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Abstract: We prove a Kakeya–Nikodym bound on eigenfunctions and quasimodes,
which sharpens a result of the authors (Blair and Sogge in Anal PDE 8:747–764, 2015)
and extends it to higher dimensions. As in the prior work, the key intermediate step is
to prove a microlocal version of these estimates, which involves a phase space decom-
position of these modes that is essentially invariant under the bicharacteristic/geodesic
flow. In a companion paper (Blair and Sogge in J Differ Geom, 2015), it will be seen
that these sharpened estimates yield improved Lq(M) bounds on eigenfunctions in the
presence of nonpositive curvature when 2 < q <

2(d+1)
d−1 .

1. Introduction and Main Results

Let (M, g) be a smooth, compact, connected, boundaryless Riemannian manifold of
dimension d ≥ 2. Let �g be the nonpositive Laplace–Beltrami operator which is self
adjoint with respect to the Riemannian measure dVg . The compactness assumption
ensures that the spectrum of �g is discrete, so that there exists an orthonormal basis for
L2(M) consisting of eigenfunctions eλ satisfying

−�geλ = λ2eλ, or equivalently,
√−�geλ = λeλ. (1.1)

Given such an eigenfunction with λ > 0, we set h = 1/λ, obtaining a solution to the
semiclassical problem (h2�g + 1)eh−1 = 0.

In this work, we are interested in Lq bounds on eigenfunctions and quasimodes
associated to the semiclassical operator h2�g + 1. A family of functions {ψh} either
defined for h in some subinterval h ∈ (0, h0] ⊂ (0, 1] or a decreasing sequence in this
interval tending to 0 will be considered to be an admissible family of quasimodes if
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‖ψh‖L2(M) = 1,

‖(h2�g + 1)kψh‖L2(M) = O(hk), k = 1, . . . ,
⌈ d
d+1 + d−1

2

⌉
. (1.2)

Eigenfunctions normalized in L2 define admissible quasimodes, as are normalized func-
tions in the range of 1[1,1+h](h

√−�g). In the classical notation (1.1), it is easily verified
that L2-normalized functions in the ranges of

1[λ,λ+1/T ](
√−�g) and ρ(T (λ −√−�g)) (1.3)

define admissible quasimodes for T = T (λ) ≥ 1 a nondecreasing function, and in the
latter case ρ ∈ S(R).

In this work, the interest is in upper bounds on the norm of these eigenfunctions
and quasimodes in Lq(M) for 2 < q <

2(d+1)
d−1 . In [13], the second author proved that

‖ψh‖Lq (M) = O(h−δ(q)) where δ(q) = max( d−1
2 ( 12 − 1

q ), d−1
2 − d

q ) as h → 0 (or
equivalently λ → ∞). These bounds are universal in that they apply to any (M, g)
as above and any admissible quasimode as in (1.2). Moreover, if one considers the
large classes of quasimodes given by functions in the range of 1[1,1+h](h

√−�g) (or
in the classical notation, 1[λ,λ+1](

√−�g)), it can be seen that this exponent cannot be

improved. Indeed, when 2 < q ≤ 2(d+1)
d−1 one can find functions ψh in the range of these

spectral projectors for which |ψh(x)| is roughly constant in a tubular neighborhood of
radius ≈ h1/2 about a geodesic segment when 2 < q ≤ 2(d+1)

d−1 and rapidly decreasing

outside of this set so that ‖ψh‖Lq (M) ≈ h− d−1
2 ( 12− 1

q )
. When 2(d+1)

d−1 ≤ q ≤ ∞, there
exist modes weakly decaying outside of a ball of radius h which similarly saturate these
bounds.

On the round sphere S
d , it is well known that the spectrum of

√−�Sd is of the
form

√
k(k + d − 1) = k + O( 1k ), k ∈ N ∪ {0}. Consequently, these spectral projectors

in the previous paragraph are nearly the same as projections onto an eigenspace, and
the Lq(M) bounds are saturated by families of exact eigenfunctions, in particular the
highest weight spherical harmonics when 2 < q ≤ 2(d+1)

d−1 and the zonal harmonics when
2(d+1)
d−1 ≤ q ≤ ∞. However, the spectrum of

√−�Sd and the dynamics of the geodesic
flow on S

d are very unique and these universal bounds are not expected to be optimal for
eigenfunctions in most other geometries (save those with elliptic closed geodesics or a
full measure of periodic geodesics in the sense of [18]). A problem of great interest is to
determine geometric conditions that show that these universal bounds can be improved
for eigenfunctions or even quasimodes of shrinking width with T (λ) ↗ ∞ in (1.3).

This work develops a condition for obtaining improvements on the universal bounds
when 2 < q <

2(d+1)
d−1 . Let Π denote the space of unit length geodesic segments. Given

γ ∈ Π , define Tε(γ ) to be its ε-neighborhood

Tε(γ ) = {x ∈ M : dg(x, γ ) < ε}. (1.4)

For h > 0 we then define the Kakeya–Nikodym norm of a quasimode ψh as

‖ψh‖2K N = sup
γ∈Π

h− d−1
2

∫

Th1/2 (γ )

|ψh |2 dVg. (1.5)
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It is also convenient to use the analogous norm without (approximate) averages

|||ψh |||2K N = sup
γ∈Π

∫

Th1/2 (γ )

|ψh |2 dVg. (1.6)

The norm thus depends on the frequency scale h of the quasimode under consideration.
Note that ifψh is rapidly decreasing outside a tube Th1/2(γ ), as in the case of the highest
weight spherical harmonics, then |||ψh |||K N ≈ 1. Otherwise, one expects better bounds
to be satisfied.

The following is the primary result of this work.

Theorem 1.1. Let ψh be a member of an admissible family of quasimodes as in (1.2). If
d ≥ 2 and 2(d+2)

d < q <
2(d+1)
d−1 , then

‖ψh‖Lq (M) � h− d−1
4 + d−1

2q |||ψh |||
2(d+1)
q(d−1) −1

K N = h−δ(q)|||ψh |||
2(d+1)
q(d−1) −1

K N . (1.7)

Note that when d = 2, this means that for 4 < q < 6,

‖ψh‖Lq (M) � h− 1
4 +

1
2q |||ψh |||

6
q −1

K N = h−δ(q)|||ψh |||
6
q −1

K N . (1.8)

Moreover, when d = 2 and q = 4, we also have that

‖ψh‖L4(M) � h− 1
8
√| log h| |||ψh |||

1
2
K N = h−δ(4)

√| log h| |||ψh |||
1
2
K N . (1.9)

Here δ(q) = d−1
2 ( 12 − 1

q ) as in the classical bounds of the second author [13]. The
theorem thus furnishes a sufficient condition for improving on these classical bounds,
as it means that improvements on the trivial |||ψh |||K N = O(1) bounds translates to
improvements on the Lq(M) bounds (see our discussion of [5] below).

Expressing our main theorem in this manner allows for a good discussion of its
consequences, which we do below and in our companion paper [5]. However, in proving
the theorem, it is convenient to instead work with the averaged norms (1.5) and show
the following bounds, which are equivalent to (1.7), (1.9):

‖ψh‖Lq (M) � h− d−1
2 + d

q ‖ψh‖
2(d+1)
q(d−1) −1

K N , d ≥ 2, (1.10)

‖ψh‖L4(M) � √| log h| ‖ψh‖
1
2
K N , d = 2. (1.11)

In [4], the authors proved the bound (1.11), but with the factor
√| log h| on the right

replaced by h−ε, where ε > 0 can be taken to be arbitrarily small. This is because
that work actually proves lossless estimates involving averages of the mass over slightly
thicker tubular neighborhoods h1/2−ε. The present work thus sharpens this result and
extends it to higher dimensions. Estimates of this type extend results of Bourgain [6]
and the second author [16] in two dimensions, and the authors [3] in higher dimensions.
This latter set of results show that the universal Lq bounds on eigenfunctions due to

the second author [13] can be improved to o(h− d−1
2 ( 12− 1

q )
) when |||ψh |||K N = o(1) and

2 < q <
2(d+1)
d−1 .

Obtaining lossless estimates involving tubes of diameter h1/2 is significant for appli-
cations. In a companion paper [5], it will be shown that

|||ψh |||K N = O(| log h|−σ ), for some σ = σ(d) > 0,
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for quasimodes in the range of

ρ(T (λ −√−�g)) = ρ(Th−1(1 − h
√−�g)), h = 1/λ, (1.12)

as in (1.3) with T ≈ log λ = | log h|. The small h1/2 = λ−1/2 thickness of the tubes turns
out to be significant in the proof of such bounds. Combining these with Theorem 1.1
thus yields a logarithmic gain in the Lq bounds when 2 < q <

2(d+1)
d−1 for quasimodes

in the range of

1[λ,λ+(log λ)−1](
√−�g) = 1[1,1+h| log h|−1](h

√−�g). (1.13)

Namely, for such quasimodes we have

‖ψh‖Lq (M) � h− d−1
4 + d−1

2q | log h|−σ(
2(d+1)
q(d−1) −1)

.

Moreover, the second author has shown [15] that averaging over these smaller tubes
allows one to see that upper bounds on the L1(M) norm allows one to detect scarring
phenomena for eigenfunctions and quasimodes. More precisely, it is observed that using
Hölder’s inequality,

|||ψh |||−
2(d+1)−(d−1)q

(d−1)(q−2)
K N � h− d−1

4 ‖ψh‖L1(M) for 2(d+2)
d < q <

2(d+1)
d−1 .

Thus if the right hand side is ≈ 1, it can be seen that the mass of ψh must concentrate in
an h1/2 tubular neighborhood about a geodesic segment. Indeed, if the mass of ψh were

mostly concentrated in a Th1/2(γ ), then it is not hard to see that ‖ψh‖L1(M) � h
d−1
4 .

The main idea in [15] is to show these upper bounds on the L1(M) norm imply such
concentration must occur.

The present work does not address how to improve upon the universal Lq(M) bounds
of the second author in the range 2(d+1)

d−1 < q ≤ ∞ or when q = 2(d+1)
d−1 . Improvements

in the former range, based on the measure of closed loops in the cosphere spaces S∗
x M ,

appear in [17–19] and stronger improvements for nonpositive curvature were shown in
[2,8]. As alluded to above, any condition for improvements on the universal Lq bounds
in these cases must address the existence of modes which decay weakly outside of balls
of radius h, and the norms in (1.5) above are insufficient for this purpose. The results
in [9] obtain a logarithmic gain in the universal estimates in the presence of negative
curvature, for all 2 < q ≤ ∞ via an estimate at q = 2(d+1)

d−1 and interpolation, but the
methods rely on generalized Weyl laws, and hold only for a full density subsequence of
eigenfunctions.

The discussion above shows that the exponent in the two dimensional bound (1.8) is
perhaps not so surprising as it would be the outcome of interpolating between the L4(M)

bound (without the logarithmic factor) and the universal L6(M) bound of the second
author. The same idea holds for the higher dimensional bound (1.10): if this were to hold
when q = 2d

d−1 (so that the exponent of h vanishes), then the estimates appearing here
would be the result of interpolating between this bound and the classical bounds of the
second author at q = 2(d+1)

d−1 . However, the validity of (1.10)when 2d
d−1 ≤ q ≤ 2(d+2)

d and
d ≥ 3 could be subtle. Indeed, when d ≥ 3, the present work relies on bilinear estimates
of Lee [12] arising from the bilinear approach to the Fourier restriction problem that
originated in works of Tao et al. Vega [21], Wolff [23], and Tao [20]. Explicit examples
show that such bilinear estimates fail to hold in the regions 2d

d−1 ≤ q ≤ 2(d+2)
d (see [21]).
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Remark 1.2. The present work uses the semiclassical formalism of Koch et al. [11]. It is
thus likely that Theorem1.1 canbe generalized to semiclassical pseudodifferential opera-
tors P(x, hD)with symbols p(x, ξ)whose characteristic sets {ξ ∈ T ∗

x M : p(x, ξ) = 0}
have nonvanishing second fundamental form. This is provided sets analogous to the
Th1/2(γ ) above can be defined in a manner that allows for a substitute for Lemma 3.2
below. While we do not examine this issue in detail, our methods do easily treat semi-
classical operators of the form h2�g + V , V ∈ C∞ with 0 < infx∈M V (x), by passing
to the “Jacobi metric” g̃(x) := V (x)g(x) (see [1, p. 228]). In this case, if one has an
admissible quasimode defined by replacing (h2�g + 1)ψh by (h2�g + V )ψh in (1.2),
then ψh is a quasimode with respect to h2�g̃ + 1 in that

∥∥∥(h2�g̃ + 1)kψh

∥∥∥
L2(M)

= O(hk), for k = 1, . . . ,

⌈
d

d + 1
+
d − 1

2

⌉
.

