NOISE-ROBUST KEY-PHRASE DETECTORS FOR AUTOMATED CLASSROOM FEEDBACK

Brian Zylich and Jacob Whitehill*

Department of Computer Science, Worcester Polytechnic Institute, MA, USA

ABSTRACT

With the goal of giving teachers automated feedback about
their classrooms, we investigate how to train automatic
speech detectors of key phrases such as good job, thank
you, please, and you’re welcome. This kind of language
conveys support and respect from teacher to student and is
one of the behavioral markers used in the established CLASS
[1] classroom observation protocol. School classrooms are
noisy and contain overlapping speech, presenting a highly
challenging environment for automatic speech recognition
(ASR), even for state-of-the-art approaches. We train deep
neural networks using hierarchical multitask learning (MTL)
on a modest-sized but highly-tailored dataset of classroom
speech. Compared to 2 state-of-the-art ASR systems for
general-purpose speech recognition (Google [2] and Deep-
Speech [3]), our system delivers a substantially improved
recall rate (50.4% versus 20.5%) while matching their pre-
cision (30%). Moreover, our system’s predictions correlate
with several dimensions of the CLASS.

Index Terms— education, speech recognition, deep
learning, multitask learning

1. INTRODUCTION

In school classrooms, the interpersonal interactions between
students and teachers impact students’ long-term cognitive
and emotional development [4, 5]. It is thus important that
teachers receive frequent feedback about how well they are
giving children the support they need. One common form
of feedback is classroom observation, whereby a more ex-
perienced colleague or administrator watches live or video-
recorded sessions of a classroom and rates it along differ-
ent dimensions. The Classroom Assessment Scoring System
(CLASS) is one of the most commonly used protocols [1, 4].

While classroom observation and CLASS coding in par-
ticular has shown to be effective for honing teachers’ skills
[6], its scalability is limited by the lack of trained coders and
the labor involved in coding. By automating CLASS feed-
back, more teachers could get access to this valuable tool,
and feedback could be given more frequently. In this paper,

*This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. 1938059, and
also by NSF Cyberlearning grants 1822768, 1551594, and 1822830.

we tackle one specific aspect of this challenge: how to rec-
ognize supportive and respectful language spoken by teach-
ers to students in the specific context of toddler classrooms
(2-3 year old children). Utterances such as good job, thank
you, please, and you’re welcome constitute some of the be-
havioral markers that classroom observation coders attend to
during coding [1]. This task is highly challenging due to the
nature of classroom environments: multiple children may be
crying, singing, shouting, or speaking simultaneously while
teachers are attempting to give instructions or retain control.
Classroom speech is qualitatively different from typical ASR
settings, which often contain minimal background noise or
overlapping speech, such as automatically providing subtitles
for a commentator. Thus, even state-of-the-art ASR systems
such as Google Cloud Speech — which are presumably trained
on hundreds of thousands of speakers — often struggle to in-
terpret classroom speech accurately.

In this paper, we explore deep learning approaches to
recognize 21 different phrases associated with 4 categories
(Good job, Thank you, Please, and You’re welcome) related
to supportive and respectful language in toddler classrooms.
In particular, we investigate how to train such models on
small-scale but highly-tailored datasets of school classrooms.
Moreover, we compare different architectures that take more
or less advantage of the hierarchical structure of the labels we
are trying to estimate (specific phrase, category, and binary
supportive/non-supportive). We compare our custom models
to two state-of-the-art speech recognition engines that are pre-
sumably trained on massive datasets and find that our model
gives higher accuracy despite being trained on far fewer train-
ing data. Finally, using a CLASS-coded dataset of toddler
classroom observations, we assess the extent that our speech
recognition network can extract information automatically
that is correlated with different CLASS dimensions.

Related Work: Automated classroom analysis has be-
gun to interest the ASR, affective computing, and educational
data-mining communities over the past few years. Prior works
have used machine learning for audio-based classroom activ-
ity detection [7, 8, 9], vision-based gesture detection [10, 11,
12], and automated classroom feedback for teachers [13, 14].
Ramakrishnan et al. [13], in particular, use deep learning on
both visual and auditory data to create ensemble predictors
for the Positive Climate and Negative Climate dimensions
of the CLASS. Their system predicts CLASS scores directly



from low-level MFCC features without detecting intermediate
higher-level language features. Hence, their model is possibly
detecting patterns of noise in the classroom (e.g., loud noise
in the classroom may suggest the teacher is not creating a
positive climate). In contrast, the system that we propose ex-
plicitly detects events of supportive language. These events
may provide semantically higher-level information than an
MFCC-classifier conceivably could. Moreover, the output of
our system is more easily interpretable by teachers.

