom(Ug) a chain homotopy equivalence

A nlexly = Ti(x1y)Tly,
and for each 2-morphism f:1/x1, — 1,/y1; in Kom(Up) a chain map
Ti(f):Ti(Mpxly) — Ti(Lpyln)

giving a commutative diagram

A1
oyl ———2 S (1w,

(3.4) 1dz; f[ Itri (g1,

nxl) ———g—— T (x13)w
X A

in Kom(Ug). For identity 1-morphisms 1, the maps 1y, are identities since 7;(1,) = 1, (1)
and 7;1) = I, (1)7i. One can show that the braid group action via 2-functors 7; on the space of
endomorphisms € End?(1}) factors through the corresponding Weyl group, so that 7;2 =1d
on this space. A bubble b;(A) defines a degree 2 endomorphism of 1, and the homotopy for
the naturality square above defines a chain homotopy from 7;1,;(A) to 7;(b;(A))7;1,. This
homotopy equivalence agrees with the homotopies defined in Theorem 3.3.
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From this perspective, there is nothing special about degree 2 bubbles. One can simi-
larly show that the braid group action induced by the 2-functors 7; on P, End?* (1) factors
through the Weyl group and the commutative square (3.4) gives homotopies from z; 1, x1 to
Ti(x1)7i1, for any 2-morphisms x1, € End?¥ (1,). Further, the homotopies for degree 2k
bubbles can be chosen so that they square to zero, so they naturally fit into the framework of
curved complexes studied in the next section.

4. Curved Rickard complexes

4.1. 2-categories and curved complexes. In this subsection we review some defini-
tions and properties of curved complexes in the context of 2-categories.

Let us fix a k-linear 2-category K. Recall that Kom(.KX') is used to denote the homotopy
category of complexes in K. The objects here are the same but the 1-morphisms are complexes

(V, A) of 1-morphisms in K
A A A
MW—-V—---—V,

which we consider up to homotopy equivalence. One can rewrite this more compactly as
v =P vil-il.
i

where [ -] denotes a shift in homological grading, and A : V' — V[1]. Notice that, by definition,
A? = 0 in this case. We now explain how one can relax this condition to obtain the homotopy
category Karn(J{ )[u] of curved complexes.

First, for two objects A, B € K we denote by K4 := Homx (A, B) the 1-category of
maps between A and B. This category is naturally an (End(1p), End(14))-bilinear category.
Here 14 is the identity functor of A and End(14) is its endomorphism algebra (and similarly
for 1p).

For A, B € X as above, let (zg,z4) € (End?(1g), End?(14)). We would like to consider
a sequence of maps

at At at
4.1) |41 Vs e Vi

AT AT AT

such that (AT + A7)? = zgly — 1y z4. We will often abuse notation and write zg 1y — 1y z4
simply as zp — z4. This is all fine except that the maps A~ have homological degree —1 instead
of +1.

To fix this we enlarge our 2-category by introducing a formal variable u# of homological
degree 2. More precisely, for any k-linear 2-category &) we can consider the 2-category D[u]
where the objects and 1-morphisms are the same but where the 2-morphisms are formally
tensored with k[u]. In other words, if V, V' are 1-morphisms, then

Homg, (V. V') = Homg (V. V') ®x ku].

In particular, any degree zero map in O[u] can be written as a sum ¢ = Zizo ¢iu’ for some
maps ¢; of degree —2i in D. In this language, we can combine the maps in (4.1) as

A:=AT+uA" V- V1.
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Definition 4.1. By using the setup above, a (zp, z4)-factorization in pK4 is a map
A .V + V[1] such that A% = (zp — z4)u. Such a pair (V, A) is called a curved complex in
B K4 with curvature (zp, z4) and connection A.

Remark 4.2. In [17], the construction analogous to Definition 4.1 would be called
a strict y-ification.

Definition 4.3. For two (zg, z4)-factorizations (V, A) and (V’/, A"), a morphism
f:(V,A) — (V',A)
is a morphism (which we always assume to be degree zero) f:V — V' such that
foA=ANof.
Two morphisms
fig:(V,A) — (V',A)
of (zp, z4)-factorizations are homotopic if there exists H: (V, A) — (V', A’) such that

f—g=HoA+AoH.

For objects A, B, C € K we have natural maps
cKp ® pKa — cKa.

Fora (zp, z4)-factorization (V, A) € K4 and a (z¢, zp)-factorization (V', A’) € ¢ Kp letus
denote the image by V' x V' € ¢ K4 (although later we will drop the * in order to simplify nota-
tion). It has a connection A’ % A defined by (A’  A)(x” % x) = A/(x) % x + (=1)'x" % A(x),
where x’ is in homological degree i of V.

