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Abstract: We prove a Kakeya—Nikodym bound on eigenfunctions and quasimodes,
which sharpens a result of the authors (Blair and Sogge in Anal PDE 8:747-764, 2015)
and extends it to higher dimensions. As in the prior work, the key intermediate step is
to prove a microlocal version of these estimates, which involves a phase space decom-
position of these modes that is essentially invariant under the bicharacteristic/geodesic
flow. In a companion paper (Blair and Sogge in J Differ Geom, 2015), it will be seen
that these sharpened estimates yield improved LY (M) bounds on eigenfunctions in the

presence of nonpositive curvature when 2 < g < zgldjll) .

1. Introduction and Main Results

Let (M, g) be a smooth, compact, connected, boundaryless Riemannian manifold of
dimension d > 2. Let A, be the nonpositive Laplace-Beltrami operator which is self
adjoint with respect to the Riemannian measure dV,. The compactness assumption
ensures that the spectrum of Ay is discrete, so that there exists an orthonormal basis for

L?(M) consisting of eigenfunctions e; satisfying

—Agey = )»26,\, or equivalently, V—Age, = hey. (1.1)

Given such an eigenfunction with A > 0, we set 4 = 1/A, obtaining a solution to the
semiclassical problem (thg +1)e,-1 = 0.

In this work, we are interested in L? bounds on eigenfunctions and quasimodes
associated to the semiclassical operator thg + 1. A family of functions {y,} either
defined for £ in some subinterval 4 € (0, ko] C (0, 1] or a decreasing sequence in this
interval tending to 0 will be considered to be an admissible family of quasimodes if
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IVrll2any =1,
I(R2Ag + DXyl 2 = OY), k=1, [/ +451]. (1.2)

Eigenfunctions normalized in L? define admissible quasimodes, as are normalized func-
tions in the range of 1[1, 141 (h/—A,). In the classical notation (1.1), it is easily verified

that L?-normalized functions in the ranges of

1.1/ =Ag)  and  p(T( —/=Ap) (13)

define admissible quasimodes for 7 = T'(A) > 1 a nondecreasing function, and in the
latter case p € S(R).

In this work, the interest is in upper bounds on the norm of these eigenfunctions
and quasimodes in LY(M) for2 < q < %_“) In [13], the second author proved that
l¥nllLany = Oh=5@) where §(q) = max(d LG -G = Dash - 0 (or
equivalently A — o0). These bounds are umversal in that they apply to any (M, g)
as above and any admissible quasimode as in (1.2). Moreover, if one considers the
large classes of quasimodes given by functions in the range of 1y 14n)(h/—A,) (or

in the classical notation, 1y, 5+17(y/—Ag)), it can be seen that this exponent cannot be

improved. Indeed, when 2 < g < &_ﬂ) one can find functions v, in the range of these

spectral projectors for which [, (x)]| is roughly constant in a tubular neighborhood of

radius ~ h'/? about a geodesic segment when 2 < ¢ < 2(d+1) and rapidly decreasing

outside of this set so that ||y |lLe) ~ h_i(f_l) When 251””11) < g < o0, there
exist modes weakly decaying outside of a ball of radius # which similarly saturate these
bounds.

On the round sphere S9, it is well known that the spectrum of /—Agu is of the

form vk(k+d — 1) =k + O(%), k € N U {0}. Consequently, these spectral projectors
in the previous paragraph are nearly the same as projections onto an eigenspace, and
the L9 (M) bounds are saturated by families of exact eigenfunctions, in particular the
highest weight spherical harmonics when?2 < g < 2(d+1) and the zonal harmonics when

% < g < oo. However, the spectrum of ,/ —ASd and the dynamics of the geodesic

flow on S? are very unique and these universal bounds are not expected to be optimal for
eigenfunctions in most other geometries (save those with elliptic closed geodesics or a
full measure of periodic geodesics in the sense of [18]). A problem of great interest is to
determine geometric conditions that show that these universal bounds can be improved
for eigenfunctions or even quasimodes of shrinking width with (1) /" oo in (1.3).

This work develops a condition for obtaining improvements on the universal bounds
when2 < g < %. Let T denote the space of unit length geodesic segments. Given
y € I1, define 7.(y) to be its e-neighborhood

T.(y)={xeM:d,(x,y) <e¢}. (1.4)

For & > 0 we then define the Kakeya—Nikodym norm of a quasimode v, as

Inll%y = sup h~ f [y l* d V. (1.5)
yell w12(v)
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It is also convenient to use the analogous norm without (approximate) averages

allZy = sup /T WP V. (16)

yell JT,12(y)

The norm thus depends on the frequency scale / of the quasimode under consideration.
Note that if ¥, is rapidly decreasing outside a tube 7;,1,2 (), as in the case of the highest
weight spherical harmonics, then |||y, |||k ¥ = 1. Otherwise, one expects better bounds
to be satisfied.

The following is the primary result of this work.

Theorem 1.1. Let v, be a member of an admissible family of quasimodes as in (1.2). If
dzZand@<q<%,then

2(d+1) 2(d+1)

—1
WallLon < BT H5 |1y e =h 2 Dylligs” . A7

Note that when d = 2, this means that for 4 < q < 6,

e 1157 et 6!
InllLaony Sh 2 Wnlllgy =2 PYnlllgy - (1.8)

Moreover, when d = 2 and q = 4, we also have that

_1 1 _ 1
||wh||L4<M>5h s/ Tog il [1[WnlllZy = B 2@/ Tog hl 11l 2y - (1.9)

Here 6(q) = (— — —) as in the classical bounds of the second author [13]. The
theorem thus furmshes a sufﬁ01ent condition for improving on these classical bounds,
as it means that improvements on the trivial |||¥,]||ky = O(1) bounds translates to
improvements on the L9 (M) bounds (see our discussion of [5] below).

Expressing our main theorem in this manner allows for a good discussion of its
consequences, which we do below and in our companion paper [5]. However, in proving
the theorem, it is convenient to instead work with the averaged norms (1.5) and show
the following bounds, which are equivalent to (1.7), (1.9):

2(d+1)

—1
Wnllzean <07 4y, g5 o, d=>2, (1.10)
IWnll sy S +/Tloghl ||wh||,%N, d=2. (1.11)

In [4], the authors proved the bound (1.11), but with the factor /| log /| on the right
replaced by 27¢, where ¢ > 0 can be taken to be arbitrarily small. This is because
that work actually proves lossless estimates involving averages of the mass over slightly
thicker tubular neighborhoods /!'/>7¢. The present work thus sharpens this result and
extends it to higher dimensions. Estimates of this type extend results of Bourgain [6]
and the second author [16] in two dimensions, and the authors [3] in higher dimensions.
This latter set of results show that the universal L9 bounds on eigenfunctions due to
the second author [13] can be improved to o(hfi(rf)) when |||V |||k v = o(1) and
2<q< M

Obtammg lossless estimates involving tubes of diameter /'/? is significant for appli-
cations. In a companion paper [5], it will be shown that

Hvnlllkny = O(llogh|™?),  forsome o =o(d) > 0,
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for quasimodes in the range of

p(T(h—/=Ag) = p(Th™' (1 — hy=Ay)), h=1/x, (1.12)

asin (1.3) with T ~ log A = | log h|. The small #'/> = A ~!/2 thickness of the tubes turns
out to be significant in the proof of such bounds. Combining these with Theorem 1.1

thus yields a logarithmic gain in the L9 bounds when 2 < ¢ < zédjll) for quasimodes
in the range of

15 satog 11V =8¢) = 111 14nj10gn -1 (By/ = Ag). (1.13)

Namely, for such quasimodes we have

< h T log h| 0 GET D
IWnllLamy S 7 |logh| ~ 4 .

Moreover, the second author has shown [15] that averaging over these smaller tubes
allows one to see that upper bounds on the L'(M) norm allows one to detect scarring
phenomena for eigenfunctions and quasimodes. More precisely, it is observed that using
Holder’s inequality,

2(3;71)1)((01 zl))q 2(d+2) 2(d+1)
+ +
KA, ! Sh 3 ||Wh||L1(M) forT<q<ﬁ.

Thus if the right hand side is & 1, it can be seen that the mass of 1/, must concentrate in
an 7'/2 tubular neighborhood about a geodesic segment. Indeed, if the mass of v, were

. .. d—1
mostly concentrated in a 7;1/2(y), then it is not hard to see that ||Vl L1(y) <h7s.

The main idea in [15] is to show these upper bounds on the L' (M) norm imply such
concentration must occur.

The present work does not address how to improve upon the universal L9 (M) bounds
of the second author in the range % < q < ooorwhenqg = 2(d+1) . Improvements
in the former range, based on the measure of closed loops in the cosphere spaces Sy M
appear in [17-19] and stronger improvements for nonpositive curvature were shown in
[2,8]. As alluded to above, any condition for improvements on the universal L? bounds
in these cases must address the existence of modes which decay weakly outside of balls
of radius 4, and the norms in (1.5) above are insufficient for this purpose. The results
in [9] obtain a logarithmic gain in the universal estimates in the presence of negative
curvature, for all 2 < ¢ < oo via an estimate at ¢ = 2;d+11) and interpolation, but the
methods rely on generalized Weyl laws, and hold only for a full density subsequence of
eigenfunctions.