Indeed, it is verified that the difference V · �g̃ − �g is a first order differential operator
on M , which implies that Theorem 1.1 applies in this setting, defining the sets Th1/2(γ )

with respect to g̃.

Outline of the paper. In Sect. 2, we review aspects of the semiclassical approach to
Lq bounds for eigenfunctions introduced in [11]. We also prove an Egorov theorem for
symbols in the critical “S1/2(1)” class that is needed in our work. Section 3 provides the
main outline of the proof of Theorem 1.1, considering “microlocal” Kakeya–Nikodym
norms and reducingmatters to showing certain almost orthogonality bounds and bilinear
estimates in L

q
2 . The last two sections, Sects. 4 and 5, treat these almost orthogonality

bounds and bilinear estimates respectively.

2. Semiclassical Analysis

2.1. Preliminary reductions. Since ‖(h2�g)
kψh‖L2(M) = O(1) for the k in (1.2), el-

liptic regularity shows that ‖ψh‖H2k
h (M) = O(1) in the semiclassical Sobolev spaces.

Hence commutator estimates show that for a smooth bump function ϕ,

‖(h2�g + 1)k(ϕψh)‖L2(M) = O(hk) for k = 1, . . . ,

⌈
d

d + 1
+
d − 1

2

⌉
.

Hence by multiplying ψh by a bump function within a finite partition of unity, we may
assume it is supported in a suitable coordinate chart given by a cube of sidelength 2ε
centered at the origin in R

d , and in particular

supp(ψh) ⊂
[
−ε

2
,
ε

2

]d
, (2.1)

for some ε > 0 sufficiently small. Moreover, we may assume that gi j (0) = δi j .
Next, we let χ be a suitable smooth cutoff to a neighborhood of the unit sphere such

that for k as in (1.2)

‖(1 − χ(hD))ψh‖L2(M) � ‖(h2�g + 1)kψh‖L2(M) + hk‖ψh‖L2(M) � hk . (2.2)
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Indeed, for a suitable choice of χ , h2�g + 1 is elliptic on supp(1 − χ), so elliptic
regularity bounds yield the first inequality and quasimode properties the second. Taking
k = ⌈ d

d+1 + d−1
2

⌉
, semiclassical Sobolev embedding gives for 2 < q <

2(d+1)
d−1

‖(1 − χ(hD))ψh‖Lq (M) � h−( d2 − d
q )
∑

|α|≤1

‖(hD)α(1 − χ(hD))ψh‖L2(M)

� h− d
d+1

(
‖(h2�g + 1)k(1 − χ(hD))ψh‖L2(M) + ‖(1 − χ(hD))ψh‖L2(M)

)

� hk−
d

d+1 ≤ h
d−1
2 ,

where the second inequality follows from elliptic regularity (as in [11, Lemma 2.6]) and
the last follows from the observation (2.2) above (for a slightly different choice of χ ) as
the symbol of [(h2�g + 1)k, (1 − χ(hD))] is supported away from the unit sphere, at

least up to O(hk) error. Since we may cover M with O(h− d−1
2 ) tubular neighborhoods

Th1/2(γ ), ‖(1 − χ(hD))ψh‖Lq (M) is in turn bounded by the right hand side of the
inequalities in Theorem 1.1.

Taking a further partition of unity in the frequency variable, we may alter χ(ζ ) so
that it is supported in a conic set of the form

{ζ : −ζ1 ≥ C |ζ ′|, |ζ | ≈ 1}, ζ ′ = (ζ2, . . . , ζn), (2.3)

for some C > 0 sufficiently large. The main idea in [11] is that after this further
microlocalization, we may write the characteristic surface

∑
i j g

i j (z)ζiζ j = 1 as a
graph in the ζ ′ variables, which leads us to a evolution equation in the first variable.
Indeed, over (2.3), the principal symbol of h2�g + 1 can be written in the form

−
d∑

i, j=1

gi j (z)ζiζ j +1 = −a(z, ζ )(ζ1+ p(z, ζ ′)), (z, ζ ) ∈ supp(ψh)×supp(χ), (2.4)

with a(z, ζ ), p(z, ζ ′) > 0, by taking ε > 0 sufficiently small in (2.1) and the aperture
of the cone sufficiently small in (2.3). Moreover taking ε small above, we may assume
that the restricted matrix {gi j (z)}di, j=2 is positive definite when z ∈ [−ε, ε]d .

We now have that

(hDz1 + P(z, hDz′))(χ(hD)ψh) = h fh,

fh := 1

h
b(z, hD)[h2�g, χ(hD)]ψh,

for some symbol b compactly supported in all variables. In particular, we may assume
that supp(b(·, ζ )) ⊂ [−ε, ε]d for every ζ . Moreover, we have that

‖ fh‖L2(Rd ) � ‖ψh‖L2(Rd ) (2.5)

and up to an error term which is O(h∞) as an operator on L2, the composition

b(z, hD)[h2�g, χ(hD)] (2.6)

is an operator with a compactly supported symbol.
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Notation. Since the operator with symbol (ζ1 + p(z, ζ ′)) is naturally an evolution equa-
tion, it is now convenient to take a different convention on the notation.Wewill use r, s, t
to denote variables in R and w, x, y, ξ, η to denote those in R

d−1 so that expressions
such as (t, x) give variables in R

d . The variable z will still denote those in R
d on the

few occasions this is needed. The relation for ψh thus reads

(hDt + P(t, x, hD))ψh = h fh

where it is understood that P(t, x, hD) (or P(t) when the dependence on x, h is not
crucial) is a family of semiclassical pseudodifferential operators acting on the x variables.
Keeping in line with these conventions, the symbols we consider in the remainder of
this work will be quantized in the “x” variables over R

d−1 and never in the first variable.
Note that given the restriction of χ above to a cone of sufficiently small aperture, we
may also assume that for some smooth bump function χ̃ with supp(χ̃) ⊂ {|ξ | � 1} (so
that the quantization is only in the x variables)

‖(1 − χ̃)(hD)ψh(t, ·)‖L2 , ‖(1 − χ̃ )(hD) fh(t, ·)‖L2 = O(h∞), |t | ≤ ε. (2.7)

Let ψ̃h := χ(hD)ψh and let S(t, s) be the family of unitary operators satisfying

(hDt + P(t, x, hD))S(t, s) = 0, S(t, s)|t=s = I.

Hence in vector valued notation, for fh ∈ L2([−ε, ε]s; L2(Rd−1
x )) and t ∈ [−ε, ε],

ψ̃h(t) =
∫ t

−ε

S(t, s) fh(s) ds. (2.8)

Let κt,s(x, ξ) denote the time t value of the integral curve determined by Hpr , the
Hamiltonian vector field of pr (x, ξ) = p(r, x, ξ)whose value at time s is (x, ξ). Taking
ε > 0 sufficiently small in (2.1), we may assume that κt,s(x, ξ) defines a canonical
transformation for t, s ∈ [−ε, ε].We denote the components of this map inR

d−1×R
d−1

as κt,s(x, ξ) = (xt,s(x, ξ), ξt,s(x, ξ)). Moreover, standard construction (see e.g. [24,
Chap. 10]) shows that there exists a phase function φ(t, s, x, η) and a smooth, compactly
supported amplitude a(t, s, x, η) such that

(S(t, s) f ) (x) = 1

(2πh)d−1

∫∫
e

i
h (φ(t,s,x,η)−〈y,η〉)a(t, s, x, η) f (y) dy dη+E f, (2.9)

for supp( f ) ⊂ [−ε, ε]d−1. Here E = E(t, s) satisfies ‖E(t, s)‖L2→L2 �N hN for any
N > 0 (i.e. it is “O(h∞)”) and given Sobolev embedding, it has a negligible contribution
to the estimates in the present work. Hence we will often make a slight abuse of notation,
treating S(t, s) as the same as this oscillatory integral operator.

We further recall that the phase function has the properties

∂tφ(t, s, x, η) + p(t, x, dxφ(t, s, x, η)) = 0,

κt,s(y, η) = (x, ξ) if and only if ξ = dxφ(t, s, x, η), y = dηφ(t, s, x, η). (2.10)

The operators S(t, s) are thus semiclassical Fourier integral operators associated to the
canonical transformations κt,s(x, ξ).

It is implicit in the work of Koch et al. [11] that for s fixed, the phase functions
φ(t, s, x, ξ) are of Carleson–Sjölin type as defined in [14, Chap. 2]. Indeed, for t, s ∈
[ε, ε], we have that

dxdξφ(t, s, x, ξ) = I + O(ε). (2.11)
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Moreover, it can be checked that

{(−p(t, x, dxφ(t, s, x, ξ)), dxφ(t, s, x, ξ)) : ξ ∈ supp(a(t, s, x, ·))} (2.12)

is an embedded hypersurface in T ∗
(t,x)R

d with nonvanishing principal curvatures, all of
the same sign. This follows as (2.11) implies that this is a local reparameterization of the
graph {(−p(t, x, η), η) : |η| ≤ 1

2 } and this is a subset of the strictly convex hypersurface
determined by the zero set of the left hand side of (2.4).

Stein’s theorem on Carleson–Sjölin phases (see e.g. [14, Theorem 2.2.1]) thus shows
that
(∫ ε

−ε

‖S(t, s)g‖q
Lq (Rd−1)

dt

) 1
q

� h
d−1
2 ( 12 +

1
q )−(d−1)‖Fh(g)‖L2 � h− d−1

2 ( 12− 1
q )‖g‖L2

(2.13)
Indeed, Stein’s theorem treats the case q = 2(d+1)

d−1 , so that the first inequality follows
from interpolation with Hörmander’s theorem [10] for nondegenerate phase functions in
L2(Rd−1) (cf. (2.11)). The second inequality follows from the semiclassical Plancherel
identity. An application of Minkowski’s inequality for integrals then shows that this
yields the same linear bounds of the second author in [13]:

‖ψ̃h‖Lq (Rd ) �
(∫ ε

−ε

∥∥∥∥

∫ t

−ε

S(t, s) fh(s) ds

∥∥∥∥

q

Lq (Rd−1)

dt

) 1
q

� h− d−1
2 ( 12− 1

q )‖ψh‖L2(M).

In our case, linear bounds of this typewill play a role, but ultimately the key is bilinear
estimates, specifically those due to Hörmander [10] when d = 2 and Lee [12] and the
epsilon removal lemma of the authors [3] when d ≥ 3. For now, we remark that the
reductions above mean that it now suffices to prove estimates on

∥∥∥(ψ̃h(t))
2
∥∥∥
L
q
2 ([−ε,ε]t×R

d−1
x )

=
∥∥∥∥∥

(∫ t

−ε

S(t, s) fh(s) ds

)2
∥∥∥∥∥
L
q
2 ([−ε,ε]t×R

d−1
x )

, (2.14)

showing they are bounded by the square of the right hand sides in (1.10), (1.11).

2.2. An Egorov theorem for critical and near-critical symbols. We conclude this section
with an Egorov type theorem in the symbol class S1/2−δ(1), δ ∈ [0, 1

2 ] (see [24, p. 73]
for the notation) which are symbols of the form (2.15) with θ = h1/2−δ below. The
δ = 0 case is considered critical as the usual symbolic calculus does not furnish terms
of higher order in h. For example, the usual stationary phase expansions one often uses
to prove the calculus do not yield these higher order terms. Consequently, one cannot
apply the usual Egorov theorem to such symbols.