Lemma4.4. Suppose (V,A) € K4 isa (zp, z4)-factorization and (V', A) € ¢ Kp is
a (z¢, zg)-factorization. Then (V' x V, A" x A) is a (z¢, z4)-factorization.

Proof. Assume that x’ lies in homological degree i of V’. Then we have the following
chain of equalities:

(A % A2 (x % x) = (A % A)(A' (X)) % x + (=1)'x" % A(x))
= (A)2(x) *x + (=) TTA' (X)) % A(x)

+ (=)' A (X)) % A(x) + x" % A?(x)
= (z¢ — zp)ux’ * x + (zB — zg)ux' * x

= (z¢ — za)ux’ * x. O

We will denote the homotopy category of factorizations in KX by Kar/n(JC )[u]. The follow-
ing result is a straightforward extension of the analogous classical fact in homological algebra.

Proposition 4.5 ([17, Lemma 2.5]). If f:(V1, A1) — (Va, Ay) is an isomorphism of
(zB, z4)-factorizations in Kom(K)[u], then Cone( f) = 0 in Kom(K)[u].

The following is adapted from [17, Lemma 2.19].
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Proposition 4.6. Suppose (V, AT) € Kom™(K) is contractible. Then any deformation
(V, AT + uA7) is contractible in Kom(X)[u].

Proof. Let(V,d) € Kom™(pJK4) be a contractible complex and suppose that it deforms
to a factorization (V, A). Then A? = uz for some central element z and ATA™+A"AT = z.
Fix a nullhomotopy & € End™! (X) satisfying dh+hd = Idy . It suffices to assume that 42 = 0
since we can always replace & by i’ = hdh which is still a homotopy and satisfies 2’2 = 0.!
We claim that the map
® :=Idy 4+ uhA~ € End®(V[u)])

is invertible. To see this note that (#A~) € End~2(V) must be nilpotent for a bounded below
complex V' € Kom™ (K)[u]. Hence, the map

o' := Y (—hAT)u/
Jj=0

is a well-defined endomorphism of V. Similarly, the map ® := Idy + uA~h € End®(V[u])
is also invertible with inverse

o= (AT

Jj=0

It follows that @14 = hd'~!. We show that H := &~ 11 = h®'~! is a nullhomotopy for the
factorization (V/, A), in particular, that

(4.2) AH + HA =1Idgy ).
for A = At 4+ uA~. Since ® and @' are invertible maps, (4.2) is equivalent to proving
O(AH + HA)® = &' =Idy +u(hA™ + hA7),
since (A™)? = 0. Expanding out we have
O(AH + HAY = ATh+ hAT +u(A"h+hA™) +uh(A~AT + ATA A

and the result follows since ATAT + ATA~ = z is central and h2 = 0. O

Proposition 4.7 ([17, Proposition 2.20]). Let (C, A™),(C’, A'") € Kom(gK4) be two
invertible complexes and let ¢o: C — C’ be a homotopy equivalence. Then ¢q extends to
a homotopy equivalence ¢: (C, A) — (C’, A) of (zB, z4)-factorizations, where (C, A) and
(C’, A) are deformations of C and C’, respectively.

Proof. Since C and C’ are invertible and homotopically equivalent, we have
Hom(C, C’) =~ Hom(Id, C’ ® C~') = End(1p).

Thus any chain map in Hom(C, C’) of non-zero homological degree is null-homotopic. Now
we will show how to extend ¢g to a chain map ¢ = Zizo ¢iu' between deformations where
the homological degree of ¢; is —2i. Note that A = AT + A"y and A’ = A'" + A'u.

1) We thank Matt Hogancamp for pointing this out.
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Assume that we have constructed ¢; for all i < k and thus that for such i we may assume
AN = ¢iA,
which is equivalent to assuming that for all i < k that
(4.3) AT — i AT + A io1 — pi1 A7 = 0.

Then consider the element
Ok = A" p—1 — 1A

We will now check that 6 is a chain map between C and C’. Since the homological degree
of O is 1 — 2k, and the homological degrees of A™ and A’ are odd as well, we must verify
AT, = -0, AT. We have

ATO + O AT = NTA Gy — g ATAT — AT AT+ AT AT
Using (4.3) on each of the last two terms in (4.1), we get
4.4)  ATO 4+ AT = (ATA TP — 1 ATAT)

+ (A ATy + ATA Py — A2 A7)
+ (—Pk—1 ATAT + A2 AT — 2 ATAT).

Using the fact that A2 = A’? = (zp — z4), we get that (4.4) is equal to

(zB = z24)Pk—1 — Pk—1(zB —24) =0

since ¢y _1 is comprised of (End(1p), End(14))-bimodule homomorphisms.