The discussion above shows that the exponent in the two dimensional bound (1.8) is
perhaps not so surprising as it would be the outcome of interpolating between the L*(M)
bound (without the logarithmic factor) and the universal Lé(M) bound of the second
author. The same idea holds for the higher dimensional bound (1.10): if this were to hold
when g = d 1 (so that the exponent of & vanishes), then the estimates appearing here
would be the result of interpolating between this bound and the classical bounds of the
second authoratg = %. However, the validity of (1.10) when dszl <q < 2(d+2) and
d > 3 could be subtle. Indeed, when d > 3, the present work relies on bilinear estlmates
of Lee [12] arising from the bilinear approach to the Fourier restriction problem that
originated in works of Tao et al. Vega [21], Wolff [23], and Tao [20]. Explicit examples

show that such bilinear estimates fail to hold in the reglons 2d <q < @ (see [21)).
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Remark 1.2. The present work uses the semiclassical formalism of Koch et al. [11]. Itis
thus likely that Theorem 1.1 can be generalized to semiclassical pseudodifferential opera-
tors P (x, h D) with symbols p(x, &) whose characteristic sets {§ € T,;"M : p(x, §) = 0}
have nonvanishing second fundamental form. This is provided sets analogous to the
T,12(y) above can be defined in a manner that allows for a substitute for Lemma 3.2
below. While we do not examine this issue in detail, our methods do easily treat semi-
classical operators of the form thg +V,V € C*® with 0 < infycpy V(x), by passing
to the “Jacobi metric” g(x) := V(x)g(x) (see [1, p. 228]). In this case, if one has an
admissible quasimode defined by replacing (h2Ag + D), by (h2Ag + V) in (1.2),
then v, is a quasimode with respect to 12 A g+ lin that

(GISEREA

L2(M) d+1 2

d d—1
= 0(h"), fork=1,...,’r + W
Indeed, it is verified that the difference V - A i — Dg is a first order differential operator
on M, which implies that Theorem 1.1 applies in this setting, defining the sets 7,12 (y)
with respect to g.

Outline of the paper. In Sect. 2, we review aspects of the semiclassical approach to
L4 bounds for eigenfunctions introduced in [11]. We also prove an Egorov theorem for
symbols in the critical “Sy,2(1)” class that is needed in our work. Section 3 provides the
main outline of the proof of Theorem 1.1, considering “microlocal” Kakeya—Nikodym
norms and reducing matters to showing certain almost orthogonality bounds and bilinear
estimates in L. The last two sections, Sects. 4 and 5, treat these almost orthogonality
bounds and bilinear estimates respectively.

2. Semiclassical Analysis

2.1. Preliminary reductions. Since ||(h2Ag)k1ﬁh||Lz(M) = 0(1) for the k in (1.2), el-
liptic regularity shows that || || HE() = O (1) in the semiclassical Sobolev spaces.

Hence commutator estimates show that for a smooth bump function ¢,

d d—1
"2 Ag + DF =0 fork=1,...,| — +——|.
(R Ag + D (@)l 2 (ar) (h") for T2 1 3
Hence by multiplying ¥, by a bump function within a finite partition of unity, we may
assume it is supported in a suitable coordinate chart given by a cube of sidelength 2¢
centered at the origin in R, and in particular

g]d, @2.1)

&
supp(y) € [=3. 5

for some ¢ > 0 sufficiently small. Moreover, we may assume that g/ (0) = §'/.
Next, we let x be a suitable smooth cutoff to a neighborhood of the unit sphere such
that for k as in (1.2)

(1= x D) Yall2ry S NGB Ag + DXyl 2 ary + R I 20y S H*. (2.2)
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Indeed, for a suitable choice of y, thg + 1 is elliptic on supp(l — x), so elliptic
regularity bounds yield the first inequality and quasimode properties the second. Taking

k= [ 4 + 9517, semiclassical Sobolev embedding gives for 2 < ¢ < 2+

1= XD Willzoan S 047D S 1D (1 = x DYl 2

la|<1

<7 (I8 + DH( = 2 BD)Ynl2an + 1= X BD) Yl 2 )

where the second inequality follows from elliptic regularity (as in [11, Lemma 2.6]) and
the last follows from the observation (2.2) above (for a slightly different choice of ) as
the symbol of [(th + DK, (1 = x(hD)] s supported away from the unit sphere, at

least up to O (h*) error. Since we may cover M with O(h™ o ) tubular neighborhoods
T2 (y), 11— x (WD) Ynllracary is in turn bounded by the right hand side of the
inequalities in Theorem 1.1.

Taking a further partition of unity in the frequency variable, we may alter x ({) so
that it is supported in a conic set of the form

{§ : _é‘l = C|§/|$ |§| ~ 1}7 ;l = (;27 s ;n)v (23)

for some C > O sufficiently large. The main idea in [11] is that after this further
microlocalization, we may write the characteristic surface ), j g’ ()¢ = lasa

graph in the ¢’ variables, which leads us to a evolution equation in the first variable.
Indeed, over (2.3), the principal symbol of 72 A ¢ + 1 can be written in the form

d
=Y @G+ = —a(z. O)(@1+p(E. £)). (2.¢) € supp(¥n) x supp(x). (2.4)

i,j=1

with a(z, ¢), p(z, ¢") > 0, by taking ¢ > 0 sufficiently small in (2.1) and the aperture
of the cone sufficiently small in (2.3). Moreover taking ¢ small above, we may assume
that the restricted matrix {g"/ (z)},‘?{ j—o 1s positive definite when z € [—e, ele.

We now have that

(hDzy + P(z, kD)) (x (hD)Yn) = hfp.

1
fu= 30, hD)[h*Ag, x (hD) 1y,

for some symbol b compactly supported in all variables. In particular, we may assume
that supp(b(-, ¢)) C [—s¢, €] for every ¢. Moreover, we have that

1 fall 2y S 1l L2y (2.5)
and up to an error term which is O (h°°) as an operator on L2, the composition
b(z, hD)[h*Ag, x (hD)] (2.6)

is an operator with a compactly supported symbol.
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Notation. Since the operator with symbol (¢; + p(z, ¢’)) is naturally an evolution equa-
tion, it is now convenient to take a different convention on the notation. We will use r, s, ¢
to denote variables in R and w, x, y, &, n to denote those in R9~! g0 that expressions
such as (t, x) give variables in R?. The variable z will still denote those in R on the
few occasions this is needed. The relation for v, thus reads

(hD; + P(t,x, hD))y, = hfy

where it is understood that P(t, x, hD) (or P(¢) when the dependence on x, & is not
crucial) is a family of semiclassical pseudodifferential operators acting on the x variables.
Keeping in line with these conventions, the symbols we consider in the remainder of
this work will be quantized in the “x” variables over R“~! and never in the first variable.
Note that given the restriction of x above to a cone of sufficiently small aperture, we
may also assume that for some smooth bump function x with supp(x) C {|&| < 1} (so

that the quantization is only in the x variables)
(1= ) BDYYu(t, g2, (L= ) RD) fu(t, Y2 = OR™), ] <e.  (27)
Let vy, := x (hD)yy, and let S(z, s) be the family of unitary operators satisfying
(hD;y+ P(t,x,hD))S(t,s) =0, S, s)|i=s = 1.

Hence in vector valued notation, for f;, € L2([—s, els; Lz(Rﬁ’l)) andt € [—e¢, €],

t
Yn(t) = / S(t,5) fn(s)ds. (2.8)
—&
Let «; s(x, &) denote the time ¢ value of the integral curve determined by H,, , the
Hamiltonian vector field of p,(x, §) = p(r, x, &) whose value at time s is (x, §). Taking
& > 0 sufficiently small in (2.1), we may assume that «; ;(x, &) defines a canonical
transformation for ¢, s € [—e, £]. We denote the components of this map in RI-1 x R4~
as krs(x, &) = (x;5(x, &), & .5(x,&)). Moreover, standard construction (see e.g. [24,
Chap. 10]) shows that there exists a phase function ¢ (z, s, x, ) and a smooth, compactly
supported amplitude a(z, s, x, ) such that

(S, $)f) (x) = W//ei*(q’(”“”"")—w’"”a(r,s,x,n)f(y)dydn+Ef, (2.9)

for supp(f) C [—e, ¢]9~1. Here E = E(z, s) satisfies NEG, s)l 212 SN AV for any
N > 0(i.e.itis “O(h°°)”) and given Sobolev embedding, it has a negligible contribution
to the estimates in the present work. Hence we will often make a slight abuse of notation,
treating S(, s) as the same as this oscillatory integral operator.

We further recall that the phase function has the properties

up(t, s, x,n) + pt,x,dyp(t,s,x,1)) =0,
kis(y,m) = (x,&) ifandonlyif & =d.¢(t,s,x, 1), y=dyop(t,s,x,n). (2.10)

The operators S(t, s) are thus semiclassical Fourier integral operators associated to the
canonical transformations «; s (x, &).

It is implicit in the work of Koch et al. [11] that for s fixed, the phase functions
o(t,s, x, &) are of Carleson—Sjolin type as defined in [14, Chap. 2]. Indeed, for ¢, s €
[e, €], we have that

dydep(t,s,x,8) =1+ 0(e). (2.11)
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Moreover, it can be checked that

{(=p@, x,dxp(t,5,x,8)),dxp(t,5,x,8)) : § € supp(a(r, s, x, )} (2.12)

is an embedded hypersurface in T* R with nonvanishing principal curvatures, all of
the same sign. This follows as (2 1 1) 1mphes that this is a local reparameterization of the
graph {(—p(t, x,n),n) : In| < 2} and this is a subset of the strictly convex hypersurface
determined by the zero set of the left hand side of (2.4).