Here we show a version of the Egorov theorem for h-pseudodifferential operators
(PDO) with symbols in these classes. As observed in [22, Chap. VIII, Sect. 8] and [7],
there are Egorov theorems for classical PDO in these critical symbol classes, but here
we are interested in a more qualitative version of the theorem. While we cannot show
that conjugation by an h-Fourier integral operator (FIO) results in a strict propagation
of support for the symbols via the associated canonical transformation, the symbol is
rapidly decreasing on a scale of at least h−1/2 in terms of the distance to this propagated
region,which is enough for our applications. The theoremnot only applies to the operator
S(t, s) defined above, but to more general local h-FIO.
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Theorem 2.1. Let S be a local h-Fourier integral operator

(S f )(x) = 1

(2πh)n

∫∫

R2n
e

i
h (φ(x,η)−〈y,η〉)a(x, η) f (y) dydη,

for some compactly supported symbol a ∈ S(1) over R
2n and associated to a canonical

transformation κ : R
2n → R

2n in that κ(y, η) = (x, ξ) if and only if ξ = dxφ(x, η)

and y = dηφ(x, η). Furthermore, let B be an h-pseudodifferential operator with symbol
satisfying ∣∣∂αb(y, ξ)

∣∣ �α θ−|α| where θ = h
1
2−δ, δ ∈ [0, 1

2 ]. (2.15)

Then C = SBS∗ defines an h-pseudodifferential operator with symbol c(x, ρ) also
satisfying (2.15). If in addition, supp(b) ⊂ D for some compact set D ⊂ R

n, then for
every N ≥ 0, ∣∣∂αc(x, ρ)

∣∣ �α,N θ−|α|(1 + h−1θd(x, ρ; κ(D)))−N , (2.16)

with d(x, ρ; κ(D)) denoting the distance to κ(D), the image ofD under κ . Furthermore,
for any M > 0 there exists a symbol cM (y, η) satisfying (2.15) such that supp(cM ) ⊂
κ(D) and for every N ≥ 0,

∣∣∂α(c − cM )(y, η)
∣∣ �α,N θ−|α|(hθ−2)M (1 + h−1θd(y, η; κ(D)))−N . (2.17)

Tracing through the proof, it is seen that the implicit constants appearing in (2.16)
and (2.17) do not depend on δ, but only on those in (2.15) and the derivative bounds for
a, κ , and φ. In this work, we are mainly interested applying this theorem in the δ = 0
case, but record the more general case as a point of interest. We also stress that B is
defined by taking the standard quantization of the symbol b(y, ξ).

Proof. The composition C = SBS∗ has a Schwartz kernel K (x, x̃) given by an oscil-
latory integral. For sufficiently regular f , the compact support of the symbols ensures
that we may write

(C f )(x) = 1

(2πh)n

∫
e

i
h 〈x,ρ〉

(∫
e

i
h 〈x̃−x,ρ〉K (x, x̃) dx̃

)
Fh( f )(ρ) dρ.

The expression in parentheses determines the symbol c(x, ρ) and can be written as

c(x, ρ) = 1

(2πh)3n

∫

R6n
e

i
h (〈y−ỹ,ξ〉−〈y,η〉+〈ỹ,η̃〉+φ(x,η)−φ(x̃,η̃)+〈x−x̃,ρ〉)

×a(x, η)a(x̃, η̃)b(y, ξ) d(y, ỹ, η, η̃, ξ, x̃)

where the integrations here must be interpreted in the sense of distributions since the
amplitude is independent of ỹ. A standard limiting procedure shows that this presents
no difficulty, allowing us to integrate in the ỹ variable first, which yields the distribution
(2πh)nδ(η̃ − ξ). Hence c(x, ρ) can be written as

1

(2πh)2n

∫

R4n
e

i
h (φ(x,η)−φ(x̃,η̃)+〈x̃−x,ρ〉+〈y,η̃−η〉)a(x, η)a(x̃, η̃)b(y, η̃) dηdη̃dydx̃,

and the integration here is no longer formal. We rewrite this as
1

(2πh)2n

∫

R4n
e

i
h (φ(x,η)−φ(x̃+x,η̃+η)+〈x̃,ρ〉+〈y,η̃〉)

×a(x, η)a(x̃ + x, η̃ + η)b(y, η̃ + η) dηdη̃dydx̃ .
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For each (x, x̃, η̃, ρ), we make a further change of variables (y, η) �→ (w, σ ) with

w = y −
∫ 1

0
dηφ(x + sx̃, η + sη̃) ds = y − dηφ(x + x̃, η + η̃) + O(|(x̃, η̃)|) (2.18)

σ = ρ −
∫ 1

0
dxφ(x + sx̃, η + sη̃) ds = ρ − dxφ(x, η) + O(|(x̃, η̃)|) (2.19)

so that the phase reads 〈(x̃, w), (σ, η̃)〉. The invertibility of the mixed Hessian dxdηφ en-
sures that locally, (y, η) �→ (w, σ ) defines an invertible transformation. The last expres-
sion in (2.18)means thatwemaywrite y = dηφ(x+E1, η+η̃)where E1(x, x̃, w, σ, η̃, ρ)

= O(|(w, x̃, η̃)|) as (w, x̃, η̃) → 0. Hence

b(y, η + η̃) = b(dηφ(x + E1, η + η̃), η + η̃) = (b ◦ κ−1)(x + E1, dxφ(x + E1, η + η̃))

where y, η are understood as functions of (x, x̃, w, σ, η̃, ρ). Moreover, the last expres-
sion in (2.19) means that dxφ(x + E1, η + η̃) = ρ + E2, with E2(x, x̃, w, σ, η̃, ρ) =
O(|(w, x̃, η̃, σ )|) near 0. Up to O(h∞) error, c(x, ρ) can thus be rewritten as

1

(2πh)2n

∫

R4n
e

i
h 〈(x̃,w),(σ,η̃)〉A(x, x̃, w, σ, η̃, ρ)(b ◦ κ−1)(x + E1, ρ + E2) dηdη̃dydx̃

(2.20)
where A and its partial derivatives are uniformly bounded in h.

As observed in [24, p. 51], the phase function in (2.20) can be rewritten as

〈(x̃, w), (σ, η̃)〉 = 1

2
〈Q(x̃, w, σ, η̃), (x̃, w, σ, η̃)〉, where Q =

[
0 I
I 0

]
= Q−1.

At this point, it can be treated using the method in [24, Theorem 3.13]. We momentarily
treat x, ρ as fixed, and let u(x̃, w, σ, η̃) be the amplitude in (2.20) formed by fixing these
variables. Let ζ ∈ R

4n denote variables which are dual to (x̃, w, σ, η̃), then using the
classical Fourier transform, (2.20) can be rewritten as

J (h, u) = 1

(2π)4n

∫

R4n
e− ih

2 〈Qζ,ζ 〉û(ζ ) dζ.

Applying Taylor’s formula in h we have for every M ∈ N, the differential operator
P̃ = −i〈D(x̃,w), D(σ,η̃)〉 can be used to write

J (h, u) =
M−1∑

k=0

hk

k! J (0, P̃ku) +
hM

(M − 1)!
∫ t

0
(1 − t)M−1 J (th, P̃Mu) dt. (2.21)

The sum in k can be rewritten as
∑M−1

k=0 (hθ−2)k c̃k(x, ρ) with |∂α c̃k | � θ−|α|, and
supp(ck) ⊂ supp(b ◦ κ−1) = κ(supp(b)).

A change of variables ζ �→ t− 1
2 ζ in the remainder J (th, P̃Mu) yields

J (th, P̃Mu) = 1

(2π
√
t)4n

∫

R4n
e− ih

2 〈Qζ,ζ 〉 ̂̃PMu(t−
1
2 ζ ) dζ (2.22)

We are thus led to study integrals of the following form, for t ∈ (0, 1]

c̃t (x, ρ) = 1

(2πh)2n

∫

R4n
e

i
h 〈(x̃,w),(σ,η̃)〉 Ã(x, t

1
2 x̃, t

1
2 w, t

1
2 σ, t

1
2 η̃, ρ)dx̃dwdσdη̃.

(2.23)
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for some amplitude Ã(x, x̃, w, σ, η̃, ρ) satisfying |∂α Ã| �α θ−|α| and

{(x, x̃, w, σ, η̃, ρ) : Ã(x, x̃, w, σ, η̃, ρ) �= 0}
⊂ {(x, x̃, w, σ, η̃, ρ) : (b ◦ κ−1)(x + E1, ρ + E2) �= 0}.

Indeed, the identity in (2.22), combined with the Fourier transform, shows that the
remainder term in (2.21) can be expressed as

(hθ−2)M

(M − 1)!
∫ 1

0
c̃t (x, ρ)(1 − t)M−1 dt

for some integral c̃t (x, ρ). Moreover, (2.20) is of the form (2.23) with t = 1, so studying
these integrals provides a unified approach to (2.16) and (2.17).

We now show that (θDx,ρ)α c̃t (x, ρ) has the effect of replacing the amplitude in the
definition by one of the same regularity. By induction, it suffices to prove this for |α| = 1.
This is clear for any such weighted derivative applied to the amplitude, hence it suffices
to consider the effect of such derivatives on the phase. Recall that x̃, η̃ are independent
of (x, ρ) even though (w, σ ) are not. Hence

θDxi e
i
h 〈(x̃,w),(σ,η̃)〉 = (∂xi σ · (θDσ ) + ∂xi w · (θDw)

)
e

i
h 〈(x̃,w),(σ,η̃)〉,

and integration by parts completes the proof of the claim. Derivatives in ρ are handled
analogously.

To see (2.16), (2.17) with N = 0, it remains to show that |c̃t (x, ρ)| is uniformly
bounded in h. Note that the first order differential operator

1 + (σ, η̃, x̃, w) · D(x̃,w,σ,η̃)

1 + h−1|(σ, η̃, x̃, w)|2 = 1 + (h− 1
2 (σ, η̃, x̃, w)) · (h

1
2 D(x̃,w,σ,η̃))

1 + h−1|(σ, η̃, x̃, w)|2 (2.24)

preserves the exponential factor in (2.23). Writing the differential operator in the sec-
ond fashion illustrates that the transpose of this operator applied to the class of am-
plitudes here yields an amplitude of the same regularity (in that there is no loss in
h). Integration by parts sufficiently many times yields an amplitude which is O((1 +
h−1|(σ, η̃, x̃, w)|2)−4n), so that integration in these variables counterbalances the loss
of h−2n in front of (2.23). Alternatively, one could verify (2.16), (2.17) when N = 0 by
changing variables (x̃, w, σ, η̃) �→ h1/2(x̃, w, σ, η̃) from the outset in (2.23).

To show (2.16), (2.17) for N ≥ 1, we observe that if d(x, ρ; κ(D)) ≥ hθ−1, then

|ct (x, ρ)| �N

(
h−1θd(x, ρ; κ(D))

)−N
. (2.25)

Indeed, since (b ◦ κ−1)(x + E1, ρ + E2) �= 0 over the domain of integration in (2.23),
our previous observation that E1, E2 = O(|(x̃, w, σ, η̃)|) means that for such (x, ρ),

hθ−1 ≤ d(x, ρ; κ(D)) ≤ |(E1, E2)| � |t 12 (x̃, w, σ, η̃)| � |(x̃, w, σ, η̃)|,
Hence the phase function in (2.23) has no critical points, and each integration by parts
with respect to D(x̃,w,σ,η̃) yields a gain of at least O(hθ−1|(x̃, w, σ, η̃)|−1). Integrating
by parts sufficiently many times with this operator followed by a successive integration
by parts using the operator in (2.24) thus implies (2.25). ��
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Remark 2.2. It is interesting to note that if one does not assume supp(b) ⊂ D, but instead
the weaker decay condition

∣∣∂αb(x, ξ)
∣∣ �α,N θ−|α|(1 + θ−1d(x, ξ ;D))−N ,

then the symbol of c satisfies the same bound, but with D replaced by κ(D). This is a
matter of replacing the differential operator in (2.24) by

1 + (θ−1(σ, η̃, x̃, w)) · (hθ−1D(x̃,w,σ,η̃))

1 + θ−2|(x̃, w, σ, η̃)|2
and proceeding in a similar fashion to the t = 1 case in the analysis of (2.23) above.

3. Microlocal Kakeya–Nikodym Norms and the Outline of the Proof

Let J be the negative integer satisfying 2J ≥ √
h > 2J−1. Given ν ∈ 2JZ

2(d−1), let bJν
be a smooth bump function such that for some ε̃ > 0 sufficiently small

supp(bJν ) ⊂ ν +

[
−
(
1

2
+ ε̃

)
2J ,

(
1

2
+ ε̃

)
2J
]2(d−1)

,

∑

ν∈2JZ2(d−1)

bJν (x, ξ) = 1 and
∣∣∣∂α

y,ηb
J
ν (y, η)

∣∣∣ �α 2−J |α| ≈ h− |α|
2 .

(3.1)

We then define BJ
ν (0) (to be extended to a family of operators {BJ

ν (t)}t∈[−ε,ε]), to be
the semiclassical h-pseudodifferential operator with symbol bJν ∈ S1/2(1)

(BJ
ν (0)g)(x) = 1

(2πh)d−1

∫∫

R2(d−1)
e

i
h 〈x−y,η〉bJν (x, ξ) g(y) dydη. (3.2)

We remark that by a standard rescaling argument and theCalderón–Vaillancourt theorem,
BJ

ν (0) is bounded on L2(Rd−1
x ) (as is any operator with symbol in S1/2(1)). Extend

BJ
ν (0) to a family of operators by defining

BJ
ν (t) = S(t, 0)BJ

ν (0)S(0, t).