2. DATASETS

We train and evaluate our neural networks for supportive
speech detection on two highly-tailored datasets: classroom
videos on YouTube, and crowdsourced recordings of sup-
portive speech from Mechanical Turk. We also conduct an
exploratory analysis, using our trained detector on a dataset
[13] collected at the University of Virginia (UVA), of how
supportive speech events are related to CLASS dimensions.

2.1. YouTube Dataset of Classroom Videos

We harvest a dataset of 57 publicly available classroom videos
[13] from YouTube as training data for our speech detector.
These videos show real classrooms of young children and
contain significant overlapping speech and ambient noise. As
they are public, we crowdsource labels for supportive speech
events using Amazon Mechanical Turk. In particular, we ask
workers on Mechanical Turk (3 per video) to watch the 57
YouTube videos and identify when a supportive speech event
occurs as well as which category each event belongs to: Good
job (e.g. “Good job”, “Great”, “Awesome”, etc.), Thank you
(e.g. “Thank you”, “Thanks”, etc.), Please, and You’re wel-
come (e.g. “You're welcome”, “No problem”, etc.). Labelers
use a custom annotation tool that we build for the task (Fig. 1).

To reconcile the different labels across the different work-
ers for each video, we compute the union of all 3 event sets
and then apply the following heuristic: If 2+ consecutive la-
bels (ordered by timestamp) are within 2s of each other and
from the same category, then they are merged and their times-
tamps averaged. In this way, we obtain 703 instances of Good
job, 62 of Thank you, 46 of Please, and 3 of You’re welcome.
The dataset is partitioned (over videos) into train (49 videos)
and test (8 videos) subsets.

2.2. Crowdsourcing Supportive Speech Recordings

Due to the rarity of some supportive speech phrases in the
YouTube videos, we choose to collect a secondary dataset of
utterances by asking workers on Mechanical Turk to record
their own voice. Using another custom tool, we collect ~60
recordings for each of 21 different supportive speech phrases
(16 versions of Good job, 2 versions of Thank you, 1 ver-
sion of Please, and 2 versions of You’re welcome). These
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Fig. 1: Annotation tool to label supportive speech events.

recordings are made by 62 unique adult speakers, typically
with minimal background noise or overlapping speech. As
part of the instructions of the task, workers are first given ex-
amples of both what to say and how to say it.

To increase data variability, we apply data augmentation
based on pitch and speed [15], as well as background-noise.
For pitch augmentation, we adjust the tempo to 0.75x and
1.33x the original, changing the sampling rate accordingly
to prevent changing the speed. For speed augmentation, we
use tempos of 0.9x and 1.1x the original, keeping the sam-
pling rate constant. For background augmentation, we add
the clean speech recordings to randomly selected clips from
the YouTube dataset without any supportive speech.

2.3. UVA Dataset of CLASS-coded Videos

As our long-term goal is to partially automate classroom ob-
servation coding, we use a CLASS-coded video dataset to as-
sess whether automatically detected supportive speech events
are predictive of specific CLASS dimensions (e.g., positive
climate, language modeling, etc.). In particular, we evaluate
our trained system on a dataset of 131 CLASS-coded videos
(~100 hours total) collected at UVA. The videos take place
in American preschool classrooms and typically contain 1-2
teachers interacting with 8-10 young children, all of whom
may be speaking, yelling, crying, or singing simultaneously.
These videos are usually 45-60 minutes in length and are split
into 15-minute segments. Each of 238 segments is labeled
with a numeric value in the range of 1-7 for each of the eight
dimensions defined by the CLASS Toddler protocol.

3. SPEECH DETECTOR NETWORK

Our speech detector (Fig. 2) is based on the network design
by [16]. It uses non-overlapping pooling layers and padding
in both the temporal and feature dimensions in each convo-
lutional layer. Each convolutional and fully-connected layer
(FC) is followed by batch normalization and ReLLU activation.
Our system detects supportive speech by splitting an audio
clip into frames and classifying each frame independently.



The detector is run on only those portions of the audio in
which speech is detected using the WebRTC Voice Activity
Detector (https://github.com/wiseman/py-webrtcvad). The
frame length is set to 1.6s, which is the longest utterance
length of a random sample of 25 supportive speech utterances
from the YouTube data. Due to the longer window length
compared to [16], we increase the network depth from 10 to
12 convolutional layers with an extra temporal pooling layer.