Stein’s theorem on Carleson—Sjolin phases (see e.g. [14, Theorem 2.2.1]) thus shows
that

’ i @y <= G-t L
15981, s di ) ST O 1Fa (@2 S h gl
—€
(2.13)
Indeed, Stein’s theorem treats the case g = 2£ld_+11)’ so that the first inequality follows

from interpolation with Hormander’s theorem [10] for nondegenerate phase functions in
L2(R=1y (cf. (2.11)). The second inequality follows from the semiclassical Plancherel
identity. An application of Minkowski’s inequality for integrals then shows that this
yields the same linear bounds of the second author in [13]:

&
TP < /
—¢

In our case, linear bounds of this type will play a role, but ultimately the key is bilinear
estimates, specifically those due to Hormander [10] when d = 2 and Lee [12] and the
epsilon removal lemma of the authors [3] when d > 3. For now, we remark that the
reductions above mean that it now suffices to prove estimates on

1
q 7 a1
dt] <h 7 ||Wh||L2(M)
Lq(Rd—l)

t
/ S(t,s)frn(s)ds

—&

. (2.14)
LE (—e.el xRE)

|| 4

Liq- e.el, xRIH

2
H S, s) fn(s) ds)

showing they are bounded by the square of the right hand sides in (1.10), (1.11).

2.2. An Egorov theorem for critical and near-critical symbols. We conclude this section
with an Egorov type theorem in the symbol class Sy,2-5(1), § € [0, %] (see [24, p. 73]

for the notation) which are symbols of the form (2.15) with 6 = h'/2-% below. The
6 = 0 case is considered critical as the usual symbolic calculus does not furnish terms
of higher order in /. For example, the usual stationary phase expansions one often uses
to prove the calculus do not yield these higher order terms. Consequently, one cannot
apply the usual Egorov theorem to such symbols.

Here we show a version of the Egorov theorem for h-pseudodifferential operators
(PDO) with symbols in these classes. As observed in [22, Chap. VIII, Sect. 8] and [7],
there are Egorov theorems for classical PDO in these critical symbol classes, but here
we are interested in a more qualitative version of the theorem. While we cannot show
that conjugation by an A-Fourier integral operator (FIO) results in a strict propagation
of support for the symbols via the associated canonical transformation, the symbol is
rapidly decreasing on a scale of at least 2~!/2 in terms of the distance to this propagated
region, which is enough for our applications. The theorem not only applies to the operator
S(t, s) defined above, but to more general local 4-FIO.
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Theorem 2.1. Let S be a local h-Fourier integral operator

1
Qrh)n

(Sf)(x) = / / eH @@= g (x n) £ () dydn,
RZH

for some compactly supported symbol a € S(1) over R*" and associated to a canonical
transformation k : R — R>" in that k(y, n) = (x, &) if and only if & = dy¢(x, 1)
andy = dy¢(x, n). Furthermore, let B be an h-pseudodifferential operator with symbol
satisfying
1
109b(y, 6)| So 0711 where6 =hz7%, § €0, 11. (2.15)

Then C = SBS™* defines an h-pseudodifferential operator with symbol c(x, p) also
satisfying (2.15). If in addition, supp(b) C D for some compact set D C R", then for
every N > 0,

[0%c(x, p)] Sav 07 A+ 1710d(x, p; (D)) Y, (2.16)

withd(x, p; k(D)) denoting the distance to k (D), the image of D under k. Furthermore,
for any M > O there exists a symbol cp(y, n) satisfying (2.15) such that supp(cpy) C
k(D) and for every N > 0,

|8%(c — ) )| San 07 O™HM A+ R 0d(y, n; k(D). (2.17)

Tracing through the proof, it is seen that the implicit constants appearing in (2.16)
and (2.17) do not depend on 8, but only on those in (2.15) and the derivative bounds for
a, k, and ¢. In this work, we are mainly interested applying this theorem in the § = 0
case, but record the more general case as a point of interest. We also stress that B is
defined by taking the standard quantization of the symbol b(y, &).

Proof. The composition C = SBS* has a Schwartz kernel K (x, X) given by an oscil-
latory integral. For sufficiently regular f, the compact support of the symbols ensures
that we may write

1 i i~
(€A = G [ ehtep) ( / ehE—en g (, x)df) T4 () (p) dp.

The expression in parentheses determines the symbol c(x, p) and can be written as

1
0 = G
xa(x, Ma(x, mb(y,§)d(y,y,n,1,§, %)

F=3.6) =y +(F. 0+ (x.n) = (X,)+(x—%,p))

where the integrations here must be interpreted in the sense of distributions since the
amplitude is independent of y. A standard limiting procedure shows that this presents
no difficulty, allowing us to integrate in the y variable first, which yields the distribution
2mh)"8(n — &). Hence c¢(x, p) can be written as

1

(2mh)n

/R4 eh @M OEDHEE P g (x p)aE, b(y. 7) dndiidydz,

and the integration here is no longer formal. We rewrite this as

! ' o H @)= G )+, ) +(y.7)
(27'[]’!) n Rén

xa(x,ma(xX +x,n+mb(y, n+n) dndndydx.
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For each (x, x, 17, p), we make a further change of variables (y, ) — (w, o) with
1
w=y= [ dptrsionesivds =y~ dptcrFoy i)+ 0UGE D) (219
0

1
o =p—/0 dep(x +sx,n+s0)ds = p—dep(x, )+ O((X, 7)) (2.19)

so that the phase reads ((x, w), (o, 77)). The invertibility of the mixed Hessian d, d,¢ en-
sures that locally, (y, n) — (w, o) defines an invertible transformation. The last expres-
sionin (2.18) means that we may write y = d,¢ (x+E1, n+7) where E1(x, X, w, 0, 1}, p)
= O(|(w, x,n)]) as (w, x, 1) — 0. Hence

b(y, n+7) = bdyd(x+ Er,n+7), n+7) = (box™)(x +Er, de(x + Er, n+17)

where y, n are understood as functions of (x, X, w, o, 17, p). Moreover, the last expres-
sion in (2.19) means that dy¢(x + E{,n + 1) = p + Ep, with Ex(x, X, w, 0,17, p) =
O(|(w, X, i, 0)]) near 0. Up to O (h*°) error, c¢(x, p) can thus be rewritten as

1

T / eH WO A(x % w, 0,7, p)(b ok )(x + E1, p + Ea) dndiidyd5
JT Ré4n

(2.20)
where A and its partial derivatives are uniformly bounded in /.
As observed in [24, p. 51], the phase function in (2.20) can be rewritten as

1
(F.w). (0,1) = S (O w. 0. ), (F,w. 0. ). where 0 = [(,’ é} o

At this point, it can be treated using the method in [24, Theorem 3.13]. We momentarily
treat x, p as fixed, and let u(x, w, o, 17) be the amplitude in (2.20) formed by fixing these
variables. Let ¢ € R** denote variables which are dual to (¥, w, o, 1), then using the
classical Fourier transform, (2.20) can be rewritten as

1 ih ~
T = fR e~ 20850 de.

Applying Taylor’s formula in & we have for every M € N, the differential operator
P = —i(D ), D(s 7)) can be used to write

h = hk Dk hM ! M—1 h M d
J( ’u):k;ﬁj(o’]) u)+m/0(l—t) Th, PMuydr. (221

The sum in k can be rewritten as Z,fi?)l(he_z)kfk(x, p) with |8%¢;| < 671¢l and
supp(ck) C supp(b o k= /c(sulpp(b)). B
A change of variables ¢ +— #~2¢ in the remainder J (th, P™u) yields
1
(27 /1)t

We are thus led to study integrals of the following form, for ¢ € (0, 1]

J(th, PMu) = /th e~ TOEO PMy (=20 ) de (2.22)

| SNy A~ 1 1 1 1
/ el @D) Ax 125, 12w, 120, 127, p)dxdwdodi.
R4n

(2.23)

6:t(xs p) = (271_]1)2"



Refined and Microlocal Kakeya-Nikodym Bounds 511

for some amplitude g(x, X, w, o, 1, p) satisfying |80‘X| <« 91l and

((x, %, w,0,7,p) : A(x, %, w, 0, 71, p) # 0}
Clx, %, w,0,7,p): bok )(x+Ey, p+Ey) #0}.

Indeed, the identity in (2.22), combined with the Fourier transform, shows that the
remainder term in (2.21) can be expressed as

(ho=HM

1
. o \M-1
m/o ¢ (x, p)(1 —1) dt

for some integral ¢; (x, p). Moreover, (2.20) is of the form (2.23) with ¢t = 1, so studying
these integrals provides a unified approach to (2.16) and (2.17).

We now show that (6 Dy ,)*c;(x, p) has the effect of replacing the amplitude in the
definition by one of the same regularity. By induction, it suffices to prove this for |a| = 1.
This is clear for any such weighted derivative applied to the amplitude, hence it suffices
to consider the effect of such derivatives on the phase. Recall that x, 77 are independent
of (x, p) even though (w, o) are not. Hence

QDxie%((i,w),(a,ﬁ)> — (3)(,-0' - (ODy) + 3x’_w . (9Dw)) e;,;((i,w)’(G,ﬁ)),

and integration by parts completes the proof of the claim. Derivatives in p are handled
analogously.

To see (2.16), (2.17) with N = 0, it remains to show that |¢;(x, p)| is uniformly
bounded in /. Note that the first order differential operator

- o~ _1 ~ o~ 1
1+ (o,n,x,w) - D(,\?,w,o,f]) o 1+ (h~2(0,n,x,w)) - (th()?,w,o,ﬁ))
L+h (o, 7, %, w)> 1L+h=Y (o, 7, %, w)|?