Given g ∈ L2([−ε, ε]s; L2(Rd−1
x )), let T denote the operator defined in vector valued

notation

(Tg)(t) =
∫ t

−ε

S(t, s)g(s) ds, that is, (Tg)(t, x) =
∫ t

−ε

(
S(t, s)g(s, ·))(x) ds,

so that g(s), (Tg)(t) ∈ L2(Rd−1
x ) for t, s ∈ [−ε, ε]. As suggested in (2.14), the main

strategy for proving the estimates in (1.10), (1.11) will be to prove Lq/2 bounds on
(ψ̃h)

2, leading us to consider (T fh)2. Since fh(s) =∑ν BJ
ν (s) fh(s), we may write

(T fh(t))
2 =

∑

ν,ν′

(∫ t

−ε

S(t, s)BJ
ν (s) fh(s) ds

)(∫ t

−ε

S(t, r)BJ
ν′(r) fh(r) dr

)

=
∑

ν,ν′
T (BJ

ν fh)(t)T (BJ
ν′ fh)(t) (3.3)

where BJ
ν fh abbreviates the vector valued function s �→ BJ

ν (s) fh(s).
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We next consider the family of dyadic cubes in R
2(d−1), τ

j
μ formed by taking the

cube [−2 j−1, 2 j−1)2(d−1), and translating by an element μ ∈ 2 j
Z
2(d−1). As in [21],

two dyadic cubes are said to be close, writing τ
j
μ ∼ τ

j
μ′ , if they are not adjacent, but

have adjacent parents of sidelength 2 j+1. We use this to organize the sum in (3.3): given
a pair (ν, ν′) such that 2−J |ν − ν′| is sufficiently large, there exist close dyadic cubes
τ
j
μ ∼ τ

j
μ′ such that ν ∈ τ

j
μ and ν′ ∈ τ

j
μ′ (which means |ν − ν′| ≈ 2 j ), allowing us to

write
∑

ν,ν′
T (BJ

ν fh)T (BJ
ν′ fh) =

∑

(ν,ν′)∈�J

T (BJ
ν fh)T (BJ

ν′ fh)

+
0∑

j=J+1

∑

(ν,ν′)∈τ
j
μ×τ

j
μ′ :τ j

μ∼τ
j
μ′

T (BJ
ν fh)T (BJ

ν′ fh) + O(h∞),

(3.4)

where we let �J denote pairs (ν, ν′) lying in adjacent cubes. Note that by (2.7), we may
limit ourselves to cubes of distance less than 1 at the cost of the negligible O(h∞) error
term on the right. When 0 ≤ j ≤ J + 1, we define

� j := {(μ,μ′) : τ j
μ ∼ τ

j
μ′ },

noting the slight variation in these definitions. For μ ∈ 2 j
Z
2(d−1), we define B j

μ(0) as
the h-PDO with symbol

b j
μ(y, η) :=

∑

ν∈τ
j
μ

bJν (y, η).

For convenience, set
D j

μ := supp(b j
μ). (3.5)

Taking ε̃ small in (3.1), we have for (μ,μ′) ∈ � j , we have

d
(
D j

μ,D
j
μ′
) ≈ 2 j , 0 ≥ j ≥ J + 1. (3.6)

Also define

B j
μ(s) :=

∑

ν∈τ
j
μ

BJ
ν (s) = S(s, 0)B j

μ(0)S(0, s),

and denote the symbol of B j
μ(s) as b j

μ(s, y, η). Given Theorem 2.1,
∣∣∣∂α

y,ηb
j
μ(s, y, η)

∣∣∣ �α,N h− |α|
2

(
1 + h− 1

2 d
(
y, η; κs,0

(
D j

μ

)))−N
, (3.7)

and the same holds when j = J .
With this notation, the first sum on the right in (3.4) can be rewritten as

0∑

j=J+1

∑

(μ,μ′)∈� j

T (B j
μ fh)T (B j

μ′ fh). (3.8)
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Hence ‖(ψ̃h)
2‖

L
q
2 ([−ε,ε]t×R

d−1
x )

is bounded above by

0∑

j=J+1

∥∥∥∥∥∥

∑

(μ,μ′)∈� j

T (B j
μ fh)T (B j

μ′ fh)

∥∥∥∥∥∥
L
q
2

+

∥∥∥∥∥∥

∑

(ν,ν′)∈�J

T (BJ
ν fh)T (BJ

ν′ fh)

∥∥∥∥∥∥
L
q
2

. (3.9)

To estimate (3.9), we follow the strategy in [4], first proving almost orthogonality of
the T (B j

μ fh)T (B j
μ′ fh) for (μ,μ′) ∈ � j , then using bilinear estimates to bound each

product. However, to make this rigorous, we will need to instead consider a family of
h-PDO for |s| ≤ ε where ε is as in (2.1)

{
B j

μ,ω(s) : ω ∈ �, s ∈ [−ε, ε]
}

(3.10)

where � is a finite index set and each corresponding symbol b j
μ,ω(s, y, η) in the family

satisfies the same bound as in (3.7)

∣∣∣∂α
y,ηb

j
μ,ω(s, y, η)

∣∣∣ �α,N h− |α|
2

(
1 + h− 1

2 d
(
y, η; κs,0

(
D j

μ

)))−N
, (3.11)

and for each α and N , the implicit constants here are uniformly bounded in μ,ω, j .
This collection will be defined below. A B j

μ,ω(s) can thus be viewed as akin to a B j
μ(s),

but whose symbol as been distorted (though compact support of the symbol may be lost
when s = 0).

Before getting to the crux of our argument, we prove two lemmas.

Lemma 3.1. Suppose ωμ ∈ � is any sequence parameterized by μ ∈ 2 j
Z
2(d−1). Then

for any J ≤ j ≤ 0,

∑

μ

∥∥∥B j
μ,ωμ

fh
∥∥∥
2

L2([−ε,ε]t×R
d−1
x ))

� ‖ fh‖2L2 . (3.12)

Proof. Observe that it suffices to show that for each s ∈ [−ε, ε]
∑

μ

∥∥∥B j
μ,ωμ

(s) fh(s)
∥∥∥
2

L2(Rd−1)
� ‖ fh(s)‖2L2(Rd−1)

,

and integrate both sides over s ∈ [−ε, ε]. By Khintchine’s inequality, this reduces to
showing that for an arbitrary sequence {υμ}μ taking values υμ = ±1

∥∥∥∥∥

∑

μ

υμB
j
μ,ωμ

(s) fh(s)

∥∥∥∥∥
L2(Rd−1)

� ‖ fh(s)‖L2(Rd−1),

where the implicit constant on the right is independent of the sequence. By the aforemen-
tioned application of the Calderón-Vaillancourt theorem, this further reduces to showing
that the symbol

∑

μ

υμb
j
μ,ωμ

(s, y, η) (3.13)
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is in S1/2(1) with bounds uniform in the sequence {υμ}μ. This in turn follows from
verifying that for N ≥ 2d,

∑

μ

(
1 + h− 1

2 d
(
y, η; κs,0

(
D j

μ

)))−N
�
∑

μ

(
1 + 2− j d

(
κ0,s(y, η);D j

μ

))−N
� 1.

(3.14)
Indeed, if this holds, then any weighted derivative (h1/2∂y,η)α of the symbol in (3.13)
is O(1) by (3.11) and the triangle inequality.

To see (3.14), note that the first inequality follows since κs,0 and its inverse are
Lipschitz maps and 2− j ≤ h−1/2. For the second inequality, observe that

d
(
κ0,s(y, η);D j

μ

)
≤ 4|κ0,s(y, η) − μ| if d

(
κ0,s(y, η);D j

μ

)
≥ 2 j+3.

The rest of (3.14) then follows as a consequence of

∑

μ∈2 jZ2(d−1)

(
1 + 2− j |κ0,s(y, η) − μ|

)−N
� 1.

��
We now define the microlocal Kakeya–Nikodym norm of fh as

‖ fh‖2MKN := sup
J≤ j≤0

sup
ω∈�

sup
μ∈2 jZ2(d−1)

2− j (d−1)
∫ ε

−ε

‖B j
μ,ω(s) fh(s)‖2L2(Rd−1)

ds.

Lemma 3.2. Using the norms in (1.5) involving averages over tubes, we have that

‖ fh‖MKN � ‖ψh‖K N . (3.15)

Proof. The bound (3.15) will follow by showing that for any j, μ, ω

2− j (d−1)
∫ ε

−ε

‖B j
μ,ω(s) fh(s)‖2L2(Rd−1)

ds � sup
γ∈Π

h− d−1
2

∫

Th1/2 (γ )

|ψh(t, x)|2dxdt.

In what follows, let π : T ∗
R
d−1 → R

d−1 denote the projection π(x, ξ) = x . Observe
that the integral curves of the Hamiltonian vector field Hpt are nonlinear reparameteri-
zations of unit speed geodesics in T ∗

R
d , which are integral curves of the Hamiltonian

vector field determined by 1
2 (
∑

i, j g
i j (z)ζiζ j − 1). So while

E j
μ := ∪s∈[−ε,ε]π(κs,0(D

j
μ))

does not define a tubular neighborhood, it is contained in a tubular neighborhood of
width O(2 j ) about the unit speed geodesic segment which intersects the s = 0 plane
with coordinates μ ∈ T ∗({s = 0}).

We now claim that there exists a cover of our coordinate chart by family of (not
necessarily tubular) neighborhoods about geodesic segments {T̃k}k indexed by k ∈
2JZ

d−1 (2J ≈ h1/2 as above) and an associated partition of unity
∑

χ2
k = 1 in the chart

with supp(χk) ⊂ T̃k with the following properties for some C uniform and k0 fixed:

d(T̃k,E j
μ) ≈ |k − k0| whenever d

(
T̃k,E j

μ

) ≥ C2 j , (3.16)
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#
{
k : d

(
T̃k,E j

μ

)
< C2 j

}
= O

(
(h−1/22 j )d−1

)
, (3.17)

each T̃k can be covered by O(1) tubular neighborhoods Th1/2(γ ), (3.18)

T̃k ∩ Tk̃ = ∅ and d(T̃k, T̃k̃) ≈ |k − k̃| if |k − k̃| ≥ 2J+3. (3.19)

To see that this cover exists, we momentarily take Fermi coordinates (z1, z′) ∈ R
d

adapted to a hypersurface orthogonal to the geodesic segment {κs,0(μ) : |s| ≤ ε}, so
that {z′ = 0} identifies the hypersurface and r �→ (r, z′) always parameterizes a unit
speed geodesic. In particular, we assume that r �→ (r, 0) parameterizes the geodesic
segment given by s �→ κs,0(μ) so that E j

μ ⊂ {z : |z′| � 2 j }. In these coordinates, we
take a partition of unity

∑
χ2
k = 1 so that with k = (k2, . . . , kd)

supp(χk) ⊂ T̃k :=
{
(z1, z

′) : |z1| � ε, max
2≤i≤d

|zi − ki | ≤ 2J+1
}

.

The property (3.19) is immediate in these coordinates. The set T̃k is a neighborhood
about the geodesic segment γk given as the image of r �→ (r,k). Since 2J ≈ h1/2, we
have that T̃k ⊂ TC1h1/2(γk) for someC1 large, and (3.18) follows easily in any coordinate
system. We now take k0 = 0 and it is then verified that we may take C so that (3.17) is

satisfied and d(T̃k, T̃k0) � |k − k0| whenever d
(
T̃k,E j

μ

)
≥ C2 j . We now revert back

to the original coordinates and at the cost of enlargingC and the other implicit constants,
(3.16), (3.17), and (3.19) are all satisfied here since the diffeomorphism can be taken to
satisfy a Lipschitz bound with uniform constant.

Given the above, (3.18) means that it suffices to show the two inequalities

‖B j
μ,ω(s) fh(s)‖2L2(Rd−1)

� (h−1/22 j )d−1 sup
k

‖(χk fh)(s, ·)‖2L2(Rd−1)
, (3.20)

∫ ε

−ε

‖(χk fh)(s, ·)‖2L2(Rd−1)
ds � sup

k̃

∫ ∥∥(χk̃ψh)(t, ·)
∥∥2
L2(Rd−1)

dt, (3.21)

We primarily focus on (3.20), as the second bound will be seen to follow from very
similar ideas. Let Bμ,ω,k(s) be the operator with Schwartz kernel given by

1

(2πh)d−1

∫
e

i
h 〈y−x,η〉bμ,ω(s, y, η)χk(s, x)dη, (3.22)

and since
∑

k χ2
k = 1, this means that

B j
μ,ω(s)( fh(s, ·)) = B j

μ,ω(s)

(
∑

k

(χ2
k fh)(s, ·)

)

=
∑

k

Bμ,ω,k(s) ((χk fh)(s, ·)) .