Since the homological degree of 6y is 1 — 2k and it is a chain map between invertible,
equivalent complexes, by the above reasoning, 6 must be null-homotopic. Thus there exists
amap hy: C — C’ of homological degree —2k such that

O = A Thy —hp AT
Now define ¢ = —hy. Then the part of A’ o ¢ — ¢ o A of homological degree 1 — 2k is

AT — e AT + A"y — 1 A7 = AT — AT + 6
= (A hy —hpeAT) 4+ 6, = 0.

Thus building ¢ in this way, we see that it is a chain map between deformations.
By Proposition 4.6, Cone(¢) is contractible so ¢ is a homotopy equivalence of deforma-
tions. ]

4.2. Curved Rickard complexes. We take our 2-category K to be U and consider
the corresponding homotopy category of curved complexes Kom(U g )[u] where u is a formal
indeterminate of bi-degree [2](—2).

Remark 4.8. In Section 4.1, u has degree just [2] but now, since our underlying 2-cate-
gory has an extra grading, we need to impose an additional grading on u.
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For a parameter ¢ € k we define 7; .1, by

—A; at (41 Q d aF (At ok at
[8} ", —— &MV, 1) eTHE®, (k) — -
cud— cud— cud— cud—
if A; <0and
=i at 1) o (Ai+1 at at k) o (Ai +k at
[ﬁf ', —— eWFH D, 1) e FHto, ey — ...
cud— cud— cud— cud—
if A; > 0 so that
A=dt +cud.

In particular, taking ¢ = 0 recovers the original Rickard complex. Note that for any value of c,
7i.c1; is a curved complex with connection A = d* + ucd ™. To see this, choose any j € [

with (b;, ;) o # 0 and use (3.1) to conclude that
45 (@t +cd )2 =c(dtd +d d¥) = —— (s;(b;) -1y, — Iy, - bj).
(bj.ai)o

Similarly we define 1,7/ . by

d— d— d— d—
k —Ai+k (A (A
|:<_—>]1181( )yl( + )<_k>—>"'—>]l}»8i(l)‘f,i( +1)<_1> <——>]l/lj’i( )i|

cud+ cud+ cud+ cud+
if A; < 0and
< (A +k) o (k) < < M) (1)) 1y ———s 1 o)
e 2 1,8 TR F R gy 1 EXTVFM 1y —— 1,6
cud+ cud+t cud+ cud+

if A; > 0 so that
A=d” +cud”.

Proposition 4.9. Foranyb € End%lQ (@) (12, Ti (b,ar) o L is an (si (D), b)-factorization
and likewise 1t} (bai)o is a (b, si (b))-factorization.

Proof. This follows immediately from Theorem 3.3 and the subsequent calculation
in (4.5). ]

Remark 4.10. We will write 7; (5 ¢,
is a (s; (b), b)-factorization.

)o L to implicitly mean the curved complex which

Remark 4.11. One can always specialize the formal variable u to a scalar. However,
this requires one to identify [1]{(—1) with the trivial shift (which has the effect of killing one of
the gradings).

Lemma 4.12. Ifc # 0, then
Ticly = Ti/,c]l/l

inside the localized category Kom (Ug)[u ).
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Proof. Suppose A; > 0 (the case A; < 0 is similar). If we ignore the differentials, then
k) = (Ai+k
tieln = @ & 74O, (k] tk)
k>0

and
k) = (Ai+k
1y = @PeP FH O k) (—k).
k>0
We define a map 7;: 7;,c1; — v/ .1, by using, for k > 0, the maps

(cu)k . gl(k)\rf‘,}(/li+k)[_k]<k) N glgk)f’i(ki-l-k)[k](—k).

It is not hard to check that this defines a map of curved complexes. Similarly we can define
T, 1) A5 — il by using

(cwy™*: ePFH O (k) - €0 FHTO k) (k).

i
This is also easily seen to be a map of curved complexes. Moreover, 7; and 7, are clearly
inverses of each other. O

Proposition 4.13. If K is an integrable 2-representation of Ug(g), then inside
Kom(K)[u] the curved complexes t; . and t] , satisfy the braid group relations of Brg. More
precisely, for any b € End?(1,), we have

T (51 (b)) T 1 = 14 2= T (s 0).0) T ) 1
Ti (s (0).e) T b ) LA == T (s (b)) Ti by 12 if (. j) =0
Ii,(SjSi(b),ai)fj,(srt(b),aj)fi,(b,di)ﬂl = 7:j,(SiSj(b),ofj)l—i,(sj‘(b),ﬂti)7:]',(13,011')1111 ifii,j)=-1,
where we suppress the subscript of Q from the pairing (-, )¢ for readability.

Proof. Proposition 2.9 gives homotopy equivalences of undeformed complexes for each
braid relation. By Proposition 4.7 these homotopies extend uniquely to homotopies of the cor-
responding curved complexes. o

Finally, we have the following relatively straightforward result which we will use later.