Feature extraction: Each audio clip is converted to
mono-channel and re-sampled at 48KHz. Then, 64-dimension
FBANK features are extracted using a time window of 25ms
and time step of 10ms. Feature vectors are concatenated over
158 time windows to yield a frame length of 1.6s, and frames
are extracted every 100ms. Each 158x64 feature vector is fed
to the network and classified independently.

Attention: We add an attention layer after the last max-
pool and before the first FC layer. This layer computes at-
tention weights that sum to 1 (using softmax), which are then
multiplied by the output of the max-pool.

Hierarchical MTL: Finally, we use hierarchical multi-
task learning (MTL) to capture the relationships between
phrases, categories, and supportive speech: The model first
predicts whether the audio contains supportive speech or not.
Then, a second prediction determines the category (including
one extra category for “non-supportive”). Last, the model
predicts the specific phrase (including one extra option for
“non-supportive”). This architecture is inspired by prior use
of MTL for ASR [17, 18] and emotion recognition [19].
Kyun Kim et al. suggest that MTL is beneficial when data
is scarce [19], and Krishna et al. suggest that hierarchical
MTL outperforms standard MTL with large datasets [18].
Thus, we compare our model, seen in Fig. 2 (a), to several
other designs: (1) Singletask: Category-level prediction is the
only objective. (2) MTL-SL: The category- and phrase-level
objectives are at the same level. (3) MTL-H: Category-level
predictions are made before phrase-level predictions, impos-
ing a general-to-specific hierarchy. (4) MTL-S-SL and (5)
MTL-S-H: A binary objective is added to MTL-SL and MTL-
H, determining whether the speech is a supportive phrase.

Training: We pretrain our network (Adam optimizer, 25
epochs, Ir=0.001, batch size=64) on all the crowdsourced
recordings (Sec. 2.2). Since all these recordings are examples
of “supportive speech”, no loss is backpropagated through the
“supportive” network output at this stage. Next, we fine-tune
the network on the YouTube training data (Adam optimizer,
15 epochs, Ir=0.001, batch size=64). Negative examples (i.e.,
non-supportive speech) are harvested in each clip by finding
moments with speech (according to WebRTC detector) but
with no labeled supportive speech.

4. EXPERIMENTS

We conduct experiments to answer 4 research questions
(RQs): (1) Can supplementary audio data of human speakers
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Fig. 2: (a) Our final network to detect supportive speech cat-
egories. MTL Variants: (b) Category & phrase predictions
occur at same level. (¢) Category predicted before phrase,
hierarchically. (d) Binary supportive prediction before MTL-

SL. (e) Binary supportive prediction before MTL-H.

mimicking school classrooms be used to improve recogni-
tion accuracy in real classrooms? (2) Does hierarchical MTL
improve classification accuracy? (3) How does a neural net-
work for supportive speech classification that was trained
on a small but highly tailored dataset compare, in terms of
accuracy, with general-purpose ASR engines trained on huge
datasets? (4) How do the trained network’s outputs relate to
human-coded CLASS scores on toddler classroom videos?

Training: We train our networks as described in Sec. 3.
Each network is trained 5x from random restarts, and the ac-
curacies are then averaged. For RQ #1, pre-training on crowd-
sourced recordings is skipped, and the network is trained only
on the YouTube dataset.

Metrics: Classification accuracy is always assessed on
the YouTube test set. For MTL experiments, we compute
Area Under the ROC Curve (AUC) for each of the 5 cat-
egories of speech (Good job (GJ), Thank you (TY), Please
(PLS), You’re welcome (YW), and non-supportive) in a 1-v-
other manner. For comparison to existing ASR engines (see
below), which do not provide probabilistic predictions for all
classes, we use precision, recall, and F1 instead of AUC.

ASR baselines: For RQ #3, we compare our system to
two state-of-the-art ASR engines: Google Cloud Speech [2]
(in “video” mode for better performance), and Project Deep-
Speech [3]. Using these tools, we generate transcriptions with
word-level timestamps for each video in the test set and com-
pute accuracy between transcripts and YouTube test labels.