Partition the indices k into sets K1, K2 where k ∈ K1 if d
(
T̃k,E j

μ

)
< C2 j and k ∈ K2

otherwise. The compound symbol of Bμ,ω,k(s) is in S1/2(1) so the operator is uniformly
bounded in L2(Rd−1). Hence
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∥∥∥∥∥∥
Bμ,ω(s)

⎛

⎝
∑

k∈K1

χk fh(s, ·)
⎞

⎠

∥∥∥∥∥∥

2

L2(Rd−1)

�
∫ ∣∣∣

∑

k∈K1

χ2
k(x) fh(s, x)

∣∣∣
2
dx

�
∑

k∈K1

∫ ∣∣χk(x) fh(s, x)
∣∣2dx .

where we have used (3.19) and χ2
k(x) ≤ χk(x) as a bump function. Given (3.17), the

expression on the right is dominated by the right hand side of (3.20).
We conclude (3.20) by showing that for any N ≥ 0,

∥∥Bμ,ω,k(s)
∥∥
L2→L2 �N (h− 1

2 |k − k0|)−N (3.23)

so that by taking N large
∥∥∥∥∥∥

∑

k∈K2

Bμ,ω,k(s) ((χk fh)(s, ·))
∥∥∥∥∥∥
L2

�
∑

k∈K2

(2−J |k − k0|)−N ‖(χk fh)(s, ·)‖L2 (3.24)

and the last expression is seen to be bounded by the right hand side of (3.20). To see
(3.23), observe that an integration by parts in (3.22) similar to (2.24) shows that we may
take the compound symbol b j

μ,ω,k(s, y, x, η) of B j
μ,ω,k(s) to satisfy

|(h 1
2 ∂y,x,η)

αb j
μ,ω,k(s, ·)| �α,N (1+h−1|y−x |2)−N

(
1 + h− 1

2 d
(
y, η; κs,0

(
D j

μ

)))−2N
.

The right hand side here is thus O((1 + h−1/2d(x,E j
μ))−N ) and since we may restrict

to x such that χk(s, x) �= 0, this in turn is O((h− 1
2 |k − k0|)−N ) by (3.16).

The proof of (3.21) is similar, the primary difference is that fh is the image of ψh
under the operator in (2.6), so the estimates are over R

d instead of R
d−1. But given

(3.19), the same principles as before apply here, as the kernel of the operator in (2.6)
rapidly decreases on the scale of h1/2 away from the diagonal. The only other significant
difference is that the analog of (3.24) should be adjusted to read

∥∥∥∥∥∥

∑

k̃∈K2

χk̃ fh

∥∥∥∥∥∥
L2(Rd )

�
∑

k̃∈K2

(2−J |k − k̃|)−N
∥∥χk̃ψh

∥∥
L2(Rd )

.

��
We now return to estimating (3.9) and state the two main theorems which form the

crux of the proof of Theorem 1.1. The first step in is to use an almost orthogonality
theorem, valid when j = J or when j ≥ J + 1, which will be proved in Sect. 4. Note
that κt,0(μ) = (xt,0(μ), ξt,0(μ)) is the image of μ ∈ 2 j

Z
2(d−1) under the map κt,0

defined after (2.8).

Theorem 3.3. Suppose 1 ≤ p ≤ ∞ and p∗ = min(p, p′). There exists a family of
h-pseudodifferential operators B j

μ,ω(s) which satisfy (3.11) and with ω ranging over a
finite collection of indices depending only on the dimension, such that
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∥∥∥∥∥∥

∑

μ,μ′∈� j

T (B j
μ fh)T (B j

μ′ fh)

∥∥∥∥∥∥
L p

�
∑

ω,ω′

⎛

⎝
∑

μ,μ′∈� j

∥∥∥T j
μ,ω(B j

μ,ω fh)Tμ′,ω′(B j
μ′,ω′ fh)

∥∥∥
p∗

L p

⎞

⎠

1
p∗

, (3.25)

when 0 ≥ j ≥ J + 1 or when j = J . Here T j
μ,ω (and similarly T j

μ′,ω′ ) is defined by

(T j
μ,ωF)(t, x) =

∫ t

−ε

(
T j,s

μ,ωF(s, ·)
)

(x) ds (3.26)

where T j,s
μ,ω is the fixed s operator defined by the formula

(T j,s
μ,ω f )(t, x) = 1

(2πh)d−1

∫
e

i
h (φ(t,s,x,η)−〈y,η〉)a j

μ,ω(t, s, x, η) f (y) dydη (3.27)

with φ as in (2.9) but with symbol a j
μ,ω(t, s, x, η) satisfying

|∂α
x,ηa

j
μ,ω(t, s, x, η)| � 2− j |α|(1 + 2− j |x − xt,0(μ)|)−2d(1 + 2− j |η − ξs,0(μ)|)−2d .

The second step in estimating this is to employ the bilinear estimates in the following
theorem, which we prove in Sect. 5:

Theorem 3.4. Suppose j = J, . . . , 0, μ,μ′ ∈ � j and T j
μ,ω, T j

μ′,ω′ , B
j
μ,ω, B j

μ′,ω′ are

as in Theorem 3.3. There exist corresponding (s dependent) h-PDO B̃ j
μ,ω and B̃ j

μ′,ω′
satisfying (3.11) such that the bilinear operator R defined for fixed s, s′ ∈ [−ε, ε] by

R(B j
μ,ω(s) f, B j

μ′,ω′(s′)g)(t, x)

:=
(
T j,s

μ,ω(B j
μ,ω(s) f )

)
(t, x) ·

(
T j,s′

μ′,ω′(B
j
μ′,ω′(s′)g)

)
(t, x).

satisfies bounds

h− 2d
q +(d−1)2− j (d−1− 2(d+1)

q )
∥∥∥R(B j

μ,ω(s) f, B j
μ′,ω′(s′)g)

∥∥∥
L
q
2 ([−ε,ε]t×R

d−1
x )

� ‖B j
μ,ω(s) f ‖L2‖B j

μ′,ω′(s′)g‖L2 + ‖B̃ j
μ,ω(s) f ‖L2‖B j

μ′,ω′(s′)g‖L2

+‖B j
μ,ω(s) f ‖L2‖B̃ j

μ′,ω′(s′)g‖L2 + ‖B̃ j
μ,ω(s) f ‖L2‖B̃ j

μ′,ω′(s′)g‖L2 , (3.28)

where the norms on the right hand side are taken to be L2(Rd−1).

Note that the first factor on the left rewrites as h(d−1)( 12− 1
q )

(h
1
2 2− j )

d−1
q (q− 2(d+1)

d−1 ),
showing that the phase space separation of the B j

μ,ω and B j
μ′,ω′ (up to rapidly decreasing

tails) results in a gain of (h
1
2 2− j )

d−1
q (

2(d+1)
d−1 −q) over what would be obtained by applying

the linear estimates (2.13). The B̃ j
μ,ω are slight distortions of the B j

μ,ω that arise when

replacing the rapidly decaying symbol of T j
μ,ω by a compactly supported one.We take the
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family (3.10) to consist of the union of the operators constructed in these two theorems,
that is, operators of the form B j

μ,ω(s) or B̃ j
μ,ω(s).

We can now begin discussing how to estimate the terms in (3.9), showing that the
two theorems here imply (1.10), (1.11), and hence Theorem 1.1. Given Theorem 3.3,
we have for any J ≤ j ≤ 0,

∥∥∥∥∥∥

∑

(μ,μ′)∈� j

T (B j
μ fh)T (B j

μ′ fh)

∥∥∥∥∥∥
L
q
2

�
∑

ω,ω′

⎛

⎝
∑

μ,μ′∈� j

∥∥∥T j
μ,ω(B j

μ,ω fh)T
j

μ′,ω′(B
j
μ′,ω′ fh)

∥∥∥
(
q
2 )∗

L
q
2

⎞

⎠

1
(
q
2 )∗

.

where the L
q
2 norms are taken over [−ε, ε]t × R

d−1
x . We now fix ω,ω′ and show that

Theorem 3.4 supplies bounds on each term on the right hand side here. In this case
Minkowski’s inequality for integrals shows that
∥∥∥T j

μ,ω(B j
μ,ω fh)T

j
μ′,ω′(B

j
μ′,ω′ fh)

∥∥∥
L
q
2

�
∫

[−ε,ε]2

(∫ ε

−ε

∥∥∥T j,s
μ,ω(B j

μ,ω(s) fh(s)) · T j,s′
μ′,ω′(B

j
μ′,ω′(s′) fh(s′))

∥∥∥
q
2

L
q
2 (Rd−1)

dt

) 2
q

dsds′

Hence (3.28) and Hölder’s inequality show that this in turn is bounded by

h
2d
q −(d−1)2 j (d−1− 2(d+1)

q )
(
‖B j

μ,ω fh‖L2(Rd )‖B j
μ′,ω′ fh‖L2(Rd )

+‖B̃ j
μ,ω, fh‖L2(Rd )‖B j

μ′,ω′ fh‖L2(Rd ) + ‖B j
μ,ω fh‖L2(Rd )‖B̃ j

μ′,ω′ fh‖L2(Rd )

+‖B̃ j
μ,ω fh‖L2(Rd )‖B̃ j

μ′,ω′ fh‖L2(Rd )

)
. (3.29)

We will now bound the right hand side of (3.29) in two different ways, and then show
how to optimize the choice. If (μ,μ′) ∈ � j , then 2− j (μ − μ′) lies in a fixed, finite
collection of vectors (of size ≈ 1 when j ≥ J + 1 or O(1) when j = J ). Hence

#{μ′ : (μ,μ′) ∈ � j } = O(1) for any fixed μ ∈ 2 j
Z
2(d−1). (3.30)

We now have for any two ω,ω′ ∈ �,
∥∥∥T j

μ,ω fhT
j

μ′,ω′ fh
∥∥∥

�
(
q
2 )∗

μ L
q
2

� h
2d
q −(d−1)2 j (d−1− 2(d+1)

q )

⎛

⎝
∑

μ

∑

μ′:(μ,μ′)∈� j

‖B j
μ,ω fh‖(

q
2 )∗

L2 ‖B j
μ′,ω′ fh‖(

q
2 )∗

L2

⎞

⎠

1
(
q
2 )∗

+ · · ·

(3.31)

where the dots denote the corresponding contributions of the last three terms in (3.29).
Observe that when d ≥ 3, ( q2 )∗ = q

2 (since q <
2(d+1)
d−1 ≤ 4 in this case) and hence by
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Cauchy–Schwarz and (3.30), the right hand side in (3.31) is dominated by

h
2d
q −(d−1)2 j (d−1− 2(d+1)

q )

(
∑

μ

‖B j
μ,ω fh‖qL2

) 1
q
⎛

⎝
∑

μ′
‖B j

μ′,ω′ fh‖qL2

⎞

⎠

1
q

+ · · ·

Indeed given (3.30), we may view μ′ as a function of μ at the cost of increasing the im-
plicit constant by a factor determined the O(1) constant there. By the embedding �2 ↪→
�q andLemma3.1,wehave that this in turn is boundedbyh

2d
q −(d−1)2 j (d−1− 2(d+1)

q )‖ fh‖2L2 .

When d = 2, the same conclusion holds since (
q
2 )∗ = (

q
2 )′ = q

q−2 and �2 ↪→ �
2q
q−2 .

On the other hand, when d ≥ 3 we may estimate the sum appearing on the right in
(3.31) (and similarly the other terms) by

⎛

⎝
∑

μ

∑

μ′:(μ,μ′)∈� j

‖B j
μ,ω fh‖

q
2
L2‖B j

μ′,ω′ fh‖
q
2
L2

⎞

⎠

2
q

� ‖ fh‖L2

⎛

⎝
∑

μ′
‖B j

μ′,ω′ fh‖
2q
4−q

L2

⎞

⎠

4−q
2q

� ‖ fh‖
4
q

L2

(

sup
μ′

‖B j
μ′,ω′ fh‖L2

)2− 4
q

� 2 j (d−1)(1− 2
q )‖ fh‖

4
q

L2‖ fh‖2−
4
q

MK N ,

where the first inequality follows by Hölder’s inequality with exponents satisfying 2
q =

1
2 + 4−q

2q and the second inequality follows by using that 2q
4−q = 2 + 4q−8

4−q . Note that we
have used Lemma 3.1 twice in the process and also (3.30) similar to before.When d = 2,
a similar argument checks that the sum appearing on the right in (3.31) is majorized by

‖ fh‖2−
4
q

L2

(

sup
μ′

‖B j
μ′,ω′ fh‖L2

) 4
q

� 2
2 j
q ‖ fh‖2−

4
q

L2 ‖ fh‖
4
q
MK N .