Lemma 4.14. For b € End%Q(g)(ﬂA), the 1-morphisms 81.(]()]1,\ and ]l,\?i(k) (thought
of as complexes with only one term) are (b, b)-factorizations if (b, a;)o = 0.

Proof.  One must check that acting on the left by » is the same as acting on the right
by b. The condition (b, ;) 9 = 0 guarantees this, see (3.3). |
5. Application: Deformed sl ,, homology

Since the 2-categories U g (sl;,) and U g (sl,,) are isomorphic for all choice of scalars

O and Q’ (see [26, Theorem 3.5]), throughout this section and the next we fix the choice of
scalars from Remark 3.2 so that (b;, o) o = (o), ;).
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5.1. Background. We briefly review the construction of sl,, homology from [8]. The
starting point is the 2-category U where the Cartan data is that of sl for some large N.
The N will depend on the link (the more complicated the presentation of the link the bigger
the N) or we can consider the limit and take the more canonical choice N = oo.

For any fixed d € Z a weight A = (A1,...,A2n—1) in Up(slon) corresponds to a
sequences k = (ky,...,kan) of integers k; € Z determined by

Mi=kipi—ki, Y ki=d
1
(when such a solution exists). We will use A and k interchangeably.

For our purposes we set d = mN and take ‘U’S to be the quotient category which kills
any weight k where either k; < 0 or k; > m for some i. This is equivalent to killing any weight
which is zero in the sl,y irreducible representation Vj, A ,, with highest weight mA .

In this notation, the roots correspond to

o = (07"-707_1,1,0,-..,0),

where the —1 occurs in position i and mAy = (0,m) = (0,...,0,m, ..., m) where there are
a total of N 0’s and N m’s. The Weyl group, which can be identified with S, , then acts by
permuting these sequences in the usual way. As usual we denote by ‘U'é the Karoubi envelope
of ‘l,(’é’ In this way ‘U’é’ is an integrable 2-representation in the sense of Definition 2.8.

Lemma 5.1 ([8, Lemma 7.1]). Suppose k and k' are non-zero weights which differ by
only applying transpositions that involve 0 or m. Then 1y and 1; in ‘U'é’ are canonically
isomorphic in the sense that if t,t’" : 1x — 1/ are isomorphisms induced by a sequence of

transpositions as above then t = 1.

Proof. It suffices to assume k = k' and to show that 1 k 1s isomorphic to the identity for
T associated to a sequence of transposnlons each of which involve 0 or m. Now, if k; or kj 41
is in {0, m}, then 7; 1 is either 8 Ai) Igif A; <Oor ¥ ( ’)ﬂk if A; > 0 and one immediately
checks that ‘Elz]lk Ig. Moreover if ki = ki1 €10, m} then 7; 1 is the identity. The result
now follows since any pure braid element can be simplified to the identity using the braid
relation and these two observations above. m)

Lemma 5.2. The space of 1-morphisms Homum (Lo,m)> L(0,m)) is spanned by direct
sums of 1(g,m) (together with shifts). Moreover,

Hd%g (ﬂ(g,m)) = ]k[el, e em],

where e;j is the degree 2] fake bubble labeled by N .

Proof. By [21, Lemma 6.15] any endomorphism of 19, can be expressed as a lin-
ear combination of products of non-nested dotted bubbles of the same orientation. Here we
consider the counterclockwise dotted bubbles.

The first claim is a consequence of the PBW theorem and the fact that (0, m) is a highest
weight in ‘U’g which means that all &; act by zero. From this it also follows that all counter-
clockwise bubbles labeled by i € [ vanish in End;‘lg (I¢0,m))- Note that the i-labeled counter-
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clockwise bubble with no dots has degree two if i % N and has degree 2(m + 1) if i = N.
Hence, in the quotient U, we have

(0,m)
) ifi #N,
. i
. ! (0.m) ©, m) *F1
= = = N
O (—)L,-QL,——H (0. m) .
O otherwise,
*+m+1

so that all positive degree i labeled bubbles with i # N vanish and all N-labeled bubbles of
degree greater than 2m also vanish. The N -labeled counterclockwise bubbles of degrees 0 to
2m are all fake bubbles, so the vanishing of weights 1 = 0if k; ¢ [0, m] does not require these
to be zero; linear independence of products of these fake bubbles follows from the equivariant
2-representation [21, Proof of Lemma 6.15]. O

Now consider an oriented link /. whose components are colored by elements of [0, m].
A color k should be thought of as a labeling of the strand by the fundamental representation
Va, of sl,;,. We now explain how L induces a 1-morphism