(2.24)

preserves the exponential factor in (2.23). Writing the differential operator in the sec-
ond fashion illustrates that the transpose of this operator applied to the class of am-
plitudes here yields an amplitude of the same regularity (in that there is no loss in
h). Integration by parts sufficiently many times yields an amplitude which is O ((1 +
h=Y (o, 7, ¥, w)|?)~*"), so that integration in these variables counterbalances the loss
of =2 in front of (2.23). Alternatively, one could verify (2.16), (2.17) when N = 0 by
changing variables (¥, w, o, ) — h'/2(%, w, o, ij) from the outset in (2.23).
To show (2.16), (2.17) for N > 1, we observe that if d(x, p; k(D)) > h6~!, then

1 -N
lerx )l S (h7'0d(x, ik (D)) (2.25)

Indeed, since (b o kM) (x + E1, p + E2) # 0 over the domain of integration in (2.23),
our previous observation that £y, E; = O(|(X, w, o, n)|) means that for such (x, p),

ho™ < d(x, p; k(D)) < |(E1, En)| < [t2(F, w0, )| < |(F, w, 0, 7).

Hence the phase function in (2.23) has no critical points, and each integration by parts
with respect to Dz y,0,7) Yields a gain of at least Oho~ (X, w, o, 7)|7"). Integrating
by parts sufficiently many times with this operator followed by a successive integration
by parts using the operator in (2.24) thus implies (2.25). O
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Remark 2.2. 1tis interesting to note that if one does not assume supp(b) C D, but instead
the weaker decay condition

|00 (x, )] Sav 0711 +67'd(x, D) 7N,
then the symbol of ¢ satisfies the same bound, but with D replaced by « (D). This is a
matter of replacing the differential operator in (2.24) by
1+ 0 0,7, %, w) - (W0 Dz w.0.5))
1+072|(F, w, 0, )[?

and proceeding in a similar fashion to the # = 1 case in the analysis of (2.23) above.

3. Microlocal Kakeya—Nikodym Norms and the Outline of the Proof

Let J be the negative integer satisfying 27 > /A > 27/~1. Given v € 2/ 7Z2@=D et b{
be a smooth bump function such that for some & > 0 sufficiently small

1 1 2(d—1)
supp(b‘{)Cv+|:— <§+§)2J,<E+§>21:| ,

> bl(x.&)=1 and

ve2J 72d—1)

3.1)

]

J —Jle| ~, -
0% bl )| So 27~ S

We then define BU] (0) (to be extended to a family of operators {BVJ (t)}re[—s.¢]), tO bE
the semiclassical h-pseudodifferential operator with symbol b/ € S, s2(1)

(B] (0)g)(x) = 1 e Imp! (x £) g(v)dydn.  (3.2)
v Qrah)d=1t J Jraa-1 v

We remark that by a standard rescaling argument and the Calderén—Vaillancourt theorem,

BVJ (0) is bounded on Lz(Rf_l) (as is any operator with symbol in Sy,2(1)). Extend
BVJ (0) to a family of operators by defining

B! (1) = S(z,0)B (0)5(0, 1).

Giveng € L*([—¢, €ly; L? (Rff_ 1), let T denote the operator defined in vector valued
notation

t

t

(Tg)(1) = / S(t,s)g(s)ds, thatis, (Tg)(t, x) = / (S(z,$)g(s, ) (x)ds,
—& —&

so that g(s), (Tg)(t) € L>(RY~1) for ¢, s € [—e, ]. As suggested in (2.14), the main

strategy for proving the estimates in (1.10), (1.11) will be to prove L4 /2 bounds on

(1//;,)2, leading us to consider (Tfh)z. Since fr(s) =), BUJ (s) fn(s), we may write

t t
(Thn) =Y ( / S(,$)B,] (S)fh(s)ds> ( / S(m)Bv’,(r)fh(r)dr)

—& —&
v,V

=Y TB] fidOT (B fi) (1) (33)

v,V

where B}/ f, abbreviates the vector valued function s — B (s) f5(s).
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We next consider the family of dyadic cubes in R>@—D, rﬁ formed by taking the
cube [—27~1,2/=1)2(d=D "and translating by an element 1 € 2/Z>@=D_ As in [21],
two dyadic cubes are said to be close, writing r,{ ~ ‘L’l{/, if they are not adjacent, but
have adjacent parents of sidelength 2/+!. We use this to organize the sum in (3.3): given
a pair (v, v') such that 277 |v — /| is sufficiently large, there exist close dyadic cubes
t,{ ~ ‘L’l{, such that v € 1:,{ and V' € Tl{, (which means [v — V/| & 2/), allowing us to
write

SOTBfTBL )= > TBl T (B fr)

v,V (vv)egy
0
> > T(B] fi)T (B fu) + O(h%),
j=J+1 (v‘v/)Et,fxrj,:t,{th,

w w

(3.4)

where we let £ denote pairs (v, v') lying in adjacent cubes. Note that by (2.7), we may
limit ourselves to cubes of distance less than 1 at the cost of the negligible O (h°°) error
term on the right. When 0 < j < J + 1, we define

Ej =, 1)t ~ T,

noting the slight variation in these definitions. For 1 € 2/Z?“=D we define B,ﬂ(O) as
the 4-PDO with symbol

bl (v, m =Y b (y.m).

j
VET)

For convenience, set - .
Dy, := supp(b}). (3.5)

Taking & small in (3.1), we have for (i, u') € E;, we have
d(D},DIy~21, 0=j=T+1. (3.6)

Also define
Bj(s):= Y BJ(s) = S(s.0)B}(0)S(0, ).

ver),
and denote the symbol of B,]L. (s) as b,];(s, v, n). Given Theorem 2.1,
. el 1 . —N
02,05, v Saw b3 (14n78d (vomsko (D]))) 1 G

and the same holds when j = J.
With this notation, the first sum on the right in (3.4) can be rewritten as

0
Y. D> TBLWTB,fi. (3.8)

J=J+1 (u,)€E;



514 M. D. Blair, C. D. Sogge

Hence ||(1/f;,)2||L2 ( RO is bounded above by

el x
0 . .
Yol YD TBIMTBLM| +| D TBIMWMTBLMW| - 39
J=T+1 || (n,p1)€EE; %3 (w)egy L3

To estimate (3.9), we follow the strategy in [4], first proving almost orthogonality of
the T(BM fh)T(B ,fn) for (u, ') € Ej, then using bilinear estimates to bound each

product. However to make this rigorous, we will need to instead consider a family of
h-PDO for |s| < & where ¢ is as in (2.1)

[Blo@ :wesel-zel (3.10)

where €2 is a finite index set and each corresponding symbol b{;)w(s, y, ) in the family
satisfies the same bound as in (3.7)

8% bl (s, v, n)’NaNh (1+h zd(y, 7 Ks.0 (@i)))w, (3.11)

and for each o and N, the implicit constants here are uniformly bounded in u, , j.
This collection will be defined below. A B{L »(s) can thus be viewed as akin to a B}, 1(5),
but whose symbol as been distorted (though compact support of the symbol may be lost
when s = 0).

Before getting to the crux of our argument, we prove two lemmas.

Lemma 3.1. Suppose w,, € Q2 is any sequence parameterized by | € 2/72@=D_ Then
forany J < j <0,

s ILfll32- (3.12)

L2([—e,e], xRE™!

. 2
J
Z H BMv“’;L i
"

Proof. Observe that it suffices to show that for each s € [—e¢, ¢]

12 Rd 1 ~ ”fh(s)”LZ(]Rd 1)7

(Bl 1)
"

and integrate both sides over s € [—¢, €]. By Khintchine’s inequality, this reduces to
showing that for an arbitrary sequence {v,}, taking values v, = £1

5 ”fh (S)||L2(Rdfl),
LZ(Rd—l)

D VuBj . () fus)
"

where the implicit constant on the right is independent of the sequence. By the aforemen-
tioned application of the Calderén-Vaillancourt theorem, this further reduces to showing
that the symbol

> by, (5, ) (3.13)
"
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is in §y1,2(1) with bounds uniform in the sequence {v,},. This in turn follows from
verifying that for N > 2d,

S (14574 (v mi ks (Dz;)))_N < 3 (1+277d (o, DL))_N <L
“ n

(3.14)
Indeed, if this holds, then any weighted derivative (2!/29y ,)* of the symbol in (3.13)
is O(1) by (3.11) and the triangle inequality.
To see (3.14), note that the first inequality follows since ;0 and its inverse are
Lipschitz maps and 27/ < h~1/2, For the second inequality, observe that

d (KO,s(yv n): D{;) < 4lio.s(y, ) — pl if d (Ko,s(y, n); D,’;) > 2/%3,

The rest of (3.14) then follows as a consequence of

Y (12 ki ) S0

pe2iz2d-

We now define the microlocal Kakeya—Nikodym norm of fj, as

&
2 —j(d—1 j 2
| fullasxw == sup sup sup 27J¢ )/ ”B)i,w(s)fh(S)||L2(Rd—|)dS-

T<j<0weQ ye2iz2@-n —e

Lemma 3.2. Using the norms in (1.5) involving averages over tubes, we have that

I fullmgn S W¥nllkn. (3.15)

Proof. The bound (3.15) will follow by showing that for any j, i, @

e € . _d-1
2-itd=1 / 1B, (5) ()2 a1, ds < sup h™ T / a0, x) Pdxdr,
e yell T2(r)

In what follows, let 7 : T*R4~! — R?~! denote the projection 7 (x, &) = x. Observe
that the integral curves of the Hamiltonian vector field H), are nonlinear reparameteri-
zations of unit speed geodesics in Tf"Rd, which are integral curves of the Hamiltonian
vector field determined by %(Zi,j 8 (2)¢i¢; — 1). So while

(QJ'{L = Use[—s,a]n(lcs,o(fD;jL))

does not define a tubular neighborhood, it is contained in a tubular neighborhood of
width O(2/) about the unit speed geodesic segment which intersects the s = 0 plane
with coordinates u € T*({s = 0}).