Repeating this for the finite collection of pairs ω,ω′, we have that when d ≥ 3,
∥∥∥∥∥∥

∑

(μ,μ′)∈� j

T (B j
μ fh)T (B j

μ′ fh)

∥∥∥∥∥∥
L
q
2

� h
2d
q −(d−1)2 j ((d−1)(2− 2

q )− 2(d+1)
q )‖ fh‖

4
q

L2‖ fh‖2−
4
q

MK N ,

(3.32)

though the second factor on the right rewrites as 22 j (
d−1
q )(q− 2d

d−1 ). When d = 2,
∥∥∥∥∥∥

∑

(μ,μ′)∈� j

T (B j
μ fh)T (B j

μ′ fh)

∥∥∥∥∥∥
L
q
2

� h
2d
q −(d−1)2 j (1− 4

q )‖ fh‖2−
4
q

L2 ‖ fh‖
4
q
MK N . (3.33)

At the same time, in all cases we have
∥∥∥∥∥∥

∑

(μ,μ′)∈� j

T (B j
μ fh)T (B j

μ′ fh)

∥∥∥∥∥∥
L
q
2

� h
2d
q −(d−1)2 j (d−1− 2(d+1)

q )‖ fh‖2L2 . (3.34)
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Consequently, if we fix an integer J ≤ L ≤ 0, then when d ≥ 3, (3.32) yields

L∑

j=J

∥∥∥∥∥∥

∑

(μ,μ′)∈� j

T (B j
μ fh)T (B j

μ′ fh)

∥∥∥∥∥∥
L
q
2

� h
2d
q −(d−1)2L((d−1)(2− 2

q )− 2(d+1)
q )‖ fh‖

4
q

L2‖ fh‖2−
4
q

MK N ,

since q >
2(d+2)

d > 2d
d−1 implies that (d − 1)(2 − 2

q ) − 2(d+1)
q > 0. Moreover, d − 1 −

2(d+1)
q < 0, so (3.34) yields

0∑

j=L

∥∥∥∥∥∥

∑

(μ,μ′)∈� j

T (B j
μ fh)T (B j

μ′ fh)

∥∥∥∥∥∥
L
q
2

� h
2d
q −(d−1)2L(d−1− 2(d+1)

q )‖ fh‖2L2 .

It is then verified that we optimize the bounds on (3.9) by taking L such that 2L(d−1)/2 ≈
‖ fh‖L2/‖ fh‖MKN , which is possible since the latter quantity is O(1) and bounded below

by h
d−1
4 . This shows that (3.9) is bounded by

h
2d
q −(d−1)‖ fh‖4−

4(d+1)
q(d−1)

L2 ‖ fh‖
4(d+1)
q(d−1) −2

MKN

When d = 2 and 4 < q < 6, a similar argument using (3.33) and (3.34) shows the same
bound. Finally, when d = 2 and q = 4 we obtain that (3.9) is bounded by

log(h−1)‖ fh‖L2‖ fh‖MKN .

Given (2.5) and Lemma 3.2, this completes the proofs of (1.10), (1.11).
Another perspective on (3.32) and (3.34) (and similarly when d = 2) results from

noting that right hand sides of these two inequalities are respectively bounded by

h−2δ(q)(h2−2L)
d−1
q (q− 2d

d−1 )‖ψh‖
4
q

L2 |||ψh |||2−
4
q

K N ,

h−2δ(q)(h2−2L)
d−1
2q (

2(d+1)
d−1 −q)‖ψh‖2L2 ,

after an application of (3.15) and ‖ fh‖L2 � ‖ψh‖L2 (as well as recalling the differences
between (1.5), (1.6)). The latter of these underscores the gain resulting from the bilinear
estimates while the former trades a loss in h2−2L for a gain in the Kakeya–Nikodym
norm of ψh . This also shows that L is taken so that

|||ψh |||K N ≈ ‖ψh‖L2(h2−2L)
d−1
4 .

4. Almost Orthogonality

In this section, we prove Theorem 3.3. We begin with a lemma, recalling the notation
for (xt,0(μ), ξt,0(μ)) following (2.8) and prior to Theorem 3.3.
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Lemma 4.1. Let 2 j ∈ [h 1
2 , 1], μ ∈ 2 j

Z
2(d−1) and suppose that α, β are multiindices

such that |α|, |β| ≤ 2d. Given f ∈ S(Rd−1), let

Fs
μ(y) := 〈2− j (y − xs,0(μ))〉4d(〈2− j (hDy − ξs,0(μ))〉4d f )(y),

with 〈w〉 = (1 + |w|2) 1
2 . There exists a symbol a j

μ,α,β(t, s, x, ξ) satisfying

∣∣∣Dγ
x,ξa

j
μ,α,β(t, s, x, ξ)

∣∣∣ �γ 2− j |γ |〈2− j (y − xt,0(μ))〉−2d〈2− j (ξ − ξs,0(μ))〉−2d (4.1)

such that up to negligible O(h∞) error,

2− j (|α|+|β|)(x − xt,0(μ))α(hDx − ξt,0(μ))β(S(t, s) f )(x)

= 1

(2πh)d−1

∫∫
e

i
h (φ(t,s,x,ξ)−〈y,ξ〉)a j

μ,α,β(t, s, x, ξ)Fs
μ(y) dydξ. (4.2)

Proof. Let A(t, s, x, y, η) be defined by

A(t, s, x, y, η) = a(t, s, x, η)〈2− j (η − ξs,0(μ))〉−4d〈2− j (y − xs,0(μ))〉−4d

so that up to O(h∞) error (resulting only from the error term in (2.9)),

(2πh)d−1S(t, s) f (x)

=
∫

e
i
h φ(t,s,x,η)a(t, s, x, η)〈2− j (η−ξs,0(μ))〉−4dFh(〈2− j (hD−ξs,0(μ))〉−4d f )(η)dη

=
∫∫

e
i
h (φ(t,s,x,η)−〈y,η〉)A(t, s, x, y, η)Fs

μ(y) dydη,

where we have inverted Fh in the last expression and used that the argument of Fh in
the second expression is 〈2− j (y − xs,0(μ))〉−4d Fs

μ(y). Next we write

2− j (|α|+|β|)(x − xt,0(μ))α(hDx − ξt,0(μ))β
∫

e
i
h (φ(t,s,x,η)−〈y,η〉)A(t, s, x, y, η) dη

=
∫

e
i
h (φ(t,s,x,η)−〈y,η〉)A1(t, s, x, y, η) dη (4.3)

where

2 j |γ ||Dγ
x,y,ηA1(t, s, ·)| �γ 〈2− j (η − ξs,0(μ))〉−4d〈2− j (y − xs,0(μ))〉−4d

×〈2− j (x − xt,0(μ))〉|α|〈2− j (dxφ(t, s, x, η) − ξt,0(μ))〉|β|.

The differential operator

1 + 2− j (dηφ(t, s, x, η) − y) · (h2− j Dη)

1 + 2−2 j |dηφ(t, s, x, η) − y|2 (4.4)

preserves the exponential function in the integral on the right in (4.3). Moreover, since
h2− j ≤ 2 j , the weighted derivative h2− j Dη appearing here means that the adjoint of
the differential operator applied to A1 has the effect of replacing that amplitude by one
of the same regularity. Using that
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〈2− j |y − xs,0(μ)|〉−4d〈2− j |dηφ(t, s, x, η) − y|〉−4d

� 〈2− j |dηφ(t, s, x, η) − xs,0(μ)|〉−4d ,

integration by parts shows that (4.3) can further be rewritten as

∫
e

i
h (φ(t,s,x,η)−〈y,η〉)A2(t, s, x, y, η) dη

where

2 j |γ ||Dγ
x,y,ηA2(t, s, ·)|

�γ 〈2− j (η − ξs,0(μ))〉−4d〈2− j (dηφ(t, s, x, η) − xs,0(μ))〉−4d

×〈2− j (x − xt,0(μ))〉|α|〈2− j (dxφ(t, s, x, η) − ξt,0(μ))〉|β|

� 〈2− j (η − ξs,0(μ))〉−2d〈2− j (x − xt,0(μ))〉−2d ,

where the last inequality follows since |α|, |β| ≤ 2d and κt,s is Lipschitz in (x, ξ).
We now define

a j
μ,α,β(t, s, x, ξ) := e− i

h φ(t,s,x,ξ)

(2πh)d−1

∫∫
e

i
h (φ(t,s,x,η)+〈y,ξ−η〉)A2(t, s, x, y, η) dydη

(4.5)
and are left to show (4.1). Abbreviate the phase function here as

�(t, s, x, y, η, ξ) = φ(t, s, x, η) − φ(t, s, x, ξ) + 〈y, ξ − η〉.

First observe that for a single derivative

Dxme
i
h � = −

d−1∑

l=1

(∫ 1

0
∂2xmξl

φ(t, s, x, (1 − r)ξ + rη) dr

)
Dyl e

i
h �.

Integration by parts thus shows that applying a weighted derivative 2 j Dxm to a j
μ,α,β has

the effect of replacing A2 by an amplitude of the same regularity. For derivatives in ξ ,
note that

Dξm e
i
h � = h−1 (∂ηmφ(t, s, x, η) − ∂ξmφ(t, s, x, ξ)

)
e

i
h � − Dηm e

i
h �.

As before, the first term on the right here is thus equivalent to the action of a vector field
acting on the exponential in the y variable. Hence integration by parts in y, η similar to
before shows that applying a weighted derivative 2 j Dξm to a j

μ,α,β again has the effect
of replacing A2 by an amplitude of the same regularity.

We now conclude the proof by observing that the expression in (4.5) is uniformly
bounded in h. But this follows from integrating by parts with respect to the operator in
(4.4) with 2− j = h−1/2 sufficiently many times so that integration in y, η yields a gain
of O(hd−1). ��
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Proof of Theorem 3.3. Let Q j
1,μ(t), Q j

2,μ(t) be the multiplier and Fourier multiplier

Q j
1,μ(t) := (1 + 2−2 j |x − xt,0(μ)|2)−2d , Q j

2,μ(t) := (1 + 2−2 j |hDx − ξt,0(μ)|2)−2d .

Thus if c(w) denotes the polynomial c(w) = (1 + 2−2 j |w|2)2d for w ∈ R
d−1, we have

T (B j
μ fh) · T (B j

μ′ fh)

= Q j
1,μ(t)Q j

2,μ(t)c(x − xt,0(μ))c(hDx − ξt,0(μ))
(
T (B j

μ fh)(t) · T (B j
μ′ fh)(t)

)

+Q j
1,μ(t)[c(x−xt,0(μ)), Q j

2,μ(t)]c(hDx−ξt,0(μ))
(
T (B j

μ fh)(t) · T (B j
μ′ fh)(t)

)
.

(4.6)

In turn the commutator [c(x − xt,0(μ)), Q j
2,μ(t)] can be realized as

[c(x − xt,0(μ)), Q j
2,μ(t)] =

∑

|α|≤2d

Q j,α
2,μ(t)cα(x − xt,0(μ)) (4.7)

where the symbol of Q j,α
2,μ(t) is (h2− j∂ξ )

α(1 + 2−2 j |ξ − ξt,0(μ)|2)−2d and cα is a
polynomial of degree |α|. We thus concern ourselves with the contribution of the middle
line in (4.6), as similar arguments treat the last line.

We now observe that

c(x − xt,0(μ))c(hDx − ξt,0(μ))
(
T (B j

μ fh)T (B j
μ′ fh)

)
(4.8)

is a sum consisting of terms of the form

2− j (|α|+|β|+|γ |)(x − xt,0(μ))α(hDx − ξt,0(μ))βT (B j
μ fh) · (hDx − ξt,0(μ))γ T (B j

μ′ fh).

The operator 2− j |γ |(hDx − ξt,0(μ))γ can be written as a sum consisting of terms

2− j |γ1|(ξt,0(μ) − ξt,0(μ
′))γ1 · 2− j |γ2|(hDx − ξt,0(μ))γ2 , γ1 + γ2 = γ,

but since |ξt,0(μ) − ξt,0(μ
′)| � 2 j , the first factor here is a bounded function.

We next claim that

2− j (|α|+|β|)(x − xt,0(μ))α(hDx − ξt,0(μ))βB j
μ fh = B j

μ,α,β fh

for some h-PDO B j
μ,α,β whose symbol satisfies (3.11). Its symbol is

2− j (|α|+|β|)(x − xt,0(μ))α(ξ − ξt,0(μ))βb j
μ(t, x, ξ).