V(L) e HomKom(ﬂg)(ﬂ(Q=@’ Lo,m))-

To obtain this 1-morphism from L, we decompose the link into a composition of caps,
cups and crossings as shown in Figure 1. At each level of this decomposition we can associate
an object k of um where we add in 0’s or m’s if needed so that k € Z2V with Y, k; = mN.
By Lemma 5.1 there is a canonical isomorphism between any two objects k associated to a
given level of the decomposition of L. To a cap/cup we associate the 1-morphisms

(5.1) X (L kim—ki,.. )= (..,0m,...),
(5.2) FE 0 m ) > (o kiom =k, ),

where i denotes the position of the cap/cup. To the four over crossings in Figure 1 we associate
maps 7il, tilglkil(—ki), Tilg[m —kip1]{(=m + kiy1) and ©lg[—ki1 + kil{kit1 — ki)
respectively. The corresponding four under crossings are the associated inverse maps.

XXX X NS

ki kivi ki kiv1 ki kiy1 ki kit

Figure 1. The cap and cup can have either orientation.

Composing these morphisms together gives us W(L). Note that, by Lemma 5.2, this is
a complex with terms direct sums of 1o ). To obtain the link invariant H :[; (L) we apply
the functor Hom‘u,g (I0,m)- ®)- By Lemma 5.2 this has the effect of replacing each summand
1(0,m) with k. For more details see [8, Section 7].

Remark 5.3. If we apply the functor Homam (I0,m)~ ®) (i.e. the direct sum over all
degrees) then by Lemma 5.2 this has the effect of replacing each 1 (g ) with k[e, ..., e;] with
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e;j corresponding to the fake bubble of degree 2/, see Lemma 5.2. The resulting homology is a
deformation of H:[’; (L) over kleq, ..., en], cf. [35,40].

5.2. Deformations. To obtain the desired deformation of the construction above, we
will label crossings with curved complexes. More precisely, given y = (y1...., 2 N2 we
will denote by by € b = End2 (]1 &) the 2-morphism determined by the conditions

(by.ai) = =yi + yit1.

In this notation, we have
(by. k) =y -k.

We now work in the quotient ‘L(m We denote by B, the image of by in the 2-representa-
tion ‘um Given a link L we decompose it as before into cups, caps and crossings and associate
to each the corresponding curved complexes. More precisely, to the first crossing in Figure 1
we associate Tj,—y; +y;,, Ix which is a (By; (y), By)-factorization (and similarly for the other
crossings). Whenever we see a cap/cup, we associate the curved complexes as in (5.1) and (5.2)
and we impose the condition that y - «; = 0 (namely y; = y;4+1, cf. Lemma 4.14).

Theorem 5.4. Suppose L = L1 U ---U L. is an oriented, colored link with ¢ compo-
nents. Then the construction above defines a family of link homologies H :f: (L) parameterized
by z € k€. This homology has the usual splitting properties from Batson—Seed [6]. In particu-
lar, for distinct values of z the deformed homology of L is isomorphic to the homology of the
disjoint union of its components, and moreover, there exists a spectral sequence starting with

T7 *, %
I *(L) and converging to H; oL, (L).

Proof. Consider a presentation [L] of the link L and a choice of y. The construction
above imposes a set of linear relations that the y should satisfy (one condition for each cap
and cup). We say that y is compatible with [L] if it satisfies all these linear conditions.

In this way, for ale compatible y, we obtain a I-morphism

Wy (L) - Homges iy g (Lom) - Lo.m)-

Since, by Lemma 5.2, Endz(]l@,@) is spanned by eq, it follows that this curved complex is
a (ceq, ¢’ey)-factorization for some ¢, ¢’ € k. The fact that the description of L begins with
a cup and ends with a cap means that we impose the condition that (ce1,e1) = 0 = (c’eq, e1).
Thus ¢ = ¢/ = 0 and W, (L) is an actual (non-curved) complex.

Next we need to understand why the set of y compatible with [L] is indexed by k€. This
is more easily realized if we present L as a com_position of simple cups, a braid 8 and then
simple caps. In the construction above this means a composition of the form

L 4 4 (k1) ~k 7 k
Toum.0mm....0m €V 64V ywgy(F*VFE) g EN N 6 moum.0m)

where kq,...,ky and £1,..., ¢y are the colors of the strands of § at the bottom and top
respectively while W(f) is the curved complex associated to 8 (a composition of ; ¢’s).

2) Here our parameters y; are deformation parameters rather than formal variables as in [17]
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We start with a general deformation parameter y = (y1,...,y2n). The cups impose
linear relations
yar =0, y-az3=0, ..., y-ay-1=0

which are equivalent to

Yr=>XY2, V3=DX4 ..., Ya-1= D)2

Now W(p) is a (Bp(y), By)-factorization. This means that the caps impose the linear relations

B(y)-ar =0, B(y)-az=0, .... B(y)-o2n-1=0.