We now claim that there exists a cover of our coordinate chart by family of (not
necessarily tubular) neighborhoods about geodesic segments {7k}x indexed by k €
277-1 (27 ~ h'/? as above) and an associated partition of unity > Xl% = 1 in the chart

with supp(xk) C 7x with the following properties for some C uniform and ko fixed:

d(Tx, &) ~ |k — ko| whenever d (7, £/,) = C2/, (3.16)
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#lk:d (T ef) < c2l) = o (0m'22))"), (3.17)
each 7~i( can be covered by O (1) tubular neighborhoods 71,2 (y), (3.18)
NT =Pandd(Z, Tp) ~ [k —k| if |k—k|>2/". (3.19)

To see that this cover exists, we momentarily take Fermi coordinates (z1,z’) € R4
adapted to a hypersurface orthogonal to the geodesic segment {k; o(1t) : |s| < €}, so
that {z/ = 0} identifies the hypersurface and r +> (r, z’) always parameterizes a unit
speed geodesic. In particular, we assume that » +— (r, 0) parameterizes the geodesic

segment given by s — K o(u) so that Eﬂ cfz: 7] < 2/}. In these coordinates, we
take a partition of unity » le = 1 sothat withk = (ko, ..., kg)

supp() C T := {(m, Z) tlzil Se max |z —ki| < 2”1}.
2<i<d

The property (3.19) is immediate in these coordinates. The set Tk is a neighborhood
about the geodesic segment yx given as the image of r — (r, k). Since 27~ h'2 we
have that 7x C 7¢,;1/2(yx) for some C| large, and (3.18) follows easily in any coordinate
system. We now take kg = 0 and it is then verified that we may take C so that (3.17) is

satisfied and d (ﬁ, ﬁo) 2 |k — ko| whenever d (ﬁ(, EL) > C2J. We now revert back

to the original coordinates and at the cost of enlarging C and the other implicit constants,
(3.16), (3.17), and (3.19) are all satisfied here since the diffeomorphism can be taken to
satisfy a Lipschitz bound with uniform constant.

Given the above, (3.18) means that it suffices to show the two inequalities

1B, () fn ()12 a1y S (1227771 sup (e /i) (s M2 g1y > (3:20)

/ Gt /i) (5, 72 ga-1)ds S sup / | O (. ) |2 g, dt. (3.21)
k

—&

We primarily focus on (3.20), as the second bound will be seen to follow from very
similar ideas. Let B, ., k(s) be the operator with Schwartz kernel given by

1

Qrh)d-1 / M, (s, v, m)x(s, X)d, (3.22)

and since Zk sz = 1, this means that
B ,()(fu(s. ) = B ,(5) (Z(x,?ﬂ)(s, ~>> = Buowk®) (G fa)s. ).
k k

Partition the indices k into sets K;, K» wherek € K if d (’fk, SL) < C2/ andk € K»

otherwise. The compound symbol of By, « k(s) isin S;2(1) so the operator is uniformly
bounded in L2(R4~1). Hence
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2
2
Byiw(s) Z Xk fn (s, ) N /‘ Z le(x)fh(s,x)‘ dx
keK L2(Rd-1) keK
S Z/|Xk(x)fh(s,x)|2dx.
keKy

where we have used (3.19) and le (x) < xx(x) as a bump function. Given (3.17), the
expression on the right is dominated by the right hand side of (3.20).
We conclude (3.20) by showing that for any N > 0,

| Bk ;2 12 Sv (B2 Ik — ko)™ (3.23)

so that by taking N large

Y Buowk®) (Oufi)s, 0| S D@ k—koD ™V 1Gacfi) (s, )iz (3.24)

kekK, 12 kekK,

and the last expression is seen to be bounded by the right hand side of (3.20). To see
(3.23), observe that an integration by parts in (3.22) similar to (2.24) shows that we may

take the compound symbol b/i’w,k(s, y,x, 1) of B[L’w’k(s) to satisfy

020y )b, (55 ] Sy (1 1y=2 )™ (14872 (v, k3 (DD))_M '

The right hand side here is thus O ((1 + h=12d(x, EL))_N) and since we may restrict

to x such that xk(s, x) # 0, this in turn is 0((h_% |k — ko|)™) by (3.16).

The proof of (3.21) is similar, the primary difference is that fj, is the image of v,
under the operator in (2.6), so the estimates are over R? instead of R¢~!. But given
(3.19), the same principles as before apply here, as the kernel of the operator in (2.6)
rapidly decreases on the scale of 4!/? away from the diagonal. The only other significant
difference is that the analog of (3.24) should be adjusted to read

Y Xiki S D@ R=KD T v oo, -

l~(EK2 LZ(Rd) l.(eKz
O

We now return to estimating (3.9) and state the two main theorems which form the
crux of the proof of Theorem 1.1. The first step in is to use an almost orthogonality
theorem, valid when j = J or when j > J + 1, which will be proved in Sect. 4. Note
that «;0() = (x7.0(1), &.0(1)) is the image of u € 2/Z*“=D under the map ;.o
defined after (2.8).

Theorem 3.3. Suppose 1 < p < oo and p* = min(p, p'). There exists a family of

h-pseudodifferential operators B,Jl,w(s) which satisfy (3.11) and with w ranging over a
finite collection of indices depending only on the dimension, such that



518 M. D. Blair, C. D. Sogge

> TBLWT B, fi)
W E€B Lp
1
A

, (3.25)

. . : p*
5 Z Z H Tp{,a)(B{/,,wfh)Tu’,a)’(Bljld/’w/fh) LE

w,0 \pu,Wek;

when 0 > j > J+1orwhen j = J. Here T,{,w (and similarly T;i/,w’) is defined by

t
(T o F)(t, %) = / (T,{:Z)F(s, -)) (x)ds (3.26)

—&

where T,{ji is the fixed s operator defined by the formula

(T3 )t %) = [ efoesmn-saal s kg ordvan - 327

1
Q2 h)d—1
with ¢ as in (2.9) but with symbol ai,w(t, s, x, 1) satisfying

0% b s x| S 27 A+ 27 x — x, 00D T+ 27 Iy — £ 0 (w)) .

The second step in estimating this is to employ the bilinear estimates in the following
theorem, which we prove in Sect. 5:
B,JL' ws Bi W are
as in Theorem 3.3. There exist corresponding (s dependent) h-PDO BM » and BM o
satisfying (3.11) such that the bilinear operator R defined for fixed s, s' € [—¢, €] by

Theorem 3.4. Suppose j = J,...,0, u, 1’ € E; and T,L w,T

W'

R(B}, (). B}, ., (s)8) (1, %)
= (LBl N) @0 - (T B ) ..

satisfies bounds

2d . 2(d+1) .
h_7+(d_1)2_1(d_1_ 7 ) HR(B;]x,,a)(S)f’ BJ/ /(S )g)‘

L (—e.e1, xR
SIBL () Fl2I1BL, (gl 2 + 1B () fll 21 B, L ()gll 2
+HIB] o) fl2 B, (gl + 1B W) fll 2B, (Dgllp2,  (3.28)

where the norms on the right hand side are taken to be L*(R4~1).

@d-nG-H -,
Note that the first factor on the left rewrites as & 2 (h22 7y

showing that the phase space separatlon of the B,]Mw and BM,’w, (up to rapidly decreasmg
2(d 1)

tails) results in a gain of (h 327 ) 7 G0 over what would be obtained by applying

the linear estimates (2.13). The B i1, are slight distortions of the B,ﬂ,w that arise when
replacing the rapidly decaying symbol of T,f . by acompactly supported one. We take the
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family (3.10) to consist of the union of the operators constructed in these two theorems,
that is, operators of the form Bj, ., (s) or B}, ,,(s).

We can now begin discussing how to estimate the terms in (3.9), showing that the
two theorems here imply (1.10), (1.11), and hence Theorem 1.1. Given Theorem 3.3,
we have forany J < j <0,

Y. TBLMTB, fi)
(u,1)EE; L4

1
4 g\ B°
=D DS [N LA ]

w0 \p1,WeE;

where the L% norms are taken over [—e, e]; % Rf‘l. We now fix w, ' and show that
Theorem 3.4 supplies bounds on each term on the right hand side here. In this case
Minkowski’s inequality for integrals shows that

|7 (Bl T, (Bl
2

& q
< f / g dt| dsds'
[—e,e]> \J—¢ 2RI

Hence (3.28) and Holder’s inequality show that this in turn is bounded by

q
2
L

T (B () fu($) - TS (B, (5 fu(s)

2 _(d—1)nj(d— 1—7
P @Dy Y(1B] oSl 2ty 1By oy fill2gae)

1B o Fill 2y B2 o Fill 2y + 1B o fill 2y | B o Fill 2y

B o fill 2y 1By o fill ey (3.29)

We will now bound the right hand side of (3.29) in two different ways, and then show
how to optimize the choice. If (1, u') € &j, then 27/ (u — ') lies in a fixed, finite
collection of vectors (of size & 1 when j > J + 1 or O(1) when j = J). Hence

#{u (1) € ;) = 0(1) for any fixed p € 2/72@=D. (3.30)

We now have for any two w, o’ € ,

H ,M,thM wJh

l*q
()L7

L
L\ (D

U _(d—1)j(d—1-2dD) €]
el I S S -V N SN VTR oo
W, u)EE)
(3.31)

where the dots denote the corresponding contributions of the last three terms in (3.29).
Observe that when d > 3, ($)* = % (since ¢ < % < 4 in this case) and hence by
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Cauchy—Schwarz and (3.30), the right hand side in (3.31) is dominated by