For each (x, ξ), we claim that the absolute value of this symbol is bounded above by

(1 + h− 1
2 d(x, ξ ; κt,0(D

j
μ))−N . Take (x̃, ξ̃ ) ∈ κt,0(D

j
μ) so that

|(x, ξ) − (x̃, ξ̃ )| ≤ 2d(x, ξ ; κt,0(D
j
μ))

and by a multinomial expansion the symbol rewrites as

2− j (|α|+|β|) ∑

γ1≤α,γ2≤β

cγ1,γ2(x − x̃)γ1(x̃ − xt,0(μ))α−γ1(ξ − ξ̃ )γ2(ξ̃ − ξt,0(μ))β−γ2b j
μ,
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for some coefficients cγ1,γ2 . Since |x̃−xt,0(μ)|, |ξ̃−ξt,0(μ)| = O(2 j ), and 2− j ≤ h−1/2

the absolute value of the symbol is dominated by

∑

γ1≤α,γ2≤β

2− j (|γ1|+|γ2|)|x − x̃ ||γ1||ξ − ξ̃ ||γ2|
(
1 + h− 1

2 d
(
x, ξ ; κt,0(D

j
μ

))−N−|α|−|β|

�
(
1 + h− 1

2 d
(
x, ξ ; κt,0(D

j
μ

))−N
.

Derivatives of the symbol of B j
μ,α,β are handled similarly as they will be a sum of terms

involving derivatives of b j
μ and monomials as above with smaller powers.

We now apply Lemma 4.1, and reindex the sum formed by (4.8) terms by ω,ω′, so
that it writes as a sum

∑

ω,ω′
T j

μ,ω(B j
μ,ω fh)T

j
μ′,ω′(B

j
μ′,ω′ fh),

where T j
μ,ω is of the form (3.26), (3.27).

Fix ω,ω′, and set Gμ,μ′ = T j
μ,ω(B j

μ,ω fh)T
j

μ′,ω′(B
j
μ′,ω′ fh). We claim that

∥∥∥∥∥∥

∑

μ,μ′∈� j

Q j
1,μQ

j
2,μ(Gμ,μ′)

∥∥∥∥∥∥
L p

�

⎛

⎝
∑

μ,μ′∈� j

∥∥Gμ,μ′
∥∥p∗
L p

⎞

⎠

1
p∗

, (4.9)

Observe that when p = 1 or p = ∞, (4.9) follows from the fact that Q j
1,μ(t) is

multiplication by a bounded function and the convolution kernel of Q j
2,μ(t) is a function

with uniform L1 norm. By interpolation, it suffices to prove (4.9)when p = 2.Moreover,
it is sufficient to prove it for t fixed.

We thus write the left hand side of (4.9) as
∑

μ,μ′∈� j
μ̃,μ̃′∈� j

∫

Rd−1
Q j

1,μ(t)Q j
2,μ(t)(Gμ,μ′(t, ·))Q1,μ̃(t)Q2,μ̃(t)(Gμ̃,μ̃′(t, ·)).

Given (3.30), the remainder of the proof for p = 2 now follows by showing that the
absolute value of each integral here is bounded by

(1 + 2−2 j |μ − μ̃′|2)−2d‖Gμ,μ′(t, ·)‖L2‖Gμ̃,μ̃′(t, ·)‖L2 . (4.10)

Begin by writing μ = (μx , μξ ) ∈ R
d−1 × R

d−1 and consider cases

|μx − μ̃x | ≥ 8|μξ − μ̃ξ | and |μx − μ̃x | < 8|μξ − μ̃ξ |.
In the first case, we have |xt,0(μ) − xt,0(μ′)| ≈ |μ − μ′| which shows that

(1 + 2−2 j |x − xt,0(μ)|2)−2d(1 + 2−2 j |x − xt,0(μ̃)|2)−2d � (1 + 2−2 j |μ − μ̃|2)−2d ,

and hence (4.10) follows. In the second case, |ξt,0(μ) − ξt,0(μ
′)| ≈ |μ − μ′| instead.

We thus use the Plancherel identity for the semiclassical Fourier transform and simple
convolution estimates to see thatQ j

1,μ(t)Q j
2,μ(t)(Gμ,μ′(t, ·)) is sufficiently concentrated

in a 2− j neighborhood of ξt,0(μ). ��
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5. Proof of Theorem 3.4

The bound (3.28) asserts that the phase space separation of B j
μ,ω(s) f , B j

μ′,ω′(s′)g yields

a gain of (h2−2 j )
d+1
q − d−1

2 over what would be obtained by a formal application of the
linear bounds (2.13). The only difficulty with linear bounds is that the symbols a j

μ,ω

from (3.27) are not in S0(1) since there are losses when they are differentiated in (x, η).
However, we will see that the decay of the symbol in x, ξ ensures that linear bounds for
these symbols are valid nonetheless. In particular, linear bounds will apply to the case
h ≈ 22 j , where there insufficient phase space separation to apply bilinear bounds.

Our first task is to reduce matters to working with compactly supported symbols
instead of the rapidly decaying symbols a j

μ,ω. This step is not necessary when h ≈ 22 j ,
so the discussion from here through Lemma 5.2 will assume that J + 1 ≤ j ≤ 0.
Recalling from (3.6) that

d
(
D j

μ,D
j
μ′
) ≈ 2 j , J + 1 ≤ j ≤ 0

we may take smooth bump functions c jμ(x, ξ) and c j
μ′(x, ξ) such that

d
(
supp(1 − c jμ),D j

μ

)
≥ δ2 j

for some sufficiently small, but uniform constant δ > 0 while

d
(
supp(c jμ), supp(c j

μ′)
) ≈ 2 j . (5.1)

Now extend the c jμ to a family {c jμ(s, ·)}s∈[−ε,ε] by defining

c jμ(s, x, ξ) := c jμ
(
κ0,s(x, ξ)

) = c jμ
(
(κs,0)

−1(x, ξ)
)

Taking ε > 0 sufficiently small in (2.1), we may assume that for every s ∈ [−ε, ε]
d
(
supp(1 − c jμ)(s, ·)), κs,0(D j

μ)
) ≥ δ2 j , (5.2)

d
(
supp(c jμ(s, ·)), supp(c j

μ′(s, ·))
)

≈ 2 j . (5.3)

Now let C j
μ(s) denote the h-pseudodifferential operator with symbol c jμ(s, ·).

We will first show that linear estimates can be applied to

h− 2d
q +(d−1)2− j (d−1− 2(d+1)

q )

×
∥∥∥R
(
B j

μ,ω(s) f, B j
μ′,ω′(s′)g

)
−R

(
(C j

μ(s) ◦ B j
μ,ω(s)) f, (C j

μ′(s′) ◦ B j
μ′,ω′(s′))g

)∥∥∥
L
q
2

(5.4)

so that it is bounded by the last three terms on the right hand side of (3.28). In particular,
this process will lead us to define

B̃ j
μ,ω(s) := (h2−2 j )

− d+1
q + d−1

2 (I − C j
μ(s)) ◦ B j

μ,ω(s). (5.5)

After applying linear bounds, we will be reduced to
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∥∥∥R
(
(C j

μ(s) ◦ B j
μ,ω(s)) f, (C j

μ′(s′) ◦ B j
μ,ω(s′))g

)∥∥∥
L
q
2 ([−ε,ε]t×R

d−1
x )

� h
2d
q −(d−1)2 j (d−1− 2(d+1)

q )‖B j
μ,ω(s) f ‖L2(Rd−1)‖B j

μ′,ω′(s′)g‖L2(Rd−1), (5.6)

which will follow from bilinear estimates of S. Lee [12], using the separation in (5.3).

Lemma 5.1. The composition (I − C j
μ(s)) ◦ B j

μ,ω(s) is an h-PDO with whose symbol
q(s, x, ξ) satisfies

|∂α
x,ξq(s, x, ξ)| �α,N (h2−2 j )h− |α|

2 (1 + h− 1
2 d(x, ξ ; κs,0(D

j
μ)))−N .

The lemma thus ensures that B̃ j
μ,ω(s) as defined in (5.5) satisfies (3.11) since h2−2 j ≤

(h2−2 j )
d+1
q − d−1

2 for q ≥ 2.

Proof. Observe that

q(s, x, ξ) = 1

(2πh)d−1

∫

R2(d−1)
e

i
h 〈x−y,η−ξ〉(1 − c jμ)(s, x, η)b j

μ,ω(s, y, ξ) dydη,

and consider more general oscillatory integrals of the form

1

(2πh)d−1

∫

R2(d−1)
e

i
h 〈x−y,η−ξ〉A(x, η, y, ξ) dydη. (5.7)

where supp(A(·, y, ξ)) ⊂ supp((1 − c jμ)(s, ·)) for every (y, ξ) and

|∂αA(x, η, y, ξ)| �α,N h− |α|
2 (1 + h− 1

2 d(y, ξ ; κs,0(D
j
μ)))−N

with implicit constants depending only on those defining c jμ, b
j
μ and their derivatives.

The main idea is that through induction, (h
1
2 ∂x,ξ )

αq(s, x, ξ) is an oscillatory integral of
this type, which follows easily by integration by parts since

∂xi e
i
h 〈x−y,η−ξ〉 = −∂yi e

i
h 〈x−y,η−ξ〉, ∂ξi e

i
h 〈x−y,η−ξ〉 = −∂ηi e

i
h 〈x−y,η−ξ〉.

Hence we are left to show that

|(5.7)| � h2−2 j (1 + h− 1
2 d(x, ξ ; κs,0(D

j
μ)))−N . (5.8)

The differential operator

1 + (h− 1
2 (ξ − η, x − y)) · (h

1
2 D(y,η))

1 + h−1|(ξ − η, x − y)|2
preserves the phase function in (5.7), so integration by parts shows that

|(5.7)| �N

1

(2πh)d−1

∫
(1 + h− 1

2 |(x−y, ξ − η)|)−3N
(
1 + h− 1

2 d
(
y, ξ ; κs,0(D

j
μ)
))−2N

dydη
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and the domain of integration can be restricted to η ∈ supp((1 − c jμ)(s, x, ·)). The first
factor in the integrand allows us to replace the pair (y, ξ) in the second by either (x, η)

or (x, ξ). In particular, when N ≥ 2, the integrand is dominated by

(1+h− 1
2 |(x − y, ξ −η)|)−N (h− 1

2 d(x, η; κs,0(D
j
μ))
)−2
(
1+h− 1

2 d
(
x, ξ ; κs,0(D

j
μ)
))−N

.

Since (x, η) ∈ supp((1−c jμ)(s, ·)), (5.2) shows that the second factor here is O(h2−2 j ).
Since the first factor means that integration in y, η yields a gain of O(hd−1), the bound
(5.8) follows. ��
Lemma 5.2. Let c̃ jμ(t, s, x, ξ) = c jμ(s, dηφ(t, s, x, ξ), ξ) There exists symbols q j

μ,ω and

r j
μ,ω such that

T j,s
μ,ω(C j

μ(s) f ) = 1

(2πh)d−1

∫∫
e

i
h (φ(t,s,x,ξ)−〈y,ξ〉)(q j

μ,ω + r j
μ,ω)(t, s, x, ξ) f (y) dydξ,

with |∂α
x,ξq

j
μ,ω(t, s, ·)| �α 2− j |α| and

supp(q j
μ,ω(t, s, ·)) ⊂ supp(c̃ jμ(t, s, ·)) = {(x, ξ) : c jμ(s, dηφ(t, s, x, ξ), ξ) �= 0} (5.9)

while

|∂α
x,ξr

j
μ,ω(t, s, ·)| �α,N (h2−2 j )2− j |α| (1 + h−12 j d

(
x, ξ ; supp(c̃ jμ(t, s, ·))

))−N
.

(5.10)

Again, since h2−2 j ≤ (h2−2 j )
d+1
q − d−1

2 the gain satisfied by r j
μ,ω will be sufficient.