It is easy to see from this description that Wy, (L) is a (Bg(y), By)-factorization and that the
linear relations on y cut out exactly a family indexed by the components of L.

Finally, the splitting properties of H :[fn (L) as in Batson—Seed [6] are a consequence of
Lemma 4.12. |

5.3. Clasps. The construction of H :I; (L) above is for links L colored by fundamental
representations V. of sl,,. One way to generalize this to arbitrary representations Vy, A, is
by cabling and using clasps (projectors) & corresponding to the composition

VAk1 ®"'®VA1<S — VZfAk,- — VAk1 R ® VAkS,

where the first map is the natural projection while the second is the natural inclusion.
This approach was followed in [8, Theorems 2.2, 2.3] where J° was defined as a limit
limy_, o0 (t/,)%¢, where

o= (T ) (T ()

is a full twist. Here, for notational simplicity, we assume that the clasp J consists of cabling
the first s strands (otherwise the indices 1,...,s — 1 would need to be shifted). Also note that
our notation is such that z/ in the current paper corresponds to T; in [8].

Proposition 5.5.  Forany By € Endam (1x) the clasp P1y € Kom_(‘l:(’g) deforms to a
(By. By)-factorization _ i _
P € Kom™ (Up)[ul.

Proof. We will prove that the corresponding limit limy_, o, (r‘/o)ze]l& in Koxm_(‘l'lg)[u]
converges. The argument from [8] that this limit exists in Kom_(‘ug) relies on a connecting
map 7 : 1 — (t},)*1 (cf. [8, Section 5.2]) such that

(rgo)ze Cone(n)1x

is isomorphic to a complex supported in cohomological degrees < —d({), where d({) — oo
as £ — 00. So we just need to deform this story.
The map 7 is constructed from simpler 1y — (z/ )2% or, equivalently, from maps

ni : ‘[i]l& —> ‘L’l-/]l&.

It turns out that this rather simple map is just the map 77; from Lemma 4.12, where we take
u = 0. Thus we already have a natural deformation for n; which leads to a natural deforma-
tion 7] of 7.
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Now consider the truncation of (r(i,)ze Cone(7)1; to degrees greater than or equal
to —d (£). When restricted to u = 0, this is homotopic to zero. It follows by Proposition 4.6 that
the same is true of the whole truncation (rc’o)zg Cone(7)1g. This implies that limy_, o, (tc’o)ze
converges in Kom_(‘ug)[u]. m]

The deformed clasps satisfy the usual properties of clasps by Proposition 4.6. Once we
have this deformation & the construction from [8] can be repeated to yield a deformed homol-
ogy for links L labeled by arbitrary representations of sl,.

Corollary 5.6. Suppose L = L1 U ---U L is an oriented link whose components are
labeled by Vi, , . .. ,!M(,, where ;i = Zj Ak, ;- Then the construction above yields a family
of link homologies H :IZ (L) parametrized by z = (z;,j). This homology satisfies the usual/
expected splitting properties. In particular, if ¢ = 1 and v = Ak, | + Ak, ,, then restricting
to z, where z1,1 # z1,2 recovers the homology of L labeled by the (reducible) representa-
tion VAkM ® VAkl,z'

5.4. Comparison with [12]. Recall that in [10] and subsequent papers an algebro-
geometric definition of sl,, link homology was developed. This construction was “deformed”
in [12] to yield a deformed theory with the same properties as the link homologies H :I; (L)
from Theorem 5.4. Without going into too many details we would like to compare the con-
struction of these two deformations.

In [12] the role of ‘U’é is played by a 2-representation Kgy . The objects in Kg; », are
the derived categories of coherent sheaves on certain convolution varieties Y (k) associated to
the affine Grassmannian of type PGL,,. These categories are Z-graded with the grading shift
denoted {1}. The 2-functor ® : ‘uQ — Kar,m takes (1) — [1]{—1}.

The source of the deformation in [12] are certain deformations Y (k) — A2V of the vari-
eties Y (k) (these deformations are very natural from the perspective of the Beilinson—Drinfeld
Grassmannian). Here points of A2V can be identified with sequences y. In general, a geometric
deformation gives us degree two classes in the Hochschild cohomol?)gy of the variety. More
precisely, this class is the product of the Atiyah and Kodaira-Spencer classes (cf. [20]). In our
case this yields a linear map

(5.3) C?N — End}, (Ix). y+ By.