Prediction of CLASS scores: For RQ #4, we compute
probabilistic predictions of the 4 supportive speech categories



[ Model [ GI [ TY [ PLS [ YW [ Other [ Avg |
Singletask | 0.763 | 0.547 | 0.624 | 0.395 | 0.760 || 0.618 Model | Precision [ Recall [ FI |
MTL-SL | 0.779 | 0.639 | 0.506 | 0.477 | 0.739 || 0.628 Google Cloud Speech [2] | 0304 | 0.205 | 0.245
MTL-H | 0.809 | 0.757 | 0.511 | 0.381 | 0.778 || 0.6471 Project DeepSpeech [3] 0295 | 0.070 | 0.i14
MTL-S-SL | 0.806 | 0.682 | 0470 | 0.552 | 0.779 || 0.658 Our Approach 0.307 | 0.504 | 0.382
MTL-S-H | 0.793 | 0.710 | 0.630 | 0.828 | 0.789 || 0.750

Table 1: (Left): Comparison of multitask learning formulations on the fest set of our YouTube dataset. (Right): Comparison
with two baselines for supportive speech prediction on the zest set of our YouTube dataset.

every 100ms for the 95 CLASS-coded UVA videos. We then
average the probabilities across the entire video for each cat-
egory. Finally, we calculate the Pearson correlations r and
associated p-values between the 4 category averages and the
human-labeled scores for each of the 8 CLASS dimensions.

4.1. Results

Transfer from Simulated to Authentic (RQ #1): Pre-
training on the crowdsourced speech recordings of people
mimicking classroom environments is crucial: it delivers an
accuracy boost, as assessed by the average of the 5 separate
AUC scores (one for each class), from 0.448 to 0.750. In
other words, without access to a larger pool of simulated-by-
realistic data, the network is just guessing.

Multitask Learning (RQ #2): Table 1 (left) shows the
AUC, separate for each speech category and also averaged
over all categories. Results indicate that MTL increases accu-
racy substantially (from 0.618 to 0.750 average AUC). More-
over, hierarchical MTL is more effective than flat MTL. When
we add the binary supportive predictor as another level in the
hierarchy, performance improves again. Our findings differ
from Krishna et al. [18], as we find that hierarchical MTL
outperforms flat MTL even with a small dataset.

ASR Baseline Comparison (RQ #3): Table 1 (right)
shows that both Google Cloud Speech and DeepSpeech have
low recall rates, perhaps due to overlapping speech and am-
bient noise that is inherent to classrooms. In contrast, our
system gives a higher recall (50.4%) for the same preci-
sion (~30%). This result is noteworthy because both Google
Cloud Speech and DeepSpeech are likely trained on massive
datasets. Hence, for application-specific tasks with special-
ized recording conditions, it can be beneficial to collect a
highly tailored dataset, even if it is modest in size.

Prediction of CLASS scores (RQ #4): Fig. 3 shows an
example of supportive speech classifications on one CLASS-
coded video. The moments with the 5 highest probabilities
are manually labeled with the actual phrase spoken, or an X if
no supportive phrase was present (false positive). The Good
job category is dominant, and the other categories are pre-
dicted with lower probability. Of the 5 labeled moments, 3
contained actual instances of Good job phrases (“very good”,
“right”, and “yes”).

Over all 131 videos in the UVA dataset, we find cor-
relations with p < 0.05 for these CLASS dimensions: (1)
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Fig. 3: The smoothed average supportive language probabili-
ties over a 15min segment of a UVA CLASS-coded video.

Facilitation of Learning and Development with GJ (r=0.163,
p=0.012), TY (r=-0.237, p=0.0002), and PLS (r=-0.170,
p=0.009). (2) Quality of Feedback with GJ (r=0.152, p=0.019),
TY (r=-0.194, p=0.003), and PLS (r=-0.135, p=0.037). (3)
Language Modeling with PLS (r=-0.214, p=0.001).

Despite the simplicity of the aggregation method (sim-
ple averaging), we find non-trivial correlations between sup-
portive language categories and multiple CLASS dimensions.
This suggests that supportive speech detection would be a
useful addition to an ensemble predictor of CLASS scores.

5. CONCLUSION

We develop a deep learning methodology for detecting sup-
portive speech phrases in classroom videos, a challenging
setting for ASR given the many simultaneous speakers and
abundant noise. We find that (1) training on small but highly
tailored datasets gives better accuracy for our application do-
main than a general-purpose ASR system (e.g., Google Cloud
Speech) trained on huge datasets; (2) hierarchical MTL im-
proves accuracy over a flat prediction architecture; (3) speech
recordings by humans who are asked to mimic classroom
speech is useful for training; and (4) the network’s proba-
bilistic predictions predict human-labeled CLASS scores on
real classroom videos. Future work will incorporate the
dialog context and emotion associated with a spoken phrase
to potentially increase CLASS score prediction accuracy.
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