Proof. The Schwartz kernel of the composition T j,s
μ,ω ◦ C j

μ(s) is the oscillatory integral

1

(2πh)d−1

∫∫
e

i
h (φ(t,s,x,η)+〈y,ξ−η〉)a j

μ,ω(t, s, x, η)c jμ(t, s, y, ξ) dydη. (5.11)

Its critical points satisfy dηφ(t, s, x, η) = y and ξ = η. The lemma thus follows from a
variation on the stationary phase arguments in Theorem 2.1 (taking M = 1 in the analog
of (2.21)). ��
Lemma 5.3. Let T j

μ f be an oscillatory integral operator defined by

(T j
μ f )(t, x) = 1

(2πh)d−1

∫∫

R2(d−1)
e

i
h (φ(t,s,x,ξ)−〈y,ξ〉)a j

μ(t, s, x, ξ) f (y) dydξ,

where J ≤ j ≤ 0 and

|∂α
x,ξa

j
μ(t, s, ·)| �α 2− j |α|(1 + 2− j |x − xt,0(μ)|)−2d(1 + 2− j |ξ − ξs,0(μ)|)−2d . (5.12)

Then for some implicit constant depending only on the bounds for a j
μ, φ and their

derivatives, we have

‖T j
μ f ‖Lq ([−ε,ε]t×R

d−1
x )

� h− d−1
2 ( 12− 1

q )‖ f ‖L2(Rd−1
y )

.
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We postpone a thorough proof of these bounds to the end of the section, though
as noted, they essentially are a consequence of the standard theory of Carleson–Sjölin
integral operators. For nowwe note that this will settle Theorem 3.4when j = J (strictly
speaking this means that we take B̃ J

μ,ω(s) = 0 as the enlarged family is not needed in
this case). Moreover, the linear estimates imply that (5.4) is bounded by the last three
terms in (3.28). Indeed, the lemma and the definition of B̃ j

μ,ω(s) establishes that
∥∥∥T j,s

μ,ω

(
(I − C j

μ(s)) ◦ B j
μ,ω(s) f

)∥∥∥
Lq ([−ε,ε]t×R

d−1
x )

� h− d−1
2 ( 12− 1

q )
(h2−2 j )

d+1
q − d−1

2 ‖B̃ j
μ,ω(s) f ‖L2(Rd−1

y )
,

which yields the desired gain when paired with the linear bound on the second factor.

Moreover, the gain of h2−2 j ≤ (h2−2 j )
d+1
q − d−1

2 in the symbol of r j
μ,ω shown in (5.10)

means that it suffices to prove (5.6) with the compactly supported q j
μ,ω replacing a j

μ,ω

in the definition of T j,s
μ,ω.

5.1. Bilinear estimates. We now complete the proof of (5.6). Set

u1(η) = 2 j (d−1)

(2πh)(d−1)
Fh(B

j
μ,ω(s) f )(2 jη), u2(η) = 2 j (d−1)

(2πh)(d−1)
Fh(B

j
μ′,ω′(s′)g)(2 jη)

(5.13)
where Fh denotes the semiclassical Fourier transform. Observe that by the semiclassical
Plancherel identity,

‖u1‖L2(Rd−1) =
(

2 j

2πh

) d−1
2

‖B j
μ,ω(s) f ‖L2(Rd−1), (5.14)

and an analogous computation establishes the L2 norm of u2.
By the discussion following Lemma 5.3, we may replace the symbol a j

μ,ω in the

definition of T j,s
μ,ω by the compactly supported q j

μ,ω defined in Lemma 5.2. Next set

φ̃(t, s, x, η) = 2−2 jφ(t, s, 2 j x, 2 jη), p̃(t, x, ξ) = 2−2 j p(t, 2 j x, 2 jξ),

so that φ̃ solves the eikonal equation

∂t φ̃(t, s, x, η) + p̃(t, x, dx φ̃(t, s, x, η)) = 0. (5.15)

Also, let κ̃t,s(x, ξ) denote the time t value of the integral curve determined by the
Hamiltonian vector field of p̃(r, x, ξ) such that κ̃r,s(x, ξ)

∣∣
r=s = (x, ξ). It is verified that

the κ̃t,s are related to the original mappings κt,s by

κ̃t,s(x, ξ) = 2− jκt,s(2
j x, 2 jξ).

Hence φ̃ is a generating function for κ̃t,s , satisfying relations analogous to (2.10). The
mixed Hessian dxdξ φ̃ = I + O(ε) is nonsingular by the chain rule and (2.11).

Now make the following definitions

q̃ j
μ,ω(t, s, x, ξ) := q j

μ,ω(t, s, 2 j x, 2 jξ), q̃ j
μ′,ω′(t, s, x, ξ) := q j

μ′,ω′(t, s′, 2 j x, 2 jξ),
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T1u1(t, x) :=
∫

e
i22 j
h φ̃(t,s,x,ξ)q̃ j

μ,ω(t, s, x, ξ)u1(ξ) dξ, (5.16)

T2u2(t, x) :=
∫

e
i22 j
h φ̃(t,s′,x,η)q̃ j

μ′,ω′(t, s′, x, η)u2(η) dη. (5.17)

so that after the symbol replacement above, we have that up to acceptable error,

R
(
(C j

μ(s) ◦ B j
μ,ω(s)) f, (C j

μ′(s′) ◦ B j
μ′,ω′(s′))g

)
(t, 2 j x) = T1u1(t, x) · T2u2(t, x)

The bound (5.6) will thus follow by dilating variables x �→ 2 j x and the bound

‖T1u1T2u2‖
L
q
2 ([−ε,ε]t×R

d−1
x )

� (h2−2 j )
2d
q ‖u1‖L2(Rd−1)‖u2‖L2(Rd−1). (5.18)

To show (5.18), we will use bilinear estimates. When d = 2, these are implicit in
the work of Hörmander [10] and when d ≥ 3, they are a consequence of results of S.
Lee [12, Theorem 1.1] and the epsilon removal lemma in [3, Theorem 3.3]. To align the
notation here with the latter works, define

δ(t, x, ξ, η) = (dξ p̃)(t, x, dx φ̃(t, s, x, ξ)) − (dη p̃)(t, x, dx φ̃(t, s′, x, η)).

Since the Hessian ∂2ηiη j
p̃(t, x, η) = (∂2ηiη j

p)(t, 2 j x, 2 jη) is positive definite,

|δ(t, x, ξ, η)| ≈ |dx φ̃(t, s, x, ξ) − dx φ̃(t, s′, x, η)|.
The crucial hypothesis to be verified to apply these bounds is that the following ex-
pression is uniformly bounded from below when (2 j x, 2 jξ) ∈ supp(q j

μ(s, ·)) and

(2 j x, 2 jη) ∈ supp(q j
μ′(s′, ·)),

∣∣∣∣

〈[
dxdξ φ̃

]
δ(t, x, ξ, η),

[
dxdξ φ̃

]−1 [
dξdξ p̃(t, x, dx φ̃)

]−1
δ(t, x, ξ, η)

〉∣∣∣∣ ,

where the derivatives of dx φ̃, dxdξ φ̃ are either both evaluated at (t, s, x, ξ) or both
evaluated at (t, s′, x, η). Given that dxdξ φ̃ = I + O(ε), it suffices to see that

∣∣∣dx φ̃(t, s, x, ξ) − dx φ̃(t, s′, x, η)

∣∣∣ ≈ 1. (5.19)

To see (5.19), note that by (5.9), (x, ξ) ∈ supp(q̃ j
μ(s, ·)) implies that

(
dξφ(t, s, 2 j x, 2 jξ), 2 jξ

)
∈ supp(c jμ(s, ·)) = κs,0

(
supp(c jμ(0, ·))

)
.

Applying κt,s to both sides of this, we see that by (2.10) this is equivalent to
(
2 j x, dxφ(t, s, 2 j x, 2 jξ)

)
∈ κt,0

(
supp(c jμ(0, ·))

)
.

The same reasoning shows that if (2 j x, 2 jη) ∈ supp(q j
μ′(s′, ·)), then

(
2 j x, dxφ(t, s′, 2 j x, 2 jη)

)
∈ κt,0

(
supp(c j

μ′(0, ·))
)
.

By (5.1), this gives
∣∣dxφ(t, s, 2 j x, 2 jξ) − dxφ(t, s′, 2 j x, 2 jη)

∣∣ ≈ 2 j , and (5.19) fol-
lows.
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5.2. Linear estimates. Here we prove Lemma 5.3, using the rescaling from the previous
Sect. 5.1. Define ã j

μ̃
(t, s, x, ξ) := a j

μ(t, s, 2 j x, 2 jξ), let u1 be as in (5.13) but replacing

B j
μ,ω(s) f by f , and let T1 be the operator with Schwartz kernel given by the oscillatory

integral
∫

e
i22 j
h (φ̃(t,s,x,ξ)−〈y,ξ〉)ã j

μ̃
(t, s, x, ξ) dξ.

We thus have that ã j
μ̃
(t, s, ·) ∈ S0(1), with

|∂α
x,ξ ã

j
μ̃
(t, s, ·)| �α 〈x − x̃t,0(μ̃)〉−2d〈ξ − ξ̃s,0(μ̃)〉−2d , μ̃ = 2− jμ (5.20)

writing κ̃r,0(μ̃) in terms of components (x̃r,0(μ̃), ξ̃r,0(μ̃)). It now suffices to show

‖T1u1‖Lq ([−ε,ε]t×R
d−1
x )

� (h2−2 j )
d−1
2 ( 12 +

1
q )‖u1‖L2(Rd−1

y )
. (5.21)

Indeed, given (5.14), the right hand side is ≈ h− d−1
2 ( 12− 1

q )2− j (d−1)
q ‖ f ‖L2 , and the loss

in 2 j cancelled by reverting back to the original coordinates on the left hand side. This
is the same gain observed in the first inequality in (2.13), but with frequency h−122 j .
The main observation is that T1 is an oscillatory integral operator with a Carleson–Sjölin
phase as defined in [14, Chap. 2]. Indeed,

dxdξ φ̃(t, s, x, ξ) = (dxdξφ)(t, s, 2 j x, 2 jξ), (5.22)

and the latter defines a nonsingular (d−1)× (d−1)matrix. Recalling (5.15), it suffices
to check that for (t, x) ∈ supp(q̃ j

μ(·, s, ·, ξ)) fixed

{
(− p̃(t, x, dx φ̃(t, s, x, ξ)), dx φ̃(t, s, x, ξ)) : ξ ∈ supp(q̃ j

μ(t, s, x, ·))
}

(5.23)

is an embedded hypersurface in T ∗
(t,x)R

d with nonvanishing principal curvatures. But
this follows from the fact that this is a local reparameterization of the graph of η �→
− p̃(t, x, η) and ∂2ηiη j

p̃(t, x, η) = (∂2ηiη j
p)(t, 2 j x, 2 jη).

At this point, (5.21) formally follows from the standard theory of Carleson–Sjölin
integrals due to Hörmander and Stein (see e.g. [14, Theorem 2.2.1]). However, care
must be taken here since the amplitude ã j

μ̃
is not compactly supported in a set of uniform

diameter. However, it does decay rapidly outside such a set, which is enough. Seeing
this is a matter of tracing through the proof in that theorem, which we do here. We first
observe that given (5.22), the bound (5.21) with q = 2 is a consequence of Hörmander’s
L2 theorem [10] and the decay in (5.20). Indeed, this decay allows us to write the
amplitude as a sum

ã j
μ̃
(t, s, x, ξ) =

∑

ν̃=(ν̃x ,ν̃ξ )∈Z2(d−1)

〈
ν̃x − x̃t,0(μ̃)

〉−2d 〈
ν̃ξ − ξ̃s,0(μ̃)

〉−2d
ã j
μ̃,ν̃

(t, s, x, ξ),

and we may take ã j
μ̃,ν̃

(t, s, ·) ∈ S0(1) with supp(ã j
μ̃,ν̃

(t, s, ·)) ⊂ {|(x, ξ) − ν̃| � 1}.
For fixed t , Hörmander’s theorem can now be applied in L2(Rd−1) to each operator
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determined by the decomposition here, and the decay in ν̃ ensures that we may sum over
the contribution of each of these operators without loss. This results in

‖T1‖L2(Rd−1)→L2([−ε,ε]×Rd−1) = O((h2−2 j )
d−1
2 ).

It now suffices to prove (5.21) with q = 2(d+1)
d−1 , that is,

‖T1‖
L2(Rd−1)→L

2(d+1)
d−1 ([−ε,ε]×Rd−1)

= O((h2−2 j )
d(d−1)
2(d+1) ).

Defining the fixed t operator (T t
1u1)(x) = (T1u1)(t, x), a duality and fractional inte-

gration argument along with the aforementioned L2 bounds means it suffices to show
that

‖T t
1 (T t̃

1 )∗‖L1(Rd−1)→L∞(Rd−1) � (h2−2 j |t − t̃ |)− d−1
2

which is a consequence of
∣∣∣∣

∫
e
i22 j
h (φ̃(t,s,x,ξ)−φ̃(t̃,s,x̃,ξ))ã j

μ̃
(t, s, x, ξ)ã j

μ̃
(t̃, s, x̃, ξ) dξ

∣∣∣∣ � (h2−2 j |t − t̃ |)− d−1
2 .

As in [14, Chap. 2], this in turn follows from the fact that (5.23) ensures that any critical
points in the phase are nondegenerate. As before, this requires some care since the
integration is not over a set of uniform size, but this can be overcome by using a partition
of unity adapted to cubes of sidelength 1 in ξ , then using the decay in ξ away from
ξ̃s,0(μ̃).
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