Now consider the image of a complex 7;1; € ‘uQ under the 2-functor ®. This be iden-
tified with a kernel ®(7;1) (a sheaf) living on Y (s;(k)) x Y (k). The main (technical) result
of [12] is that ®(7; 1) deforms along

{(SI(X)’X) 316 AZN} — AZN C AZN XAZN,

The proof requires a more detailed geometric understanding of ®(z; 1z ). One should compare
this result with Proposition 4.9 which states that 7; 1 deforms along

{(si(b),b) : b € End? , (1)} C EndZ , (15, k) x EndZ,,, (1)
o uQ o uQ -

The geometric deformation of ®(z; 1) has the property that its fiber over any (s; (), y)
with y; # ;41 is the graph of an isomorphism

Y®)ly > Y (s ()5, (-
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This isomorphism is actually an involution (both these facts are easy to see). Hence, under the
hypothesis that y; # y; 41, this deformation is isomorphic to its inverse. This result should be
compared to Lemma 4.12.

Another remark involves the formal indeterminate 1. Recall that u in ‘UQ has bi-degree
[2](—2). Since the 2-functor ® sends (1) — [1]{—1} and [1] ~ [1], it follows that the image of
u has bi-degree {2} in Kgr,m. This agrees with the fact that the parameter space A2N of the
deformation Y (k) is equipped with a dilating C* action of weight {2}.

In the undeformed case a procedure for comparing link homologies constructed via skew
Howe duality was introduced in [8, Section 7.5]. The rough idea is that any two link homologies
constructed from a categorical action on a 2-category K whose (non-zero) weight spaces can
be identified with those of /\Zwo(Cm ® C2%°) are automatically isomorphic. This can be used
to show that the (underformed) link homologies defined using the affine Grassmannian [§8]
must agree with (for example) the link homology H, :I,: (L) defined in Section 5.1 using the
2-category ‘U'g.

We expect the same is true in the deformed setting — namely, that the deformed homology
from [12] is isomorphic to H :[:1 (L). To prove this given the results mentioned above it remains
to identify the deformation in [12] and, more precisely, the induced map (5.3) with the map

c2N End%’ﬁ (Ix), y+— By
from Section 5.2. Although this is not terribly difficult, it is a bit technical and beyond the scope
of the current paper.

5.5. Example. Consider the Hopf link L where both components are labeled by the
standard representation V5, of sl,,. Label the components by the deformation parameters yq
and y;:

11

Following the calculation in [8, Section 10.3], we get that the complex for the Hopf link is
homotopic to

D D k-3 >P P ki-1) L PP

[m] [m—1] culd [m] [m—1] [m] [m]

where f is an injective map and ¢ = y; — y».
Thus, if ¢ = 0, we get the following for the s[,, homology:

Dy k(m —1)  ifi =0,
@ H;’Ijm (L) = @[m][m—l] k(—=3) ifi = -2,
g 0 otherwise.
If ¢ # 0, then the homology has rank m?. This is the rank of the homology of the unlink

with two components which is what we expect from Lemma 4.12. Compare these results with
the analogous HOMFLYPT homology computation in [17, Example 3.7].
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6. Application: Deformed colored HOMFLYPT homology
In this section we continue to work with the choice of scalars Q from Remark 3.2.

6.1. Background. We now explain an analogue of Section 5 for colored HOMFLYPT
homology. Let us suppose that we have a link L which is presented as the closure of a braid j
on N strands. We color the components of this link with arbitrary non-negative integers so that
the bottom and top of B is colored k = (k1,...,.ky). Wedenote d := ) ; k;.

The starting point of our construction is the 2-category U where the Cartan data is
that of sl and the choice of scalars Q has been fixed as in Remark 3.2. As in Section 5, we
identify the weights of U with sequences k of integers such that ), k; = d. We will now
define an integrable 2-representation JCK, of Up.

First we fix some notation following [9, Section 3.1]. For k£ > 0 denote

A =K[x1, ... xk )5 = Kler, ... e,

where the symmetric group S acts naturally and where the ¢; are elementary symmetric func-

tions. These algebras are naturally Z-graded with x; having degree 2. The convention we use is

that multiplication by x; induces a map x; : Ay — Ar{2}, where { - } denotes a shift in grading.
For a sequence k we define

A&IZ Akl Rk - Ok AkN-
)

i

We will denote theelement | ® - ® ¢; @ --- @ 1 by ¢
of Ag.

The (non-zero) objects in KX ]‘f, are indexed by sequences k, where all k; are non-negative
and ) ; k; = d. The 1-morphisms consist of (Ag, A/)-bimodules which are flat as A and
also A;/-modules. Composition of these 1-morphisms is tensor product. The 2-morphisms are
then morphisms of bimodules.