1
q

1
2 (g 1) m i (d—]— 2d+D) ; ! j
pa @Dy g >(Z||B{L,wfh||§z> 2B Sl |+
u/

n

Indeed given (3.30), we may view u’ as a function of u at the cost of increasing the im-
plicit constant by a factor determined the O (1) constant there. By the embedding £ <>
—(d=1)5jd—1-2E) o
2 Nl
2

When d = 2, the same conclusion holds since (4)* = (§)' = ﬁ and £2 < (72

On the other hand, when d > 3 we may estimate the sum appearing on the right in
(3.31) (and similarly the other terms) by

2d
£9 and Lemma 3.1, we have that this in turnis bounded by 4 ¢

4—q
29

q . q . 29

j 2 J 2 J 4-

S S Bl B flls | S Wl [ S UB Sl
M/

W, w)eg;

Qo

4

o4
. j T i@=D=2y g e 27
S W2 \sup 1By, o fullr2 S2 NSl 2 Wl v
w

where the first inequality follows by Holder’s inequality with exponents satisfying %1 =
% + 42;;1 and the second inequality follows by using that 42qu =2+ t"_—_g. Note that we
have used Lemma 3.1 twice in the process and also (3.30) similar to before. Whend = 2,

a similar argument checks that the sum appearing on the right in (3.31) is majorized by

4 4

24 . q 2 a4 4
j 2
I fill, 2 (sup ||BM/’w/fh||L2> S29 Nl N fnllyggen
m

Repeating this for the finite collection of pairs w, @', we have that when d > 3,

' ' 2 (1), j(d—1)(2—2)— 2D b 2-3

Yo TBLWTBL | Sk TV F I
(wH)EE; L4

(3.32)

~ - 2j (=74
though the second factor on the right rewrites as 277" ¢ -7 Whend = 2,

. : 24 _ g1y Ai(1—2 2-4 4
Yo TBIMTBL | Sk DL Uy (333)
(1, W)EE; L5

At the same time, in all cases we have

, . 24 (1) m i (d—]— 2d+D)
Yo TBIMTBL | Sk R, (334
(u,W)EE Ly
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Consequently, if we fix an integer J < L < 0, then when d > 3, (3.32) yields

L
Yo >SS T TB,

J=J || (n.u)EE; L%
. 2\ 2(d+D) 4 2-4
U (1), L((d—1)@2—2)— 2D
<h4 2 D VA F VA YT

since g > @ > % implies that (d — 1)(2 — %1) — @ > (. Moreover,d — 1 —

@ < 0, 50 (3.34) yields

2(d+1)

0
i j 2 _(d—1)4L(d—1—
Sl Y TBifr®lm|  <ne 4Tk Nl

J=L || (n,)EE; L3

It is then verified that we optimize the bounds on (3.9) by taking L such that 2L@=1D/2 ~
Il full 22/l full sk v, Whichis possible since the latter quantity is O (1) and bounded below

by h“F" . This shows that (3.9) is bounded by

2d 4_ 4(d+1) Ad+)
=—d-1) (d=T) d-1
ha W frll 2 ™ N g v

Whend =2 and 4 < g < 6, a similar argument using (3.33) and (3.34) shows the same
bound. Finally, when d = 2 and g = 4 we obtain that (3.9) is bounded by

log(h ™D fill 2 Il fill vk v

Given (2.5) and Lemma 3.2, this completes the proofs of (1.10), (1.11).
Another perspective on (3.32) and (3.34) (and similarly when d = 2) results from
noting that right hand sides of these two inequalities are respectively bounded by

_ g d=lg_2d 4 2-4
(P W S (VA ERT[ VAT

_ _ d—1,2d+D)
W2 (22 CET Dy 7,

after an application of (3.15) and || fx |2 < |¥nll 12 (as well as recalling the differences
between (1.5), (1.6)). The latter of these underscores the gain resulting from the bilinear
estimates while the former trades a loss in /272 for a gain in the Kakeya—Nikodym
norm of v;,. This also shows that L is taken so that

d—1
WWnlllgn = Wl 2 (R2725) 5

4. Almost Orthogonality

In this section, we prove Theorem 3.3. We begin with a lemma, recalling the notation
for (x;,0(), &.0(n)) following (2.8) and prior to Theorem 3.3.



522 M. D. Blair, C. D. Sogge

Lemma 4.1. Let 2/ € [h%, 11, u € 2779~V and suppose that «, B are multiindices
such that ||, |B| < 2d. Given f € S(R™1), let

F3(y) = (277 (y = x50 (277 (hDy — &0 ™ (),

with (w) = (1 + |w|2)%. There exists a symbol ai’a’ﬂ(t, s, x, &) satisfying

D el o pt5. 5, 6)] Sy 27127 (v = 21,0 (0) Q27 (€ = 50G)) ™ 41)
such that up to negligible O (h™°) error,
2—f<'“'+'ﬁ'><x — x,0(u)*(hDy — &, o(u))ﬁ (S, ) f)(x)
(@(@,5,x,8)—(y.§)) s
(Znh)d i [/eh pt. s, x, E)F, (y)dyds.  (4.2)
Proof. Let A(t, s, x, y, n) be defined by
Aty s, x,y,m) = alt, s, 6, M2 (0 = &,0(0)) 27 (y = x5 0()) ™
so that up to O (h*°) error (resulting only from the error term in (2.9)),
Qrh)*S(t, ) f (x)

= / R ST a(r s x ) (27T (= 0()) " Fn (27 (hD—,. 0 ()™ £)(mdn
= f/ eh@Esxm=a Ay 5 x nFS(y) dydn,

where we have inverted J, in the last expression and used that the argument of & in
the second expression is (277 (y — xs,o(u)))"‘d F;i (y). Next we write

2= a1 ( xX1.0()* (hDy — Ez,o(lt))ﬂ / e%@(hs,xﬂ)*(%ﬂ))A(Z, s, x,y,n)dn
- /ej,i(zzﬁ(t,Av,x,n)—(y,n))Al(t’ s,x,y,n)dn 4.3)

where
2/VNDY | AL s, )] Sy (277 (= E,0G0)) 27 (v — xg0(0)))
X (277 (x — x 0N 27 (dep (2, 5, %, 1) — &0 ()P
The differential operator

1+27(dyp (2,5, x,m) — y) - (h277 Dy)
1+2727|dy (2,5, x,m) — y|?

(4.4)

preserves the exponential function in the integral on the right in (4.3). Moreover, since
h2~J < 27, the weighted derivative 12~/ D, appearing here means that the adjoint of
the differential operator applied to A has the effect of replacing that amplitude by one
of the same regularity. Using that
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27y = x50 ) Q2T dyp (2,5, x, ) — y]) M
S Q7 dyg(t, s, x, 1) — x50G01) Y,

integration by parts shows that (4.3) can further be rewritten as

/ e;T(qb(t’s’x’r])_(y’n))Az(t? s’ 'x’ y’ 17) dn

where

21yl |D)}c/,y,nA2(t» s,
Sy @7 = &0 M2 [y (1 s 2, m) = x50(00)) Y
< (277 (x = x 0N 27 (dep (2, 5, x, 1) — & .0())”!
S0 = &0 T2 (x = x0(w)) 7,

where the last inequality follows since |«|, |8| < 2d and k;  is Lipschitz in (x, &).
We now define

e—%(l)(t,s,x.f)

YT // eF@USX W OE=I) A ¢ 5, x, y, ) dydy
T

(4.5)

a[jl,,(x,ﬂ(t’ S, X, é) =
and are left to show (4.1). Abbreviate the phase function here as

d>(t,s,x, Vs 77,5) =¢(I,S,X, '7) _¢(I»S:x,§)+(y7f —77)

First observe that for a single derivative
. d-1 1 .
D, ei®=— Z (f 32 L (t. s, x, (1 —r)E+rn) dr) Dyei®.
0
=1

Integration by parts thus shows that applying a weighted derivative 2/ D, to ai’a, 8 has
the effect of replacing A, by an amplitude of the same regularity. For derivatives in &,
note that

De,eh® = h™" (3,,6(t,5,x,7) — 0,0 (t, 5, x,&)) eh® — D, h®.

As before, the first term on the right here is thus equivalent to the action of a vector field
acting on the exponential in the y variable. Hence integration by parts in y, 1 similar to
before shows that applying a weighted derivative 2/ D, to aiya’ P again has the effect
of replacing A; by an amplitude of the same regularity.

We now conclude the proof by observing that the expression in (4.5) is uniformly
bounded in /. But this follows from integrating by parts with respect to the operator in
(4.4) with 277 = h~1/2 sufficiently many times so that integration in y, 7 yields a gain
of O(h?~1). O
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Proof of Theorem 3.3. Let Q{,u(t)’ Qé,u(t) be the multiplier and Fourier multiplier

0] () = +27%x —x 0. 0 (1) == (1+27H|hDy — & o))~
Thus if c(w) denotes the polynomial c(w) = (1 + 272/ |w|?)?? for w € R~!, we have
T(B}, fu) - T(B), fi)
= 0] (00}, 0e(x = xi0()ehD, ~ &0G0) (T(BLfi)®) - T(BL, fid®))

+0] , OleC—x00), 01, O1cthDi~&0() (TBL ) ®) - TBL i) ).
(4.6)

In turn the commutator [c(x — x;,0(1)), Qé u(t)] can be realized as

[e(x — xe0(w). 0, (O] = Y 045 (1)ealx — x1,0(1)) 4.7

la|<2d

where the symbol of Q27 (1) is (h2779¢)“(1 + 272 1E — & o(w)>) 72 and ¢, is a
polynomial of degree |«|. We thus concern ourselves with the contribution of the middle
line in (4.6), as similar arguments treat the last line.