Notice that we have natural inclusion maps

where the ¢; occurs in the jth factor

A("'yki +kiy1,..) T A(~~~ykiaki+1 per )t

Subsequently, the algebra A x,—1,1,k
ule.

i+1,...) 1s both an Ax-module as well as an Ag 44, -mod-

Proposition 6.1. There exists a 2-functor F]‘f, Ug — JCZ”\I, which sends (1) to {1} and
Eilg > A ki—1,1ki11,..) ki — 1},
I Fi > A ki—1,1ki 41,0 ki +1),
End%lQ(]lk) >5bhj — —8§j) + 8§j+1) € Endicldv (Ig).
Proof. This 2-functor is (up to a grading shift) the equivariant flag 2-representation

[21, Section 6.3.3], see also [25] and [29, Section 4.3]. The image of bubbles in this 2-represen-
tation are given in [21, equation (6.47)] or [29, equation (4.12)]. O

Next let us define the following shifted complexes:

Pl = Tilg[—kit1l{kiv1 + kikipa} i (ko) <
1 L .
. Tl [—kiltki + kikit1} if (ko) >

bl

0
0.
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Using these shifted complexes is not crucial but it does simplify the grading/cohomological
shifts in the long run and it does agree with the notation/definition from [9].

Given a braid B, we denote by Tg the corresponding composition of 7;. Then the
2-functor Ff{, from Proposition 6.1 gives us a complex of (Ag, Ay)-bimodules FK, (Tg). Tak-
ing Hochschild cohomology of this complex of bimodules defines a triply graded homology
HH(L) (see [9, Theorem 4.1]).

6.2. Deformations. To obtain the desired deformation of the construction above, we
will label crossings with curved complexes. Notice that we have

El’ld;q{] (ﬂ&) = Hom?A&,A&)(A&, A&) — 4
Given y = (y1,..., yn), we denote

By = Zyisgl) € End:;{z, (Ig).

Lemma 6.2. The complex FN(‘L’Z —yi+yip1 k) is a (Bg, ) By)-factorization inside
Kom(JC ) [u].

Proof.  As in Section 5.2, we define by, € End%l (1x) as the linear combination of bub-
bles determined by the relations (by, ;) = —y; + yi+1. Then we know that 7; —y, +y, 1 is
a (by, ) by)-factorization.

On the other hand, the third relation in Proposition 6.1 implies that rd v (by) = By if
> i ¥i = 0.1t follows that FN(‘[Z’ y,+y,+1]lk) isa (Bs, (y)» By)-factorization if Zl yi = 0.

More generally, we can write any y as )’ '+(c,...,c),where )", y/ = 0. Then By = By
and so, by the above, it remains to show that

.....

yldy, € Endic[t{/ (L, (&)FI(\II (Ti,—yi+yi+1) 1K)

N(fi,—yi+yi+1

But this is clear since it is not difficult to check that B . .) commutes with all & and %;
in KX Id\, O

Repeating the construction from Section 6.1, we start with a braid 8 and apply Lem-
ma 6.2 repeatedly to obtain a (Bﬂ(y), By )-factorization rd (r ). To finish, we apply the func-
tor Hom( Ay As )(Ak, ). Since elements of End( Ay A )(Ak) (such as By) commute with any
1 morphlsm of(A k» Ag)-bimodules, it follows that the resulting curved complex has curvature
Bg(y) — By. Thus, if we choose y so that y = B (), then we getan actual complex (with zero
curvature). We denote the resultlng triply graded vector space HH (L).

Theorem 6.3. Suppose L = L1 U ---U L. is an oriented, colored link with ¢ compo-
nents. Then the construction above deﬁnes a family of link homologtes HH (L) parametrized
by z € k€. This homology has the same splitting properties as H* sl * (L) from Theorem 5.4. In
particular, for distinct values of z, the deformed homology of L is zsomorphzc to the homology
of the disjoint union of its components, and moreover, there exists a spectral sequence starting
with HH(L) and converging to I-fI\I:/I(L)
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Proof. We just need to verify that HH (L) is indeed a link invariant (the rest follows
from Lemma 4.12 as it does in the proof of Theorem 5.4). The fact that it is a link invariant
can be verified as in the proof of [8, Theorem 4.1] where the analogous result is proved for the
undeformed complex HH(L). m]

6.3. Clasps. In [9] clasps were constructed (just like in [8]) as a limit of twists. This
allowed one to define a HOMFLYPT homology for links colored by arbitrary partitions. The
discussion from Section 5.3 now repeats word for word to give us a deformation of these clasps
in the context of HOMFLYPT homology. This leads to the following analogue of Corollary 5.6.

Corollary 6.4. Suppose L = L1 U ---U L is an oriented link whose components are

(1) -

colored by partitions (L1, ..., L), where ju; = (u; ~ = +++ = M?S" )) is the decomposition into

parts. Then the constructions above yield a family of link homologies HH (L) parametrized by

z=(zi1,...,2zis) This homology satisfies the usual/expected splitting properties. In partic-
ular, if c =1 and pu, = (,ugl) > ,ugz)), then restricting to z where z1,1 # 21,2 recovers the
homology of two unlinked copies of L colored by the partitions ugl) and ,ugz).
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