‘We now observe that

c(x = x0()ehDy = &0(w) (T (BLAIT(BL, /i) (48)
is a sum consisting of terms of the form
27T UHIBRIYD (o — ;0 (1)) (M Dy — &.0(W)P T (BJ fin) - (hDx — &.0()) T (B, fi)-
The operator 2~/1VI(h D, — & .0(1))? can be written as a sum consisting of terms

271 (g o (W) — & o N - 27Dy — & o), i+ =7,

but since |&.0(u) — &.0(')| < 2/, the first factor here is a bounded function.
We next claim that

270 HIBD (x — 2, 0(1)* (h Dy — &.0()P B}, fi = BY o 5
for some 2-PDO Bi, w.p whose symbol satisfies (3.11). Its symbol is

270D (x — x, 0(1)® (€ — &,0(0))P B, (1, x, ).

For each (x, &), we claim that the absolute value of this symbol is bounded above by
(1+h~2d(x, £;1.0(D)) N, Take (7, &) € ky.0(D},) so that

|(x, &) — (£, 8)| < 2d(x, & k1,0(D),))

and by a multinomial expansion the symbol rewrites as

2Py T ey (= D = 2,0 () T E — 672G — &0 ()b,
yi<e, <P
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for some coefficients ¢y, ,,. Since |¥—x; 0 (1), 1€ =& o()] = O(27),and27/ < h=1/2

the absolute value of the symbol is dominated by

=i ril+ly2D Z|Inl gllv2l (1 h_% . D —N—la|-I8]
> 2 e = &1l = E172) (1457324 (x, & x10(D], ) )
YIS ya<p

< (1 +hd (x, £ K,,O(D{L))_N

Derivatives of the symbol of Bl{’ o, p 1€ handled similarly as they will be a sum of terms

involving derivatives of b{L and monomials as above with smaller powers.
We now apply Lemma 4.1, and reindex the sum formed by (4.8) terms by w, @, so
that it writes as a sum

D T Bl W T o (Biy oy ),
w,w

where T/, is of the form (3.26), (3.27).
Fix w, o', and set G, v = T;,{,w(Bl{L,a)fh)Tli/ w,(Ble, o J1). We claim that

1
P*

Z Q{yuQé,u(G#’ﬂ/) S Z ”Gusu/ HZ; ) 4.9)

W E€E; Lp W €S

Observe that when p = 1 or p = oo, (4.9) follows from the fact that Q{’ u(t) is
multiplication by a bounded function and the convolution kernel of Qé, .. (1) is a function

with uniform L' norm. By interpolation, it suffices to prove (4.9) when p = 2. Moreover,
it is sufficient to prove it for 7 fixed.
We thus write the left hand side of (4.9) as

> fR 01, 00) (Gt N Q110027 (G (1)
' €E;
L1’ €8j

Given (3.30), the remainder of the proof for p = 2 now follows by showing that the
absolute value of each integral here is bounded by

A+ 27| = @) 2NG (1 ) 2N G o (2, 2. (4.10)
Begin by writing it = (uy, pg) € R4~ x R4~ and consider cases

lx — x| = 8lpe — frel and [px — fix| < 8[pe — f1el.
In the first case, we have |x; 0() — x;.0(1")| ~ |1 — /| which shows that
(1+27% |x = 20w )2 A+27 [x = x> S A+ 27 | — A=,

and hence (4.10) follows. In the second case, & o(u) — &.0(')| =~ | — w'| instead.
We thus use the Plancherel identity for the semiclassical Fourier transform and simple
convolution estimates to see that Q{ " (1) Qi M #)(Gy, (2, -))issufficiently concentrated

in a 27/ neighborhood of & o(1). O
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5. Proof of Theorem 3.4

The bound (3.28) asserts that the phase space separation of B,i,w(s) f,B i, w (s")g yields

.od+l _d—1
a gain of (h272/) ¢ ~ 7 over what would be obtained by a formal application of the

linear bounds (2.13). The only difficulty with linear bounds is that the symbols a,jw,
from (3.27) are not in So(1) since there are losses when they are differentiated in (x, 7).
However, we will see that the decay of the symbol in x, & ensures that linear bounds for
these symbols are valid nonetheless. In particular, linear bounds will apply to the case
h ~ 2%/, where there insufficient phase space separation to apply bilinear bounds.

Our first task is to reduce matters to working with compactly supported symbols

instead of the rapidly decaying symbols a[t,w. This step is not necessary when i ~ 2%/,
so the discussion from here through Lemma 5.2 will assume that J + 1 < j < O.
Recalling from (3.6) that
YRR :
d(@ﬂfy@ﬂ,)wzf, J+1<j<0

we may take smooth bump functions C'[L (x, &) and ci/ (x, &) such that

d (supp(l — cﬁ), @L) > 8§27
for some sufficiently small, but uniform constant § > 0 while
J JNY ~ nJ
d(supp(cy,), supp(c;,)) ~ 2/ (5.1)
Now extend the c,jL to a family {c{; (8, -)}se[—e.¢] by defining

s, %,8) 1= ¢, (ko (6. §) = ¢, (k5,007 (6, 9))
Taking ¢ > 0 sufficiently small in (2.1), we may assume that for every s € [—e¢, €]
d(supp(1 — ¢/)(s, ). k5.0(D})) = 827, (5.2)
d(supp(c) (5. ). supp(c, (5. ) ) ~ 27, (5.3)

Now let C{; (s) denote the h-pseudodifferential operator with symbol C'[L (s, ).
We will first show that linear estimates can be applied to

h—%‘fﬂd—l)z—j(d—l—@)

x| R (Blu() 1. By o s1g) =R (€Y 0 By F. (€l 0 B (Mg)|

(5.4)

so that it is bounded by the last three terms on the right hand side of (3.28). In particular,
this process will lead us to define

B () = (02720 (1 = Cl() 0 BY (s). (5.5)

After applying linear bounds, we will be reduced to
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|R(€l)0 BL,6)f (€)s) 0 B] 08|

U _ (1) j(d—1-2EDy /
S VT ERIONBL L) fl2@a 1Bl (D8l 2@y, (56)

LF ([—e.el xRIT)

which will follow from bilinear estimates of S. Lee [12], using the separation in (5.3).

Lemma 5.1. The composition (I — C,]; (s)) o B[L’,w(s) is an h-PDO with whose symbol
q(s, x, &) satisfies

Dy e _1 P —
102 g (s, %, )] Sav (h272)A™ T (14 h™2d(x, & k50D .
The lemma thus ensures that B,’;,w(s) as defined in (5.5) satisfies (3.11) since h272/ <
.od+l d—1
(h2727y ¢ 2 forq > 2.

Proof. Observe that

1 i . .
- - plx=yn=§) 1 _ ;
q(s: %, 8) = 5 a fRz(d_l)e“ WL = ¢]) (s, x, )b, (s, v, &) dydn,

and consider more general oscillatory integrals of the form

1

Qa1 /1;2@171) e TYN=E) A(x, n, y, &) dydn. (5.7)

where supp(A(-, v, §)) C supp((1 — c,jl)(s, -)) for every (v, &) and
9% A, 1, 9, )] Sav B (14 R 3d(y, & kg 0 (D)) Y

with implicit constants depending only on those defining c,ﬂ, b',’L and their derivatives.

The main idea is that through induction, (h% Ox,e)%q (s, x, &) is an oscillatory integral of
this type, which follows easily by integration by parts since

B, eI = g G Rlmyn=E) g o) = g pixmya—E),
Hence we are left to show that
DS 272 (14 h™2d(x, & k5, 0(DIH) . (5.8)

The differential operator

1+ (h_%(é —1n,x—=y): (h%D(y,n))
1+h=1E—n,x—y)_

preserves the phase function in (5.7), so integration by parts shows that

15Dl <w
1

- . —2N
Qmh)d-1 /(1 +h7%|(x—y, §— 77)|)73N (1 + hi%d (y, &; KS’O(D{}_))) dydn
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and the domain of integration can be restricted to n € supp((1 — cﬁ)(s, x, -)). The first
factor in the integrand allows us to replace the pair (y, &) in the second by either (x, 1)
or (x, &). In particular, when N > 2, the integrand is dominated by

1 1 . _ 1 . —N
+h™ 0=y, & =)™ (17 2d e i k0(D))) (14872 (x, & 600(D))) )
Since (x, ) € supp((1 —c,ﬁ)(s, 1)), (5.2) shows that the second factor here is O (h2~2/).

Since the first factor means that integration in y, 7 yields a gain of O (h¢~!), the bound
(5.8) follows. 0O

Lemma 5.2. Let Eﬁ (t,s,x,6) = C',Q (s,dyo(t,s,x,8), &) There exists symbols q,/“u and
Fir.w such that

. . 1 i L . .
T € ) = Gt / / eh WU OO (] | +r) (s x.6) f(y) dydE,

with |02 g o (t. 5. )| So 2771 and

SUPD(q) (1. 5, )) C SUpP(E, (1, 5, )) = {(x. &) : cu(s, dy (1. 5, %, £),§) # 0} (5.9)

while
192 67 (1,8, )] San (h272)27 i1 (1 +h~120d (x, & supp(El (1, s, -))))_
(5.10)

d—1

. . od+l .
Again, since h272/ < (h272%/) ¢« ~ 7 the gain satisfied by rir. Will be sufficient.
Proof. The Schwartz kernel of the composition Tl{jfu oC [L (s) is the oscillatory integral
1 i o :
Gt [ FO G s x el s, v £ dvn. S1)

Its critical points satisfy d,¢ (¢, s, x, n) = y and § = n. The lemma thus follows from a
variation on the stationary phase arguments in Theorem 2.1 (taking M = 1 in the analog
of (2.21)). O

Lemma 5.3. Let Tl{ f be an oscillatory integral operator defined by

. 1 i — i
TN x) = W//Rz(ﬁ)e”(‘i’”"“m WEDal (1,5, x, €) f (y) dydE,

where J < j <0 and

102 cal (t.5. )] So 2711 +27 1x — x0T A +277 |5 — & 0 (). (5.12)

Then for some implicit constant depending only on the bounds for a[b ¢ and their
derivatives, we have

P _d-1/1_1
NT e epmtty SBT 2 271 N 2y
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We postpone a thorough proof of these bounds to the end of the section, though
as noted, they essentially are a consequence of the standard theory of Carleson—Sjo6lin
integral operators. For now we note that this will settle Theorem 3.4 when j = J (strictly
speaking this means that we take BJ »(8) = 0 as the enlarged family is not needed in
this case). Moreover, the linear estimates imply that (5.4) is bounded by the last three

terms in (3.28). Indeed, the lemma and the definition of B}, i1, (s) establishes that

H T ((1 —Cli(s) 0 B}, (s)f)‘

L4([—e,e], xRE™

180 () F 1l 21

_d-l
2

d d+1
<p 707y D (h2~2) T

~

which yields the desired gain when paired with the linear bound on the second factor.
Moreover, the gain of K272/ < (hZ’ZJ)%f% in the symbol of r,ﬁ‘,w shown in (5.10)
means that it suffices to prove (5.6) with the compactly supported q,’Lw replacing a{;,w
in the definition of T,{;

5.1. Bilinear estimates. We now complete the proof of (5.6). Set

i (d—1) 2i(d—1)

) = oo a I B N@ . ua) = Wﬂ(%,w&s@gxz-"n)

(5.13)
where J), denotes the semiclassical Fourier transform. Observe that by the semiclassical
Plancherel identity,

2\ T :
luill 2 @a-1y = <ﬁ) 1B} () f | L2 (ma-1y, (5.14)

and an analogous computation establishes the L? norm of us.
By the d1scu3510n following Lemma 5.3, we may replace the symbol aﬂ o 1n the
definition of TM %» by the compactly supported qu o defined in Lemma 5.2. Next set

P, s.xm) =275, 2%, 2, Pt x, ) =27 pt,2x,278),
so that ¢ solves the eikonal equation

Qp(t, s, x,n) + p(t, x,ded(t, s, x,1)) = 0. (5.15)

Also, let i s(x, &) denote the time ¢ value of the integral curve determined by the
Hamiltonian vector field of p(r, x, &) such that &, ;(x, &) |r:‘Y = (x, &). Itis verified that
the k;  are related to the original mappings k; s by

Ris(x, &) =27k, 5(20x, 278).

Hence ¢ is a generating function for Kr.s, satisfying relations analogous to (2.10). The

mixed Hessian dxdgci = I + O(¢) is nonsingular by the chain rule and (2.11).
Now make the following definitions

o . . . . ~j . j , . .
quj,,a)(tv S, -xv g) A q,{bw(ts S, 2]-x7 2]‘;;:)’ q”’/,w/(tv S, -xv g) L q'u/’w/(ts N L] 2st 215)7



530 M. D. Blair, C. D. Sogge

i22) = .
Tiuy(t, x) = / TOESTDOGT (1,5, x, Oy (£) dE, (5.16)

i22) 7 ’ i
. (,s"x,m) =]
Tous(t, x) := /e mOESImG) (s’ x, mua(n) d. (5.17)
so that after the symbol replacement above, we have that up to acceptable error,
R ((Ch) 0 By (0)F. (Ch(s) 0 Bl ,(s)g) (1.273) = Ty (1.) - Toua(a, )
The bound (5.6) will thus follow by dilating variables x +— 2/x and the bound

. 2d
1T Touzll g | S 2Dl eyl pgen. (518)

—&,€]; XR‘YI’I

To show (5.18), we will use bilinear estimates. When d = 2, these are implicit in
the work of Hormander [10] and when d > 3, they are a consequence of results of S.
Lee [12, Theorem 1.1] and the epsilon removal lemma in [3, Theorem 3.3]. To align the
notation here with the latter works, define

8(t.x.&.m) = (dep)(t. X, drp(t. 5. %, 8)) — (dyP)(t, x. dx(t, 5", x. ).
Since the Hessian 8,%_,7],150, x,n) = (8§i,7jp)(t, 2/x,277) is positive definite,

|8(t7-x’ %‘? 77)| ~ |dX¢;(tv §, X, S) - dx‘i’(t’ S/,X, 71)|

The crucial hypothesis to be verified to apply these bounds is that the following ex-
pression is uniformly bounded from below when (2/x,2/&) € supp(gj,(s,-)) and

(27x,2/n) € supp(q,, (s', ),

’

‘<[dxds<13] 55,6, [deded] [dedepia, v, )] 500, x. 8, n)>

where the derivatives of dxqg, dxdgq; are either both evaluated at (¢, s, x, £) or both
evaluated at (¢, s/, x, n). Given that dxdgcﬁ = I + O(e), it suffices to see that

a5, %, 8) = didlt, 8", x| ~ 1. (5.19)
To see (5.19), note that by (5.9), (x,&) € supp(é,i (s, -)) implies that

(deor (2.5, 27x.278). 278 ) € supp(c (5. ) = k5,0 (supP(c}(0.) ).

Applying «; ¢ to both sides of this, we see that by (2.10) this is equivalent to
(2/x, dep(1, 5,20, 2-/5)) € K10 (supp(c{;(o, -))) .

The same reasoning shows that if (2/x,27 n) € supp(qi ,(s7, ), then
(ij, dep(t,s', 2/ x, Zjn)> € K,,o(supp(clju(O, ).

By (5.1), this gives |dx¢ (2,5, 2/x,2/8) — de(t,5',2/x,2/n)| ~ 2/, and (5.19) fol-
lows.
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5.2. Linear estimates. Here we prove Lemma 5.3, using the rescaling from the previous
Sect. 5.1. Define a[l(r, s, %, &) 1= aj(t,s,2/x,2/€), let u; be as in (5.13) but replacing

B,]L.,w(s) f by f,and let T} be the operator with Schwartz kernel given by the oscillatory
integral

22j = L
/e W @sx =05 (1,5, x, ) de.
We thus have that ag(t, 5, ) € So(1), with

109 @l (t, 5, )| S (¥ = % 0(D) E — & o), A=27p  (5.20)

writing &, (f) in terms of components (X,0(ft), é,,o(,z)). It now suffices to show

T30l ity S B2 T 0 g (5.21)
_d-1 l,L) _Jj@=Y
Indeed, given (5.14), the right hand side is &~ h 7’2" 4 || fllz2, and the loss

in 2/ cancelled by reverting back to the original coordlnates on the left hand side. This
is the same gain observed in the first inequality in (2.13), but with frequency 2122/,
The main observation is that 77 is an oscillatory integral operator with a Carleson—Sjo6lin
phase as defined in [14, Chap. 2]. Indeed,

deded(t, s, x,8) = (deds p) (1, 5,27 x,278), (5.22)

and the latter defines a nonsingulz}r (d — 1) x (d — 1) matrix. Recalling (5.15), it suffices
to check that for (¢, x) € supp((j,ﬁ(o, s, -, &)) fixed

{5 x.diftt, .2, 1,5, %, 6) 1 € € supp(@f .5, x, 0| (523)

is an embedded hypersurface in T(* R? with nonvanishing principal curvatures. But
this follows from the fact that this is a local reparameterization of the graph of n —
—p(t.x.m) and 93, p(r. x, 1) = (@7, p)(t. 2/x,27n).

At this point, (5.21) formally follows from the standard theory of Carleson—Sjolin
integrals due to Hormander and Stein (see e.g. [14, Theorem 2.2.1]). However, care
must be taken here since the amplitude a ﬁ is not compactly supported in a set of uniform
diameter. However, it does decay rapidly outside such a set, which is enough. Seeing
this is a matter of tracing through the proof in that theorem, which we do here. We first
observe that given (5.22), the bound (5.21) with ¢ = 2 is a consequence of Hérmander’s
L? theorem [10] and the decay in (5.20). Indeed, this decay allows us to write the
amplitude as a sum

alsxe)= Y (i —Fo(D) o — Eo(D) al s x.6),

D=y ,ﬁg)éZz(d’I)

and we may take algﬁ(r,s, ) € So(1) with supp(&lj.;ﬁ(t,s, ) C {lx, ) — ] < 1)
For fixed ¢, Hormander’s theorem can now be applied in LZ(R¢~") to each operator
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determined by the decomposition here, and the decay in v ensures that we may sum over
the contribution of each of these operators without loss. This results in

_pj 4=t
1T “Lz(Rd*I)aLZ([_g,g]XRdfl) = O((h2 2/) 7).

It now suffices to prove (5.21) with g = %, that is,

_p dld=1)
171l 2d+1) = O((h2~ %) 2@m).
Lz(Rd_])%L d—1 ([,&glde—l)

Defining the fixed ¢ operator (Tlt u1)(x) = (Tyuy)(t, x), a duality and fractional inte-

gration argument along with the aforementioned L> bounds means it suffices to show
that

7 _9i ~._d=1
IT{ (T * 1 g1y oo a-1y S (h272 |t — )72

which is a consequence of
22 TP ; SO ; =i
‘ f o WU x=0Ca RG] ¢ 5 x, )al (7.5, 5, £) dE| < (27| — )T

As in [14, Chap. 2], this in turn follows from the fact that (5.23) ensures that any critical
points in the phase are nondegenerate. As before, this requires some care since the
integration is not over a set of uniform size, but this can be overcome by using a partition
of unity adapted to cubes of sidelength 1 in &, then using the decay in & away from

Es 0 ().
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